The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model - Archive ouverte HAL
Article Dans Une Revue Biochimica et Biophysica Acta - Molecular Basis of Disease Année : 2016

The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model

Valérie Desquiret-Dumas
  • Fonction : Auteur
  • PersonId : 991977
Naig Guegen
  • Fonction : Auteur
Celine Bris
  • Fonction : Auteur
Sophie Belal
  • Fonction : Auteur
Patrizia Amati-Bonneau
  • Fonction : Auteur
  • PersonId : 992769
Arnaud Chevrollier
Magalie Barth
  • Fonction : Auteur

Résumé

Ketogenic Diet used to treat refractory epilepsy for almost a century may represent a treatment option for mitochondrial disorders for which effective treatments are still lacking. Mitochondrial complex I deficiencies are involved in a broad spectrum of inherited diseases including Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes syndrome leading to recurrent cerebral insults resembling strokes and associated with a severe complex I deficiency caused by mitochondrial DNA (mtDNA) mutations. The analysis of MELAS neuronal cybrid cells carrying the almost homoplasmic m.3243A>G mutation revealed a metabolic switch towards glycolysis with the production of lactic acid, severe defects in respiratory chain activity and complex I disassembly with an accumulation of assembly intermediates. Metabolites, NADH/NAD+ ratio, mitochondrial enzyme activities, oxygen consumption and BN-PAGE analysis were evaluated in mutant compared to control cells. A severe complex I enzymatic deficiency was identified associated with a major complex I disassembly with an accumulation of assembly intermediates of 400kDa. We showed that Ketone Bodies (KB) exposure for 4weeks associated with glucose deprivation significantly restored complex I stability and activity, increased ATP synthesis and reduced the NADH/NAD+ ratio, a key component of mitochondrial metabolism. In addition, without changing the mutant load, mtDNA copy number was significantly increased with KB, indicating that the absolute amount of wild type mtDNA copy number was higher in treated mutant cells. Therefore KB may constitute an alternative and promising therapy for MELAS syndrome, and could be beneficial for other mitochondrial diseases caused by complex I deficiency

Dates et versions

hal-01396751 , version 1 (14-11-2016)

Identifiants

Citer

Samuel Frey, Guillaume Geffroy, Valérie Desquiret-Dumas, Naig Guegen, Celine Bris, et al.. The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model. Biochimica et Biophysica Acta - Molecular Basis of Disease, 2016, 1863 (1), pp.284-291. ⟨10.1016/j.bbadis.2016.10.028⟩. ⟨hal-01396751⟩
174 Consultations
0 Téléchargements

Altmetric

Partager

More