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• Modal approximation in (1): exp −
𝑑𝐺
2 𝑔,𝑔0

2𝜂2
≃ 𝛿𝑔0 i.e. 𝜂 ≃ 0

• Adding regularization in (1): +
𝜎2

𝜂2
𝑑𝐺
2 𝑔𝑖 , 𝑔0

References:  [1] Miolane, Holmes, Pennec. Biased estimators on quotient spaces (2015). [2] Allassonniere, S., Amit, Y., Trouve, A.: Towards a coherent statistical framework for dense 

deformable template estimation (2007). [3] Devilliers, Allassonniere, Pennec, Trouve. Frechet means top and quotient space might not be consistent: a case study (2015). 

Different estimators of the template’s shape

Computational Anatomy aims to model and analyze the variability of the human anatomy. Given a set of medical images of the same organ, the first step is the estimation of the mean

organ’s shape. This mean anatomical shape is called the template in Computer vision or Medical imaging. The estimation of a template/atlas is central because it represents the starting

point for all further processing or analyses. In view of the medical applications, evaluating the quality of this statistical estimate is crucial. How does the estimated template behave for

varying amount of data, for small and large level of noise? We present a geometric Bayesian framework which unifies two estimation problems that are usually considered distinct: the

template estimation problem and manifold learning problem - here associated to estimating the template’s orbit. We leverage this to evaluate the quality of the template estimator.

Comparison of the estimators
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M: space of the images 𝑋𝑖’s
G: Lie group of transformations

Action of 𝐺 on 𝑀: 𝜌:𝑀 × 𝐺 → 𝑀 denoted: 𝑋, 𝑔 → 𝜌 𝑋, 𝑔
𝑄: shape space, quotient of 𝑀 by 𝐺

𝑋𝑖 = 𝝆(𝑻, 𝒈𝒊) + 𝜖𝑖
where 𝑔𝑖~𝒩(𝑔0, 𝜂) i.i.d. and 𝜖𝑖 ~𝒩(0, 𝜎) i.i.d.

Generative model of organs’ shapes

Template estimation as a non-linear model of Errors-in-Variables 

MLE-F: Fast but inconsistent

MLE-S: Consistent but slow

Intra-subject Inter-subjects

Images from: [Talbot and al 2013][Lorenzi and al, 2011][Gerber and al, 2010][Margeta and al, 2011]

Electromechanical model of the heart

Aging model of the brain Brain manifold learning

Computational Physiology Computational Anatomy

Organ shape analysis

𝑡

Computational Medicine relying on medical images

First step: template shape computation Second step: analysis

Template shape

Non-linear model of Errors-in-Variables

𝑔𝑖

𝑔𝑖

𝜖𝑖
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𝑋𝑖 = 𝝆(𝑻, 𝒈𝒊) + 𝜖𝑖
where 𝑔𝑖~𝒩(𝑔0, 𝜂) i.i.d. and 𝜖𝑖 ~𝒩(0, 𝜎) i.i.d.
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Regression curve 
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Goal: 

Estimate the template 𝑻

Goal: 

Estimate the curve 

parameterized by 𝑻

Unification through Geometric Statistics

Space of images 𝑀

Orbit of template 

under the Lie group action

Template shape

Maximum-Likelihood (MLE-F)

Functional model: 𝑔𝑖’s are parameters Structural model: 𝑔𝑖’s are random variables

Maximum-Likelihood: Expectation-Maximization algorithm (MLE-S)
 𝑇 = argminT  

𝑖=1

𝑛

min
𝑔𝑖∈𝐺

𝑑𝑀
2 𝜌 𝑇, 𝑔𝑖 , 𝑋𝑖

Frechet mean in the shape space
No closed form solution

Likelihood: 𝐿 = Π𝑖=1
𝑛 exp −

𝑑𝑀
2 𝜌 𝑋𝑖,𝑔𝑖 ,𝑇

2𝜎2
Likelihood: 𝐿 = Π𝑖=1
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(1)  ∀𝑖,  𝑔𝑖 = argmin𝑔∈𝐺 𝑑𝑀
2 𝜌  𝑇, 𝑔𝑖 , 𝑋𝑖

(2)  𝑇 = argminT  𝑖=1
𝑛 𝑑𝑀

2 𝜌 𝑇,  𝑔𝑖 , 𝑋𝑖

(1) Expectation

(2) Maximization

Adding priors: 𝑝 𝑇 = cte. exp −
𝑑𝑄 𝑇,𝑇0

2

2𝜎𝑇
2 reweights metric in shape space; 𝑝 𝑔0 = cte. exp −
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Maximum-a-Posteriori (MAP-F)
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Improvement using the Bayesian framework: fast and inconsistency substantially reduced
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