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The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting
a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However,
if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion
once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential
is given by a Brownian bridge on a finite interval (0,L) and then periodically repeated over the whole real line
and study the power spectrum S(f ) of the diffusive process x(t) in such a potential. We show that for most
of realizations of x(t) in a given realization of the potential, the low-frequency behavior is S(f ) ∼ A/f 2, i.e.,
the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with
a finite support. Focusing on the statistical properties of this random variable, we determine the moments of
A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k

and a rather unusual dependence on the temperature and on the periodicity L, which are supported by atypical
realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and
exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity.
Our findings are based both on analytic results and on extensive numerical simulations of the process x(t).

I. INTRODUCTION

The statistical classification of time-dependent stochastic
processes is often based on the study of their power spectrum

S(f ) = lim
�→∞

∣∣∣∣
∫ �

0
dt eif t x(t)

∣∣∣∣
2

, (1)

where � is the observation time and the horizontal bar denotes
ensemble averaging with respect to all possible realizations
of x(t). Many processes, which are common in nature and
are often observed in engineering and technological sciences,
are found to exhibit a low-frequency noise spectrum of the
universal form [1,2]

S(f ) ∼ A
f α

. (2)

The amplitude A is independent of f , and the exponent α ∈
(1,2), with the extreme cases α = 1 and α = 2 corresponding
to the 1/f (flicker) noise and Brownian noise (or noise of
the extremes of Brownian noise [3]), respectively. There
exist a few physical cases for which the form in (2) with
α < 2 extends over many decades in frequency, implying
the existence of correlations over surprisingly long times.
Relevant examples include electrical signals in vacuum tubes,
semiconductor devices and metal films [1,2]. More generally,
the form in (2) is observed in sequences of earthquakes [4]
and weather data [5], in evolution [6], human cognition [7],
network traffic [8], and even in the temporal distribution of
loudness in musical recordings [9]. Recent experiments have
shown the occurrence of such universal spectra in processes
taking place in a variety of nanoscale systems. Among them
are transport in individual ionic channels [10,11] and electro-

chemical signals in nanoscale electrodes [12], bio-recognition
processes [13], and intermittent quantum dots [14]. Many other
examples, related theoretical concepts, emerging challenges,
and unresolved problems have been discussed in [14–19].

An example of a transport process which exhibits the
flicker 1/f noise (with logarithmic corrections) was pointed
out more than 30 years ago in Refs. [15,16]. This is a
paradigmatic example for random motion in a quenched
random environment, now known as Sinai diffusion [20],
which has been studied in many different contexts [21–27].
Sinai diffusion is defined as a Brownian motion advected by a
quenched drift which is time independent and uncorrelated in
space. It can thus be seen as an overdamped Langevin process
subject to a quenched force which is uncorrelated in space, so
in one dimension it is derived from a Brownian potential V (x).
The mean-square displacement of the Sinai diffusion exhibits
a remarkably slow logarithmically growth with time t ,

E(x2(t)) ∼ ln4(t) , t → ∞, (3)

where E(·) denotes averaging over realizations of the random
potential. The result in (3) is supported by typical realizations
of disorder, i.e., it holds for almost all samples with a
given potential V (x). Note that despite the slow logarithmic
dispersion of the trajectories, the probability currents JL

through finite samples of Sinai chains of length L appear
to be much larger than the Fickian currents in homogeneous
systems [22–25]; for finite Sinai chains, one has E(JL) ∼
1/

√
L, while for homogeneous systems JL ∼ 1/L. Such an

anomalous behavior of currents is supported by rare atypical
realizations of V (x) which, however, produce the dominant
contributions to the average.

1



X

V(X)

L 2LL2L

FIG. 1. Potential V (x) as a periodically extended Brownian
bridge with V (x = 0) = V (x = L) = 0.

In this paper we analyze the power spectrum of random
motion in a random quenched potential looking at the problem
from a different perspective—we will mainly focus on the
amplitude A of the power spectrum, not on the value of the
exponent α characterizing the power spectrum. In random
environments, this amplitude is itself a random variable
fluctuating from realization to realization of the random
potential, and this makes the power spectrum itself a random
variable. Here we concentrate on a particular model—a
periodic Sinai chain [28], in which the potential is a finite
Brownian trajectory with constrained end point—the so-called
Brownian bridge, defined on the interval (0,L) and then
periodically extended in both directions to give an infinite
one-dimensional system (see Fig. 1). The origin of the slow
logarithmic growth in the original Sinai model (with L = ∞)
is due to the unlimited growth of the Brownian potential and
the associated energy barriers; however, in our periodic case
x(t) ultimately converges to a Brownian motion, on large time
and length scales, so the low-frequency spectrum has a form
in (2) with α = 2 but the amplitude A—a positive random
variable with a finite support (0,Ar )—fluctuates from sample
to sample. We determine the moments of A and show that the
probability distribution function P (A) has a rather nontrivial
form characterized by a log-normal left tail (in the vicinity of
0) and a singular right tail (in the vicinity of the right edge
Ar of the support). In general, A is not self-averaging and its
moments are supported by atypical realizations of disorder.
These analytic predictions for the periodic Sinai model are
confirmed by extensive numerical simulations. An analysis of
the distribution of A for the original Sinai model with L ≡ ∞,
where the spectrum is described by (2) with α = 1 [15,16] will
be presented elsewhere.

II. THE PERIODIC SINAI MODEL

The precise definition of the model studied is as follows.
Consider the Langevin dynamics of a tracer x(t) in a time-
independent potential V (x):

η
dx(t)

dt
= −dV [x(t)]

dx(t)
+ ξt , (4)

where η is the friction coefficient, ξt is a Gaussian white noise
with zero mean and covariance

ξt ξt ′ = 2ηT δ(t − t ′) , (5)

and T is the temperature in units of the Boltzmann constant.
The potential is periodic, such that V (x + L) = V (x), with L

being the periodicity.
Furthermore, we assume that the potential V (x) on the in-

terval x ∈ (0,L) is a stochastic, continuous Gaussian process,
pinned at both ends so V (0) = V (L) = 0, having zero mean

and covariance

E(V (x)V (y)) = 2DV

[
min(x,y) − xy

L

]
, 0 � x, y � L,

(6)

where DV = V 2
0 /(2l), V0 being a characteristic extent of the

potential on a small scale of size l. In other words, V (x) on
the interval (0,L) is the so-called Brownian bridge (BB) [29]
which has the representation

V (x) = Wx − x

L
WL, (7)

where Wx is a standard Brownian motion started at W0 = 0
with correlation function

E(WxWy) = 2DV min(x,y). (8)

The overall potential on the entire x axis is then given by
a periodically repeated realization of the BB (see Fig. 1).
Without loss of generality we set l = 1 in what follows,
meaning that we measure L in units of l. We will also
skip insignificant numerical factors focusing only on the
dependence on the pertinent parameters, such as T , L,
and V0.

Before we proceed, it is important to emphasize that
the dynamics in Eq. (4) represents a combination of two
paradigmatic situations: random motion in a periodic potential
and the Sinai dynamics. Consequently, we expect that x(t) will
exhibit two distinct temporal behaviors. At sufficiently short
times t , t 	 tc, where tc is a crossover time, the periodicity
will not matter and the evolution of x(t) will proceed exactly
in the same fashion as in the original Sinai model, Eq. (3).
At longer times, t 
 tc, the periodicity of the potential will
ensure a transition to a standard diffusive behavior, so x(t) will
converge to

x(t) ∼
√

2D[V (x)] Bt, (9)

where Bt is a Brownian trajectory with diffusion coefficient 1
and D[V (x)] is a sample-dependent diffusion coefficient (see,
e.g., Refs. [30–33]):

D[V (x)] = D0

/{∫ L

0

dx

L

∫ L

0

dy

L
exp

[
V (x) − V (y)

T

]}
,

(10)

where D0 = T/η is the bare diffusion coefficient in absence
of disorder. Note that D[V (x)] � D0 [30] so D[V (x)] is a
random variable with support on (0,D0).

III. NUMERICAL SIMULATIONS

In the main plot of Fig. 2 we show the temporal evolution
of E(x2(t)) in a periodic BB Sinai model, with L = 64. The
numerical evidence for the existence of the two temporal
regimes described in (3) (at short times) and in (9) (at large
times) is clear. We plot with points the numerical data averaged
over 500 000 realizations of the random quenched potential.
The dashed line is ln4(t) and agrees with the simulated data in
the time region (100,1000), while the continuous thin straight
line is t and fits perfectly the asymptotically large time region
(say, from tmin = 105).
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FIG. 2. Main: E(x2(t)) in a periodic Sinai model (with a periodic
BB), numerical data shown as points. Also shown by the dashed
line is the fit c1 ln4(t) for the short-time Sinai regime along with the
solid line late-time fit c2t . Inset: As in the main figure but for an
unconstrained periodic Sinai potential.

An intermediate very slow regime, where both the ln4(t)
and the t dependence fail to fit the data, also appears clearly.
Such a departure from the ln4(t) law is not observed for a
periodic unconstrained Sinai potential, which we show in the
inset, again for L = 64 (here the transition is from a Sinai to
a ballistic regime, since for any finite L the potential is biased
yielding an constant, but random from sample to sample, force
superimposed on a periodic potential). As a matter of fact, this
is a surprising feature since one may intuitively expect that in
the case of a BB potential the typical barrier which a particle
has to overcome should be less, due to stronger correlations,
than that for an unconstrained Brownian potential, so for a
BB the mean-square displacement E(x2(t)) should grow faster
with time. This appears not to be the case and an apparent
explanation is that for the BB potential the structure of a typical
barrier which a particle has to bypass differs from the one for
an unconstrained Brownian motion. This may be related to the
recent observation [34] that the variance of a maximal positive
displacement of a BB on some subinterval (0,L1) with L1 < L

may be greater than the variance of the maximal displacement
on the entire interval (0,L).

IV. ANALYTICAL RESULTS

The inset of Fig. 2 shows us that the transition from the Sinai
regime at short times to the long time regime is not smeared
in time but is sharp and allows us to consistently define a
well-defined value of a transition time tc, which we will discuss
below. Accounting for the intermediate, subdiffusive regime
that appears in the case of the Sinai periodically repeated
Brownian bridge, the same procedure allows us to define a
transition time also in this case. We may expect that for t 
 tc,
the typical behavior of x(t) will be diffusive, so the low-
frequency (f 	 1/tc) behavior of the power spectrum (1) will
have the form of (2) with α = 2,

A
4D0

= 1∫ L

0
dx
L

∫ L

0
dy

L
exp

[
V (x)−V (y)

T

] . (11)

Taking into account that for a standard Brownian motion with
the diffusion coefficient D the amplitude in (2) is A = 4D,
we expect A to have support (0,4D0). In what follows we will
focus on the statistical properties of A.

We start by analyzing the typical behavior of A based on
an estimate for the typical value of A that we call Atyp:

Atyp

4D0
∼ exp

{
E

(
ln

( A
4D0

))}
. (12)

Furthermore,

E

(
ln

( A
4D0

))
= E(ln J+

L ) + E(ln J−
L ) + 2 ln(L), (13)

where J+
L and J−

L are stationary currents through a finite
sample, of length L, of a Sinai chain,

J+
L = 1∫ L

0 dx exp
[

V (x)
T

] ,

J−
L = 1∫ L

0 dy exp
[−V (y)

T

] . (14)

Note that since E(V (x)) = 0, moments of arbitrary order obey
E((J+

L )k) ≡ E((J−
L )k) so

E(ln J+
L ) ≡ E(ln J−

L ) (15)

and thus

E

(
ln

( A
4D0

))
= 2E(ln J+

L ) + 2 ln(L). (16)

The statistical properties of the currents in finite Sinai chains
have been analyzed in Refs. [22–25] for the case where V (x)
is an unconstrained Brownian or an unconstrained fractional
Brownian motion. It was shown (see, e.g. Ref. [25] for
more details) that for sufficiently large values of L, the
behavior of J+

L is dominated by the maximum of V (x),
Vmax ≡ max0�x�LV (x). Moreover, any given realization of
disorder J+

L can be bounded from below and from above by
A1 exp(−Vmax/T ) and A2 exp(−Vmax/T ), where A1 � A2 are
L-independent constants. Consequently, the L dependence (up
to an insignificant numerical factor) is captured by the estimate
J+

L ∼ exp(−Vmax/T ).
In principle, this argument can be readily generalized for the

case at hand, when V (x) is a BB, and we have merely to use the
distribution PBB(Vmax) of a maximal positive displacement of
a BB on an interval (0,L), instead of the analogous distribution
for an unconstrained Brownian motion used in Ref. [25].
This distribution PBB(Vmax) is well known from the classical
papers [35–37] and is given by

PBB(Vmax) = 2Vmax

DV L
exp

(
− V 2

max

DV L

)
, (17)

where DV = V 2
0 /(2l). Using (17), we find that, dropping

numerical constants,

E

(
ln

( A
4D0

))
∼ −V0

T
L1/2 , (18)

so, for arbitrary values of k,(Atyp

4D0

)k

∼ exp

(
−k

V0

T
L1/2

)
. (19)
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Therefore, we expect that, for most realizations of the random
potential V (x), the amplitude A of the power spectrum will
decrease, as a stretched-exponential function exp(−L1/2) of
the periodicity L, and will exhibit an Arrhenius dependence
on the temperature T .

Next we consider the behavior of the moments E(Ak) of
the amplitude with arbitrary (positive or negative) values of k.
When V (x) is an unconstrained Brownian motion, a general
analysis of the functional in (10) or (11) has been presented
in Ref. [28]. The disorder-average value (first moment) of this
very functional, which also describes the ground-state energy
in a one-dimensional localization problem, was determined in
Ref. [38]. It was shown in Refs. [28,38] that the functional
of the random potential in (10) or (11) can be bounded from
below and from above by B1 exp(−R/T ) and B2 exp(−R/T ),
where B1 � B2 weakly depend on L and

R ≡ max0�x�LV (x) − min0�x�LV (x) (20)

is the range, or span, of the random potential V (x). Physically,
R corresponds to the largest energy barrier that will be
encountered by the tracer. Expecting that E(Ak) will show a
stronger-than-power-law dependence on L (and we will show
in what follows that this is the case), we may drop the constants
B1 and B2 and write an estimate

Ak ∼ exp(−kR/T ), (21)

which should capture the L, k, and T dependence of the
moments up to insignificant pre-exponential factors.

To extend this analysis over the case of a BB potential and
in order to calculate the moments of A for the case under
study, we need to know the distribution of the range of a BB.
This distribution was first derived in Ref. [39], in which R was
referred to as an adjusted range of Brownian motion, and it is
given in series form as

PBB(R) = R
d2f (R)

dR2
+

∞∑
n=2

(
2n(n − 1)

{
df [(n − 1)R]

dR

− df (nR)

dR

}
+ (n − 1)2R

d2f [(n − 1)R]

dR2

+ n2R
d2f (nR)

dR2

)
, (22)

where, in our notation, f (R) = exp(−R2/DV L). For our
purposes a slightly different form of PBB(R) will also turn
out to be useful. To this end, we exploit here the observation
made in Ref. [40] that the range of Brownian bridge and
the maximum of Brownian excursion—a Brownian bridge
constrained to stay positive—have the same distributions. The
distribution of the maximum of a Brownian excursion has been
extensively discussed in the literature and several forms of it
have been derived (see, for example, Ref. [41]). Choosing a
suitable one, we have, in our notation,

PBB(R) =
√

2π5/2(2DV L)3/2

× d

dR

[
1

R3

∞∑
n=1

n2 exp

(
−π2n2

R2
DV L

)]
. (23)

The two expressions (22) and (23) coincide.

Now we have all the necessary ingredients to calculate the
moments of A. Consider first the moments of negative (not
necessarily integer) order. Using the form of PBB(R) in (22),
and keeping only the leading exponential dependence on R,
we average the estimate in (21) to obtain

E

((
4D0

A

)k)
∼

∫ ∞

0
dR exp

(
k R

T
− R2

DV L

)
. (24)

Evaluating this integral via steepest descent, we find that
the maximum of the exponential is attained at R ∼ R∗ =
kDV L/2T , and thus

E

((
4D0

A

)k)
∼ exp

(
k2 V 2

0

8T 2
L

)
. (25)

Therefore, the negative moments grow faster than expo-
nentially with k and V0, exhibit a super-Arrhenius depen-
dence on the temperature, and grow exponentially with the
periodicity L.

The negative moments may also be computed directly by
taking the average over the replicated 2k-fold integral to obtain

E

((
4D0

A

)k)
=

∫ 1

0
. . .

∫ 1

0

k∏
a=1

duadwa

× exp

{
−DV L

2T 2

[ ∑
a,b

|ua − ub| + |wa − wb|

− 2|ua − wb| + 2

(∑
a

ua −
∑

a

wa

)2]}
,

(26)

where we have rewritten the integration variables using xa =
Lua and ya = Lwa to obtain the above. The right-hand side
of (26) has the form of a partition function for k + k interacting
particles of two types u and w at inverse temperature
β = DV L/2T 2. The corresponding Hamiltonian is explicitly
given by

H =
∑
a,b

|ua − ub| + |wa − wb| − 2|ua − wb|

+ 2

(∑
a

ua −
∑

a

wa

)2

. (27)

The particles of type u and w attract particles of the same type
with a linear attractive potential, and they repel particles of the
other type, again with a linear potential. However, there is an
additional interaction which harmonically binds the center of
masses of the two particle types.

For k = 1 the integral in (26) can be performed exactly to
give

E

(
4D0

A

)
= T

V0

√
2π

L
exp

(
V 2

0

8T 2
L

)
erf

(
V0

2T

√
L

2

)
, (28)

where erf(z) is the error function. In the limit L → ∞, the error
function converges to 1, so the large-L asymptotic behavior of
the latter expression is governed by the exponential function,
which has precisely the same form as the one in (25) with
k = 1. For larger k, the direct calculation of the integrals
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in (26) becomes very involved, and we instead resort to an
approximate, but physically plausible, argument: In the limit of
large L, the partition function is dominated by the ground-state
energy. Due to the attraction between the same particle type,
we expect that particles of the same type will condense at
low temperature about the same point and hence we write
ua = U and wa = W for all a. This gives the effective reduced
low-temperature Hamiltonian

H0 = 2k2(	2 − 	) = 2k2

(
	 − 1

2

)2

− k2

2
, (29)

where 	 = |U − W |. The value 	 = 1/2 minimizes the
energy leading to

E

((
4D0

A

)k)
∼ exp

(
DV k2L

4T 2

)
= exp

(
k2V 2

0 L

8T 2

)
, (30)

in complete agreement with (25).
For positive moments of the amplitude, we use the form of

PBB(R) in (23). Keeping only the leading term in L, we find
that the leading behavior of Ak in (21) is given by

E

(( A
4D0

)k)
∼

∫ ∞

0
dR exp

(
−k R

T
− π2DV L

R2

)
. (31)

Again, we use the steepest descent approach to observe that
the dominant contribution to the integral comes from a narrow
region around R∗ = (2π2T DV L/k)1/3 so the overall behavior
of the positive moments of the amplitude of (not necessarily
integer) order k is given by

E

(( A
4D0

)k)
∼ exp

[
−3 π

2
3

2

(
k V0

T

)2/3

L1/3

]
, (32)

Therefore, the positive moments of the amplitude exhibit a
stretched exponential dependence on the order of the moment
k and on the characteristic scale of the potential V0, a sub-
Arrhenius dependence on the temperature, and also decay with
the periodicity L as a stretched exponential with the exponent
z = 1/3, that is, slower than predicted by the estimate based on
the typical realizations of disorder (19). Note, however, that the
result in (32) pertains to the asymptotic limit when L → ∞.
For small values of L, we expect that positive moments will
exhibit the typical behavior given by (19).

In Fig. 3 we show with symbols our estimates for A2

obtained from numerical simulations for different values of
L. In this case, we are not able, in the limits of our numerical
precision, to distinguish a small L regime. The continuous
line is our best fit to the form a exp(−Lb), where we obtain
the value b = 0.37 ± 0.02. The precision of the numerical data
does not support a fit with more parameters (that means that we
cannot include subleading corrections). The value b = 0.37
that we find for our estimated exponent (in the sense it is
estimated by numerical data in a finite region of values of L)
is close to the expected asymptotic value of 1/3 for large L

but probably feels the contamination from the low L regime.
Before we proceed to the analysis of the distribution of the

amplitude A, two remarks are in order. We first note that there
exists another physical system, completely unrelated to the
one under study, which exhibits essentially the same behavior.
It concerns survival of diffusing particles, with diffusion coef-
ficient DV , in the presence of perfect traps, independently and
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FIG. 3. The second moment of the fitted amplitudes of the power
spectrum in a BB potential. Numerical results are shown as circles
along with the fit of the data by a exp(−Lb), shown as a solid line,
yielding the fitted value b = 0.37.

uniformly distributed on a one-dimensional line. Identifying
L as time and 1/T as the density of traps, we see that in
one-dimensional systems the behavior of the moments of the
probability SL that a particle survives up to time L is identical
to the behavior of the moments of A (see, e.g., Ref. [42] and
references therein). At sufficiently short times L, SL follows
the stretched-exponential form in (19), which is tantamount
to the so-called Smoluchowski regime, while for L → ∞, the
moments of SL obey the form in (32) as they are supported
by the optimal fluctuation R∗ = (T V 2

0 L/k)1/3 of a random
cavity devoid of traps. This ultimate, late-time, regime has
the celebrated fluctuation-induced tails [43,44], which are
also intimately related to the so-called Lifshitz singularity in
the low-energy spectrum of an electron in a one-dimensional
disordered array of scatterers [45]. Below we will show that
an analogous essential singularity shows up in the distribution
P (A).

Second, we are now in position to estimate the crossover
time tc and, hence, to determine the upper bound on the fre-
quency for which the spectrum (2) is characterized by an expo-
nent α = 2. Recalling that our numerical results show a sharp
crossover from the Sinai regime (3) to the diffusive behavior
in (9), we may estimate tc by simply equating the mean-squared
displacement in the Sinai (3) and diffusive regimes (9), i.e.,

ln4(tc) ∼ E(D[V (x)]) tc, (33)

which gives

tc ∼ 1

E(D[V (x)])
. (34)

Now noticing that D[V (x)] ∼ A, we can expect that tc will
display a different dependence on the periodicity L (and the
other system parameters) for small and large values of L. For
sufficiently small L [but still large enough so the behavior
in (3) has enough space to emerge], the typical trajectories of
disorder, such that |V (x)| ∼ √

x, will dominate and

tc ∼ exp

(
V0

T
L1/2

)
, (35)
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which simply tells us that, for sufficiently small L, the
crossover time tc to diffusive regime is a time needed for
x(t) to travel over a distance L encountering a typical barrier
V0L

1/2 which x(t) overcomes due to thermal activation. Note
the Arrhenius dependence of tc on the temperature T .

For larger values of L the behavior of the average amplitude
A, given by Eq. (32), becomes supported by atypical realiza-
tions of disorder with the optimal fluctuation trajectories of
|V (x)| ∼ x1/3. For such L, we have, by virtue of (32),

tc ∼ exp

[
c

(
V0

T

)2/3

L1/3

]
, (36)

where c is a numerical constant; this means that, for larger
periodicities, tc exhibits a slower growth with L. Note that in
this case tc has a rather unusual sub-Arrhenius dependence on
the temperature.

In order to discuss this point and to use our numerical data
to better understand it, we start by defining a time of exit from
the Sinai asymptotic regime. The Sinai regime holds in the
first part of the dynamical evolution. We define an exit time
from it as the time t (1)

c as the minimal time such that

E(|x(t)|) − E(|x(t)|)Sinai > 3σSinai(t), (37)

where by the Sinai label we denote an average over the motion
in an infinite, unconstrained Sinai potential. In this way we
are observing the time where the departure of the motion in
the periodic Brownian bridge potential substantially differs
from the one in a Sinai infinite potential (σSinai is the standard
deviation over our numerical estimate for the infinite Sinai
motion). On our time scales and sample size this procedure is
accurate enough to give a sensible estimate of t (1)

c . We assume
now that

ln
(
t (1)
c

) ∼ a(1) + Lb(1)
. (38)

Since our numerical data are not accurate enough to allow
us to disentangle precisely the subleading corrections to this
behavior, we analyze our data by defining a size-dependent
exponent b(1)(L,2L), computed by using Eq. (38) for size L

and size 2L. The numerical values computed for t (1)
c (L) and the

one for t (1)
c (2L) are used to disentangle the value of b(1)(L,2L)

as estimated from these two values of the lattice size. The limit
for large L of b(1)(L,2L) is b(1).

We plot this estimated exponent as a function of L in Fig. 4.
In this case, the crossover we have derived analytically clearly
emerges from the numerical data, which give an estimated
exponent close to 1/2 for small L values and close to 1/3 for
larger values of the size L.

We finally turn to the analysis of the distribution P (A) of the
amplitude of the low-frequency power spectrum (see Fig. 5).
Examining first the negative moments of A, we observe that
they are growing functions of L and k, which hints that such
a behavior of A is derived from the left tail of the distribution
P (A), i.e., when A is close to 0. Furthermore, the quadratic
dependence of the moments on the order of the moment k in
the exponential is a fingerprint of the log-normal distribution,
which suggest that the left tail of P (A) has the form:

P (A) ∼ 1

A exp

[
−2T 2 ln2(A)

V 2
0 L

]
. (39)

 0.30

 0.35
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 0.45

 0.50

 0  20  40  60  80  100  120  140

b(
1)

(L
,2

L)

L

FIG. 4. The exponent b(1)(L,2L) in Eq. (38) as a function of L.

Note that this distribution is unimodal, with the most probable
value of Amp ∼ exp(−V 2

0 L/4T 2), which is, for sufficiently
large L, much smaller and closer to 0 than the typical value
in (19). Further, positive moments in (32) are, for large L,
much larger than those expected from the typical realizations
of disorder (19). This means, in turn, that the behavior in (32)
stems apparently from the right tail of the distribution P (A)
when A is close to the right edge of the support, i.e., A ≈
Ar = 4D0. Let us formally write

∫ 4D0

0
AkdAP (A) ∼ Ak

r exp

[
−

(
kV0

√
L

T

)2/3]
, (40)

where, for simplicity of notation, any numerical constant in the
exponential of the right-hand side is included in V0. We assume
that the major contribution to the integral on the left-hand side
of (40) comes from a narrow region close to the right edge of

10-3

10-2

10-1

10-3 10-2 10-1

P
(A

)

A

10-3

10-2

10-1

10-3 10-2 10-1

P
(A

)

A

10-3

10-2

10-1

10-3 10-2 10-1

P
(A

)

A

FIG. 5. Distribution P (A) of the amplitudesA for a BB potential,
plotted with circles (numerical results). In the main figure L = 64
while the inset shows the results for L = 32. The log-normal fit
corresponding to Eq. (39) is shown for small A as a solid green curve
while the prediction of Eq. (47) for the right tail is shown for large
values of A by the dashed blue line.
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the support. Changing the integration variable as

z = T

V0

√
L

ln

(
Ar

A

)
, (41)

we cast (40) into the form

4D0V0

√
L

T

∫ ∞

0
dz exp

[
−

(
kV0

√
L

T

)
z

]

× exp

(
−V0

√
Lz

T

)
P (z) ∼ exp

[
−

(
kV0

√
L

T

)2/3]
. (42)

Using then the formal definition of the Laplace transform of
one-sided stable Lévy distribution Lν(z) with index ν (see,
e.g., Ref. [46]),∫ ∞

0
exp(−pz)Lν(z) ≡ exp(−pν), (43)

we immediately infer that

P (A) ∼ T

V0

√
LA

L2/3

[
T

V0

√
L

ln

(
Ar

A

)]
. (44)

Note that the result in (44) is expected to hold only in the
vicinity of the right edge of the support, and we consider its
asymptotic form in this domain. For A ≈ Ar , the argument z

in the one-sided Lévy distribution L2/3(z) is close to zero, so
its asymptotic behavior is given by

L2/3(z) ∼ z−2 exp

(
− b

z2

)
, (45)

where b is a computable constant. For A ≈ Ar , we have that

z ≈ T

V0

√
L

(
1 − A

Ar

)
, (46)

so eventually we find the following asymptotic representation
of the distribution P (A) close to the right edge of the support:

P (A) ∼ 4D0V0

√
L

(4D0 − A)2
exp

[
−

(
4D0V0

√
bL

T (4D0 − A)

)2]
. (47)

Note that the distribution in (47) exhibits an essential
singularity in the vicinity of Ar , which is related to the
Lifshitz singularity. In Fig. 5 we plot the empirical probability
distribution obtained in numerical simulations, together with
the best fits to the asymptotic forms (39) and (47): The
agreement is remarkable.
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