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We show how spin-liquid (SL) states can be stabilized in a realistic three-dimensional model as a result of
frustration. SU(n)-symmetric generalization of the Heisenberg model for quantum spin S operators is used to
investigate the frustrated body-centered tetragonal (BCT) lattice with antiferromagnetic interlayer coupling J1

and intralayer first and second-neighbor couplings J2 and J3. By using complementary representations of the spin
operators, we study the phase diagram characterizing the ground state of this system. For small n, we find that the
most stable solutions correspond to four different families of long-range magnetic orders that are governed by J1,
J2, and J3. First, some possible instabilities of these phases are identified for n = 2, in large S expansions, up to
the linear spin-wave corrections. Then, using a fermionic representation of the SU(n) spin operators for S = 1/2,
we find that purely magnetic orders occur for n � 3 while SL solutions are stabilized for n � 10. The SL solution
governed by J1 breaks the lattice translation symmetry. The modulated SL is associated with a commensurate
ordering wave vector (1,1,1). For 4 � n � 9, we show how the competition between J1, J2, and J3 can turn the
magnetically ordered ground state into a SL state. Finally, we discuss the relevance of this scenario for correlated
systems with BCT crystal structure.

I. INTRODUCTION

In most superconducting materials, magnetic ordering
destroys superconductivity. However, magnetic correlations
are essential for superconducting pairing in a large vari-
ety of unconventional superconductors. In the presence of
frustration, classical magnetic order can become unstable
against spin-liquid (SL) states, and superconductivity may
emerge even with strong magnetic interactions. It is commonly
believed that low dimensionality is essential for the formation
of a SL, and as result this would also be a crucial ingredient
for the realization of superconductors with higher critical
temperature. Controverting this idea, we analyze the effect
of frustration in the body-centered tetragonal (BCT) lattice,
which is one of the 14 existing three-dimensional (3D) lattice
structures [1]. This standard crystalline structure is realized
in several strongly correlated electron materials with unusual
magnetic and transport properties. Among the heavy fermion
systems [2,3], different examples of materials with rare-earth
atoms on a BCT lattice have been intensively studied for the
last few decades: in URu2Si2, a still-mysterious hidden order
(HO) phase appears below the critical temperature THO ≈
17 K close to a pressure-induced antiferromagnetic (AF)
transition [4,5]; in YbRh2Si2 and CeRu2Si2, non-Fermi-liquid
properties are observed in the vicinity of the AF quantum phase
transitions, which are still poorly understood [6–9]; CeCu2Si2
was the first heavy-fermion material where unconventional su-
perconductivity was discovered close to an AF transition [10];
CePd2Si2 also exhibits unconventional superconductivity re-
lated to an AF transition [11,12]; multi-Q AF order has been
observed in CeRh2Si2 [13]. It is noticeable that the cuprate

superconductors [14] can be included among the AF insulating
parent compounds La2CuO4 and Sr2CuO2Cl2 in which the AF
order originates from the Cu atoms that form a BCT crystal.
However the relevant physics in their case is essentially two
dimensional (2D) with the BCT structure being involved only
in the formation of the square-lattice layers of Cu atoms that
order antiferromagnetically. In this paper we suggest that the
rich diversity of unusual physical properties observed in 3D
materials with BCT structure is essentially associated with
the underlying frustration. To do that we establish direct
contact with important theoretical developments which were
made in the past few years on the unconventional magnetic
properties of the BCT lattice, following the pioneering study
by Villain [15–22].

In this article, we analyze the ground states of an SU(n)
generalization of the J1-J2-J3 quantum spin S Heisenberg
Hamiltonian HS

n .

II. CLASSICAL SPIN AND QUANTUM
SPIN-WAVE-FLUCTUATIONS APPROACH

The model Hamiltonian is introduced here, for simplicity,
for n = 2:

HS
n=2 =

∑
〈R,R′〉

JRR′ �SR · �SR′ , (1)

where �SR ≡ (Sx
R,S

y

R,Sz
R) denotes the quantum spin S operators

acting on site R of a BCT-lattice. The antiferromagnetic
interaction JRR′ connects sites R and R′, and can take three
possible values J1,J2,J3 > 0, as indicated in Fig. 1.
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FIG. 1. Left: BCT lattice and the J1, J2, and J3 interactions. In
this work, the tetragonal lattice constants are set to a = b = c = 1.
Right: Bold lines represent the three kinds of intersite SL correlations
on the BCT structure.

A. Classical ground state

Following the standard spin-wave (SW) approach, we start
with the S = +∞ generalization of the Hamiltonian (1),
which corresponds to the classical spin limit. For the sake
of simplification, we consider only magnetic orderings that
are characterized by a single wave vector Q = 2π (λ,μ,ν)
identified as (λ,μ,ν) in reduced notation. Invoking the Fourier
transform, this wave vector is used to minimize the classical
dispersion,

J (q) ≡ 8J1γ
q
1 + 2J2γ

q
2 + 4J3γ

q
3 , (2)

with

γ
q
1 ≡ cos (qx/2) cos (qy/2) cos (qz/2), (3)

γ
q
2 ≡ cos (qx) + cos (qy), (4)

γ
q
3 ≡ cos (qx) cos (qy). (5)

By tuning the dimensionless parameters p2 ≡ J2/J1 and
p3 ≡ J3/J1, we find that the ground state can be characterized
by four kinds of possible wave vectors, as depicted in
Fig. 2: QI

AF ≡ (1,1,1) and QII
AF ≡ (1/2,1/2,ν) corresponding

to the regimes where the Weiss field is dominated by
J1 and J2, respectively. The ν degeneracy in the latter
case indicates the underlying bidimensionality. The other
possible ordering wave vectors are incommensurate and
characterize two kinds of helical orders: QIII

inc ≡ (0,ϒ3,0)
degenerate with (ϒ3,0,0), (1,ϒ3,1), and (ϒ3,1,1) where
ϒ3 = 1

π
arccos −1

p2+2p3
; and QII

inc ≡ (ϒ2,±ϒ2,1) degenerate

with (ϒ2,1 ± ϒ2,0), where ϒ2 = 1
2π

arccos 1−p2

2p3
. A different

wave vector, QIII
AF ≡ (0,1/2,ν) had been proposed [23] in a

J3-dominated phase, which corresponds to the commensurate
order characterizing a purely bidimensional square lattice.
We find that J1 	= 0 corrections are relevant and QIII

inc is
energetically more stable than QIII

AF. Not surprisingly these
two vectors are asymptotically identical at large p3. Similarly,
QII

inc 
→ QII
AF at large p2. The transition lines separating these

four classical phases are given by linear relations between p2

and p3. The QII
inc-QIII

inc transition is discontinuous, the other
transitions are continuous.

B. Spin-wave fluctuations

Next, assuming a given classical ground-state wave vector
Q, we investigate the large-S corrections. This expansion
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FIG. 2. Classical ground-state phase diagram of the J1-J2-J3

model in coordinates (p2,p3). The solid lines indicate transitions
between the stable magnetic ordered states with modulating vectors
QI

AF, QII
AF, QII

inc, and QIII
inc. The SW instability region is computed for

S = 1/2. Inset: Critical value Sc as a function of p2 when p3 is bound
to the critical lines. The three symbols indicate the corresponding
location of critical value Sc = 1/2 in each case. Numerical results
obtained by using multidimensional Monte Carlo k integration over
the BCT Brillouin zone.

invokes a helical generalization of the Holstein–Primakov
representation [16,19,24]: introducing boson annihilation (cre-
ation) a

(†)
R operators, the spin operators are approximated as

Sx
R ≈ (S/2)

1
2 (aR + a

†
R), (6)

and(
Sz

R

S
y

R

)
≈

[
cos θR sin θR

− sin θR cos θR

](
S − a

†
RaR

−i(S/2)
1
2 (aR − a

†
R)

)
, (7)

with θR ≡ Q · (R − R0), where z is the easy axis characteriz-
ing a site R0 chosen arbitrarily. The dispersions obtained for
the Bogoliubov quasiparticles are

�+
k ≡ J (k) − J (Q), (8)

�−
k ≡ J (k + Q) + J (k − Q)

2
− J (Q). (9)

Order by quantum disorder. While the ground-state energy
is proportional to S2J (Q) at the highest order, the first
correction is proportional to S

∫
BCT d3k

√
�+

k �−
k where the

k integral runs over the first Brillouin zone of the BCT-lattice.
Analyzing this correction for the classically degenerate vectors
QII

AF, we find that the resulting order is stabilized by quantum
disorder: the continuous degeneracy is lifted in favor of ν = 0,
which is equivalent to ν = 1.

Fluctuation corrections to magnetization. We also studied
the effects of fluctuations emerging from the linear SW
corrections. Generalizing to the BCT structure the approach
introduced in Ref. [25] for the square lattice model, the
staggered magnetization is expanded around its classical value
〈Sz

R0
〉 ≈ S − 	m(p2,p3). We find

	m(p2,p3) = 〈a†
R0

aR0〉 = −1

2
+

∫
BCT

d3k
64π3

�+
k + �−

k√
�+

k �−
k

. (10)
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Unlike the 2D case [25], the fluctuation corrections do not
diverge, which is not surprising for a 3D model. Frustration can
relatively increase the critical value of S below which the linear
spin-wave correction cancels the staggered magnetization,
Sc ≡ 	m(p2,p3). Indeed, for a fixed p2, we find that Sc

increases when p3 approaches its critical value associated
with the classical phase boundary. This maximal value is
plotted in the inset of Fig. 2 as a function of p2 for the
continuous QII

AF/QII
inc transition and on each side of the

discontinuous QII
inc/QIII

inc transition. On each of these critical
lines, we find Sc ∼ √

p2 at large p2. Furthermore, a logarithmic
Sc ∼ ln(p2/2 − p3) and a power law Sc ∼ 1/

√
p3 − p2/2 are

respectively obtained at large p2 in the vicinity of the QII
inc →

QIII
inc and QIII

inc → QII
inc transitions. This result is consistent with

the square lattice spin wave analysis [25].

C. Discussion

The SW approach thus reveals some weaknesses of the
classical magnetic orders, but the three-dimensionality pro-
tects these states against small fluctuations at the lowest, linear
order. One may go further and study possible instabilities
emerging from the next orders in the 1/S expansion, taking into
account interactions between the spin-wave bosonic excita-
tions. However, it has been shown for a two-dimensional lattice
that the second-order correction can increase considerably the
sublattice magnetization, although the first-order perturbation
makes it decrease [26]. It is thus possible that a sign-oscillating
series could also characterize the SW expansion from the
orders characterizing our model. Therefore, stabilizing a
spin-liquid state might require going beyond second order
when invoking a perturbative approach from classical order.
Hereafter, we bypass this open issue and we follow an
alternative and simpler approach.

III. GENERALIZED SU(n) SYMMETRIC APPROACH

In this section, we analyze the possibility that the system
forms a resonant valence bond state with fermionic excitations
and SL correlations [27,28]. One of our physical motivations is
driven by the physics of unconventional metallic systems with
BCT structure: in several of these correlated systems, magnetic
degrees of freedom seem to be “deconfined” into fermionic
ones that may contribute to the formation of a Fermi surface,
unlike weakly coupled bosons. Such a scenario, inspired by the
physics of cuprate superconductors [29–32], could be easily
strengthened by a coupling of the Heisenberg spins of the
J1-J2-J3 model to extra charge degrees of freedom. In the
following we study this possible “fermionic deconfinement” of
spin operators as an intrinsic property of the Heisenberg model.
To achieve this goal, considering S = 1/2, the Hamiltonian (1)
is generalized to its SU(n)-symmetric form:

HS=1/2
n =

∑
〈R,R′〉

JRR′

n

∑
σσ ′

χ
†
RσχRσ ′χ

†
R′σ ′χR′σ , (11)

where χ
(†)
Rσ (χRσ ) are annihilation (creation) fermionic oper-

ators with orbital degeneracy σ = 1, . . . ,n and satisfying the
local constraints

∑
σ χ

†
RσχRσ = n/2. This is a standard SU(n)

generalization [33] of the fermionic representation developed

by Abrikosov for n = 2. The scaling factor 1/n ensures that
the energy remains extensive, i.e., proportional to n, in the
large-n limit.

A. Spin-liquid correlations

Using the Hubbard–Stratonovich decoupling as described
in Refs. [34,35], the low-temperature phases of Hamil-
tonian (11) can be characterized by two kinds of order
parameters: the local magnetization field

mσ
R = 〈χ †

RσχRσ 〉 − 1

2
, (12)

and the intersite spin-liquid fields

ϕRR′ = −1

n

∑
σ

〈χ †
RσχR′σ 〉. (13)

The purely magnetic classical mean-field theory characterized
here by a staggered magnetization mσ

R = ±SQ is equivalent to
the one we analyzed for the S = +∞ limit. The corresponding
ground-state phase diagram is thus given by Fig. 2. Hereafter,
the stability of these classical magnetic orders is analyzed
by testing various SL Ansätze as possible alternative ground
states. Generalizing the modulated SL (MSL) order introduced
elsewhere [35], we consider the nearest-neighbor intersite
correlations:

ϕ1
RR′ = 1

2
[
1 + ieiQI

AF·( R+R′
2 )
M], (14)

ϕ2
RR′ = 
2, (15)

ϕ3
RR′ = 
3, (16)

with a bond index definition similar to that of Fig. 1. The free
energy per spin component and per lattice site is expressed as

F = F0 − kBT

32π3

∫
BCT

d3k
∑
s=±

ln (1 + e
− Es

k
kB T ) − λ0

2
, (17)

where λ0 denotes a Lagrange multiplier that minimizes F in
order to satisfy the constraint for the fermionic occupation.
For the AF orderings, F0 = − 2J (Q)

n
|SQ|2 and the dispersion is

E±
k = λ0 ± J (Q)

n
SQ. For the SL states we find

F0/J1 = |
1|2 + |
M|2 + 2p2|
2|2 + 2p3|
3|2

and

(E±
k − λ0)/J1 = 2p2γ

k
2 
2 + 4p3γ

k
3 
3

± 4
√(

γ k
1 
1

)2 + (
γ k

M
M
)2

.

Here, the non-BCT-periodic real term 
M with γ k
M ≡

sin (qx/2) sin (qy/2) sin (qz/2) takes into account a possible
spatial amplitude modulation of the SL field. Our numerical
analysis is based on self-consistent calculations of the mean-
field parameters for each AF or SL state. The most stable
solution is then selected by free-energy minimization, invoking
Eq. (17). Considering that the MSL is a BCT adaptation
of the “kite” phase investigated in Ref. [33] for a square
lattice, we also tested another nonhomogeneous “flux” phase
SL characterizing a chiral state with complex ϕ1

RR′ = (ϕ1
R′R)�
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FIG. 3. Ground-state phase diagram of the J1-J2-J3 model in
coordinates (p2,p3) computed self-consistently for (a) n = 4, (b)
n = 5, (c) n = 7.

that could be described within a very close formalism by
simply replacing γ k

M → sin (qx/2) sin (qy/2) cos (qz/2). This
chiral SL was found to have a higher energy than the MSL.

B. Phase diagram

For n � 3 we find purely AF ground states, and for n � 10
the most stable states are SL characterized by finite values
of either 
M, 
2, or 
3. At the mean-field level, these three
SL parameters do not coexist. Furthermore, we remark that
the transition between the MSL and the 
2-dominated SL
phases is first order. Beyond mean field, we expect that only
the SL critical temperature associated with a nonzero 
M still
corresponds to a phase transition signaled by the translation-
symmetry breaking. For 4 � n � 9 we find a rich phase
diagram exhibiting AF and SL quantum phase transitions that
are controlled by J1-J2-J3 parameters, as illustrated in Fig. 3.
Increasing n, the AF-SL instability shows up first within the
QII

inc phase. Furthermore, comparing the large-S phase diagram
(Fig. 2) with that obtained for n = 4 (Fig. 3), one observes that
the Sc = 1/2 spin-wave instability is located in the same region
where the 
2-dominant state becomes stabilized. Also, beyond
the specificity of the associated order parameters, Fig. 3
indicates that the SL instability “propagates” from large-p2

(
2) to smaller-p2 (MSL) areas if we increase the value of n.

C. Modulated spin-liquid phase

An interesting feature also appears for the MSL solution:
with a relatively high numerical accuracy the modulation field

M is found to be always equal to the homogeneous field


1. This leads to a very extreme situation for the interlayer
field ϕ1

RR′ = 1
2 [
1 ± 
M] which vanishes on half of the bonds

while it keeps the finite value 
1 = 
M on the other bonds.
Introducing the probability p

singlet
RR′ that a given bond RR′ forms

a singlet, the formation of the MSL state can be interpreted
here as follows: First, for all the interlayer bonds such that
QI

AF · (R + R′)/2 = π/2, the interaction terms are effectively
decoupled at mean-field level, leading to p

singlet
RR′ = 1/4 and

〈 �SR · �SR′ 〉 = 0. Then the SL with 〈 �SR · �SR′ 〉 	= 0 is formed on
the other interlayer bonds, with QI

AF · (R + R′)/2 = −π/2,
that remain effectively coupled. Using the numerical value

1 = 
M ≈ 0.45 computed at T = 0 in the MSL, we find that
p

singlet
RR′ ≈ 0.60 on these effectively coupled bonds. This value

has to be compared with the value ln(2) ≈ 0.69 that is predicted
for a one-dimensional Heisenberg chain by using exact
methods [36,37]. We may thus interpret the MSL as a crystal
of interacting filaments formed by the connected effectively
coupled bonds. In this picture, spin excitations are deconfined
fermions moving along these filaments. This may generalize
the usual concept of valence-bond crystal [38] where localized
spin-1 excitations correspond to confined fermions.

IV. DISCUSSION

Here we considered a model with only localized spins.
However, we know from previous works on heavy fermions
and cuprates that charge fluctuations play a crucial role in
destabilizing AF states. In the context of the cuprates, the
AF phase of the insulating parent compounds corresponds to
QII

AF. The SL phase introduced by Anderson et al. [28–32]
corresponds to the homogeneous correlated state associated
here with 
2 	= 0. One crucial specificity of this SL sce-
nario for superconductivity in cuprates relies on the two-
dimensionality of the system. Stabilizing a SL state in 3D
is commonly thought to be more tricky in view of the fact
that the corresponding linear SW correction remains finite
within a large-S approach. Nevertheless, we have shown
how frustration in the BCT lattice can enhance the critical
value Sc that, in some sense, characterizes the weakness
of AF order against SW fluctuations. In connection with
this weakening, we identified various SL phases that can be
stabilized when n is larger than a relatively small critical value.
The possible emergence of stable SL-like phases in cubic
lattices has also been proposed recently by invoking different
approximations [39,40]. This opens new perspectives for the
realization of unconventional electronic quantum orderings
in 3D. In particular, our results suggest that the BCT-lattice
structure can play a central role in crystalline materials such
as the 122 and some cuprates in spite of numerous phases
emerging in these systems. Indeed, the very rich phase diagram
depicted in Figs. 2 and 3 could provide a unifying framework
for understanding and analyzing the intersite correlations in
these compounds. The number n may be considered as an
effective parameter related to the electronic orbital degeneracy,
which could be phenomenologically increased or decreased
by charge fluctuations or crystal-field effects. Considering a
given compound, n might also be effectively decreased by
applying an external magnetic field. Similarly, a tuning of the
model parameters p2 and p3 may phenomenologically account
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for some effects of applied pressure [35]. For example, this
scenario could explain two different AF instabilities of the HO
phase that are observed experimentally in URu2Si2: assuming
that the HO is a MSL order and applying a finite pressure
this corresponds to increasing J1 for a fixed n (see Fig. 3),
leading to a commensurate AF instability characterized by
QI

AF, as observed experimentally [4,5]. Alternatively, applying
a magnetic field without pressure corresponds to lowering the
effective value of n for fixed p2 and p3: the MSL (HO) is
destabilized to an incommensurate AF. Interestingly, by using
different numerical values of J1, J2, and J3 obtained from
different fits of inelastic-neutron-scattering data, our scenario
predicts an instability from MSL to QIII

inc = (ϒ3,0,0) with
ϒ3 ≈ 0.69 (from Ref. [41]), 0.66 (from Ref. [42]), 0.69 (from
Ref. [23]), and 0.65 (from Ref. [43]). This scenario could be
tested experimentally since it predicts that the AF order QIII

inc
could be continuously tuned to QI

AF by applying pressure on
URu2Si2 under a high magnetic field.

Invoking the SL instabilities described in this paper we
may also generalize to 3D systems the spin-fluctuation pairing
mechanism that was proposed in terms of gauge transfor-
mations in Refs. [44,45]. Here, the link between the BCT
lattice structure and the superconducting order parameter is
natural. It can be tested experimentally since we predict that the
symmetries of the resulting superconducting order parameters
will result from the point-group symmetries of the SL, which

may correspond to an in-plane pairing related to 
2 or 
3 or
a fully 3D pairing associated with 
1. This SL mechanism
driven by frustration on the BCT lattice may also be tested for
the heavy-fermion superconductors CeRu2Si2 and CePd2Si2,
but in these systems valence-fluctuation effects need to be
carefully included. The possible formation of a MSL could
also give rise to a commensurately ordered pairing that would
break the BCT symmetry down to simple tetragonal. Such a
modulated pairing unconventional scenario could be tested
with the superconducting instability observed in URu2Si2
inside the HO phase. Alternatively, even if the chiral SL order
was found here to be less stable than the MSL, an opposite
result could occur by including charge fluctuations.

ACKNOWLEDGMENTS

We acknowledge the financial support of Capes-Cofecub
Ph 743-12. C.T. is bolsista Capes. This research was also
supported in part by the Brazilian Ministry of Science, Tech-
nology and Innovation (MCTI) and the Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico (CNPq). Research
carried out with the aid of the Computer System of High
Performance of the International Institute of Physics-UFRN,
Natal, Brazil. The authors are grateful to Frédéric Bourdarot
for useful discussions.

[1] C. Kittel, Introduction to Solid State Physics, Eighth Edition
(John Wiley & Sons, New York, 2005).

[2] G. Stewart, Rev. Mod. Phys. 56, 755 (1984).
[3] P. Fulde, P. Thalmeier, and G. Zwicknagl, Solid State Phys. 60,

1 (2006).
[4] T. T. M. Palstra, A. A. Menovsky, J. van deb Berg, A. J. Dirkmaat,

P. H. Kes, G. J. Nieuwenhuys, and J. A. Mydosh, Phys. Rev. Lett.
55, 2727 (1985).

[5] J. Mydosh and P. Oppeneer, Rev. Mod. Phys. 83, 1301 (2011).
[6] J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa,

O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, and P. Coleman,
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