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Abstract

We show that the global odd solutions of a cubic Schrödinger equation with potential,
with small smooth decaying initial data, do not scatter in one space dimension. More pre-
cisely, we obtain for the asymptotics of such solutions an explicit expression, involving a
logarithmic modulation in the phase of oscillation. This property has been known for long
in the potentialless case. In the presence of a (generic) potential, some commutation issues
of the Klainerman vector field like operator used in order to exploit dispersion appear.

Our method of proof uses the wave operators of the stationary Schrödinger operator, in
order to reduce the problem to an equation without potential, but with a variable coefficients
pseudodifferential nonlinearity. Exploiting the fact that we are working only with odd solu-
tions, we may overcome the commutation issues alluded to above, and, using semiclassical
analysis, deduce from the PDE an ODE, whose analysis provides the wanted asymptotics of
the solution.

0 Introduction

In recent years, several works have been devoted to the question of long time asymptotics
of solutions of nonlinear hyperbolic equations with data given by a small perturbation of a
stationary solution. In higher space dimensions, let us mention the contributions of Soffer and
Weinstein [22, 23, 24], and more recently of Cuccagna [4], Bambusi and Cuccagna [2], Cuccagna
and Maeda [6], Cuccagna, Maeda and Phan [7]. We do not try to give an exhaustive bibliography,
and refer to the most recent papers cited above and their list of references for a more complete
description of works in dimension larger or equal to two. Let us mention also, in a more geometric
framework, the results of Donninger, Krieger, Szeftel and Wong [14].

We are interested here in one dimensional problems for which, in contrast with what happens
in higher dimension, and even for small perturbations of the zero state, the dispersion of the
∗Partially supported by the ANR project 13-BS01-0010-02 “Analyse asymptotique des équations aux dérivées

partielles d’évolution”.
Keywords: Cubic Schrödinger equation, Modified scattering, Wave operators. MSC 35Q55, 35B40, 35B25.
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linear part of the equation is too weak to expect that the solution of the nonlinear problem will
have, when time goes to infinity, the same asymptotics as linear solutions. For instance, for
one dimensional Klein-Gordon equations with quadratic or cubic nonlinearities, and small and
decaying Cauchy data, one proves that the global solutions (when they exist) have asymptotics
at infinity that differ, through a logarithmic correction in their phase of oscillation, from the
asymptotics of solutions of the linear problem (see [10, 11, 18, 26]). A natural question is thus
to ask if one may put into evidence a similar phenomenon when considering initial data that are
a small perturbation of a (non zero) stationary solution.

Such a problem has been recently attacked by Kowalczyk, Martel and Muñoz [17] for the so-
called “kink problem”. They consider a solution to ∂2

t φ− ∂2
xφ = φ−φ3, in one space dimension,

starting from initial data of the form φ|t=0 = H + ϕ1, ∂tφ|t=0 = ϕ2, where H(x) = tanh(x/
√

2)
is a stationary solution and (ϕ1, ϕ2) is small in the energy space and odd. They could prove
that the local energy decays to zero, as well as the finiteness of some space-time weighted L2

estimates for the dispersive part of the solution. Their result is probably optimal under the
assumptions they are making, but opens new questions. In particular, up to stronger decay
assumptions on the initial data, is it possible to uncover the asymptotics of the solution in order
to exhibit modified scattering, that is expected from the fact that, in one space dimension, a
cubic nonlinearity plays the role of a long range perturbation?

A first step towards such a goal is to study long time asymptotics for small solutions of one
dimensional Klein-Gordon or Schrödinger equations in one space dimension, where one adds to
the Laplace operator a smooth rapidly decaying potential V . This has been done by Cuccagna,
Georgiev and Visciglia [5], for Schrödinger equations with a nonlinearity vanishing at order p > 3
at zero. In this case, assuming that the operator −∆ + V has no eigenvalues, they could show
that solutions of the nonlinear problem scatter. One cannot expect the same result if p = 3:
actually, when V = 0, it has been known since the work of Hayashi and Naumkin [15], Lindblad
and Soffer [19] and more recently Ifrim and Tataru [16], that one has only modified scattering
when the initial data are small, smooth and decaying. For the defocusing cubic Schrödinger
equation, Deift and Zhou [9] showed that the same modified scattering holds for large initial
data, using the complete integrability of the equation. In the regime of nonlinearities playing
the role of a long range perturbation, we do not know of results showing modified scattering,
when one allows variable coefficients, either in the linear part of the equation or in front of the
nonlinearity. The only works we are aware of concern time decay of solutions for one dimensional
Klein-Gordon equations with variable coefficients nonlinearities by Lindblad and Soffer [20] and
Sterbenz [25].

Our goal in this paper is to obtain, for solutions of the cubic Schrödinger equation(
Dt −

D2
x

2 − V (x)
)
u = κ(x)|u|2u,

with small smooth initial data u0 such that xu0 is in L2, a one term asymptotic expansion of
the solution displaying the modified scattering phase we expect. We may do that only under
convenient assumptions, namely that D2

x
2 + V (x) has no eigenvalue, that V is a “generic” even

potential belonging to S(R), that κ is smooth, even, with κ′ in S(R), and that the initial data
u0 is odd. This last assumption is essential for us, as in the work of Kowalczyk, Martel and
Muñoz [17] cited above.

The method we adopt relies, as in many previous works in the subject, on the use of the wave
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operators W+ associated to D2
x

2 + V (x). We set u = W+w, for a new unknown w, that solves an
equation of the form

(∗)
(
Dt −

D2
x

2
)
w = W ∗+

[
κ(x)|W+w|2W+w

]
.

In that way, we reduce ourselves to a constant coefficients linear part, but up to a nonlinearity
containing the operators W+,W

∗
+. To analyse this equation, we use a strategy combining ideas

from Alazard and Delort [1], Delort [12], Ifrim and Tataru [16] and Stingo [26] in the constant
coefficient case: we set w(t, x) = 1√

t
v
(
t, xt

)
for a new unknown v and obtain from (∗) a semi-

classical equation satisfied by v (with semiclassical parameter h = 1/t). We prove then energy
estimates for the action of the operator (x+ tDx) acting on w (or of the corresponding operator
obtained by change of variables acting on v). We deduce on the other hand from the PDE an
ordinary differential equation satisfied by v, which is the classical counterpart of the quantum
problem (∗). The analysis of that ODE allows one to uncover the asymptotics of v, and thus of
w and u, when time goes to infinity.

The new difficulties one has to cope with, in comparison with constant coefficients problems,
come from the fact that the operatorW+ in the right hand side of (∗) may be written, under our
assumptions, as a variable coefficients pseudo-differential operator. Because of that, an operator
like x + tDx does not commute nicely to it. Nevertheless, using that our unknown w is odd,
one may re-express the results of such a commutator from the action of x + tDx itself. This is
what allows one to obtain energy inequalities for (x + tDx)w. Once such bounds are secured,
one may deduce from the PDE satisfied by v and ODE using symbolic calculus for semiclassical
pseudo-differential operators.

1 Statement of the theorem and first reductions

1.1 Statement of the main theorem

We consider V : R→ R a potential belonging to S(R). Then the operator −1
2∆+V = −1

2
d2

dx2 +V
is a self-adjoint operator whose spectrum is made of an absolutely continuous part, equal to
[0,+∞[, and of finitely many negative eigenvalues (see Deift-Trubowitz [8]). In this paper, we
assume moreover

(1.1.1) − 1
2∆ + V has no eigenvalue

(as for instance if V is nonnegative). For ξ in R, we define the Jost function f1(x, ξ) (resp.
f2(x, ξ)) as the unique solution to

(1.1.2) − d2

dx2 f + 2V (x)f = ξ2f

that satisfies f1(x, ξ) ∼ eixξ when x goes to +∞ (resp. f2(x, ξ) ∼ e−ixξ when x goes to −∞).
We set

m1(x, ξ) = e−ixξf1(x, ξ)
m2(x, ξ) = eixξf2(x, ξ).

(1.1.3)
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We shall say that the potential V is generic if

(1.1.4)
∫ +∞

−∞
V (x)m1(x, 0) dx 6= 0.

Notice that the above integral is convergent as m1(x, ξ) is bounded when x goes to +∞ and has
at most polynomial growth as x goes to −∞ (see [8] Lemma 1 and lemma A.1.1 below). We say
that V is very exceptional if

(1.1.5)
∫ +∞

−∞
V (x)m1(x, 0) dx = 0 and

∫ +∞

−∞
V (x)xm1(x, 0) dx = 0.

Remarks • There are lots of (even) potentials for wich (1.1.1) and (1.1.4) hold true. Actually,
it is proved in [8], page 153, that any nonnegative potential in S(R) that is not identically zero
satisfies (1.1.4).

•We do not know if there are non trivial potentials V , even, such that (1.1.1) and (1.1.5) hold. If
one drops the condition (1.1.1), there are examples of even potentials in S(R) that satisfy (1.1.5).
If one sets V (x) = −3 cosh−2 x, it is proved in [3] Lemma 2.1 that the transmission coefficient
of this potential satisfies T (0) = 1 (see [8] or Appendix A.1 below for the definition of the
transmission coefficient). This implies on the one hand that (1.1.4) does not hold (as (1.1.4) is
equivalent to T (0) = 0 – see [8, 27] or (A.1.21) below) and that moreover

∫
xV (x)m1(x, 0) dx = 0

i.e. that (1.1.5) holds, as follows from (A.1.16) and (A.1.20) in the appendix of the paper.

Our main result is the theorem below, where we denote Dt = 1
i
∂
∂t , Dx = 1

i
∂
∂x . In the rest of the

paper, we shall write frequently D for Dx, when there is no risk of confusion.

Theorem 1.1.1 Let V be an even potential belonging to S(R), satisfying (1.1.1) and either
(1.1.4) or (1.1.5). Let κ be a real valued smooth even function, with ∂xκ in S(R). For any θ
in ]0, 1

4 [, one may find s0 in R+ and for any s > s0, some ε0 ∈]0, 1[, such that the following
statement holds true: For any odd function u0 in Hs(R;C), satisfying

(1.1.6) ‖u0‖Hs + ‖xu0‖L2 ≤ 1,

there is a family of continuous functions (Aε)ε∈]0,ε0[, bounded in L∞(R) ∩ L2(R) such that, for
any ε ∈]0, ε0[, the unique global solution of the equation(

Dt −
1
2D

2
x − V (x)

)
u = κ(x)|u|2u

u|t=1 = εu0

(1.1.7)

has when t goes to +∞ an asymptotic expansion

(1.1.8) u(t, x) = ε√
t
Aε
(x
t

)
exp

[
−ix

2

2t + iε2Lκ
(
t,
x

t

)∣∣∣Aε(x
t

)∣∣∣2]+ r(t, x)

where Lκ(t, x) =
∫ t

1
κ(τx) dτ

τ
and r and Aε satisfy

‖r(t, ·)‖L∞ = O(εt−
3
4 +θ), ‖r(t, ·)‖L2 = O(εt−

1
4 +θ)

‖Aε(x)〈tx〉−2‖L∞ = O(εt−
1
4 +θ), ‖Aε(x)〈tx〉−2‖L2 = O(εt−

5
8 + θ

2 ).
(1.1.9)
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Remarks: • The index of regularity s0 in the statement may be estimated from below in
function of θ. Our proof will give s0 = 1 + 3

2θ .

• The global existence of solutions for (1.1.7) with small H1(R) data is immediate. The point
in the theorem is the asymptotic expansion (1.1.8), which shows that, for the cubic Schrödinger
equation with a potential, one gets the same type of asymptotic expansions as in the potentialless
case (see Hayashi-Naumkin [15], Lindblad-Soffer [19] and Ifrim-Tataru [16]), at least under our
oddness assumption on the initial data.

• The assumptions that V and κ are even, so that an odd initial data generates an odd solution,
will play an essential role in the proof. Actually, already in the case of the linear equation without
potential (Dt − D2

x
2 )u = 0, the solution with initial data u0 ∈ S(R) at t = 0 has principal part

when t goes to +∞ given by
eiπ/4√

2πt
û0
(
−x
t

)
e−i

x2
2t .

In particular, if u0 is odd, this may be written as 1√
t
x
tB
(
x
t

)
e−i

x2
2t for some function B in S(R),

so that ‖〈x〉−1u(t, x)‖L∞(dx) will decay like t−3/2 when t goes to +∞, instead of t−1/2 in the
general case. Such an enhanced decay will play an essential role below.

• The estimates (1.1.9) for Aε means that Aε has some vanishing property when x goes to zero.
This reflects the fact that we consider only odd solutions.

1.2 Reductions

We denote by W+ the wave operator associated to P = −1
2∆ + V , defined as the strong limit

(1.2.1) W+ = s− lim
t→+∞

eitP e−itP0

where P0 = −1
2∆. One knows (see Weder [27] and references therein) that, since we assume

that V has only continuous spectrum according to (1.1.1),

(1.2.2) W+W
∗
+ = IdL2 , W ∗+W+ = IdL2

and, more generally, that if b is any Borel function on R

(1.2.3) b(P ) = W+b(P0)W ∗+, b(P0) = W ∗+b(P )W+.

In particular, W ∗+P = P0W+ so that, if we define

(1.2.4) w = W ∗+u

the first equation (1.1.7) implies

(1.2.5)
(
Dt −

1
2D

2
x

)
w = W ∗+

[
κ(x)|W+w|2W+w

]
.

Notice that since P and P0 preserve the space of odd functions, so do W+,W
∗
+, so that we shall

have to study (1.2.5) when w is odd. For such w, we shall obtain in appendix A.1 an expression
for W+w given by the following proposition.
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Proposition 1.2.1 Let χ± be smooth functions, supported for ±x ≥ −1, with values in [0, 1],
with χ−(x) = χ+(−x), χ+(x)+χ−(x) ≡ 1. There are smooth functions ej(ξ), j = 0, 1, satisfying

(1.2.6) |∂βξ ej(ξ)| ≤ Cα〈ξ〉
−j−β, ∀β ∈ N, j = 0, 1

(1.2.7)
∣∣∂βξ [e0(ξ) + |ξ|e1(ξ)− 1]

∣∣ ≤ Cβ〈ξ〉−1−β, ∀β ∈ N,∀ξ with
∣∣ξ∣∣ ≥ 1

(1.2.8)
∣∣e0(ξ) + |ξ|e1(ξ)

∣∣ ≡ 1, for any ξ 6= 0,

there are smooth functions mj(x, ξ), j = 1, 2, satisfying for any M > 0, any N in N, any α, β
in N ∣∣∂αx ∂βξ [m1(x, ξ)− 1]

∣∣ ≤ CαβN 〈x〉−N 〈ξ〉−1−β, ∀x > −M,∀ξ ∈ R∣∣∂αx ∂βξ [m2(x, ξ)− 1]
∣∣ ≤ CαβN 〈x〉−N 〈ξ〉−1−β, ∀x < M,∀ξ ∈ R

(1.2.9)

such that, if we define

e+(x, ξ) = m1(x, ξ)
[
e0(ξ) + |ξ|e1(ξ)

]
e−(x, ξ) = m2(x,−ξ)

[
e0(−ξ) + |ξ|e1(−ξ)

](1.2.10)

and set

(1.2.11) a(x, ξ) = χ+(x)e+(x, ξ) + χ−(x)e−(x, ξ),

then for any odd function w

(1.2.12) W+w = a(x,D)w def= 1
2π

∫
eixξa(x, ξ)ŵ(ξ) dξ.

Remark: We shall see in Appendix A.1 (see (A.1.2)) that since the potential V is even,
m2(x, ξ) = m1(−x, ξ) so that a(−x,−ξ) = a(x, ξ). This reflects the fact that W+ preserves
the space of odd functions (and the space of even functions).

It follows from (1.2.9), (1.2.10), (1.2.11) that we may write

a(x, ξ) = a0(x, ξ) + a1(x, ξ)|ξ|

where a0 (resp. a1) is a pseudo-differential symbol of order 0 (resp. −1). Consequently, operators
[x, a(x,D)], [x, a(x,D)∗] are bounded on L2, so that assumption (1.1.6) implies that w0 = W ∗+u0
satisfies

(1.2.13) ‖w0‖Hs + ‖xw0‖L2 = O(1).

The proof of the main theorem is thus reduced to the proof of estimates and asymptotics for
the solution w of (1.2.5) with odd initial condition w0 satisfying (1.2.13).

2 Semiclassical formulation and symbolic calculus

In this section, we shall rewrite equation (1.2.5) as a semiclassical equation, and prove some
preliminary results that will be useful to obtain L2 or L∞ bounds in the remaining sections.
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2.1 Semiclassical formulation

Let us introduce some notation following Dimassi-Sjöstrand [13]. An order function on R2 is a
function M : R2 → R+ such that there are constants C0 > 0, N0 > 0 so that, for any (x, ξ, y, η)
in R2 × R2,

M(x, ξ) ≤ C0
(
1 + |x− y|2 + |ξ − η|2

)N0
2 M(y, η).

Let δ be in [0, 1]. If M is an order function, we denote by Sδ
(
M
)
the space of smooth functions

(h, x, ξ)→ ah(x, ξ)
]0, 1]× R2 → C

that satisfy for any α, β, γ estimates

(2.1.1) |(h∂h)γ∂αx ∂
β
ξ ah(x, ξ)| ≤ CαβγM(x, ξ)h−δα−(1−δ)β.

Below we shall be mainly interested in the cases δ = 1 or δ = 1
2 . We shall need also the subclass

Σ1
(
〈ξ〉m

)
of S1

(
〈ξ〉m

)
, where m is in R, defined by the condition

(2.1.2) |(h∂h)γ∂αx ∂
β
ξ ah(x, ξ)| ≤ Cαβγ〈ξ〉m−βh−α

where we gain a negative power of 〈ξ〉 for any ∂ξ derivative.

Let λ be in [0, 1]. We associate to a symbol (ah)h in Sδ
(
M
)
a family of operators acting on

(families of) functions in S(R) by

(2.1.3) Opλh(ah)v = 1
2πh

∫
ei(x−y) ξ

hah(λx+ (1− λ)y, ξ)v(y) dydξ,

which has a meaning as an oscillatory integral. We shall use actually only the cases λ = 1 (usual
quantization), λ = 0 (dual quantization of the preceding one) and λ = 1

2 (Weyl quantization),
given respectively by

Op1
h(ah)v = 1

2πh

∫
ei(x−y) ξ

hah(x, ξ)v(y) dydξ = a(x, hD)v

Op0
h(ah)v = 1

2πh

∫
ei(x−y) ξ

hah(y, ξ)v(y) dydξ

= F−1
ξ

[∫
e−iyξah(y, hξ)v(y) dydξ

]
OpW

h (ah)v = Op
1
2
h (ah)v = 1

2πh

∫
ei(x−y) ξ

hah
(x+ y

2 , ξ
)
v(y) dydξ.

(2.1.4)

Remark that the three definitions coincide if ah is independent of x. We notice also that, if we
denote by

(
Opλh(ah)

)∗ the formal adjoint of Opλh(ah), we have the equalities

(2.1.5)
(
Op1

h(ah)
)∗ = Op0

h(āh),
(
Op0

h(ah)
)∗ = Op1

h(āh),
(
OpW

h (ah)
)∗ = OpW

h (āh).

As (2.1.4) defines operators that are bounded from S(R) to S(R), we may extend them by
duality from S ′(R) to S ′(R).

Finally, we shall have to consider as well symbols that are not smooth at ξ = 0, like ah(x, ξ)|ξ|,
where ah is in Sδ

(
1
)
. We shall extend the notation Op1

h(·), Op0
h(·) to such generalized symbols,
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writing Op1
h(ah|ξ|) (resp. Op0

h(ah|ξ|)) for Op1
h(ah) ◦ |hD| (resp. |hD| ◦Op0

h(ah)). Of course, we
shall use this notation only when we make act these operators on spaces of functions on which
|hD| is well defined, like Sobolev spaces.

Let w(t, x) be some function in C0([1,+∞[, Hs(R))∩C1([1,+∞(, Hs−2(R)) for some s ≥ 2 and
define a new function v by

(2.1.6) w(t, x) = 1√
t
v
(
t,
x

t

)
.

If we set h = 1
t ∈]0, 1], we get

Dtw =
√
h
[(
Dt −

1
2(xhDx + hDxx)

)
v
](
t,
x

t

)
=
√
h
[(
Dt −OpW

h (xξ)
)
v
](
t,
x

t

)
D2
xw =

√
h
[
OpW

h (ξ2)v
](
t,
x

t

)
.

(2.1.7)

Let us define from (1.2.11)

(2.1.8) ah(x, ξ) = a
(x
h
, ξ
)

= a0,h(x, ξ) + a1,h(x, ξ)|ξ|

where, according to (1.2.10),

(2.1.9) aj,h(x, ξ) = χ+
(x
h

)
m1
(x
h
, ξ
)
ej(ξ) + χ−

(x
h

)
m2
(x
h
,−ξ

)
ej(−ξ)

for j = 0, 1. It follows from (1.2.6), (1.2.9) that aj,h belongs to the subspace Σ1
(
〈ξ〉−j

)
of

S1
(
〈ξ〉−j

)
defined by (2.1.2), and that for any N in N

(2.1.10)
〈x
h

〉N [
aj,h(x, ξ)− χ+

(x
h

)
ej(ξ)− χ−

(x
h

)
ej(−ξ)

]
belongs to Σ1

(
〈ξ〉−j−1) ⊂ S1

(
〈ξ〉−j−1). We deduce from (1.2.12) and (2.1.6), (2.1.8)

(2.1.11) W+w(t, x) = 1√
t

[
Op1

h(ah)v
](
t,
x

t

)
so that equation (1.2.5) and (2.1.7), (2.1.5) imply that v satisfies

(2.1.12)
(
Dt −OpW

h

(
xξ + ξ2

2
))
v = hOp0

h(āh)
[
κ
(x
h

)∣∣Op1
h(ah)v

∣∣2Op1
h(ah)v

]
.

In the rest of the paper, we shall study the solution v to (2.1.12).

2.2 Symbolic calculus

The general formula for the symbol of a composition of operators (in Weyl quantization) is
given in Proposition 7.7 of [13]. It turns out that we shall need such a formula only when one
of the symbols is a linear form. In this case, the formula just follows from the definition of the
quantization in (2.1.4). More precisely, we considerM1 andM2 two order functions and symbols
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aj in Sδ
(
Mj
)
, j = 1, 2 for some δ ∈ [0, 1]. We assume that a1 or a2 is a linear form on R2 (in

which case the corresponding order function may be taken to be (x2 + ξ2 + 1)
1
2 ). Then we have

the following exact composition formulas:

Op1
h(a1) ◦Op1

h(a2) = Op1
h

[
a1a2 + h

i
∂ξa1∂xa2

]
Op0

h(a1) ◦Op0
h(a2) = Op0

h

[
a1a2 −

h

i
∂xa1∂ξa2

]
OpW

h (a1) ◦OpW
h (a2) = OpW

h

[
a1a2 + h

2i{a1, a2}
](2.2.1)

where

(2.2.2) {a1, a2} = ∂ξa1∂xa2 − ∂xa1∂ξa2.

Let us recall some properties related to the boundedness of our operators on various spaces.
We define for s in R, Hs

sc(R,C) as the space of families of functions (vh)h indexed by h ∈]0, 1],
satisfying

(2.2.3) ‖(vh)h‖Hs
sc

def= sup
h∈]0,1]

‖vh‖Hs
h
< +∞

where

(2.2.4) ‖vh‖Hs
h

=
∥∥OpW

h (〈ξ〉s)vh
∥∥
L2 .

In the sequel, we shall frequently omit the explicit dependence of vh in h in the notation. We
shall use:

Lemma 2.2.1 Let m, s be in R, λ in [0, 1].

(i) Let a be in S 1
2

(
〈ξ〉m

)
. Then there is C > 0 such that for any (vh)h in Hs

sc(R,C), any h in
]0, 1]

(2.2.5) ‖Opλh(a)vh‖Hs−m
h
≤ C‖vh‖Hs

h
.

(ii) Let a be in S1
(
〈ξ〉m

)
. Then there is C > 0 such that for any (vh)h in Hs

sc(R,C), any h in
]0, 1]

(2.2.6) ‖Op0
h(a)vh‖Hs−m

h
+ ‖Op1

h(a)vh‖Hs−m
h
≤ C‖vh‖Hs

h
.

(iii) Assume m < 0 and let a be in Σ1
(
〈ξ〉m

)
. Then there is C > 0 such that for any v in L∞,

any h in ]0, 1]

(2.2.7)
∥∥Op1

h(a)v
∥∥
L∞
≤ C‖v‖L∞ .

The above lemma is proved in Appendix A.2.

We shall use several times the following Sobolev estimates:
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Lemma 2.2.2 (i) There is C > 0 such that for any (vh)h in H1
sc(R,C), any h in ]0, 1]

(2.2.8) ‖vh‖L∞ ≤ Ch−
1
2 ‖vh‖

1
2
L2‖hDvh‖

1
2
L2 .

(ii) Let χ be in C∞0 (R), χ ≡ 1 close to zero, s ≥ 0, σ > 0. There is a constant C > 0 such that
for any j in N, with j ≤ s− 1, any (vh)h in Hs

sc(R,C), any h in ]0, 1], any ` in N, ` ≤ s;

(2.2.9)
∥∥OpW

h

(
(1− χ)(hσξ)

)
vh
∥∥
H`
h
≤ Chσ(s−`)‖vh‖Hs

h

(2.2.10)
∥∥|hD|jOpW

h

(
(1− χ)(hσξ)

)
vh
∥∥
L∞
≤ Chσ(s− 1

2−j)−
1
2 ‖vh‖Hs

h
.

(iii) Let z → γ(z) be in L2. There is C > 0 such that for any (vh)h in L2, any h in ]0, 1]

(2.2.11)
∥∥∥∥OpW

h

(
γ
(x+ ξ√

h

))
vh

∥∥∥∥
L∞
≤ Ch−

1
4 ‖vh‖L2 .

Proof: (i) Estimate (2.2.8) is just Sobolev embedding.

(ii) Inequality (2.2.9) just follows from the definition of the Hs
h norm. Estimate (2.2.10) follows

from (2.2.8) and (2.2.9) applied with ` = 0, s replaced by s− j (resp. s− j − 1) and vh replaced
by |hD|jvh (resp. (hD)|hD|jvh).

(iii) is an estimate of Ifrim-Tataru [16]. Notice that the distribution kernel of OpW
h

(
γ
(
x+ξ√
h

))
is

nothing but

(2.2.12) 1
2πh

∫
ei(x−y)ξ/hγ

(x+ y

2
√
h

+ ξ√
h

)
dξ = e−i

x2−y2
2h

1√
h

(F−1
ξ γ)

(x− y√
h

)
.

As F−1
ξ γ is in L2, inequality (2.2.11) follows by Cauchy-Schwarz. 2

We introduce the following operator

(2.2.13) L = 1
h

OpW
h (x+ ξ) = 1

h
Op1

h(x+ ξ) = 1
h

Op0
h(x+ ξ)

that plays an essential role in the long time analysis of solutions to Schrödinger equations. We
shall exploit the fact that we work with odd solutions in the proof of the following lemma, that
allows to bound a weighted L2 or L∞ norm of the action of a semiclassical operator on an odd
function v in terms of an L2-norm of Lv, with a gain of a positive power of h.

Lemma 2.2.3 (i) Let q be in R+, c an element of S1
(
〈ξ〉−q

)
. There is a constant C > 0 such

that for any family of odd functions (vh)h in H−qsc (R,C) such that (Lvh)h is in H−qsc (R,C), one
has for any h in ]0, 1] the estimate

(2.2.14)
∥∥∥〈x
h

〉−2
Op1

h(c)vh
∥∥∥
L2
≤ Ch

[
‖Lvh‖H−q

h
+ ‖vh‖H−q

h

]
.

Moreover, for any σ ∈]0, 1], any s ≥ 1/σ, there is C > 0 and for any (vh)h in Hs−q
sc (R,C), odd,

with (Lvh)h in H−qsc (R,C), any h in ]0, 1]

(2.2.15)
∥∥∥〈x
h

〉−2
Op1

h(c)vh
∥∥∥
H1
h

≤ Ch1−σ
[
‖Lvh‖H−q

h
+ ‖vh‖Hs−q

h

]
.
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(ii) Let aj,h be in S1
(
〈ξ〉−j

)
, j = 0, 1 and set

ah(x, ξ) = a0,h(x, ξ) + a1,h(x, ξ)|ξ|.

There is C > 0 such that for any odd (vh)h in L2, such that (Lvh)h is in L2, one has for any h
in ]0, 1]

(2.2.16)
∥∥∥〈x
h

〉−2
Op1

h(ah)vh
∥∥∥
L2
≤ Ch

[
‖Lvh‖L2 + ‖vh‖L2

]
.

Moreover, for any σ ∈]0, 1], any s ≥ 1/σ, there is C > 0 such that for any odd (vh)h in Hs
sc(R,C)

with (Lvh)h in L2, one has for any h in ]0, 1]

(2.2.17)
∥∥∥〈x
h

〉−2
Op1

h(ah)vh
∥∥∥
L∞
≤ Ch

1
2−

σ
2
[
‖Lvh‖L2 + ‖vh‖Hs

h

]
.

Proof: (i) We prove first (2.2.14) when q = 0. We write v for vh to simplify notation. Since v
is odd

v(x) = 1
2[v(x)− v(−x)] = x

2

∫ 1

−1
(∂v)(λx) dλ

so that, since by (2.2.1), [Op1
h(c), x] = −ihOp1

h

(
∂c
∂ξ

)
,

(2.2.18) Op1
h(c)v = h

2

∫ 1

−1
Op1

h

(∂c
∂ξ

)
[(Dv)(λx)] dλ+ i

x

2

∫ 1

−1
Op1

h(c)[(Dv)(λx)] dλ.

We may write by (2.2.13), D = L − x
h , so that (2.2.18) is the sum of the following quantities

(2.2.19) h

2

∫ 1

−1
Op1

h

(∂c
∂ξ

)
[(Lv)(λx)] dλ+ i

x

2

∫ 1

−1
Op1

h(c)[(Lv)(λx)] dλ

and

(2.2.20) − 1
2

∫ 1

−1
Op1

h

(∂c
∂ξ

)
[(λx)v(λx)] dλ− i x2h

∫ 1

−1
Op1

h(c)[(λx)v(λx)] dλ.

Since c, ∂c∂ξ are in S1
(
1
)
, it follows from (ii) of lemma 2.2.1 that the L2 norm of the product of〈

x
h

〉−2 by (2.2.19) is bounded from above by

(2.2.21) Ch

∫ 1

−1
‖(Lv)(λx)‖L2(dx) dλ ≤ Ch‖Lv‖L2 ,

so by the right hand side of (2.2.14) with q = 0. Consider next (2.2.20), where we commute the
x against v to the operators Op1

h

(
∂c
∂ξ

)
, Op1

h(c). We get by (2.2.1) expressions of the form

h

∫ 1

−1
λOp1

h(c1)[v(λx)] dλ, x
∫ 1

−1
λOp1

h(c2)[v(λx)] dλ, x
2

h

∫ 1

−1
λOp1

h(c3)[v(λx)] dλ

for new symbols c1, c2, c3 in S1
(
1
)
. The product of these quantities by

〈
x
h

〉−2 has L2 norm
bounded from above by Ch‖v‖L2 , so by the right hand side of (2.2.14) with q = 0. When q > 0
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we write c(x, ξ) = c̃(x, ξ)〈ξ〉−q, with c̃ in S1
(
1
)
, so that (2.2.14) with q = 0 applied to the odd

function ṽ = 〈hD〉−qv gives∥∥∥〈x
h

〉−2
Op1

h(c)v
∥∥∥
L2
≤ Ch

[
‖L〈hD〉−qv‖L2 + ‖v‖H−q

h

]
from which the wanted estimate follows, as [L, 〈hD〉−q] is bounded from H−qsc to L2.

To prove (2.2.15), we take χ in C∞0 (R), equal to one close to zero and decompose〈x
h

〉−2
Op1

h(c)v = Op1
h(χ(hσξ))

[〈x
h

〉−2
Op1

h(c)v
]

+ Op1
h((1− χ)(hσξ))

[〈x
h

〉−2
Op1

h(c)v
]
.

By (2.2.9) and (2.2.5)∥∥∥Op1
h((1− χ)(hσξ))

[〈x
h

〉−2
Op1

h(c)v
]∥∥∥
H1
h

≤ Chσ(s−1)‖v‖Hs−q
h

which is bounded by the right hand side of (2.2.15) if sσ ≥ 1. On the other hand∥∥∥Op1
h(χ(hσξ))

[〈x
h

〉−2
Op1

h(c)v
]∥∥∥
H1
h

≤ Ch−σ
∥∥∥〈x
h

〉−2
Op1

h(c)v
∥∥∥
L2

to which we may apply (2.2.14) to finish the proof of (2.2.15).

(ii) Let us deduce (2.2.16) and (2.2.17) from (2.2.14) and (2.2.15). Note that it is enough to
show (2.2.16) and

(2.2.22)
∥∥∥〈x
h

〉−2
Op1

h(ah)v
∥∥∥
H1
h

≤ Ch1−σ
[
‖Lv‖L2 + ‖v‖Hs

h

]
,

as (2.2.17) will follow from these two inequalities and (2.2.8). If we replace in (2.2.16), (2.2.22),
ah by a0,h, these two inequalities follow from (2.2.14) and (2.2.15). Consider now the contribution
of a1,h(x, ξ)|ξ|. Applying (2.2.14), (2.2.15) with q = 1 to a1,h, we get∥∥∥〈x

h

〉−2
Op1

h(a1,h|ξ|)v
∥∥∥
L2
≤ Ch

[
‖L|hD|v‖H−1

h
+ ‖|hD|v‖H−1

h

]
∥∥∥〈x
h

〉−2
Op1

h(a1,h|ξ|)v
∥∥∥
H1
h

≤ Ch1−σ
[
‖L|hD|v‖H−1

h
+ ‖|hD|v‖Hs−1

h

]
.

As [L, |hD|] = isgn (hD) is bounded on L2, we bound the above two expressions respectively by
the right hand side of (2.2.16) and (2.2.22). This concludes the proof. 2

2.3 Reduction to local operators

We want to express the action of a pseudo-differential operator on a function f from the product
of f and of the restriction of the symbol of the operator to

(2.3.1) Λ = {(x, ξ) ∈ R2;x+ ξ = 0}

up to a convenient remainder. We shall consider symbols in the subclass of S1
(
〈ξ〉−j

)
that we

define now.
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Definition 2.3.1 We denote by S̃1
(
〈ξ〉m

)
the space of symbols a in S1

(
〈ξ〉m

)
such that for any

integer N

(2.3.2)
〈x
h

〉N
h∂xa ∈ S1

(
〈ξ〉m

)
.

We shall prove the following result:

Proposition 2.3.2 Consider a function ah(x, ξ) of the form

(2.3.3) ah(x, ξ) = a0,h(x, ξ) + a1,h(x, ξ)|ξ|.

(i) Assume that aj,h belongs to S1
(
〈ξ〉−j

)
, j = 0, 1. Define

R1(f) = Op1
h(ah)f − ah(x,−x)f.

Then for any σ, δ ∈]0, 1
2 [, any s ≥ 1 + 1

σ , there is a constant C > 0 such that, for any function
f for which the right hand side of the following inequalities is finite, for any h in ]0, 1]

(2.3.4) ‖R1(f)‖L2 ≤ C
[
h1−σ‖Lf‖L2 + hδ‖f‖Hs

h

]

(2.3.5) ‖R1(f)‖L∞ ≤ C
[
h

1
2−

3
2σ‖Lf‖L2 + h

1
2−

σ
2−δ‖f‖Hs

h
+ hδ‖f‖L∞

]
.

(ii) Assume that in (2.3.3), ajh belongs to S̃1
(
〈ξ〉−j

)
, j = 0, 1. Define

R0(f) = Op0
h(āh)f − āh(x,−x)f.

Then for any σ, δ in ]0, 1
2 [, any s ≥ 1 + 1

σ , any N in N, there is C > 0 such that, for ` = 0, 1,
and any function f , any h in ]0, 1],

(2.3.6) ‖(hD)`R0(f)‖L2 ≤ C
[
h1−σ(`+1)‖Lf‖L2 + hδ−σ(`+1)‖f‖Hs

h
+ h−σ(`+1)

∥∥∥〈x
h

〉−N
f
∥∥∥
L2

]

(2.3.7) ‖R0(f)‖L∞ ≤ C
[
h

1
2−

3
2σ‖Lf‖L2 + h

1
2−

3
2σ−δ‖f‖Hs

h
+ h−

1
2−

3
2σ
∥∥∥〈x
h

〉−N
f
∥∥∥
L2

+ hδ‖f‖L∞
]
.

We first settle the case of smooth symbols.

Lemma 2.3.3 Let χ in C∞0 (R), χ ≡ 1 close to zero.

(i) Let aj,h be in S1
(
〈ξ〉−j

)
, j = 0, 1 and set

R1
j (f) = Op1

h(aj,h)f − aj,h(x,−x)f.

Then for any σ in ]0, 1
2 [, any s ≥ 1

σ , any ` in N, there is C > 0 such that for any function f ,
any h in ]0, 1],

(2.3.8) ‖R1
j (f)‖H`

h
≤ Ch1−σ`

[
‖Op1

h(χ(hσξ))Lf‖L2 + ‖f‖Hs
h

]
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(2.3.9) ‖R1
j (f)‖L∞ ≤ Ch

1
2−

σ
2
[
‖Op1

h(χ(hσξ))Lf‖L2 + ‖f‖Hs
h

]
.

(ii) Let aj,h be in S̃1
(
〈ξ〉−j

)
, j = 0, 1 and set

R0
j (f) = Op0

h(aj,h)f − aj,h(x,−x)f.

Then for any σ ∈]0, 1
2 [, any s ≥ 1

σ , any `,N in N, any function f , any h ∈]0, 1],

(2.3.10) ‖R0
j (f)‖H`

h
≤ Ch1−σ`

[
‖Lf‖L2 + ‖f‖Hs

h
+ 1
h

∥∥∥〈x
h

〉−N
f
∥∥∥
L2

]

(2.3.11) ‖|hD|`R0
j (f)‖L∞ ≤ Ch

1
2−σ(`+ 1

2 )
[
‖Lf‖L2 + ‖f‖Hs

h
+ 1
h

∥∥∥〈x
h

〉−N
f
∥∥∥
L2

]
.

Proof: We treat (i) and (ii) at the same time. We shall prove (2.3.8) and (2.3.10). Then (2.3.9)
(resp. (2.3.11)) follows from (2.2.8) combined with (2.3.8) (resp. (2.3.10)). We write

(2.3.12) aj,h(x, ξ)− aj,h(x,−x) = aj,h(x, ξ)(1− χ̃)(hσξ)
+
(
aj,h(x, ξ)− aj,h(x,−x)

)
χ̃(hσξ)

+ aj,h(x,−x)
(
χ̃(hσξ)− 1

)
= I + II + III

where χ̃ ∈ C∞0 (R) is such that χ̃χ = χ̃, χ̃ ≡ 1 close to zero. We have

‖Op1
h

(
aj,h(x, ξ)(1 − χ̃)(hσξ)

)
f‖H`

h
≤ C‖Op1

h

(
(1 − χ̃)(hσξ)

)
f‖

H`−j
h
≤ Chσ(s−`+j)‖f‖Hs

h

according to lemma 2.2.1 (ii) and (2.2.9). In the same way

‖Op0
h

(
aj,h(x, ξ)(1− χ̃)(hσξ)

)
f‖H`

h
= ‖Op0

h

(
(1− χ̃)(hσξ)

)
Op0

h(aj,h)f‖H`
h
≤ Chσ(s−`+j)‖f‖Hs

h
.

If sσ ≥ 1, we get the terms in h1−σ`‖f‖Hs
h
in the right hand sides of (2.3.8), (2.3.10), so that term

I in (2.3.12) induces a contribution to R1
j (f), R0

j (f) estimated by the right hand side of (2.3.8),
(2.3.10). Term III is treated in the same way, as (hD)`[aj,h(x,−x)] is uniformly bounded, for
any `. Consider now term II and write

(2.3.13)
(
aj,h(x, ξ)− aj,h(x,−x)

)
χ̃(hσξ) = bj,h(x, ξ)χ̃(hσξ)(x+ ξ)

with

(2.3.14) bj,h(x, ξ) =
∫ 1

0

∂aj,h
∂ξ

(x, λξ − (1− λ)x) dλ.

This is a symbol in S1
(
1
)
, and by (2.2.1), we may write

Op1
h

(
(aj,h(x, ξ)− aj,h(x,−x))χ̃(hσξ)

)
f

= hOp1
h

(
bj,h(x, ξ)χ̃(hσξ)

)
Lf − h

i
Op1

h

( ∂
∂ξ

[bj,h(x, ξ)χ̃(hσξ)]
)
f.

The H`
h-norm of this quantity is bounded from above by the right hand side of (2.3.8), since

χ̃χ = χ̃, since we may apply lemma 2.2.1 (i) to the symbols of S1
(
1
)
bj,hχ̃(hσξ), ∂ξ[bj,hχ̃(hσξ)],

and since ‖Op1
h(χ̃(hσξ))g‖H`

h
≤ Ch−σ`‖g‖L2 . We have thus proved (2.3.8).
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To show (2.3.10), we have to estimate the Op0
h-quantization of (2.3.13), when aj,h is in S̃1

(
〈ξ〉−j

)
.

By (2.2.1), we have here

(2.3.15) Op0
h

(
bj,hχ̃(hσξ)(x+ ξ)

)
f = hOp0

h(χ̃(hσξ))Op0
h(bj,h)Lf + h

i
Op0

h(χ̃(hσξ))Op0
h

(∂bj,h
∂x

)
f.

By (ii) of lemma 2.2.1, we may still estimate the H`
h norm of the first term in the right hand

side by h1−σ`‖Lf‖L2 , and so by the right hand side of (2.3.10). Since aj,h is assumed to be in
S̃1
(
〈ξ〉−j

)
, it follows from (2.3.14) and (2.3.2) that we may write

∂bj,h
∂x

= 1
h

〈x
h

〉−N
c1 + c2

where c1 and c2 are in S1
(
1
)
. We bound the H`

h norm of the last term in (2.3.15) by

(2.3.16) Ch1−σ`
[1
h

∥∥∥Op0
h(c1)

[〈x
h

〉−N
f
]∥∥∥
L2

+ ‖Op0
h(c2)f‖L2

]
.

(Notice that, because we are working with the 0-quantization, the factor
〈
x
h

〉−N goes against
f). Using again lemma 2.2.1 (ii), we bound (2.3.16) by the right hand side of (2.3.10). This
concludes the proof of the lemma. 2

We need another lemma to study non smooth symbols.

Lemma 2.3.4 Let χ be in C∞0 (R), equal to one close to zero, ` = 0, 1. For any σ ∈]0, 1
2 [, define

(2.3.17) R(f) = |hD|f − |x|Op1
h(χ(hσξ))f.

Then for any s ≥ 1
σ + 1, any δ ∈]0, 1

2 [, there is C > 0 such that for any function f , any h in
]0, 1],

(2.3.18) ‖(hD)`R(f)‖L2 ≤ C
[
hδ−σ`‖f‖L2 + h1−σ`‖Lf‖L2 + h1−δ−σ`‖f‖Hs

h

]
and

(2.3.19) ‖R(f)‖L∞ ≤ C
[
hδ‖f‖L∞ + h

1
2−

σ
2 ‖Lf‖L2 + h

1
2−

σ
2−δ‖f‖Hs

h

]
.

Proof: We write

(2.3.20) R(f) = (|hD| − |x|)Op1
h(χ(hσξ))f + |hD|Op1

h

(
(1− χ)(hσξ)

)
f.

The H`
h norm of the last term is bounded from above, according to (2.2.9) by hsσ−σ(`+1)‖f‖Hs

h
,

so by the right hand side of (2.3.18). If we estimate the L∞ norm of the last term in (2.3.20)
using (2.2.10), we get a quantity in h−

1
2 +σ

(
s− 3

2

)
‖f‖Hs

h
, that is controlled by the right hand side

of (2.3.19). Denote g = Op1
h(χ(hσξ))f and let us study the H`

h or L∞ norms of the first term in
the right hand side of (2.3.20) i.e. of (|hD| − |x|)g. We consider a partition of unity

1 = χ1
−(ξ) + χ0(ξ) + χ1

+(ξ)
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where χ1
±(ξ) is supported for ±ξ ≥ 1, χ1

−(ξ) = χ1
+(−ξ), and χ0 is compactly supported and

even. Then, as the inverse Fourier transform of ξ`|ξ|χ0(ξ) is in L1(R) for ` in N, we obtain for
any such `, any positive δ, any p = 2 or ∞

(2.3.21) ‖(hD)`Op1
h(χ0(h−δξ)|ξ|)g‖Lp ≤ Chδ(1+`)‖g‖Lp .

Consider next the function χ1
+(h−δξ)|ξ| = χ1

+(h−δξ)ξ and write

(2.3.22) χ1
+(h−δξ)ξ = χ1

+(h−δ(−x))(−x) + b+(x, ξ)(x+ ξ)

with
b+(x, ξ) =

∫ 1

−1
ψ+
(
(λξ − (1− λ)x)h−δ

)
dλ

where ψ+(ξ) = ∂ξ[ξχ+(ξ)]. We notice that b+, hδ ∂b+
∂ξ are in Sδ

(
1
)
⊂ S 1

2

(
1
)
. Moreover, it follows

from (2.2.1) that

(2.3.23) Op1
h

(
χ+(h−δξ)ξ)g = −xχ1

+(−h−δx)g + Op1
h(b+)hLg − h

i
Op1

h

(∂b+
∂ξ

)
g.

We may write in the same way

(2.3.24) Op1
h

(
−χ−(h−δξ)ξ)g = xχ1

−(−h−δx)g + Op1
h(b−)hLg − h

i
Op1

h

(∂b−
∂ξ

)
g

for another symbol b− in S 1
2

(
1
)
such that hδ ∂b−∂ξ is in S 1

2

(
1
)
. Decompose then

(2.3.25) |hD|g = Op1
h

(
χ0(h−δξ)|ξ|

)
g +

[
Op1

h

(
χ1

+(h−δξ)ξ
)

+ xχ1
+(−h−δx)

]
g

+
[
Op1

h

(
χ1
−(h−δξ)(−ξ)

)
− xχ1

−(−h−δx)
]
g + |x|(1− χ0)(h−δx)g.

We deduce from (2.3.23), (2.3.24) and (2.3.25) that, for p = 2 or ∞

(2.3.26)
∥∥∥(hD)`

[
|hD|g − |x|(1− χ0)(h−δx)g −Op1

h

(
χ0(h−δξ)|ξ|

)
g
]∥∥∥
Lp

≤ Ch
[
‖(hD)`Op1

h(b+)Lg‖Lp + ‖(hD)`Op1
h(b−)Lg‖Lp

+
∥∥∥(hD)`Op1

h

(∂b+
∂ξ

)
Lg
∥∥∥
Lp

+
∥∥∥(hD)`Op1

h

(∂b−
∂ξ

)
Lg
∥∥∥
Lp

]
.

When p = 2, recalling that b± is in S 1
2

(
1
)
and hδ ∂b±∂ξ is in S 1

2

(
1
)
, we use (i) of lemma 2.2.1 to

bound the right hand side of (2.3.26) by

(2.3.27) Ch
[
‖Lg‖H`

h
+ h−δ‖g‖H`

h

]
.

As g = Op1
h(χ(hσξ))f , we get an estimate in

Ch1−σ`[‖Lg‖L2 + h−δ‖g‖L2
]
.

Finally, since [L,Op1
h(χ(hσξ))] is bounded on L2, we deduce from (2.3.26) that for ` = 0, 1

(2.3.28)
∥∥∥(hD)`

[
|hD|g − (1− χ0)(h−δx)|x|g −Op1

h

(
χ0(h−δξ)|ξ|

)
g
]∥∥∥
L2

≤ Ch1−σ`[‖Lf‖L2 + h−δ‖f‖L2 ].
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Applying (2.2.8), we deduce from (2.3.28)

(2.3.29)
∥∥|hD|g − (1− χ0)(h−δx)|x|g −Op1

h

(
χ0(h−δξ)|ξ|

)
g
∥∥
L∞

≤ Ch
1
2−

σ
2 [‖Lf‖L2 + h−δ‖f‖L2 ].

To prove (2.3.18), we have to estimate in L2 the action of (hD)` on the first term in the right
hand side of (2.3.20) i.e. ‖(hD)`[|hD| − |x|]g‖L2 . According to (2.3.28) and (2.3.21) with p = 2,
this is smaller than the sum of the right hand side of (2.3.18) and of

(2.3.30) hδ(1+`)‖g‖L2 + ‖(hD)`χ0(h−δx)|x|g‖L2 ≤ Chδ‖g‖H`
h
≤ Chδ−σ`‖f‖L2

for ` = 0, 1, using that δ ≤ 1 and, for the last estimate, the definition of g = Op1
h(χ(hσξ))f .

As (2.3.30) is also controlled by the right hand side of (2.3.18), this concludes the proof of that
inequality.

To get (2.3.19), we use (2.3.29) and (2.3.21) with ` = 0, p = ∞. We obtain a bound for
‖(|hD| − |x|)g‖L∞ in terms of the right hand side of (2.3.19) plus

hδ‖g‖L∞ + ‖χ0(h−δx)|x|g‖L∞

that we estimate by hδ‖f‖L∞ and so by the right hand side of (2.3.19). This concludes the
proof. 2

Proof of Proposition 2.3.2: (i) We write according to (2.3.3)

(2.3.31) Op1
h(ah)f − ah(x,−x)f =

(
Op1

h(a0,h)− a0,h(x,−x)
)
f

+
(
Op1

h(a1,h)− a1,h(x,−x)
)
[|hD|f ]

+ a1,h(x,−x)[|hD|f − |x|f ] = I + II + III.

We write
III = a1,h(x,−x)R(f)− a1,h(x,−x)|x|Op1

h

(
(1− χ)(hσξ)

)
f

where R(f) is defined by (2.3.17). Combining (2.3.18) with ` = 0, the fact that a1,h(x,−x) =
O(〈x〉−1) and (2.2.9), we obtain that the L2 norm of III is bounded from above by the right
hand side of (2.3.4). If we use instead (2.3.19) and (2.2.10), we obtain for the L∞ norm of III a
bound by the right hand side of (2.3.5). By (2.3.8) (resp. (2.3.9)) the L2 (resp. L∞) norm of I is
bounded from above by the right hand side of (2.3.4) (resp. (2.3.5)). We are left with studying
II. We apply (2.3.8) (resp. (2.3.9)) with j = 1, ` = 0 and s replaced by s − 1. We obtain that
the L2-norm of II is bounded from above by

Ch
[
‖Op1

h(χ(hσξ))L|hD|f‖L2 + ‖|hD|f‖Hs−1
h

]
and its L∞ norm by

Ch
1
2−

σ
2
[
‖Op1

h(χ(hσξ))L|hD|f‖L2 + ‖|hD|f‖Hs−1
h

]
if s ≥ 1 + 1

σ . Commuting L and |hD|, we get again contributions bounded from above by the
right hand side of (2.3.4) and (2.3.5) respectively.
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(ii) Under the assumptions of (ii) of the proposition, we write

(2.3.32) Op0
h(āh)f − āh(x,−x)f =

(
Op0

h(ā0,h)− ā0,h(x,−x)
)
f

+ |hD|
(
Op0

h(ā1,h)− ā1,h(x,−x)
)
f

+ (|hD| − |x|)[ā1,h(x,−x)f ] = I + II + III.

By (2.3.10) with j = 0, (resp. (2.3.11) with j = 0, ` = 0), the H`
h (resp. L∞) norm of I is

bounded from above by the right hand side of (2.3.6) (resp. (2.3.7)). To study the H`
h (resp.

L∞) norm of II, we apply (2.3.10) with ` replaced by ` + 1 (resp. (2.3.11) with ` = 1) in the
case j = 1. We get bounds by the right hand side of (2.3.6), (2.3.7) respectively.

Finally, write III as

(2.3.33) III =
(
|hD| − |x|Op1

h(χ(hσξ))
)
[ā1,h(x,−x)f ]− |x|Op1

h

(
(1− χ)(hσξ)

)
[ā1,h(x,−x)f ].

We get for ` = 0, 1

(2.3.34)
∥∥(hD)`

[
|x|Op1

h

(
(1− χ)(hσξ)

)
[ā1,h(x,−x)f ]

]∥∥
L2

≤
∥∥Op1

h

(
(1− χ)(hσξ)

)
[ā1,h(x,−x)f ]

∥∥
L2 +

∥∥xOp1
h

(
(1− χ)(hσξ)ξ`

)
[ā1,h(x,−x)f ]

∥∥
L2

≤ C
[
hσs‖ā1,h(x,−x)f‖Hs

h
+ hσ(s−`)‖xā1,h(x,−x)f‖Hs

h
+ h1+σ(s−`+1)‖ā1,h(x,−x)f‖Hs

h

]
by (2.2.9). Since ā1,h(x,−x), xā1,h(x,−x) are in L∞ as well as their hD derivatives, we get a
bound in h1−σ`‖f‖Hs

h
as s ≥ 1/σ, so by the right hand side of (2.3.6). Consider next the first

term in the right hand side of expression (2.3.33) of III. By (2.3.18), the L2 norm of the action
of (hD)` on that term is bounded from above by

(2.3.35) C
[
hδ−`σ‖ā1,h(x,−x)f‖L2 + h1−`σ‖L[ā1,h(x,−x)f ]‖L2 + h1−δ−`σ‖ā1,h(x,−x)f‖Hs

h

]
.

The middle term may be bounded from

(2.3.36) h1−σ`‖Lf‖L2 + h−σ`‖[hD, ā1,h(x,−x)]f‖L2 .

Since

(2.3.37) [hD, ā1,h(x,−x)] = c1,h(x) + hc0,h(x)

with c1,h = O
(〈
x
h

〉−N) for any N , as a1,h is in S̃1
(
〈ξ〉−1), c0,h = O(1), we bound (2.3.36), and

then (2.3.35) by the right hand side of (2.3.6). This concludes the proof of that inequality.

To finish the proof of the proposition, we are left with bounding the L∞ norm of III by the
right hand side of (2.3.7). By (2.2.8), the L∞ norm of the last term in (2.3.33) is bounded from
above by

(2.3.38) Ch−
1
2
∥∥|x|Op1

h

(
(1− χ)(hσξ)

)
[ā1,h(x,−x)f ]

∥∥ 1
2
L2

×
∥∥∥(hD)

[
|x|Op1

h

(
(1− χ)(hσξ)

)
[ā1,h(x,−x)f ]

]∥∥∥ 1
2

L2
.

These two L2 norms are the quantities (2.3.34), with ` = 0 or 1, which have been estimated
respectively by h‖f‖Hs

h
and h1−σ‖f‖Hs

h
. We thus obtain for (2.3.38) a bound in h

1
2−

σ
2 ‖f‖Hs

h
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which is smaller than the right hand side of (2.3.7). Finally, the L∞ norm of the first term in
the right hand side of (2.3.33), is controlled according to (2.3.19) by

(2.3.39) C
[
hδ‖ā1,h(x,−x)f‖L∞ + h

1
2−

σ
2
∥∥L(ā1,h(x,−x)f

)∥∥
L2 + h

1
2−

σ
2−δ‖ā1,h(x,−x)f‖Hs

h

]
.

The middle term is (2.3.36) (with ` = 1
2) multiplied by h−

1
2 . Because of (2.3.37), it is bounded

by the right hand side of (2.3.7). The same holds true trivially for the other contributions to
(2.3.39). This concludes the proof. 2

Corollary 2.3.5 With the notations and assumptions of (ii) of Proposition 2.3.2, for any σ, δ
in ]0, 1

2 ], any s ≥ 1 + 1
σ , there is C > 0 such that, for any odd function f

(2.3.40) ‖R0(f)‖L2 ≤ C
[
h1−σ‖Lf‖L2 + hδ−σ‖f‖Hs

h

]
(2.3.41) ‖R0(f)‖L∞ ≤ C

[
h

1
2−

3
2σ‖Lf‖L2 + h

1
2−

3
2σ−δ‖f‖Hs

h
+ hδ‖f‖L∞

]
.

Proof: We apply (2.3.6) with ` = 0, (2.3.7), taking N = 2. Since f is odd, we may bound∥∥〈x
h

〉−2
f
∥∥
L2 in the right hand side of (2.3.6), (2.3.7) from (2.2.14) with c ≡ 1, q = 0. This gives

(2.3.40), (2.3.41). 2

3 Proof of the main theorem

3.1 Energy estimates

The goal of this subsection is to establish energy estimates for the action of L on the solution v
of (2.1.12).

Proposition 3.1.1 For any s ≥ 0, there is a constant C > 0 such that, for any odd v0 in
Hs(R,C) with xv0 in L2, the solution v of (2.1.12), with initial data v|t=1 = v0, satisfies for
any t ≥ 1 such that the solution exists up to time t,

(3.1.1) ‖Lv(t, ·)‖L2 + ‖v(t, ·)‖Hs
h
≤ ‖Lv(1, ·)‖L2 + ‖v(1, ·)‖Hs

h

+ C

∫ t

1
‖v(τ, ·)‖2L∞

(
‖Lv(τ, ·)‖L2 + ‖v(τ, ·)‖Hs

h(τ)

) dτ
τ

where h denotes 1
t and h(τ) = 1

τ .

Remark: The problem (1.1.7) is globally well posed in H1 and locally well-posed in the space
of functions u in H1 with xu ∈ L2, so that our solution v exists for any t ≥ 1 and ‖Lv(t, ·)‖L2

is finite at any t.

We shall prove first two lemmas.
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Lemma 3.1.2 Let ah be the symbol defined in (2.1.8). Then Op1
h(ah), Op0

h

(
κ(x/h)āh

)
are

bounded on Hs
sc for any s, and Op1

h(ah) is bounded on L∞, uniformly in h.

Proof: Since

(3.1.2) ah(x, ξ) = a0,h(x, ξ) + |ξ|a1,h(x, ξ)

with a0,h in Σ1
(
1
)
⊂ S1

(
1
)
, a1,h in Σ1

(
〈ξ〉−1) ⊂ S1

(
〈ξ〉−1), the Sobolev boundedness properties

follow from (ii) of lemma 2.2.1 and from the fact that |hD| is bounded from Hs
sc to Hs−1

sc for
any s.

To prove the L∞ boundedness of Op1
h(ah), we use the structure (2.1.9) of a0,h, a1,h. By (1.2.9),

χ+
(
x
h

)[
m1
(
x
h , ξ

)
− 1

]
and χ−

(
x
h

)[
m2
(
x
h , ξ

)
− 1

]
are in Σ1

(
〈ξ〉−1). Consequently, we may write

(3.1.3) ah(x, ξ)− χ+
(x
h

)
[e0(ξ) + e1(ξ)|ξ|]− χ−

(x
h

)
[e0(−ξ) + e1(−ξ)|ξ|]

= b0(x, ξ) + b1(x, ξ)|ξ|

with b0 in Σ1
(
〈ξ〉−1), b1 in Σ1

(
〈ξ〉−2). We may rewrite this as b′0(x, ξ) + b1(x, ξ)χ0(ξ)|ξ|, with

b′0 again in Σ1
(
〈ξ〉−1), and χ0 in C∞0 (R) equal to one close to zero. By (iii) of lemma 2.2.1,

Op1
h(b′0), Op1

h(b1) are bounded on L∞, and χ0(hD)|hD| is also bounded on that space, as its
distribution kernel is bounded by C

h

〈
x
h

〉−2. Modulo operators bounded on L∞, we may thus
study the action on that space of the quantization of

(3.1.4) χ+
(x
h

)
[e0(ξ) + e1(ξ)|ξ|] + χ−

(x
h

)
[e0(−ξ) + e1(−ξ)|ξ|].

If we multiply (3.1.4) by χ0(ξ), we get again a symbol whose quantization is bounded on L∞.
On the other hand, by (1.2.7), (1−χ0)(ξ)[e0(ξ) + e1(ξ)|ξ| − 1] is in Σ1

(
〈ξ〉−1), so the associated

operator is bounded on L∞ by lemma 2.2.1. We are thus left with

Op1
h

[(
χ+
(x
h

)
+ χ−

(x
h

))
(1− χ0)(ξ)

]
which is trivially bounded on L∞. This concludes the proof. 2

Lemma 3.1.3 Let ah be the symbol defined in (2.1.8).

(i) There is C > 0 such that, for any odd v in L2 ∩ L∞ such that Lv is in L2, we have

(3.1.5)
∥∥∥L[Op0

h

(
κ
(x
h

)
āh
)[
|Op1

h(ah)v|2|Op1
h(ah)v|

]]∥∥∥
L2

+
∥∥L[|Op1

h(ah)v|2|Op1
h(ah)v|

]∥∥
L2

≤ C‖v‖2L∞ [‖Lv‖L2 + ‖v‖L2 ].

(ii) For any s ≥ 0, there is C > 0 and for any v in L∞ ∩Hs
sc, any h ∈]0, 1]

(3.1.6)
∥∥∥Op0

h

(
κ
(x
h

)
āh
)[
|Op1

h(ah)v|2|Op1
h(ah)v|

]∥∥∥
Hs
h

+
∥∥|Op1

h(ah)v|2|Op1
h(ah)v|

∥∥
Hs
h

≤ C‖v‖2L∞‖v‖Hs
h
.
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Proof: (i) Using that
L[|w|2w] = 2(Lw)|w|2 − w2Lw,

we may write
L
[
Op0

h

(
κ
(x
h

)
āh
)
[|Op1

h(ah)v|2|Op1
h(ah)v|]

]
as a combination of terms of the form

(3.1.7)
[
L,Op0

h

(
κ
(x
h

)
āh
)][
|Op1

h(ah)v|2|Op1
h(ah)v|

]

(3.1.8) Op0
h

(
κ
(x
h

)
āh
)[(

[L,Op1
h(ah)]v

)
(Op1

h(ah)v)(Op1
h(ah)v)

]

(3.1.9) Op0
h

(
κ
(x
h

)
āh
)[

(Op1
h(ah)Lv)(Op1

h(ah)v)(Op1
h(ah)v)

]
and of terms similar to (3.1.8), (3.1.9), where the conjugation bar lies on another factor (that
does not modify the estimates below). By lemma 3.1.2, the L2 norm of (3.1.9) is bounded from
above by C‖v‖2L∞‖Lv‖L2 , so by the right hand side of (3.1.5). To bound the L2 norm of (3.1.8)
by the right hand side of (3.1.5), we see again by lemma 3.1.2 that it suffices to prove

(3.1.10) ‖[L,Op1
h(ah)]v‖L2 ≤ C[‖Lv‖L2 + ‖v‖L2 ].

We write, by (3.1.2),

(3.1.11) [L,Op1
h(ah)]v = [L,Op1

h(a0,h)]v + [L,Op1
h(a1,h)]|hD|v + Op1

h(a1,h)[L, |hD|]v.

As [L, |hD|] = isgn (hD) is bounded on L2, (ii) of lemma 2.2.1 implies that the L2 norm of the
last term in (3.1.11) is bounded by the right hand side of (3.1.10). According to (2.2.1) and the
definition (2.2.13) of L, for any function w,

(3.1.12) [L,Op1
h(aj,h)]w = iOp1

h

[∂aj,h
∂ξ
− ∂aj,h

∂x

]
w, j = 0, 1.

By (2.1.1), ∂aj,h∂ξ is in S1
(
〈ξ〉−j

)
and by (2.1.10),

〈
x
t

〉N
h
∂aj,h
∂x is in S1

(
〈ξ〉−j

)
for any N . It follows

from (2.2.14) and lemma 2.2.1 (ii) that, if w is odd,∥∥[L,Op1
h(aj,h)]w

∥∥
L2 ≤ C

[
‖w‖

H−j
h

+ ‖Lw‖
H−j
h

]
, j = 0, 1.

We apply this inequality to w = v when j = 0 and to w = |hD|v when j = 1. We deduce from
the fact that [L, |hD|] is bounded on L2 that the L2 norm of the first two terms in the right
hand side of (3.1.11) is bounded by the right hand side of (3.1.10). Consider finally (3.1.7) and
write

(3.1.13)
[
L,Op0

h

(
κ
(x
h

)
āh
)]
f =

[
L,Op0

h

(
κ
(x
h

)
ā0,h

)]
f

+ |hD|
[
L,Op0

h

(
κ
(x
h

)
ā1,h

)]
f + [L, |hD|]Op0

h

(
κ
(x
h

)
ā1,h

)
f.

By (2.2.1), we have for j = 0, 1

(3.1.14)
[
L,Op0

h

(
κ
(x
h

)
āj,h

)]
f = iOp0

h

[
∂

∂ξ

(
āj,hκ

(x
h

))
− ∂

∂x

(
āj,hκ

(x
h

))]
.
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Again, as ∂
∂ξ

(
āj,hκ

(
x
h

))
is in S1

(
〈ξ〉−j−1) ⊂ S1

(
〈ξ〉−j

)
and

〈
x
h

〉N
h ∂
∂x

(
āj,hκ

(
x
h

))
is in S1

(
〈ξ〉−j

)
,

we may write the right hand side of (3.1.14) as

Op0
h

[
c1,j(x, ξ) + 1

h

〈x
h

〉−2
c2,j(x, ξ)

]
= Op0

h(c1,j) + 1
h

Op0
h(c2,j)

〈x
h

〉−2

where c1,j , c2,j are in S1
(
〈ξ〉−j

)
, and where we exploited the definition of the 0-quantification.

Consequently ∥∥∥|hD|j[L,Op0
h

(
κ
(x
h

)
āj,h

)]
f
∥∥∥
L2
≤ C

[
‖f‖L2 + 1

h

∥∥∥〈x
h

〉−2
f
∥∥∥
L2

]
.

We thus deduce from (3.1.13) that∥∥∥[L,Op0
h

(
κ
(x
h

)
āh
)]
f
∥∥∥
L2
≤ C

[
‖f‖L2 + 1

h

∥∥∥〈x
h

〉−2
f
∥∥∥
L2

]
.

The L2 norm of (3.1.7) will thus be bounded by

(3.1.15) C
[
‖Op1

h(ah)v‖2L∞‖Op1
h(ah)v‖L2 + C

h
‖Op1

h(ah)v‖2L∞
∥∥∥〈x
h

〉−2
Op1

h(ah)v
∥∥∥
L2

]
.

As v is odd, we deduce from (2.2.16) and lemma 3.1.2 that (3.1.15) is bounded from above by
the right hand side of (3.1.5).

(ii) Estimate (3.1.6) follows from the boundedness properties of lemma 3.1.2 together with the
elementary inequality

‖w1w2w3‖Hs
h
≤ C

3∑
i=1
‖wi‖Hs

h

∏
1≤j≤3
j 6=i

‖wj‖L∞

that holds for s ≥ 0. 2

Proof of Proposition 3.1.1: The equation (2.1.12) satisfied by v may be written as

(3.1.16)
(
Dt −OpW

h

(
xξ + ξ2

2
))
v = hf

where according to (3.1.6)
‖f‖Hs

h
≤ C‖v‖2L∞‖v‖Hs

h
.

The Sobolev energy inequality implies

(3.1.17) ‖v(t, ·)‖Hs
h
≤ ‖v(1, ·)‖Hs + C

∫ t

1
‖v(τ, ·)‖2L∞‖v(τ, ·)‖Hs

h(τ)

dτ

τ
.

(Notice that
[
Dt − OpW

h (xξ),OpW
h (〈ξ〉s)

]
= 0). Next, we make act L on (3.1.16), using that[

L, Dt−OpW
h

(
xξ+ ξ2

2
)]

= 0, which just reflects the commutation relation [x+tDx, Dt− D2
x

2 ] = 0.
We obtain

(3.1.18)
(
Dt −OpW

h

(
xξ + ξ2

2
))
Lv = hLf

and ‖Lf‖L2 is bounded from above by the right hand side of (3.1.5). Using the energy inequality
for (3.1.18) and combining with (3.1.17), we get (3.1.1). This concludes the proof. 2
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3.2 Reduction to a differential equation

Recall that we have defined in (2.3.1) the set

Λ = {(x, ξ) ∈ R× R;x+ ξ = 0}.

Let γ be a C∞0 (R) function equal to one close to zero, and define for any function f

(3.2.1) fΛ = OpW
h

(
γ
(x+ ξ√

h

))
f.

We have the following estimates:

Lemma 3.2.1 With the above notation

(3.2.2) ‖fΛ − f‖L2 ≤ Ch
1
2 ‖Lf‖L2

(3.2.3) ‖fΛ − f‖L∞ ≤ Ch
1
4 ‖Lf‖L2

(3.2.4)
∥∥OpW

h [(x+ ξ)2]fΛ
∥∥
L2 ≤ Ch

3
2 ‖Lf‖L2

(3.2.5)
∥∥OpW

h [(x+ ξ)2]fΛ
∥∥
L∞
≤ Ch

5
4 ‖Lf‖L2 .

Proof: Set γ̃(z) = 1−γ(z)
z . Then using the last equality (2.2.1)

f − fΛ = OpW
h

(
γ̃
(x+ ξ√

h

)(x+ ξ√
h

))
f =
√
hOpW

h

(
γ̃
(x+ ξ√

h

))
Lf.

Then (3.2.2) (resp. (3.2.3)) follows from (i) of lemma 2.2.1 (resp. from (iii) of lemma 2.2.2).

To prove (3.2.4) and (3.2.5), we remark that repeated applications of the third equality (2.2.1)
gives

OpW
h

(
(x+ ξ)2

)
fΛ = h

3
2 OpW

h

(
γ
(x+ ξ√

h

)(x+ ξ√
h

))
Lf.

Applying again (i) of lemma 2.2.1 and (iii) of lemma 2.2.2, we obtain (3.2.4) and (3.2.5). 2

Let us state now the ordinary differential equation satisfied by vΛ when v solves (2.1.12).

Proposition 3.2.2 Let θ ∈]0, 1
4 [ and take s ≥ 1 + 3

2θ . Let v be an odd solution of (2.1.12).
Then vΛ solves the ODE

(3.2.6) DtvΛ = −x
2

2 vΛ + hκ
(x
h

)
|vΛ|2vΛ + hr

where r satisfies

(3.2.7) ‖r(t, ·)‖L2 ≤ Ch
1
2 (1 + ‖v(t, ·)‖2L∞)‖Lv(t, ·)‖L2 + Ch

1
4−θ‖v(t, ·)‖2L∞‖v(t, ·)‖Hs

h

and
(3.2.8)
‖r(t, ·)‖L∞ ≤ Ch

1
4 (1 + ‖v(t, ·)‖2L∞)‖Lv(t, ·)‖L2 + Ch

1
4−θ‖v(t, ·)‖2L∞‖v(t, ·)‖Hs

h
+ Ch

1
4 ‖v(t, ·)‖3L∞ ,

h still denoting 1/t.
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Let us prove first

Lemma 3.2.3 Let v be a solution to (2.1.12). Then vΛ satisfies

(3.2.9)
(
Dt −OpW

h

(
xξ + ξ2

2
))
vΛ

= hOpW
h

(
γ
(x+ ξ√

h

))[
Op0

h

(
κ
(x
h

)
āh
)[
|Op1

h(ah)v|2|Op1
h(ah)v|

]]
+ hR

where R satisfies

‖R(t, ·)‖L2 ≤ Ch
1
2 ‖Lv(t, ·)‖L2

‖R(t, ·)‖L∞ ≤ Ch
1
4 ‖Lv(t, ·)‖L2 .

(3.2.10)

Proof: Let us compute [
Dt −OpW

h

(
xξ + ξ2

2
)
,OpW

h

(
γ
(x+ ξ√

h

))]
.

If a(t, x, ξ) is a symbol, it follows from the definition (2.1.4) of

OpW
h (a)v = 1

2π

∫
ei(x−y)ξa

(
t,
x+ y

2 , hξ
)
v(y) dydξ

with h = 1
t that

(3.2.11)
[
Dt,OpW

h (a(t, x, ξ))
]

= OpW
h

((
Dt − hξ ·Dξa)(t, x, ξ)

)
.

Moreover, it follows from Proposition 7.7 in [13] that, if a1, a2 are symbols, where one of them
is a polynomial of degree smaller or equal to two,

(3.2.12) [OpW
h (a1),OpW

h (a2)] = h

i
OpW

h ({a1, a2}).

Actually, in the expansion (7.21) of the symbol of a composition in [13], terms of even order are
symmetric in (a1, a2), so that they cancel out in the symbol of the commutator. Only terms of
odd order remain and, if a1 or a2 is a polynomial of degree at most two in (x, ξ), one just gets
the right hand side of (3.2.12). It follows from (3.2.11), (3.2.12) that

[
Dt −OpW

h

(
xξ + ξ2

2
)
,OpW

h

(
γ
(x+ ξ√

h

))]
= i

h
3
2

2 OpW
h

(
γ′
(x+ ξ√

h

))
L.

This implies (3.2.9), with estimates (3.2.10) for the remainder, using (i) of lemma 2.2.1 and (iii)
of lemma 2.2.2. 2

Proof of Proposition 3.2.2: We start from equation (3.2.9). As R in the right hand side of (3.2.9)
contributes to r in the right hand side of (3.2.6), we see by difference of these two equations
that we have to show that

(3.2.13) h−1
[
OpW

h

(
xξ + ξ2

2
)
vΛ + 1

2x
2vΛ

]
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and

(3.2.14) OpW
h

(
γ
(x+ ξ√

h

))[
Op0

h

(
κ
(x
h

)
āh
)[∣∣Op1

h(ah)v
∣∣2Op1

h(ah)v
]]
− κ

(x
h

)
|vΛ|2vΛ

are estimated in L2 (resp. L∞) by the right hand side of (3.2.7) (resp. (3.2.8)).

Consider first (3.2.13) and write xξ + ξ2

2 = −1
2x

2 + 1
2(x+ ξ)2. Then (3.2.13) equals

1
2h
−1OpW

h ((x+ ξ)2)vΛ.

Its L2 (resp. L∞) norm is bounded from above by (3.2.7) (resp. (3.2.8)) according to (3.2.4)
(resp. (3.2.5)).

Consider next (3.2.14). Notice first that

OpW
h

(
γ
(x+ ξ√

h

)
− 1

)[
Op0

h

(
κ
(x
h

)
āh
)[∣∣Op1

h(ah)v
∣∣2Op1

h(ah)v
]]

contributes to r in (3.2.6) as a consequence of (3.2.2), (3.2.3) and of (3.1.5). We are thus reduced
to showing that

(3.2.15) Op0
h

(
κ
(x
h

)
āh
)[∣∣Op1

h(ah)v
∣∣2Op1

h(ah)v
]
− κ

(x
h

)
|vΛ|2vΛ

may be estimated by the right hand side of (3.2.7) in L2 and (3.2.8) in L∞.

We apply Corollary 2.3.5 with δ = 1
4 , σ = 2

3θ, s ≥ 1 + 3
2θ , θ ∈]0, 1

4 [. We may write (3.2.15) as

(3.2.16) κ
(x
h

)[
āh(x,−x)

∣∣Op1
h(ah)v

∣∣2Op1
h(ah)v − |vΛ|2vΛ

]
up to terms bounded in L2 by

(3.2.17) C
[
h

1
2 ‖Lf‖L2 + h

1
4−θ‖f‖Hs

h

]
and in L∞ by

(3.2.18) C
[
h

1
2−θ‖Lf‖L2 + h

1
4−θ‖f‖Hs

h
+ h

1
4 ‖f‖L∞

]
where f =

∣∣Op1
h(ah)v

∣∣2Op1
h(ah)v (Notice that f is an odd function as v is odd: see the re-

mark after Definition 1.2.1). By lemmas 3.1.3 and 3.1.2, (3.2.17) (resp. (3.2.18)) is smaller
than the right hand side of (3.2.7) (resp. (3.2.8)). We have thus reduced to showing that
(3.2.16) may be estimated in L2 (resp. L∞) by the right hand side of (3.2.7) (resp. (3.2.8)). By
Proposition 2.3.2 (i), if we replace in (3.2.16) one factor Op1

h(ah)v by ah(x,−x)v, and use the
boundedness of Op1

h(ah) on L∞ established in lemma 3.1.2, we may rewrite (3.2.16) as

(3.2.19) κ
(x
h

)[
|ah(x,−x)|4|v|2v − |vΛ|2vΛ

]
modulo an expression bounded in L2 by

(3.2.20) C
(
h1−σ‖Lv‖L2 + hδ‖v‖Hs

h

)
‖v‖2L∞
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and in L∞ by

(3.2.21) C
(
h

1
2−

3
2σ‖Lv‖L2 + h

1
2−

σ
2−δ‖v‖Hs

h
+ hδ‖v‖L∞

)
‖v‖2L∞

so by the right hand sides of (3.2.7) and (3.2.8) respectively, taking into account the definition
of δ, θ.

We are left with showing similar estimates for (3.2.19), that we rewrite as I + II with

I = κ
(x
h

)[
|ah(x,−x)|4 − 1

]
|v|2v

II = κ
(x
h

)[
|v|2v − |vΛ|2vΛ

]
.

(3.2.22)

The fact that II has L2 (resp. L∞) norm bounded from above by the right hand side of (3.2.7)

(resp. (3.2.8)) follows from (3.2.2), (3.2.3) and the fact that, by (2.2.12), OpW
h

(
γ
(
x+ξ√
h

))
is

bounded on any Lp space.

Let us study I. Notice that according to (2.2.14), (2.2.17)∥∥∥〈x
h

〉−2
|v|2v

∥∥∥
L2
≤ Ch‖v‖2L∞

[
‖Lv‖L2 + ‖v‖L2

]
∥∥∥〈x
h

〉−2
|v|2v

∥∥∥
L∞
≤ Ch

1
2−

σ
2 ‖v‖2L∞

[
‖Lv‖L2 + ‖v‖Hs

h

]
.

Consequently, to get L2 (resp. L∞) bounds of the form (3.2.20) (resp. (3.2.21)) for I, it suffices
to show that

(3.2.23) |ah(x,−x)|4 − 1 = O
(〈x
h

〉−2)
.

By (2.1.8), (2.1.9),

ah(x,−x) = χ+
(x
h

)
m1
(x
h
,−x

)[
e0(−x) + |x|e1(−x)

]
+ χ−

(x
h

)
m2
(x
h
,−x

)[
e0(x) + |x|e1(x)

]
.

By (1.2.9), we may replace above m1 and m2 by 1, up to a O
(〈
x
h

〉−N) contribution. We have
thus reduced ah(x,−x) in (3.2.23) to

χ+
(x
h

)[
e0(−x) + |x|e1(−x)

]
+ χ−

(x
h

)[
e0(x) + |x|e1(x)

]
.

Notice that χ±(x/h)− 1±(x) = O
(〈
x
h

〉−N) for any N , so that we may reduce the left hand side
of (3.2.23), up to an admissible error in O

(〈
x
h

〉−2), to∣∣1+(x)(e0(−x) + |x|e1(−x)) + 1−(x)(e0(x) + |x|e1(x))
∣∣4 − 1.

Using (1.2.8), we see that this last expression vanishes. This concludes the proof of the propo-
sition. 2
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3.3 Proof of the main theorem

We prove first L2 and L∞ estimates for the solution of (2.1.12).

Proposition 3.3.1 Fix s > 7, C0 > 0. There are constants A,B,K > 0, ε0 ∈]0, 1[ such that
for any ε ∈]0, ε0[, any odd function v0 in Hs(R,C) with

(3.3.1) ‖v0‖Hs + ‖xv0‖L2 ≤ C0,

the solution v to (2.1.12) with initial data v|t=1 = εv0 exists for t ≥ 1 in C0([1,+∞[, Hs(R,C))
and satisfies the estimates

‖v(t, ·)‖Hs
h

+ ‖Lv(t, ·)‖L2 ≤ AεtKε2

‖v(t, ·)‖L∞ ≤ Bε.
(3.3.2)

We prove first:

Lemma 3.3.2 Let θ ∈]0, 1
4 [ and take s ≥ 1 + 3

2θ . There are constants A,B,K > 0, ε0 ∈]0, 1[
with

(3.3.3) ε−1
0 � K � B � A

such that, if estimates (3.3.2) hold on some interval [1, T ] when ε < ε0, then for any 1 ≤ t′ ≤
t ≤ T , one has the bounds

(3.3.4)
∣∣|vΛ(t, x)|2 − |vΛ(t′, x)|2

∣∣ ≤ ε2B2

32 t′−
1
4 +θ.

Proof: Computing ∂t|vΛ(t, x)|2 from (3.2.6), we get by integration

|vΛ(t, x)|2 = |vΛ(t′, x)|2 + 2Re i
∫ t

t′
r(τ, x)v̄Λ(τ, x) dτ

τ

from which we deduce

(3.3.5)
∣∣|vΛ(t, x)|2 − |vΛ(t′, x)|

∣∣2 ≤ 2
∫ t

t′
‖r(τ, x)‖L∞‖v̄Λ(τ, x)‖L∞

dτ

τ
.

By (3.2.3) and the first estimate (3.3.2),

(3.3.6) ‖v(t, ·)− vΛ(t, ·)‖L∞ ≤ Ct−
1
4 ‖Lv‖L2 ≤ CAεtKε2−

1
4 ≤ CAε

if Kε20 is small enough. Taking the second estimate (3.3.2) into account, we get

(3.3.7) ‖vΛ(t, ·)‖L∞ ≤ (CA+B)ε.

Moreover, by (3.2.8) and (3.3.2)

(3.3.8) ‖r(t, ·)‖L∞ ≤ Ct−
1
4 +θ[(1 +B2ε2)Aε+B3ε3

]
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if Kε20 ≤ θ. Plugging (3.3.7) and (3.3.8) in the right hand side of (3.3.5), and taking A� B �
ε−1
0 , we get the bound (3.3.4). 2

Proof of Proposition 3.3.1: As already remarked after the statement of Theorem 1.1.1 and
Proposition 3.3.1, existence of the solution and finiteness of the quantities to be estimated in
(3.3.2) is not an issue. We prove (3.3.2) by bootstrap, assuming that these estimates hold on
some interval [1, T ]. Let us show that, then, on the same interval, (3.3.2) holds with A (resp.
B) replaced by A

2 (resp. B
2 ). Coupled with the time continuity of the left hand side of (3.3.2),

this will show that these inequalities hold for any t.

Plugging our assumption (3.3.2) in the right hand side of (3.1.1), we get

‖Lv(t, ·)‖L2 + ‖v(t, ·)‖Hs
h
≤ A

4 ε+ CAB2ε3
∫ t

1
τKε

2 dτ

τ
≤ Aε

[1
4 + CB2

K

]
if A has been taken large enough relatively to the constant C0 in (3.3.1). Under condition (3.3.3)
on the constants, we bound this by A

2 ε as wanted.

To get the L∞ estimate, we write by (3.2.3)

‖v(t, ·)− vΛ(t, ·)‖L∞ ≤ Ct−
1
4 ‖Lv(t, ·)‖L2 ≤ CεA

if Kε20 ≤ 1
4 , according to assumption (3.3.2). If B � A, we bound this by εB4 . To get the second

estimate (3.3.2) with B replaced by B
2 , we are reduced to showing that ‖vΛ(t, ·)‖L∞ ≤ εB4 . But if

s > 7, and if we take in lemma 3.3.2 some θ in ]0, 1
4 [, close enough to 1

4 to ensure the assumption
of that lemma, we deduce from (3.3.4) applied with t′ = 1 that

‖vΛ(t, ·)‖2L∞ ≤ ‖vΛ(1, ·)‖2L∞ + ε2B2

32 <
ε2B2

16 ,

if B is taken large enough relatively to the L∞ norm of the initial data. This concludes the
proof. 2

To finish the proof of Theorem 1.1.1, we study first the asymptotic behaviour of the solution vΛ
to (3.2.6).

Lemma 3.3.3 Let θ ∈]0, 1
4 [, s > 1 + 3

2θ . Let v be the solution to (2.1.12) corresponding to an
odd initial data εw0, with w0 satisfying (1.2.13). Then, if ε0 is small enough, there is a family
(Aε(x))ε∈]0,ε0[ of continuous functions, bounded in L∞(R) ∩ L2(R), and a constant C > 0, such
that Aε(x) satisfies for any ε ∈]0, ε0[, any t ≥ 1 the vanishing property

(3.3.9) ‖Aε(x)〈tx〉−2‖L2 ≤ Ct−
5
8 + θ

2

(3.3.10) ‖Aε(x)〈tx〉−2‖L∞ ≤ Ct−
1
4 +θ

and such that, for any ε ∈]0, ε0[, any t ≥ 1,

(3.3.11)
∥∥∥∥vΛ(t, x)− εAε(x) exp

[
−i tx

2

2 + iε2Lκ(t, x)|Aε(x)|2
]∥∥∥∥
L∞
≤ Cεt−

1
4 +θ
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and

(3.3.12)
∥∥∥∥vΛ(t, x)− εAε(x) exp

[
−i tx

2

2 + iε2Lκ(t, x)|Aε(x)|2
]∥∥∥∥
L2
≤ Cεt−

1
4 +θ,

where Lκ(t, x) =
∫ t

1 κ(τx) dττ .

Proof: If we plug (3.3.2) in the right hand side of (3.2.7), (3.2.8) written with θ replaced by
some θ′ smaller than the θ of the statement, and close enough to it so that s ≥ 1 + 3

2θ′ , and if
we take ε0 small enough relatively to θ − θ′, we get estimates

‖r(t, ·)‖L2 ≤ Cεt−
1
4 +θ

‖r(t, ·)‖L∞ ≤ Cεt−
1
4 +θ

(3.3.13)

for some C > 0. By (3.3.4)
Bε(x) = lim

t→+∞
ε−2|vΛ(t, x)|2

exists, the limit being uniform in x and ε, and we have

(3.3.14)
∥∥|vΛ(t, ·)|2 − ε2Bε(·)

∥∥
L∞

= O(ε2t−
1
4 +θ), t→ +∞.

Define

(3.3.15) g(t, x) = vΛ(t, x) exp
[
i
tx2

2 − iε
2Lκ(t, x)Bε(x)

]
.

We deduce from (3.2.6) that

(3.3.16) Dtg(t, x) = κ(tx)
t

[
|vΛ(t, x)|2 − ε2Bε(x)

]
g(t, x) + 1

t
r(t, x).

By (3.3.14), (3.3.13), we see that ε−1g(t, x) converges uniformly when t goes to +∞ to some
continuous limit Aε(x), with

‖g(t, ·)− εAε(·)‖L∞ = O(εt−
1
4 +θ), t→ +∞

so that (3.3.11) holds, since necessarily |Aε(x)|2 = Bε(x). Integrating (3.3.16), using (3.3.14)
and applying Gronwall lemma we get

|g(t, x)| ≤ C
[
|g(1, x)|+

∫ t

1
|r(τ, x)| dτ

τ

]
.

Taking the L2 norm of this inequality and using the first inequality (3.3.13), we conclude that
‖g(t, ·)‖L2 is uniformly O(ε), so that Aε is in L2(R) uniformly in ε. Moreover, this uniform
bound, (3.3.14) and the first estimate (3.3.13) imply that the right hand side of (3.3.16) is
O(εt−

5
4 +θ) in L2 norm. Integrating from t to +∞, we get (3.3.12).

By (2.2.16) applied with ah ≡ 1, in which we plug (3.3.2), we get

(3.3.17) ‖〈xt〉−2v(t, ·)‖L2 ≤ CεtKε2−1.
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Let us write∫
ε2|Aε(x)|2〈tx〉−4 dx ≤

∫ ∣∣ε2|Aε(x)|2 − |vΛ(t, x)|2
∣∣〈tx〉−4 dx

+
∫ ∣∣|vΛ(t, x)|2 − |v(t, x)|2

∣∣〈tx〉−4 dx+
∫
〈tx〉−4|v(t, x)|2 dx.

By (3.3.14), the first term in the right hand side is O(ε2t−
5
4 +θ). By (3.3.17), the last term is

O(ε2t−2+2Kε2). By (3.2.3) and (3.3.2), the middle term is O(ε2t−
5
4 +Kε2). This gives (3.3.9) if ε

is small enough.

To get (3.3.10), we write in the same way

ε|Aε(x)|〈tx〉−2 ≤
∣∣ε|Aε(x)| − |vΛ|

∣∣〈tx〉−2 +
∣∣|vΛ| − |v|

∣∣〈tx〉−2 + 〈tx〉−2|v|.

The first (resp. second) term in the right hand side is O(εt−
1
4 +θ) by (3.3.11) (resp. by (3.2.3)

and (3.3.2)). The last term is controlled by (2.2.17) (with ah = 1 and σ close to 1
2) by Cεt

− 1
4 +θ

as well. This concludes the proof. 2

Proof of Theorem 1.1.1: To prove the theorem, we have to deduce (1.1.8) from (3.3.11), (3.3.12).
By (3.2.2), (3.2.3) and (3.3.2), we see that (3.3.11) and (3.3.12) remain true if we replace in their
left hand side vΛ by v and ε0 is small enough. Recall that by (1.2.2), (1.2.4) and (2.1.6)

u(t, x) = W+w(t, x) with w(t, x) = 1√
t
v
(
t,
x

t

)
so that according to (2.1.11)

u(t, x) = 1√
t

[
Op1

h(ah)v
](
t,
x

t

)
= 1√

t

[
Op1

h(ah)vΛ
](
t,
x

t

)
+ 1√

t

[
Op1

h(ah)(v − vΛ)
](
t,
x

t

)
.

(3.3.18)

By (3.2.2), (3.2.3), (3.3.2) and lemma 3.1.2, the L2 (resp. L∞) norm of the last terms in (3.3.18)
is O(εt−

1
2 +Kε2) (resp. O(εt−

3
4 +Kε2)), so may be incorporated to the remainder in (1.1.8). We

apply to the first term Proposition 2.3.2 (i) where we take

(3.3.19) δ = 1
4 − θ + γ,

2θ
3 < σ < min

(
4θ, 1

6 + 2
3θ
)

for a small positive γ. The assumption s > 1+ 3
2θ of the theorem implies that the assumptions of

the proposition are satisfied and the choices (3.3.19), together with estimates (3.3.2), show that
the remainders (2.3.4), (2.3.5) are O(εt−

1
4 +θ) if ε is small enough. Consequently, modulo again

contributions to r in (1.1.8), we may replace the first term in the right hand side of (3.3.18), by

(3.3.20) 1√
t
ah
(x
t
,−x

t

)
vΛ
(
t,
x

t

)
.

We replace above vΛ by its expansion obtained in (3.3.11), (3.3.12), again modulo a contribution
to r in (1.1.8). Moreover, according to the expressions (2.1.8), (1.2.11) of ah, we are reduced to

(3.3.21) ε√
t
Aε
(x
t

)[
χ+(x)e+

(
x,−x

t

)
+ χ−(x)e−

(
x,−x

t

)]
× exp

[
−ix

2

2t + iε2Lκ
(
t,
x

t

)∣∣∣Aε(x
t

)∣∣∣2].
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As 1±(x) − χ±(x) = O(〈x〉−N ) for any N , (3.3.9) and (3.3.10) show that, modulo again a
contribution to r in (1.1.8), we may replace (3.3.21) by

(3.3.22) ε√
t
Aε
(x
t

)[
1+(x)

(
e0
(
−x
t

)
+
∣∣∣x
t

∣∣∣e1
(
−x
t

))
+ 1−(x)

(
e0
(x
t

)
+
∣∣∣x
t

∣∣∣e1
(x
t

))]
× exp

[
−ix

2

2t + iε2Lκ
(
t,
x

t

)∣∣∣Aε(x
t

)∣∣∣2],
where we used the expressions (1.2.10) of e+, e− and the fact that in 1±(x)e±(x, ξ), we may
replace m1,m2 by 1, since the error generated is again O(〈x〉−N ) according to (1.2.9). Finally,
if we replace in (3.3.22) e0, e1 by the expressions in function of the transmission and reflection
coefficients computed in (A.1.29) below, we get

ε√
t
Aε
(x
t

)
exp

[
−ix

2

2t + iε2Lκ
(
t,
x

t

)∣∣∣Aε(x
t

)∣∣∣2]
which gives the principal part in (1.1.8). 2

A Appendix

A.1 Proof of Proposition 1.2.1

We shall give here the proof of Proposition 1.2.1, relying on the results of Deift-Trubowitz [8]
and Weder [27].

If V is a real valued potential in S(R), denote for ξ real (or for ξ in the upper half-plane Im ξ ≥ 0)
by f1(x, ξ), f2(x, ξ) the solutions of −y′′ + 2V (x)y = ξ2y satisfying respectively f1(x, ξ) ∼ eixξ,
x → +∞, f2(x, ξ) ∼ e−ixξ, x → −∞. If V is even, we have f1(−x, ξ) = f2(x, ξ) by uniqueness.
Set

(A.1.1) m1(x, ξ) = e−ixξf1(x, ξ), m2(x, ξ) = eixξf2(x, ξ).

Under our evenness assumptions on V

(A.1.2) m1(−x, ξ) = m2(x, ξ).

By lemma 1 of [8], m1 solves the Volterra equation

(A.1.3) m1(x, ξ) = 1 +
∫ +∞

x
Dξ(x′ − x)2V (x′)m1(x′, ξ) dx′

where

(A.1.4) Dξ(x) =
∫ x

0
e2ix′ξ dx′ = e2ixξ − 1

2iξ .

If V is in S(R), (ii) of lemma 1 of [8] shows that (1.2.9) holds for m1 (and thus also for m2)
when α = β = 0. To get also estimates for the derivatives, we need to establish the following
lemma, whose proof relies on the same ideas as in [8]:
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Lemma A.1.1 Denote for any β,N in N by Ωβ
N (x) a smooth positive function such that

Ωβ
N (x) = 〈x〉−N for x ≥ 1 and Ωβ

N (x) = 〈x〉β for x ≤ −1. Then for any N,α, β in N, there is
C > 0 such that for any ξ with Im ξ ≥ 0, any x

(A.1.5)
∣∣∂αx ∂βξ [m1(x, ξ)− 1

]∣∣ ≤ CΩβ+1
N (x)〈ξ〉−1−β.

Proof: Following the proof of lemma 1 in [8], we write

(A.1.6) m1(x, ξ) = 1 +
+∞∑
n=1

gn(x, ξ)

with

(A.1.7) gn(x, ξ) =
∫
x≤x1≤···≤xn

n∏
j=1

Dξ(xj − xj−1)2V (xj) dx1 . . . dxn,

using the convention x0 = x. Set Ω(x) = Ω1
0(x) and

Kξ(y, y′) = Dξ(y − y′)Ω(y′)−12V (y)Ω(y).

Then we may rewrite gn as

gn(x, ξ) = Ω(x)
∫
x≤x1≤···≤xn

n∏
j=1

Kξ(xj , xj−1)Ω(xn)−1 dx1 . . . dxn,

or equivalently

(A.1.8) gn(x, ξ) = Ω(x)
∫
y1≥0,...,yn≥0

n∏
j=1

Kξ(x+ y1 + · · ·+ yj , x+ y1 + · · ·+ yj−1)

× Ω(x+ y1 + · · ·+ yn)−1 dy1 . . . dyn.

By (A.1.4), we have ∣∣∂βξDξ(y)
∣∣ ≤ Cβ〈ξ〉−1〈y〉1+β.

Fix some integer m. The definition of Kξ implies that for α+ β ≤ m

(A.1.9)
∣∣∂αx ∂βξKξ(x+ y1 + · · ·+ yj , x+ y1 + · · ·+ yj−1)

∣∣
≤ C〈ξ〉−1Ω(x+ y1 + · · ·+ yj−1)−1〈x+ y1 + · · ·+ yj〉−1−β

×W (x+ y1 + · · ·+ yj)〈yj〉1+β,

where W is some smooth rapidly decaying function. When y1 ≥ 0, . . . , yj ≥ 0, we may bound

〈yj〉1+βΩ(x+ y1 + · · ·+ yj−1)−1〈x+ y1 + · · ·+ yj〉−1−β ≤ CΩ(x)β.

Consequently, (A.1.8) implies that

(A.1.10) |∂αx ∂
β
ξ gn(x, ξ)| ≤ CΩ(x)β+1〈ξ〉−n

∫
y1≥0,...,yn≥0

n∏
j=1

W (x+ y1 + · · ·+ yj) dy1 . . . dyn.
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Define G(x) =
∫+∞
x W (z) dz, so that the last integral above may be written

(−1)n−1
∫
y1≥0,...,yn−1≥0

n−1∏
j=1

G′(x+ y1 + · · ·+ yj)G(x+ y1 + · · ·+ yn−1) dy1 . . . dyn−1

= 1
n!G(x)n.

As |G(x)| ≤ CNΩ0
N (x) for any N , it follows from (A.1.10) that, for any N ,

(A.1.11) |∂αx ∂
β
ξ gn(x, ξ)| ≤ Cn+1

N

n! 〈ξ〉
−nΩβ+1

N (x).

If we sum for n ≥ β + 1, we get a bound by the right hand side of (A.1.5).

We are thus left with studying

(A.1.12)
β∑
n=1

∂αx ∂
β
ξ gn(x, ξ).

Notice that (A.1.11) summed for n = 1, . . . , β gives, when |ξ| ≤ 1, the estimate (A.1.5) for
(A.1.12) as well. Assume from now on that |ξ| ≥ 1 and let us prove by induction on n = 1, . . . , β
that |∂αx ∂

β
ξ gn(x, ξ)| is bounded by the right hand side of (A.1.5). We may write from (A.1.7)

gn(x, ξ) =
∫
x≤x1

Dξ(x1 − x)2V (x1)gn−1(x1, ξ) dx1

=
∫
y1≥0

Dξ(y1)2V (y1 + x)gn−1(y1 + x, ξ) dy1

(A.1.13)

with g0 ≡ 1. We use in (A.1.13) the last expression (A.1.4) for Dξ. We have then to consider
two kind of terms. The first one is∫

y1≥0

e2iy1ξ

ξ
2V (y1 + x)gn−1(y1 + x, ξ) dy1

= − 1
2iξ2 2V (x)gn−1(x, ξ)−

∫
y1≥0

e2iy1ξ

2iξ2 ∂y1

[
2V (y1 + x)gn−1(y1 + x, ξ)

]
dy1.

Repeating the integrations by parts, we end up with contributions that, according to the induc-
tion hypothesis (and the fact that g0 ≡ 1), satisfy estimates of the form (A.1.5) (with Ωβ

N (x)
replaced by 〈x〉−N ), and an integral term of the form

(A.1.14)
∫
y1≥0

e2iy1ξ

ξM+1∂
M
y1

[
2V (y1 + x)gn−1(y1 + x, ξ)

]
dy1

for M as large as we want. If M = β, we see that (A.1.14) satisfies (A.1.5). The second type of
terms coming from (A.1.13) to consider is

1
ξ

∫
y1≥0

2V (y1 + x)gn−1(y1 + x, ξ) dy1

which trivially satisfies (A.1.5) by the induction hypothesis applied to gn−1. This concludes the
proof. 2
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In order to obtain the representation (1.2.12) for W+w, when w is odd, we recall first the
definition of the transmission and reflection coefficients. The wronskian of (f1(x, ξ), f1(x,−ξ))
(resp. (f2(x, ξ), f2(x,−ξ))) is nonzero for any ξ in R∗ (see [8], page 144), so that, for real ξ 6= 0,
we may find unique coefficients T1(ξ), T2(ξ) non zero, R1(ξ), R2(ξ) such that

f2(x, ξ) = R1(ξ)
T1(ξ) f1(x, ξ) + 1

T1(ξ)f1(x,−ξ)

f1(x, ξ) = R2(ξ)
T2(ξ) f2(x, ξ) + 1

T2(ξ)f2(x,−ξ).
(A.1.15)

By Theorem I in [8], these functions extend as smooth functions on R, and they satisfy the
following properties

T1(ξ) = T2(ξ) def= T (ξ)
T (ξ)R2(ξ) +R1(ξ)T (ξ) = 0
|T (ξ)|2 + |Rj(ξ)|2 = 1, j = 1, 2
T (ξ) = T (−ξ), Rj(ξ) = Rj(−ξ).

(A.1.16)

If the potential V is even, we have seen that f1(−x, ξ) = f2(x, ξ), so that, plugging this equality
in the first relation (A.1.15), comparing to the second one, and using that T1 = T2, we conclude
that

(A.1.17) R1(ξ) = R2(ξ).

We denote by R(ξ) this common value. The integral representations of the scattering coefficients
(see [8] page 145)

R(ξ)
T (ξ) = 1

2iξ

∫
e2ixξ2V (x)m1(x, ξ) dx

1
T (ξ) = 1− 1

2iξ

∫
2V (x)m1(x, ξ) dx

(A.1.18)

together with (A.1.5) and the fact that V ∈ S(R), show that ∂βξ R(ξ) = O(〈ξ〉−N ) for any N, β
and ∂βξ (T (ξ)− 1) = O(〈ξ〉−1−β) for any β.

We need the following lemma:

Lemma A.1.2 The functions T,R satisfy

(A.1.19) T (0) = 1 +R(0)

in the following two cases:
• The generic case

∫
V (x)m1(x, 0) dx 6= 0.

• The very exceptional case
∫
V (x)m1(x, 0) dx = 0 and

∫
V (x)xm1(x, 0) dx = 0.

Proof: Summing the two equalities (A.1.18) and making an expansion at ξ = 0 using (A.1.5),
we get

R(ξ) + 1 = T (ξ)
[
1− 1

iξ

∫ +∞

−∞
V (x)m1(x, ξ) dx+ 1

iξ

∫ +∞

−∞
e2ixξV (x)m1(x, ξ) dx

]
= T (ξ)

[
1 + 2

∫ +∞

−∞
xV (x)m1(x, 0) dx+O(ξ)

]
, ξ → 0
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so that

(A.1.20) R(0) + 1− T (0) = 2T (0)
∫ +∞

−∞
xV (x)m1(x, 0) dx.

In the generic case, by (A.1.18)

(A.1.21) T (ξ) = iξ

[
−
∫ +∞

−∞
V (x)m1(x, 0) dx+O(ξ)

]−1
, ξ → 0

so that T (0) = 0. This shows that (A.1.20) vanishes in the two considered cases. 2

Proof of Proposition 1.2.1: We have to prove that W+ acting on odd functions is given by
(1.2.12). Recall (see for instance Weder [27] formula (2.20), Schechter [21]) that W+w is given
by

(A.1.22) W+w = F ∗+ŵ

where F ∗+ is the adjoint of the distorted Fourier transform, given by

(A.1.23) F ∗+Φ = 1
2π

∫
ψ+(x, ξ)Φ(ξ) dξ

where

(A.1.24) ψ+(x, ξ) = 1ξ>0T (ξ)f1(x, ξ) + 1ξ<0T (−ξ)f2(x,−ξ).

Let χ± be the functions defined in the statement of Proposition 1.2.1 and write

ψ+(x, ξ) = χ+(x)ψ+(x, ξ) + χ−(x)ψ+(x, ξ).

Replace in χ+ψ+ (resp. χ−ψ−) ψ+ by (A.1.24) where we express f2 from f1 (resp. f1 for f2)
using the first (resp. second) formula (A.1.15). We get, using notation (A.1.1)

(A.1.25)
ψ+(x, ξ) = χ+(x)

[
eixξ

(
T (ξ)m1(x, ξ)1ξ>0 +m1(x, ξ)1ξ<0

)
+ e−ixξR(−ξ)m1(x,−ξ)1ξ<0

]
+ χ−(x)

[
eixξ

(
m2(x,−ξ)1ξ>0 + T (−ξ)m2(x,−ξ)1ξ<0

)
+ e−ixξR(ξ)m2(x, ξ)1ξ>0

]
.

Using (A.1.2), we deduce from (A.1.22), (A.1.23) and (A.1.25) that

(A.1.26) W+w = 1
2π

∫
eixξe1(x, ξ)ŵ(ξ) dξ + 1

2π

∫
e−ixξe2(x, ξ)ŵ(ξ) dξ

with

e1(x, ξ) = χ+(x)m1(x, ξ)
[
T (ξ)1ξ>0 + 1ξ<0

]
+ χ−(x)m1(−x,−ξ)

[
1ξ>0 + T (−ξ)1ξ<0

]
e2(x, ξ) = χ+(x)R(−ξ)m1(x,−ξ)1ξ<0 + χ−(x)R(ξ)m1(−x, ξ)1ξ>0.

(A.1.27)

If w is odd, we may rewrite (A.1.26) as

W+w = 1
2π

∫
eixξa(x, ξ)ŵ(ξ) dξ
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with

(A.1.28) a(x, ξ) = e1(x, ξ)− e2(x,−ξ)
= χ+(x)m1(x, ξ)

[
(T (ξ)−R(ξ))1ξ>0 + 1ξ<0

]
+ χ−(x)m1(−x,−ξ)

[
1ξ>0 + (T (−ξ)−R(−ξ))1ξ<0

]
.

Setting

(A.1.29) e0(ξ) = T (ξ)−R(ξ) + 1
2 , e1(ξ) = T (ξ)−R(ξ)− 1

2ξ

we see that e0, e1 satisfy (1.2.6), since e1 is smooth at ξ = 0 because of (A.1.19). Actually, as
T (ξ)− 1 is O(〈ξ〉−1), we even get that e1 = O(〈ξ〉−2). We rewrite thus (A.1.28) as

a(x, ξ) = χ+(x)m1(x, ξ)
[
e0(ξ) + e1(ξ)|ξ|

]
+ χ−(x)m1(−x,−ξ)

[
e0(−ξ) + e1(−ξ)|ξ|

]
which gives (1.2.11) using (A.1.2). The equality

e0(ξ) + e1(ξ)|ξ| = (T (ξ)−R(ξ))1ξ>0 + 1ξ<0

implies (1.2.7), as T (ξ) − R(ξ) − 1 is a symbol of order −1. Moreover, (1.2.8) follows from
the fact that |T (ξ)−R(ξ)| = 1, which is a consequence of (A.1.16). Since (1.2.9) follows from
(A.1.5) and (A.1.2), this concludes the proof of the proposition. 2

A.2 Proof of lemma 2.2.1

Proof of lemma 2.2.1: (i) When m = 0 i.e. a ∈ S 1
2

(
1
)
, s = 0, λ = 1

2 (i.e. one considers the
Weyl quantization), property (2.2.5) is just L2 boundedness of OpW

h (a), which is Theorem 7.11
of [13]. Since one may express any quantization from the Weyl one (see (7.16) in [13]), the same
property holds for Opλh for any λ ∈ [0, 1]. The case of arbitrary s,m follows from the symbolic
calculus of [13] Chapter 7. Actually, (2.2.5) is equivalent, by the same reasoning as above, to
the L2 boundedness of

OpW
h

(
〈ξ〉s−m

)
◦OpW

h (a) ◦OpW
h

(
〈ξ〉−s

)
and that last operator may be written as OpW

h (b) for some symbol b in S 1
2

(
1
)
by Theorem 7.9

and Proposition 7.7 of [13].

(ii) We cannot deduce directly lemma 2.2.1 (ii) from the results of [13], as symbols in S1
(
〈ξ〉m

)
defined by inequalities (2.1.1) with δ = 1 are not covered by the assumptions made on that
reference. Though, when m = s = 0, we may reduce (2.2.6) to the similar inequality for symbols
in S 1

2

(
1
)
, that are treated in [13]. Actually, define the operator Θ by

Θv(x) = v(x
√
h).

Then
Θ ◦Op1

h(a) ◦Θ−1 = Op1
h(b), Θ ◦Op0

h(a) ◦Θ−1 = Op0
h(b)

with b(x, ξ) = a(x
√
h, ξ/

√
h). As b belongs to S 1

2

(
1
)
, Op1

h(b), Op0
h(b) are bounded on L2,

uniformly in h, so that Op1
h(a),Op0

h(a) are bounded on L2, uniformly in h.
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To deduce (2.2.6) for general s, m from that property, we notice first that by (2.1.5) it suffices
to treat the case of Op1

h(a). Take ϕ in C∞0 (R− {0}), ψ in C∞0 (R) forming a Littlewwod-Paley
partition of unity, so that 1 = ψ(ξ) +

∑+∞
1 ϕ(2−kξ). Define for k ≥ 1, ∆h

k = Op1
h

(
ϕ(2−kξ)

)
,

∆h
0 = Op1

h

(
ψ(ξ)

)
. Then the L(Hs

sc, H
s−m
sc ) boundedness of Op1

h(a) follows from an estimate of
the form

(A.2.1) ‖∆h
` ◦Op1

h(a) ◦∆h
k‖L(L2) ≤ CN2km−N |k−`|

for anyN, k, `, with a constant CN uniform in h ∈]0, 1[. Writing ϕ(2−`hD) = (2−`hD)N ϕ̃(2−`hD)
or ϕ(2−khD) = (2−khD)N ϕ̃(2−khD), with ϕ̃(z) = ϕ(z)

zN
, and using that if a is in S1

(
〈ξ〉m

)
, hDa

belongs to the same class by (2.1.1), one deduces immediately (A.2.1) from the L2 boundedness
of the quantization of elements of S1

(
1
)
seen above.

(iii) We take here a in the subclass Σ1
(
〈ξ〉m

)
, and using the same Littlewood-Paley partition of

unity as above, we write

a(x, ξ) =
+∞∑
k=0

ak(x, ξ)

with a0(x, ξ) = a(x, ξ)ψ(ξ), ak(x, ξ) = a(x, ξ)ϕ(2−kξ) for k ≥ 1. Denote by Kk(x, y) the
distributional kernel of Op1

h(ak) i.e.

(A.2.2) Kk(x, y) = 2k

(2πh)

∫
ei

2kξ
h

(x−y)a(x, 2kξ)ϕ(ξ) dξ

when k ≥ 1, and the similar expression with ϕ replaced by ψ when k = 0. By (2.1.2),
∂βξ
[
a(x, 2kξ)ϕ(ξ)

]
2−km is bounded uniformly in k, so that, performing integration by parts in

(A.2.2), we get

|Kk(x, y)| ≤ CN
2k

h
2km

(
1 + 2k

h
|x− y|

)−N
for any N . This immediately implies that Op1

h(ak) is bounded from L∞ to L∞, uniformly in
h ∈]0, 1[, with O(2km) operator norm. As m < 0, the sum Op1

h(a) of these operators is also
bounded on L∞. This concludes the proof. 2
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