
HAL Id: hal-01396676
https://hal.science/hal-01396676

Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matrix factorizations and curves in P4
Frank-Olaf Schreyer, Fabio Tanturri

To cite this version:
Frank-Olaf Schreyer, Fabio Tanturri. Matrix factorizations and curves in P4. Documenta Mathemat-
ica, 2018, 23, pp.1895-1924. �10.25537/dm.2018v23.1895-1924�. �hal-01396676�

https://hal.science/hal-01396676
https://hal.archives-ouvertes.fr


ar
X

iv
:1

61
1.

03
66

9v
1 

 [
m

at
h.

A
G

] 
 1

1 
N

ov
 2

01
6

MATRIX FACTORIZATIONS AND CURVES IN P4

FRANK-OLAF SCHREYER AND FABIO TANTURRI

Abstract. Let C be a curve in P4 and X be a hypersurface con-
taining it. We show how it is possible to construct a matrix factor-
ization on X from the pair (C,X) and, conversely, how a matrix
factorization on X leads to curves lying on X . We use this corre-
spondence to prove the unirationality of the Hurwitz space H12,8

and the uniruledness of the Brill-Noether space W1
13,9. Several

unirational families of curves of genus 16 ≤ g ≤ 20 in P4 are also
exhibited.

Introduction

The moduli spaceMg of curves of genus g is known to be unirational
for g ≤ 14 [Sev68, Ser81, CR84, Ver05], while for g = 22 or g ≥ 24 it
is proved to be of general type [HM82, EH87, Far00, Far09]. For the
cases in between, only partial results are available: M23 has positive
Kodaira dimension [Far00],M15 is rationally connected [CR86, BV05]
andM16 is uniruled [CR91, Far09].

Similarly, the unirationality of Hurwitz spacesHg,d parameterizing d-
sheeted branched simple covers of the projective line by smooth curves
of genus g is of fundamental interest. For small values of d or g they are
proven to be unirational, but for larger values few results are known.
See Section 1 for a discussion on the known results.

In this paper we introduce a correspondence between (general) curves
C in P4 with fixed genus and degree, together with a hypersurface
X ⊃ C, and the space of certain matrix factorizations on X. This
leads to a new technique to construct curves in P4, which has been
positively used by Schreyer [Sch15] in the particular case of curves of
genus 15 and degree 16.

The goal of this paper, in addition to showing how matrix factoriza-
tions can be used to construct curves in P4, is to use this technique to
prove new positive results. Our main contribution is the following

Theorem (Theorem 4.3). H12,8 is unirational.
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To prove this result, we construct explicitly a unirational dominant
family of curves of genus 12 and degree 14 in P4 by means of matrix fac-
torizations, showing thus that the Brill-Noether space W4

12,14 is unira-

tional. A general point (C,L) inW4
12,14 gives rise to a point (C,KC−L)

in W1
12,8 and conversely, whence the unirationality of W1

12,8 and H12,8.
The study of the correspondence between curves and matrix factor-

izations in another particular case leads to a very cheap proof of the
following

Theorem (Corollary 3.5). W1
13,9 is uniruled.

The same method yields a proof of the uniruledness ofW1
12,8, already

implied by the previous theorem, and ofW1
11,7 andW1

10,6, already known
to be unirational [Gei12, Gei13].

In Section 1 we will formulate some speculations and questions about
the range of unirational Hurwitz spaces, which partly motivates our
study; we remark that the unirationality of H12,8 and the uniruledness
of W1

13,9 fit perfectly into the picture.
Matrix factorizations can be used constructively more in general.

We present a way to construct unirational families of curves of genus
g ∈ [16, 20]; even though these families will be far from being dominant
on Mg, such concrete examples offer the chance to prove some minor
results. For instance, we are able to prove the following

Theorem (Theorem 5.2). A general cubic hypersurface in P4 contains
a family of dimension 2d of curves of genus g and degree d for

(g, d) ∈ {(12, 14), (13, 15)}.

A general quartic hypersurface in P4 contains a d-dimensional family
of curves of genus g and degree d for

(g, d) ∈ {(16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}.

The construction of our families of curves of genus g ∈ [16, 20] relies
on considering particular rational surfaces arising when trying to adapt
our technique to these specific cases. Other instances of results which
can be proved by looking at specific examples concern the structure
of the syzygies of general curves of particular genera and degrees, as
mentioned in Theorem 3.1.

In the paper, we will often need to exhibit a concrete example to
prove that some open conditions are generally satisfied. Our explicit
constructions are performed by means of the software Macaulay2 [GS]
and run best over a finite field. Semicontinuity arguments will ensure
the existence of suitable examples over the rational or the complex field
as well, as explained in Remark 2.2. For the supporting documentation
regarding the computational proofs contained in this paper, we will al-
ways refer to [ST16].
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The paper is structured as follows: in Section 1 we survey the known
results about the unirationality of Hurwitz spaces and we present some
questions and speculations about what kind of general behavior can be
expected. In Section 2 we recall some basic definitions and general facts
about matrix factorizations and we explain, starting with a motivating
example, the correspondence between particular matrix factorizations
and curves in P4. The key point of the correspondence is the Recon-
struction Theorem 2.4. In Section 3 we prove Theorem 3.1, which gives
us an effective method to produce curves in P4 starting from suitable
matrix factorizations; moreover, we use the previous correspondence to
provide a cheap proof of the uniruledness of W1

13,9 (Corollary 3.5). In
Section 4 we prove our main result, Theorem 4.3; for this sake, we use
particular matrix factorizations arising from suitable auxiliary curves of
genus 10 and degree 13. Finally, in Section 5 we construct unirational
families of curves of genus 16 ≤ g ≤ 20 lying on particular rational
surfaces in P4.

Notation. In the paper we will use Macaulay2 notation for Betti ta-
bles. If a module M has Betti numbers βi,j = dimTorRi (M,K)j over a
ring R with base field K, its Betti table will be written as

0 1 2 . . .
0 β0,0 β1,1 β2,2 . . .
1 β0,1 β1,2 β2,3 . . .
2 β0,2 β1,3 β2,4 . . .
...

...
...

...
. . .

1. Unirationality of Hurwitz spaces

In this section we briefly survey what we know about the unira-
tionality of the Hurwitz spaces Hg,d. To put the question into the right
framework we recall a few facts from Brill-Noether theory.

A general curve C of genus g has a linear system grd of dimension r
of divisors of degree d if and only if the Brill-Noether number

ρ = ρ(g, r, d) = g − (r + 1)(g + r − d)

is non-negative. Moreover, in this case, the Brill-Noether scheme

W r
d (C) = {L ∈ Picd(C) | h0(L) ≥ r + 1}

has dimension ρ. Recall some notation from [ACGH85]:

Mr
g,d = {C ∈Mg | ∃L ∈ W

r
d (C)},

Wr
g,d = {(C,L) | C ∈M

r
g,d, L ∈ W

r
d (C)},

Grg,d = {(C,L, V ) | (C,L) ∈ W
r
g,d, V ⊂ H0(L), dimV = r + 1}.

Thus we have natural morphisms

Hg,d
α

// G1g,d
β

//W1
g,d

γ
//M1

g,d;
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with our notation, α is a PGL(2)-bundle over the base point free locus,
the fibers of β are Grassmannians G(2,H0(C,L)), and the fibers of γ
are the W 1

d (C). Thus the unirationality of Hg,d is equivalent to the
unirationality of W1

g,d.
The unirationality of Hg,d for 2 ≤ d ≤ 5 and arbitrary g ≥ 2 has

been known for a long time. The case d = 5 is due to Petri [Pet23],
with clarification given by the Buchsbaum-Eisenbud structure Theorem
[BE77, Sch86], and independently to B. Segre [Seg28], with clarification
by Arbarello and Cornalba [AC81].

The case for g ≤ 9 is due to Mukai:

Theorem 1.1 (Mukai [Muk95]). A general canonical curve C of genus
g = 7, 8, 9 arises as transversal intersection of a linear space with a
homogeneous variety:

7 C = P6 ∩ Spinor10 ⊂ P15 isotropic subspaces of Q8 ⊂ P9

8 C = P7 ∩G(2, 6)8 ⊂ P14 Grassmannian of lines in P5

9 C = P8 ∩ L(3, 6)6 ⊂ P13 Lagrangian subspaces of (C6, ω)

Structure results for canonical curves of genus g ≤ 6 are classical,
see, e.g., [Sch86].

Corollary 1.2. The moduli spaces Mg,g of g-pointed curves of genus
g and the universal Picard varieties Picdg are unirational for g ≤ 9 and

any d. The spacesM1
g,d and Hg,d are unirational for g ≤ 9 and d ≥ g.

Proof. The argument is the same as in [Ver05, §1]. We can choose g
general points p1, . . . , pg in the homogeneous variety and can take Pg−1

as their span. Then the intersection of the homogeneous variety with
this Pg−1 gives a smooth curve C of genus g together with g marked
points. For the line bundle, we may take L = OC(

∑g
j=1 djpj) for

integers d1, . . . , dg with
∑g

j=1 dj = d.

As for the unirationality of M1
g,d for d ≥ g + 1, with L as above

we have h0(C,L) ≥ 2. In case d = g, we take L = ωC(−
∑g−2

j=1 pj),

which is a line bundle L ∈ W 1
g (C) \W

2
g (C) by Riemann-Roch. The

unirationality of Hg,d then follows. �

In the range d ≤ 5 or g ≤ 9, apart from a few cases due to Florian
Geiß [Gei13], only the unirationality of H9,8 needs to be proved. This
is established in the forthcoming paper [DS].

Outside the range d ≤ 5 or g ≤ 9 there are only finitely many pairs
(g, d) for which Hg,d is known to be unirational.

Question 1. Are there only finitely many pairs (g, d) with g ≥ 10 and
d ≥ 6 such that Hg,d is unirational?

In particular, we may ask

Question 2. Are the genera g such that Hg,6 is unirational bounded?
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36 P G
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34 P

33 P G

32 P

31 P G

30 P G
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27 P G
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25 P G HM

24 P G EH EH
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16 P G

15 P G V

14 P G V FV

13 P G ST ST FV CKV

12 P G G ST S FV CKV CKV

11 P G G CR FV CKV CKV CKV

10 P G G FV CKV CKV CKV BFV

9 P G G DS M M M M M M

8 P | G M M M M M M M

7 P | M M M M M M M M

6

|
1

g / d 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1. Color coding indicates where W1
g,d is known

to be unirational, uniruled or not unirational. Results
are due to Mukai (g ≤ 9), Petri or B. Segre (d =
5) [Muk95, Pet23, Seg28], Eisenbud, Harris, Mumford,
Farkas, Bini, Casalaina-Martin, Kass, Fontanari and
Viviani [BFV12, CKV14, EH87, Far00, Far09, FV13,
HM82], Chang and Ran, Verra, Geiß, Damadi, Schreyer
and Tanturri [CR84, CR86, CR91, DS, Gei13, Gei12,
Sch13, ST, Ver05].

Florian Geiß [Gei12] proved the unirationality of Hg,6 for the values
g ∈ {9, . . . , 28, 30, 31, 33, 35, 36, 40, 45} using models of curves in P1×P2

of bidegree (6, d2) and liaison, d2 = d2(g) being the minimal number
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such that ρ(g, 2, d2) ≥ 0. His proof actually shows the unirationality of
a covering space of W1

g,6.

Question 3. Are the genera g such that Hg,7 is unirational bounded?

Question 4. Is g = 14 the largest genus such that Hg,8 is unirational?
In other words, is Verra’s case [Ver05] extremal? Is g = 12 the largest
genus such that Hg,9 is unirational?

If all these questions have an affirmative answer, then the range of
pairs (g, d) such that W1

g,d and Hg,d are not unirational has roughly
shape as indicate in Figure 1 with the color red.

2. Matrix factorizations and the Reconstruction

Theorem

2.1. Matrix factorizations. Matrix factorizations were introduced
by Eisenbud in his seminal paper [Eis80]. We recall here some basic
facts and properties for matrix factorizations over the special case of a
polynomial ring S = K[x0, . . . , xn], which is the case of interest for the
paper. Any module will be assumed to be finitely generated.

Let f ∈ S be a nonzero homogeneous form of degree s. A matrix
factorization of f (or on the hypersurface V(f)) is a pair (ϕ, ψ) of maps

ϕ : G→ F, ψ : F → G(s),

where F =
⊕r

ℓ=1 S(−aℓ) and G =
⊕r′

ℓ=1 S(−bℓ) are free S-modules,
satisfying ψ ◦ ϕ = f · idG and ϕ(s) ◦ ψ = f · idF . This condition forces
the two matrices representing the maps to be square, i.e., r = r′.

If (ϕ, ψ) is a matrix factorization, then cokerϕ is a maximal Cohen-
Macaulay module (MCM for short) on the hypersurface ring S/f . Con-
versely, a finitely generated MCM S/f -module M has a minimal free
resolution over S

0←−M ←− F ←− G←− 0;

multiplication by f on this complex is null homotopic

0 Moo

0
��

Foo

f
��

∃ψ

##

G
ϕ

oo

f
��

0oo

0 M(s)oo F (s)oo G(s)
ϕ(s)
oo 0oo

and yields therefore a matrix factorization (ϕ, ψ). As an S/f -module,
M has the infinite 2-periodic resolution

0 Moo Foo G
ϕ

oo F (−s)
ψ(−s)
oo G(−s)

ϕ(−s)
oo . . .

ψ(−2s)
oo

where F = F ⊗ S/f and G = G⊗ S/f . In particular, this sequence is
exact, and the dual sequence corresponding to the transposed matrix
factorization (ψt, ϕt) is exact as well.
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If N is an arbitrary S/f module, then any minimal free resolution
becomes eventually 2-periodic. If

0←− N ←− F0 ←− F1 ←− . . .←− Fc ←− 0

is the minimal free resolution of N as an S-module, then the Shamash
construction [Sha69] produces a (non-necessarily minimal) free resolu-
tion of N of the form

0← N ← F 0 ← F 1 ←
F 2

⊕
F0(−s)

←
F 3

⊕
F1(−s)

←

F 4

⊕
F2(−s)
⊕

F0(−2s)

← . . . ,

which becomes 2-periodic after the (c − 1)-th step. This construction
allows us to control to some extent the degrees of the entries of the
corresponding minimal matrix factorization of f induced by an S/f -
module N , if we know the Betti numbers of N as an S-module. The
Shamash construction has the following peculiarity: at the i-th step

(1)
⊕

j≥0

F i−1−2j (−js)
⊕

j≥0

F i−2j(−js)oo

the components F i−1−2j(−js) ← F i−2j(−js) are inherited from the
maps Fi−1−2j ← Fi−2j in the resolution of N over S for any j, while
the component

(2)
⊕

j≥1

F i−1−2j (−js) F i
oo is the zero map.

2.2. Curves and matrix factorizations. An easy way to produce
matrix factorizations on a hypersurface X = V(f) in P4 is to consider
a module N over S = K[x0, . . . , x4] annihilated by f . A matrix factor-
ization of f is given by the periodic part of a minimal free resolution
of N as a module over SX := S/f .

Our motivating example will be a general curve of genus 12 and
degree 14 in P4.

Proposition 2.1. Let C be a general linearly normal non-degenerate
curve of genus 12 and degree 14 in P4. Then C is of maximal rank,
and the homogeneous coordinate ring SC = S/IC and the section ring
Γ∗(OC) := ⊕n∈ZH0(OC(n)) have minimal free resolutions with the fol-
lowing Betti tables:

(3)

0 1 2 3 4
0 1 .
1 .
2 4
3 5 18 12 2

0 1 2 3
0 1
1 .
2 2 14 15 2
3 2



8 FRANK-OLAF SCHREYER AND FABIO TANTURRI

In particular, the cubic threefolds containing C form a P3. The minimal
resolution of Γ∗(OC) as a module over the homogeneous coordinate ring
of a cubic threefold X ⊃ C is eventually 2-periodic with Betti numbers

0 1 2 3 4 . . .
0 1
1 .
2 2 13 15 2
3 2 15 15 . . .
4 2 . . .

Proof. We assume that the maps H0(P4,OP4(n))→ H0(P4,OC(n)) are
of maximal rank, i.e., C has maximal rank. Since OC(n) is non-special
for n ≥ 2, by Riemann-Roch we can compute the Hilbert function of
the homogeneous coordinate ring of C and therefore the numerator of
its Hilbert series

(1− t)5HC(t) = 1− 4t3 − 5t4 + 18t5 − 12t6 + 2t7.

Thus, we expect the Betti table of S/IC to look like the one in (3).
Analogously, the numerator of the Hilbert series of Γ∗(OC) under the
maximal rank assumption is

(1− t)5HΓ∗(OC)(t) = 1 + 2t2 − 14t3 + 15t4 − 2t5 − 2t6

and the expected Betti table is (3).
To show that the Betti tables are indeed the expected ones and that,

a posteriori, a general curve C is of maximal rank, we only need to ex-
hibit a concrete example, which we construct via matrix factorizations
as explained in the proof of Theorem 4.3 and summarized in Algo-
rithm 4.6. The function verifyAssertionsOfThePaper(1) of [ST16]
produces the Macaulay2 code needed to verify all the above assertions.
Another family of examples can be obtained as explained in Corollary
3.5.

A free resolution of Γ∗(OC) as a module over the cubic hypersurface
ring SX can be obtained via the Shamash construction, from which we
can deduce the Betti numbers of the minimal SX-resolution:

βSX

1,3 (Γ∗OC) = βS1,3(Γ∗OC)− 1

since the equation of X is superfluous over SX , and βSX

2,5 (Γ∗OC) =

βSX

3,5 (Γ∗OC) = 2 follows from (2). �

Remark 2.2. Throughout the paper we will sometimes need to exhibit
explicit examples of modules defined over the rationals Q or complex
numbers C satisfying some open conditions on their Betti numbers.
Our constructions will involve only linear algebra, especially Gröbner
basis computations, and will depend only on the choice of some param-
eters; a choice of rational values for the parameters thus gives rise to
modules over Q, hence over C. An ultimate goal would be to perform
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the computations over the function field Q(t1, . . . , tN), where N is the
number of free parameters. This however is out of reach for computer
algebra systems today.

We have implemented our constructions using the computer algebra
system Macaulay2 [GS]. A priori it would be possible to perform these
computations over Q, but this might require too much time, so instead
we work over a finite prime field Fp. We can view our choice of the
initial parameters in Fp as the reduction modulo p of some choices of
parameters in Z. Then, the so-obtained module Mp can be seen as the
reduction modulo p of a family of modules defined over a neighborhood
SpecZ[1

b
] of (p) ∈ SpecZ for a suitable b ∈ Z with p ∤ b. If Mp

satisfies our open conditions, then by semicontinuity the generic fiber
M satisfies the same open conditions, and so does the general element
of the family over Q or C.

Let C be a curve as in Proposition 2.1. We can consider M = Γ∗(OC)
as a SX-module, being X a generally chosen cubic threefold containing
C. If C is general, the periodic part of its minimal free resolution
yields, up to twist, a matrix factorization of the form

S15 ⊕ S2(−1) S2(−1)⊕ S15(−2)
ψ

oo S15(−3)⊕ S2(−4).
ϕ

oo

Definition 2.3 (Shape of a matrix factorization). We will call the
Betti numbers of the minimal periodic resolution

15 2
2 15 15 2

2 15 . . .

the shape of the matrix factorization. When the degree s of the hyper-
surface containing the curve is fixed (in the current example we have
s = 3), then the shape of a matrix factorization is determined by the
Betti numbers β(ψ) of ψ. In the current case they are

(4)
15 2
2 15

In general, starting from a curve C in P4 contained in a (smooth) hy-
persurface X, the 2-periodic part of a minimal resolution of the section
module Γ∗(OC) over SX will produce a matrix factorization. The shape
is uniquely determined for a general pair C ⊂ X ⊂ P4 in a component
of the Hilbert scheme of pairs. For a given pair, different choices of the
resolution yield equivalent matrix factorizations. They all define the
same ACM vector bundle F = (cokerϕ)∼ on X.

We have thus established one way of the correspondence between
curves and matrix factorizations. In what follows we will see that, to
some extent, it is possible to recover the original curve from the matrix
factorizations it induces.
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2.3. Monads and the Reconstruction Theorem. Let us consider
a pair (C,X) of a general curve C of degree 14 and genus 12 in P4

and a general (smooth) cubic hypersurface X = V(f) ⊃ C. The curve
induces, up to twist, a matrix factorization of shape (4)

O15
X (−1)⊕O2

X(−2) O2
X(−2)⊕O

2+13
X (−3)

ψ
oo O15

X (−4)⊕O2
X(−5).

ϕ
oo

Here, we have distinguished in O2+13
X (−3) the two copies coming di-

rectly from the third step of the resolution of Γ∗OC as an S-module,
see the Shamash construction (1). The map ψ can be regarded as a
block matrix, with a zero submatrix O2

X(−2)← O
2
X(−2)⊕O

2
X(−3) by

(2).
Let F = (cokerϕ)∼; we can form a complex

(5) 0 O2
X(−2)oo F

α
oo O2

X(−2)⊕O
2
X(−3)

β
oo 0.oo

We claim that this complex is a monad for the ideal sheaf IC/X , i.e.,
α is surjective, β injective and kerα/ imβ ∼= IC/X . In other words,
we can recover the original curve C from the complex. The claim is a
special case of the following

Theorem 2.4 (Reconstruction Theorem). Let C ⊂ P4 be a non-
degenerate linearly normal curve of genus g and degree d ≥ g not
contained in any quadric and let X = V(f) be a smooth hypersurface
of degree s containing C. Let F• and G• be minimal free resolutions
of Γ∗(OC) over S and S/f respectively, let ϕ denote the syzygy map
G3 ← G4 and F = (cokerϕ)∼(s). Then the complex of vector bundles
on X

(6) 0 (F ′
0)

∼oo F
α

oo
(
F3(s)

)∼β
oo 0,oo

where the maps are induced by G• via the Shamash construction and F ′
0

is the complement of S in F0 = S ⊕ F ′
0, is a monad for the ideal sheaf

of C on X, i.e., β is injective, α is surjective, and kerα/ imβ ∼= IC/X .
If s ≥ 4 the monad is uniquely determined by F .

Proof. Since d ≥ g the line bundle OC(2) is non-special. It follows that
Γ∗(OC) has Betti table

0 1 2 3
0 1
1 .
2 β0,2 β1,3 β2,4 β3,5
3 β0,3 β1,4 β2,5 β3,6

Indeed, β1,2 = 0 by assumption. Since Hom(F•, S(−5)) resolves Γ∗(ωC),
we must have β3,n = 0 for n − 5 ≥ 2, because H0(ωC(−2)) = 0. So
Γ∗OC is 3-regular and non-zero Betti numbers can only occur in the
indicated range.
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Let us assume s = 3. The Shamash resolution starts with the Betti
numbers

0 1 2 3
0 1
1 1
2 β0,2 β1,3 β2,4 + 0 β3,5
3 β0,3 β1,4 β2,5 + β0,2 β3,6 + β1,3
4 0 + β0,3 0 + β1,4

which in this case is always non-minimal. So the complex (6) has the
form

0← O
β0,2
X (−2)⊕O

β0,3
X (−3)← F ← O

β3,5
X (−2)⊕O

β3,6
X (−3)← 0.

The first map is surjective since the cokernel of the composition

O
β0,2
X (−2)⊕O

β0,3
X (−3)← F ← O

β1,3−1
X (−3)⊕O

β1,4
X (−3)

is the sheafification restricted to X of the cokernel of F ′
0 ← F1, which

has finite length. Let G := ker(α). Both F and G are vector bundles,
since X is smooth. Our claim is that

G O
β3,5
X (−2)⊕O

β3,6
X (−3)

γ
oo

is injective and a presentation of IC/X . To see this, we apply the functor
Hom(−, ωX) to γ and obtain

G∗(−2)
γ∗(−2)

// O
β3,5
X ⊕O

β3,6
X (1).

The cokernel of this map coincides with the cokernel of the map

O
β2,4
X (−1)⊕O

β2,5
X

// O
β3,5
X ⊕O

β3,6
X (1),

which is ωC by duality on P4. Since

rankF = rankF0 − rankF1 + rankF2 + rankF0

= rankF3 + rankF ′
0 + 1,

we have rankG = β3,5 + β3,6 + 1. Hence γ drops rank in expected
codimension 2 and the cokernel of γ is the (possibly twisted) ideal
sheaf IC/X by the Hilbert-Burch Theorem [Eis95, Thm 20.15]. It is
precisely the ideal sheaf, because the sequence

0 // ωX // G∗(−2)
γ∗(−2)

// O
β3,5
X ⊕O

β3,6
X (1) // ωC // 0

has to be exact by duality on X, and applying again Hom(−, ωX) we
get the exact complex

0 OCoo OXoo Goo O
β3,5
X (−2)⊕O

β3,6
X (−3)

γ
oo 0.oo

The argument for s ≥ 4 is similar, the only difference being that
the second and third term in the Shamash resolution of Γ∗(OC) differ
in their twist. For example, the third term is Sβ3,5(−5) ⊕ Sβ3,6(−6)⊕
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Sβ1,3(−3 − s)⊕ Sβ1,4(−4 − s), and we see that for s ≥ 4 the monad is
uniquely determined by F . �

3. General matrix factorizations and uniruledness

In the last section we saw how, from a matrix factorization induced
by a curve C, it is possible to recover C itself. Within this section
we will show how we can use the Reconstruction Theorem to actually
construct new curves starting from an arbitrary (general) matrix fac-
torization (ψ, ϕ). The key point for proving this result is exhibiting,
case by case, a concrete example satisfying some open conditions.

3.1. Constructing new curves from matrix factorizations.

Theorem 3.1. Let (g, d) be in

{(12, 14), (13, 15), (16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}

and let Hd,g be the component of the Hilbert scheme Hilbdt+1−g(P
4)

dominating Mg. Let C ∈ Hd,g be a general point, i.e., a general curve
of genus g and degree d in P4.

(1) The quotient ring S/IC and the section module Γ∗(OC) have
expected resolutions, i.e., their Betti tables correspond to the
ones listed in Table 3.1 below.

(2) Let s = min{s′ | h0(IC(s
′)) 6= 0} and consider a general hy-

persurface X with equation f ∈ (IC)s. The minimal free S/f -
resolution of Γ∗(OC) is eventually 2-periodic and gives rise to
a matrix factorization of f of shape as in Table 3.2.

(3) For each choice of (g, d) above, let s be the (expected) minimum
degree of a hypersurface containing a general curve of genus g
and degree d and let X be a general hypersurface of degree s.
There is a component of the space of matrix factorizations on
X of shape corresponding to (g, d) in Table 3.2 whose general
element gives rise to a complex of the form (6), which turns out
to be a monad for IC′/X , the ideal sheaf of a smooth curve C ′

of genus g and degree d with respect to X.

Proof. As in Proposition 2.1, we can compute the expected Betti tables
of the S-resolutions of S/IC and Γ∗(OC). These are summarized in
Table 3.1. In Table 3.2 we list the expected shapes of the matrix
factorizations and the corresponding monads we can construct.

For a matrix factorization, giving rise to a monad for the ideal sheaf
of a smooth curve with right genus and degree is an open condition. To
prove the third part of the Theorem, it is thus sufficient to explicitly
construct, for each of the aforementioned cases, a matrix factorization
of the given shape and a complex of the form (6) which is a monad for a
smooth curve with assigned genus and degree. The fact that a general
hypersurface X of the appropriate degree s contains such a curve will be
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proved in Theorem 5.2 and relies again on the computation of explicit
examples.

The function verifyAssertionsOfThePaper(2) of [ST16] provides
the Macaulay2 code useful to produce, for each pair (g, d), a matrix
factorization on a hypersurface X of degree s such that

• the shape of the matrix factorization is as listed in Table 3.2;
• the complex built from the matrix factorization, according to

the expected resolution of the section module of a general curve
and the Reconstruction Theorem 2.4, is a monad for a smooth
curve C of genus g and degree d;
• S/IC and Γ∗OC have expected resolutions as in Table 3.1, and
Γ∗OC induces a matrix factorization on a general supporting
hypersurface X ′ of degree s of shape as in Table 3.2.

To prove the first two points of the Theorem, which correspond to
open conditions on Hd,g, it is sufficient to check the last assertion on a
particular example.

The complex is constructed from a matrix factorization as in The-
orem 2.4, according to the expected resolution of S/IC ; it is uniquely
determined only when (g, d) /∈ {(12, 14), (13, 15)}, i.e., when s = 4.
In these two cases, instead, a matrix factorization determines a family
of complexes, corresponding to the points of a rational variety, and a
general choice produces a monad as stated. See Remark 3.4 below.

We use different constructions to explicitly exhibit a matrix factor-
ization satisfying the statements. For g = 12 or g = 13, the procedure
followed can be found in Corollary 3.5. For g = 12, an alternative way
is to use curves of genus 10 and degree 13, as explained in Proposition
4.2. For g ≥ 16, see Section 5.2. As mentioned in Remark 2.2, it is
sufficient to run our constructions over a finite field. �

Remark 3.2. Theorem 3.1 holds also in the case of curves of genus 15
and degree 16; the study of that particular case allowed the first author
to construct some unirational families of such curves and to show the
uniruledness ofW4

16,15 [Sch15]. The case of genus 16 and degree 17 was
already the topic of the master’s thesis [Mül14].

Remark 3.3. We expect Theorem 3.1 to hold in other circumstances
as well. Our interest in the cases above has the following reasons.

The first two cases correspond to the Brill-Noether spaces W4
12,14

and W4
13,15, which by Serre duality are birational to W1

12,8 and W1
13,9

respectively.
The remaining cases are motivated by a (so far unsuccessful) attempt

of proving the unirationality of the moduli space Mg for g ≥ 16. We
have chosen d such that ρ(g, 4, d) = g − 5h1(OC(1)) takes the minimal
non-negative value. See Section 5 for further details.

There are cases in which we do not expect the Theorem to hold, at
least not in the formulation above. For instance, consider the family
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Table 3.1. Expected Betti tables.

(g, d) βi,j(S/IC) βi,j(Γ∗(OC))

(12, 14)

0 1 2 3 4
0 1 .
1 .
2 4
3 5 18 12 2

0 1 2 3
0 1
1 .
2 2 14 15 2
3 2

(13, 15)

0 1 2 3 4
0 1 .
1 .
2 2
3 12 27 17 3

0 1 2 3
0 1
1 .
2 3 17 18 3
3 2

(16, 17)

0 1 2 3 4
0 1 .
1 .
2 .
3 17 29 13
4 1 1

0 1 2 3
0 1
1 .
2 4 19 18 1
3 3

(17, 18)

0 1 2 3 4
0 1 .
1 .
2 .
3 14 18
4 2 10 3

0 1 2 3
0 1
1 .
2 5 22 21 2
3 3

(18, 19)

0 1 2 3 4
0 1 .
1 .
2 .
3 11 7
4 17 19 5

0 1 2 3
0 1
1 .
2 6 25 24 3
3 3

(19, 20)

0 1 2 3 4
0 1 .
1 .
2 .
3 8
4 4 32 28 7

0 1 2 3
0 1
1 .
2 7 28 27 4
3 3

(20, 20)

0 1 2 3 4
0 1 .
1 .
2 .
3 9 .
4 26 24 6

0 1 2 3
0 1
1 .
2 6 24 21 .
3 4
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Table 3.2. Shapes of the matrix factorizations and cor-
responding monads.

(g, d) shape of ψ monad

(12, 14)
15 2
2 15

O2
X(−2)⊕O

2
X(−3)

�

�

// F // // O2
X(−2)

(13, 15)
18 3
3 18

O3
X(−2)⊕O

2
X(−3)

�

�

// F // // O3
X(−2)

(16, 17)
19 1
. 3
4 19

OX(−1)⊕O
3
X(−2)

�

�

// F // // O4
X(−2)

(17, 18)
22 2
. 3
5 22

O2
X(−1)⊕O

3
X(−2)

�

�

// F // // O5
X(−2)

(18, 19)
25 3
. 3
6 25

O3
X(−1)⊕O

3
X(−2)

�

�

// F // // O6
X(−2)

(19, 20)
28 4
. 3
7 28

O4
X(−1)⊕O

3
X(−2)

�

�

// F // // O7
X(−2)

(20, 20)
22 .
. 4
6 24

O4
X(−2)

�

�

// F // // O6
X(−2)

of curves of genus 14 and degree 16 in P4 which are contained in cubic
hypersurfaces. These curves forms a divisor D in W4

14,16. Their matrix
factorizations have the shape

21 4
4 21

and we would need a rank 2 subbundle inside the kernel of the map
corresponding to the last row of the Betti table above. As the kernel
of a general such map is just 1-dimensional, we believe that a general
matrix factorization of this shape is not induced by any curve in D.

3.2. Uniruledness results.

Remark 3.4. Let (ψ, ϕ) be a general matrix factorization of shape
(4); in particular, we have a map

O15
X (−1)⊕O2

X(−2) O2
X(−2)⊕O

15
X (−3).

ψ
oo

If we want to construct a curve of genus 12 and degree 14 from (ψ, ϕ),
we have to construct a complex (5). We have several choices to do it,
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one for each rank 2 subbundle O2
X(−3) of the kernel of the map

O2
X(−2) O15

X (−3)oo

extracted from ψ. Having such kernel of dimension 5 is an open condi-
tion which is satisfied by the concrete examples we construct in [ST16].
This means that, for a given general matrix factorization, we get a com-
plex for any p ∈ G(2, 5). A general choice of p produces a monad as
stated in Theorem 3.1 above.

The situation is very similar in the case of curves of genus 13 and
degree 15. Here we have to choose again a rank 2 subbundle O2

X(−3)
inside the kernel, which is now 3-dimensional in general. This yields
many choices parameterized by G(2, 3) = P2. Again, a general choice
produces a monad and a smooth curve.

Summarizing, if (g, d) = (12, 14) or (13, 15), for a fixed general ma-
trix factorization (in the sense of Theorem 3.1) on a general cubic
hypersurface X of shape as in Table 3.2 we have a rational map

(7) V //❴❴❴ W4
g,d,

where V is a rational variety.

Corollary 3.5. W4
12,14 and W4

13,15 and the corresponding W1
12,8 and

W1
13,9 are uniruled.

Proof. Take the matrix factorization induced by a general point in
W4

12,14 or W4
13,15 and consider the induced rational map (7), sending

a general choice of the monad to the corresponding curve. If the map
is non-constant, then its image is a rational variety containing the
original curve, whence the conclusion. Being non-constant is an open
condition, hence it is sufficient to check it for a concrete example.

To construct the two necessary examples, we start from a g-nodal
rational curve C ′ of genus g having a g12g−2−d = |D| (see [Bop13b,

Bop13a]). We embed C ′ in P4 via |KC′ − D| and obtain a singu-
lar curve C ′ ⊂ P4 of genus g and degree d. We consider the matrix
factorization on a cubic hypersurface obtained from C ′ and choose a
random point in V. We check that the resulting curve C is smooth;

since C ′ is a point in the boundary as a point in W
4

d,g, the map is not
constant. An implementation of the code is provided by the function
verifyAssertionsOfThePaper(2) in [ST16].

By passing to the Serre dual linear systems, this yields the uniruled-
ness of the corresponding spaces W1

12,8 and W1
13,9 as well. �

4. A unirational Hurwitz space

Our aim is to use all the machinery developed so far to construct
a unirational family of curves dominating H12,14, the component of
the Hilbert scheme of curves of genus 12 and degree 14 in P4 which



MATRIX FACTORIZATIONS AND CURVES IN P4
17

dominates W4
12,14. By considering the dual models, this will imply the

unirationality of W1
12,8 and H12,8.

The idea is to use Theorem 3.1. If we manage to produce a large
enough unirational family of general matrix factorizations, we can hope
that the space of curves we obtain is dominant. In other terms, we
translate the problem of constructing curves with fixed invariants to
the problem of constructing matrix factorizations on cubic threefolds
with an assigned shape.

4.1. Betti tables and auxiliary modules. Let us fix a cubic form
f ∈ S. A matrix factorization of f with shape (4) might be hard to
construct. Nonetheless, the Shamash construction gives us a way to
partially predict the shape of a matrix factorization arising as the 2-
periodic part of the resolution of an arbitrary S/f -module N , provided
that we know the Betti numbers βi,j(N) of N as an S-module. Thus,
a possible approach is to construct auxiliary S-modules N giving rise
over S/f to a matrix factorization of f with the desired shape.

For such N , how should its Betti table βi,j(N) look like? If we assume
that no cancellation will occur when taking the minimal part of the
Shamash resolution, i.e., the Shamash resolution is already minimal, a
prescribed shape imposes linear conditions on the entries of a table βi,j
filled with natural numbers. For instance, if we assume pdN < 5, for
the shape (4) such a table has the following form, up to twist:

0 1 2 3 4
0 β0,0 β1,1 . . .
1 β0,1 β1,2 β2,3 β3,4 .
2 . . β2,4 β3,5 β4,6
3 . . . . β4,7

s.t.





β0,0 + β2,3 + β4,6 = 15
β0,1 + β2,4 + β4,7 = 2
β1,1 + β3,4 = 2
β1,2 + β3,5 = 15

It turns out that a finite number of candidate Betti tables are allowed.
As the transposed of a matrix factorization is again a matrix factor-
ization, we could as well consider Betti tables giving rise to matrix
factorizations with the dual shape

2 .
15 15
. 2

We might also tolerate cancellations, i.e., we might assume that the
Shamash resolution is not minimal; this makes the number of candidate
Betti tables become infinite. However, we can always limit our search
to finitely many cases, fixing for instance the entries of the tables in
which we allow cancellations and an upper bound for their number.

By doing this, we end up with a list of tables; we can further limit
our search to the ones lying in the Boij-Söderberg cone, i.e., tables βi,j
for which there exists a rational number q ∈ Q and an S-module M ′
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such that q ·βi,j = βi,j(M
′). It is of course convenient to let a computer

deal with all the possibilities.

Example 4.1. A list of tables satisfying the aforementioned conditions
can be produced by a Macaulay2 computation, whose implementa-
tion is provided by the function verifyAssertionsOfThePaper(3) in
[ST16]. An example of a table in this list is

(8)

0 1 2 3 4
0 1 .
1 .
2 5
3 2 15 11 2

Suppose there exists an auxiliary S-module N with resolution F•

with Betti numbers (8), and consider a cubic form f . If we apply the
Shamash construction to get a resolution of N , it is easy to see that
the induced map F0(−3) → F1 has a non-zero invertible part, hence
the expected shape of the induced matrix factorization is (4).

The following proposition shows that such an auxiliary module N
exists and its induced matrix factorization has indeed the expected
shape.

Proposition 4.2. Let E be a general curve of genus 10 and degree 13
in P4 and X = V(f) a general cubic threefold containing it. Then the
Betti table of S/IE is (8), the matrix factorization induced by S/IE on
X has shape (4) and is general enough in the sense of Theorem 3.1,
i.e., it can be used to construct curves of genus 12 and degree 14.

Proof. For such a curve E, all the statements correspond to open
conditions and it is sufficient to check them on a particular exam-
ple. An implementation of its construction is provided by the func-
tion verifyAssertionsOfThePaper(4) in [ST16]; an explanation of
the procedure used is to be found in the proof of Theorem 4.3 and in
Algorithm 4.6. �

4.2. Unirationality of H12,8. Summarizing, we can use general curves
E of genus 10 and degree 13 to get curves C of genus 12 and degree
14. Moreover, such construction is unirational; this means that a uni-
rational family of E’s yields a unirational family of C’s. Thus, we can
focus on the former in the attempt of constructing a family dominating
the latter.

Theorem 4.3. The spaces W4
12,14 and H12,8 are unirational.

Proof. Let H13,10 ⊂ Hilb13t+1−10(P
4) and H14,12 ⊂ Hilb14t+1−12(P

4) de-
note the components whose general elements are linearly normal non-
degenerate smooth curves of degree and genus (d, g) = (13, 10) or
(14, 12) respectively. These components dominate W4

10,13 and W4
12,14.
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We will exhibit a unirational family of curves C in H14,12 by explic-
itly constructing a dominant family of curves E. To do that, suppose
we have a unirational parameterization of M10,5, the moduli space of
curves of genus 10 with 5 marked points; start from a curve E and an
effective divisor D of degree 5. The linear system |KE − D| embeds
E in a curve of degree 13 in P4 by Riemann-Roch. The construction
dominates H13,10 and via matrix factorizations this unirational param-
eterization induces a unirational family in H14,12.

A unirational parameterization of M10,5 can be constructed as fol-
lows. In [Gei12], a dominant unirational family of 6-gonal curves E of
genus 10 is constructed by means of liaison of curves in P1×P2. We can
moreover modify the last step of the construction (see Algorithm 4.6
below) to impose E to pass through five unirationally chosen points.

Thus we have produced a unirational family of curves inH14,12, whose
general element is a smooth irreducible curve of maximal rank with
expected Betti table as in Proposition 2.1. The corresponding code
is implemented in the function randomCurveGenus12Degree14InP4 of
[ST16], along the lines of Algorithm 4.6. It remains to prove that the
family of curves constructed from pairs (E,X) with E ∈ H13,10 and
X ∈ P(H0(IE(3))) via matrix factorizations dominates H14,12. For this
it suffices to prove that we can recover E from a matrix factorization
(ϕ, ψ) of shape (4).

Proposition 4.4. Let E ∈ H13,10 be a general curve of genus 10 and
degree 13, let X be a general cubic containing E and let F be the rank
7 vector bundle on X associated to the matrix factorization induced by
N = S/IE, i.e., F is the image of ψ

O15
X (−3)⊕O2

X(−4) O2
X(−4)⊕O

15
X (−5)





ψ11 ψ12

0 ψ22





oo .

There exists an exact complex induced by the Shamash construction

0← IE/X ← O
4
X(−3)⊕O

2
X(−4)← F ← O

2
X(−4)← 0;

moreover, for a general choice of a quotient O4
X(−3)← O

15
X (−3) which

composes to zero with the component ψ1,1 of ψ, the complex

(9) O4
X(−3)⊕O

2
X(−4)← F ← O

2
X(−4)← 0

is a locally free resolution of the ideal sheaf of a smooth curve E ′ ∈
H13,10 on X.

Let (ψ, ϕ) be a given general matrix factorization on X of shape (4)
and let F be the image of ψ. Then the choice of the quotient q as
above corresponds to the choice of a point in P4; for a general such
choice, (9) is a locally free resolution of the ideal sheaf of a smooth
curve E ′ ∈ H13,10 on X.
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Proof. The first step is just reversing the Shamash construction of the
SX -resolution of N = SE .

Since X is smooth the kernel of the map IE/X ← O
4
X(−3)⊕O

2
X(−4)

is already a vector bundle G on X. The bundle F surjects onto G
with the image of F ← O2

X(−4) contained in the kernel. Since the
kernel of the map G ← F is a rank 2 vector bundle of the same degree
as O2

X(−4), the induced map between the kernel and O2
X(−4) is an

isomorphism.
The fact that, for a given (general) matrix factorization, a general

choice of the quotient q yields a complex (9) which is a locally free
resolution of a smooth curve E ′ ∈ H13,10 is an open condition both
on matrix factorizations and in P4. It is thus sufficient to check it
computationally on an explicit example, as can be done with the code
provided by the function verifyAssertionsOfThePaper(5) in [ST16].

�

Finally, to conclude with the unirationality of H12,8 we note that a
general point in W4

12,14 gives as Serre dual model a point in W1
12,8 and

conversely. Moreover, the choice of a basis of P1 is rational, and thus
we get a unirational family of P1-coverings of degree 8. The locus of
curves in H12,8 having a smooth component of the Brill-Noether locus
of expected dimension is open and contains the points we explicitly
construct, hence our family is dominant. This completes the proof of
Theorem 4.3.

The function randomGenus12Degree8CoverOfP1 in [ST16] is an im-
plementation of the above unirational construction and produces a ran-
dom canonical curve of genus 12 together with two hyperplanes in P11

cutting out a g18. �

Remark 4.5. Let M15 2
2 15(X) denote the component, in the space of

equivalence classes of shape (4) on a given cubic X, whose general
element is induced by a curve C ∈ H14,12. Above we have established
a unirational correspondence between spaces of curves on X

{C ⊂ X}

G(2,5) &&◆
◆◆

◆◆
◆◆

◆◆
◆

{E ⊂ X}

P4
xx♣♣
♣♣
♣♣
♣♣
♣♣

M15 2
2 15(X)

whose fibers are open subsets of a G(2, 5) or P4 respectively. We may
interchange the role of C and E: since SC and Γ∗(OE) have Betti tables

0 1 2 3 4
0 1 .
1 .
2 4
3 5 18 12 2

and

0 1 2 3
0 1
1 .
2 2 15 18 5
3 1
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they both lead to matrix factorizations on X of shape

15 2
5 18

By the Reconstruction Theorem 2.4, and the same argument as in
Proposition 4.4, we get another correspondence

{C ⊂ X}

G(2,5) &&◆
◆◆

◆◆
◆◆

◆◆
◆

{E ⊂ X}

P4
xx♣♣
♣♣
♣♣
♣♣
♣♣

M15 2
5 18(X)

.

We believe that this symmetry can be explained by the fact that curves
C ∈ H14,12 are linked to curves E ∈ H13,10 via a complete intersection
of three cubics:

degC + degE = 27 = 33 and gC − gE =
1

2
(C − E).((9− 5)H) = 2.

This fact yields a correspondence

{c.i.C ∪ E}
P3

xxqq
qq
qq
qq
qq
q G(3,5)

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

H14,12 H13,10

and a simpler proof that H14,12 is unirational, as further shown in [ST]
by the two authors.

Algorithm 4.6. Summarizing, the following construction yields a uni-
rational parameterization of W4

12,14. The first four steps are a slight
modification of the construction in [Gei12]. The algorithm is imple-
mented by the function randomCurveGenus12Degree14InP4 in [ST16].

(1) On P1×P2, start with a rational curve of degree 4 together with
3 general lines. Call E ′′ their union.

(2) Choose two general forms gi ∈ H0(IE′′(4, 2)) and construct E ′

as the linkage of E ′′ on the complete intersection defined by
g1, g2.

(3) Choose unirationally five general points {pj} in P1 × P2 and
choose, in the 7-dimensional space H0(IE′′(3, 3)), two general
forms fi vanishing on each pj .

(4) Construct E as the linkage of E ′ in the complete intersection
defined by f1, f2. By construction, E passes through pj , is a
general curve of genus 10 and D = p1 + . . . + p5 is a general
effective divisor of degree 5 on E.

(5) Embed E via |KE −D| into P4. The curve E ⊂ P4 is a general
curve of genus 10 and degree 13.

(6) Choose a general cubic hypersurface X ⊃ E and consider the
matrix factorization on X induced by S/IE .
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(7) Choose a general point p ∈ G(2, 5) as in Remark 3.4, construct
the monad (6) and the corresponding curve C ⊂ X, which is a
curve of genus 12 and degree 14.

5. Families of curves on rational surfaces

In this section, we show how matrix factorizations can be used to
construct unirational families of curves of genus g and degree d in P4,
with (g, d) belonging to

{(16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}.

The main motivation for the choice of these cases is the unknown uni-
rationality of the corresponding moduli spaces of curves. One would
like to produce a unirational family of projective curves which is dom-
inant on the underlying moduli space of curves. As a general expec-
tation, curves with fixed genus and lower degree should be easier to
construct; the degree d considered for each g above is chosen as the
minimum such that the Brill-Noether number ρ(g, 4, d) ≥ 0.

5.1. Explicit construction. We can try to mimic the technique used
in Section 4.1 and look for auxiliary modules whose Betti tables satisfy
certain conditions. A list of candidate Betti tables can be produced
with the same technique and implementation used in Example 4.1.
Alternatively, the function precompiledListOfCandidates in [ST16]
prints precomputed lists for each genus g ∈ [16, 20].

For instance, the lists contain the tables reported in Table 5.1. All
of them correspond to modules N supported on a curve which will be

denoted by Z. We will assume that L = Ñ is a line bundle on Z.
The first row in these Betti tables is independent of (g, d) and the

corresponding complex over S, dualized and sheafified,

(10) 0 // O6
P4(−4) // O10

P4(−3)
α

// O3
P4(−2) // 0

could be a monad for the ideal sheaf of a surface Y ⊂ P4. Two families
of smooth surfaces of this kind are known:

• the Alexander surfaces Y [Ale88], P2 blown up in 10 general
points embedded via the linear system |14L−

∑10
i=1Ei|, where

L is the strict transform of a general line in P2 and Ei are the
exceptional divisors corresponding to the 10 blown-up points,
and
• the blow-ups Y ′ of Enriques surfaces in a single point embed-

ded by |H − E|, where H is a Fano polarization and E the
exceptional divisor [AR92].

Both surfaces have degree 9, K2
Y = −1, sectional genus π = 6 and as

Hartshorne-Rao module H1
∗(IY ) = coker (S10(−3) → S3(−2)) a mod-

ule with Hilbert series 3t2 +5t3 + t4. They differ by the Betti numbers



MATRIX FACTORIZATIONS AND CURVES IN P4
23

Table 5.1. Betti tables for auxiliary modules

(g, d) βi,j(N) (codim suppN,degN)

(16, 17)

0 1 2 3 4
0 6 10 3
1 3
2 1 13 9 1

(3, 19)

(17, 18)

0 1 2 3 4
0 6 10 3
1 3
2 2 16 12 2

(3, 18)

(18, 19)

0 1 2 3 4
0 6 10 3
1 3
2 3 19 15 3

(3, 17)

(19, 20)

0 1 2 3 4
0 6 10 3
1 3
2 4 22 18 4

(3, 16)

(20, 20)

0 1 2 3 4
0 6 10 3
1 4
2 16 14 3

(3, 16)

of their Hartshorne-Rao modules, which are

0 1 2 3 4 5
2 3 10 6
3 15 26 15 3
4 1 3 3 1

and

0 1 2 3 4 5
2 3 10 6
3 15 25 12
4 1

respectively. Hence also SY and SY ′ have different Betti tables:

0 1 2 3 4
0 1 .
1 .
2 .
3 .
4 15 26 15 3
5 1 3 3 1

and

0 1 2 3 4
0 1 .
1 .
2 .
3 .
4 15 25 12
5 1

The rational surface Y has a 6-secant line and contains no (−1)-line,
while the Enriques surface has no 6-secant line and contains one (−1)-
line. For further details, see [DES93].
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Proposition 5.1. If C is a curve of genus g and degree d obtained via
matrix factorizations from an auxiliary module N with Betti table as
in Table 5.1 such that

(1) L = Ñ is a line bundle on a curve Z different from C, and
(2) (10) is a monad for a smooth surface Y of degree 9 as above,

then C lies on Y . More precisely, if f ∈ (IC)4 is any quartic which
annihilates N and X = V(f) the corresponding hypersurface, then

Y ∩X = C ∪ Z.

Proof. Since Y does not lie on any quartic, the intersection Y ∩ X is
proper and the sequence (10) restricted to X

(11) 0 // O6
X(−4) // O10

X (−3) // O3
X(−2) // 0

is a monad for the ideal sheaf IY ∩X/X of Y ∩X on X. We claim that
(11) is a subcomplex of the sheafified dual of the suitably twisted linear
strand in the Shamash resolution of N .

For example, let us focus on the case (g, d) = (16, 17). The dual
linear strand reads

0→ O0+1
X (−5)→ O6+13

X (−4)→ O10+9
X (−3)→ O3+1

X (−2)→ 0

and the maps from a first to a second summand are all zero by (2).
Thus, we get a commutative diagram of monads

0 // O6
X(−4) //

��

O10
X (−3) //

��

O3
X(−2) //

��

0

0 // O3
X(−2)⊕OX(−1) // F // O4

X(−2) // 0

where the first vertical map is up to sign a component of the dual of the
first map of the SX-resolution of N , and the third one is the inclusion
induced by the Shamash resolution of N . The map on homology gives
us a map IY ∩X/X → IC/X between torsion free sheaves, whose double
dual is a map OX → OX . Thus, to conclude that C is a component of
Y ∩ X, it suffices to prove that IY ∩X/X → IC/X is not the zero map.
Let J and K denote the kernels in the monads. We get a diagram

0 // O6
X(−4) //

��

J //

��

IY ∩X/X
//

��

0

0 // O3
X(−2)⊕OX(−1) // K // IC/X // 0

of exact sequences.
If the map on the right was zero, we would get a homotopy J →

O3
X(−2)⊕OX(−1), which since H1(OX(n)) = 0 for all n would lift to
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a map O10
X (−3)→ O3

X(−2)⊕OX(−1) such that

O6
X(−4) //

��

O10
X (−3)

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

O3
X(−2)⊕OX(−1)

commutes. But this contradicts the fact that the map

S6
X S10

X (−1)⊕ S3
X(−2)⊕ SX(−3)oo

is the first map in the minimal free resolution of N as an SX -module.
Therefore, C is a component of Y ∩X. The curve Z is also contained

in Y ∩X. Since

degC + degZ = degC + degN = 36 = deg Y degX

there are no further components, and C ∪ Z = Y ∩X. The proof for
the other pairs (g, d) is similar. �

5.2. Families of curves on rational surfaces. We have two ways
to tackle the construction of our curves C: we could try to produce
a module N having a Betti table as in Table 5.1, then induce a ma-
trix factorization and get a curve as described in the previous sections.
A key observation is that the line bundle L on the curve Z coincides
with ωY (1)|Z . This approach works, and led us to discover Propo-
sition 5.1 and the fact that some of desired curves C lie on Alexan-
der surfaces. An implementation of the construction of curves on
Alexander surfaces via matrix factorizations is provided by the function
verifyAssertionsOfThePaper(6) in [ST16].

A second, more convenient approach is to look for our desired curves
C directly on these surfaces, e.g., the Alexander surfaces Y . The
genus and the degree of C impose conditions on the divisor class [C] =
a0L−

∑
aiEi ∈ Pic(Y ). By maximizing the dimension of the linear sys-

tems, we can maximize the dimension of the corresponding unirational
families of curves. In Table 5.2 we list the linear systems achieving the
maximal dimension; a general element in such linear systems is a curve
which satisfies all our assertions, as one can verify by computing a sin-
gle randomly chosen example, see the code provided by the function
verifyAssertionsOfThePaper(7) in [ST16]. In particular this proves
the first two assertions of Theorem 3.1.

Unfortunately, the so-constructed unirational families are far from
being dominant on the corresponding moduli spaces. Curves of same
degree and genus on a blown-up Enriques surface give at best families
of the same dimension.

There are many other possible choices of a candidate Betti table of
N . For instance, for g ≥ 16, other even simpler rational surfaces show
up and we can produce other examples of curves lying on them. Un-
fortunately, all the unirational families we have been able to construct
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Table 5.2. Unirational families of curves on the Alexan-
der surface

(g, d) linear system dimension

(16, 17) 21L−
∑4

i=1 7Ei −
∑10

j=5 6Ej 26

(17, 18) 22L−
∑8

i=1 7Ei − 6E9 − 5E10 27

(18, 19) 19L−
∑7

i=1 6Ei −
∑10

j=8 5Ej 29

(19, 20) 20L− 7E1 − 7E2 −
∑8

i=3 6Ei − 5E9 − 5E10 30

(20, 20) 20L− 7E1 −
∑9

i=2 6Ei − 5E10 31

are not dominant. Nonetheless, there is no reason why one should not
be able to realize bigger families of projective models via matrix factor-
izations starting from different Betti tables, the biggest obstacle being
of course the construction of suitable auxiliary modules N .

5.3. Curves lying on a general hypersurface. We conclude by
showing that, even though the examples of curves of genus g ≥ 16
are far from being general as projective models, we can still use them,
as well as the examples of curves with lower genera constructed in the
previous sections, to prove that a general hypersurface contains a whole
family of them.

Theorem 5.2. A general cubic hypersurface in P4 contains a family
of dimension 2d of curves of genus g and degree d for

(g, d) ∈ {(12, 14), (13, 15)}.

A general quartic hypersurface in P4 contains a d-dimensional family
of curves of genus g and degree d for

(g, d) ∈ {(16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}.

Lemma 5.3. Let C be a curve of genus g and degree d in Pn and X a
hypersurface of degree s containing it. Then

χ(NC/X) = d(n+ 1− s) + (1− g)(n− 4).

Proof. The Euler sequence of Pn restricted to C yields

χ(TPn |C) = (n+ 1)(d+ 1− g)− 1 + g.

Since NX/Pn

∣∣
C
∼= OC(s), from the sequence defining NX/Pn restricted

to C we get

χ(TX |C) = (n+ 1)(d+ 1− g)− 1 + g − (ds+ 1− g).

The conclusion follows by looking at the short exact sequence defining
NC/X . �
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Proof of Theorem 5.2. Let C be a general curve in P4 of genus g and
degree d, and let X be a general hypersurface of degree s containing it,
with s chosen accordingly to (g, d) as in the statement of the Theorem.
By Lemma 5.3, χ(NC/X) = d(5− s).

We claim that h1(NC/X) = 0. It is sufficient to check this vanishing
on one example for each pair (g, d), as can be done with the Macaulay2
code provided by the function verifyAssertionsOfThePaper(8) in
[ST16], and conclude by semicontinuity. Hence, h0(NC/X) = d(5− s).

Let Ts be the space of threefolds of degree s containing a general
curve C of genus g and degree d, up to projective equivalences. Let
m := h0(P4, IC(s))− 1 =

(
4+s
4

)
− sd+ g − 2. We have

dim(Ts) = dimMg + ρ(d, 4, g) +m− h0(NC/X) =

(
4 + s

4

)
− 25. �
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