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On the identity component of the universal Teichmüller space 
endowed with the Takhtajan–Teo topology, the geodesics of 
the Weil–Petersson metric are shown to exist for all time. 
This component is naturally a subgroup of the quasisymmetric 
homeomorphisms of the circle. Viewed this way, the regularity 
of its elements is shown to be H 3

2−ε for all ε > 0. The 
evolutionary PDE associated to the spatial representation of 
the geodesics of the Weil–Petersson metric is derived using 
multiplication and composition below the critical Sobolev 
index 3/2. Geodesic completeness is used to introduce special 
classes of solutions of this PDE analogous to peakons. Our 
setting is used to prove that there exists a unique geodesic 
between each two shapes in the plane in the context of the 
application of the Weil–Petersson metric in imaging.
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1. Introduction

This paper establishes a link between three distinct subjects: conservative evolutionary 
PDEs having a form similar to those appearing in fluid dynamics, the theory of the 
universal Teichmüller space, and the study of maps at critical Sobolev index.

It is well known since the work of Arnold [4] that the solutions of the Euler equations 
are the spatial representation of the geodesics on the group of volume preserving dif-
feomorphisms. In material representation, the evolution is governed by a smooth vector 
field, the geodesic spray, on the tangent bundle of this diffeomorphism group (see [10,6]). 
This point of view not only leads to an elegant proof of well posedness but to many 
other results regarding the Euler equations. This is a remarkable property that holds 
only in some specific situations such as the Euler equations for a perfect fluid [10], the 
incompressible non-homogeneous Euler equations [26], the averaged Euler equations [27,
36], and the n-dimensional Camassa–Holm equations [16]. Even equations that exhibit 
strong geometric properties, such as KdV, in general, do not have this property.

The universal Teichmüller space appears in many areas of mathematics and mathe-
matical physics. For example, it is a special coadjoint orbit of the Bott–Virasoro group 
[30] and plays an important role in the theory of Riemann surfaces, several complex
variables, and quasiconformal maps [14,24,29].

The theory of the groups of diffeomorphisms of an n-dimensional manifold endowed 
with a Sobolev manifold structure requires differentiability class strictly above n2 + 1. It 
is not even clear how to define a group of diffeomorphisms at this critical index. This 
is reflected in the fact that a particle path flow associated to the Euler equations in 
dimension at least 3, defined at every point in the reference configuration, is known only 
for differentiability class strictly bigger than this critical index.
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In this paper we shall establish a connection between these three problems in the 
context of Weil–Petersson geometry on the universal Teichmüller space. The classical 
theory endows the universal Teichmüller space with a group structure and an infinite 
dimensional complex Banach manifold structure relative to which the inclusion of the 
Teichmüller spaces of Riemann surfaces is holomorphic. However, it is not a topological 

group and the formula for the Weil–Petersson metric proposed in [30] is divergent and 
thus does not define a Riemannian metric. These basic problems were overcome in [37]
who endowed the universal Teichmüller space with a different complex Hilbert manifold 
structure in which the formula for the Weil–Petersson metric not only converges, but 
defines a strong metric, that is, a metric which induces the Hilbert space topology on 
each tangent spaces. They also show that the identity component of universal Teichmüller 
space is a topological group. With this manifold structure the tangent space at the 
identity is the space of functions on the circle of class H3/2. Therefore, the identity 
component of universal Teichmüller space takes the place of diffeomorphisms of critical 
Sobolev class H3/2.

We shall study this group from the point of view of manifolds of maps by identifying 
it with a subgroup of the quasisymmetric homeomorphisms of the circle. We shall prove 
that all elements of this group are of class H 3

2−ε for all ε > 0. Then we shall use the fact 
that the metric is strong to show that all geodesics of the Weil–Petersson metric exist 
for all time, that is, we have geodesic completeness. We shall also prove that this space is 
Cauchy complete (something not generally implied by geodesic completeness in infinite 
dimensions) relative to the distance function defined by the Weil–Petersson metric.

The spatial formulation of the geodesic equations turns out to be considerably more 
involved than in the case of the Euler equations. We obtain a new equation, that we call 
the Euler–Weil–Petersson equation, and we show its solutions are C0 in H3/2 and C1

in H1/2. A comparison of the technical difficulties encountered in the study of the Euler 
equations and of the Euler–Weil–Petersson equation is in order. For the Euler equations, 
the main technical issue is the proof of the smoothness of the geodesic spray, while the 
passage from material to spatial representation does not essentially require additional 
functional analytic developments. For the Euler–Weil–Petersson equation, however, the 
situation is the opposite. The smoothness spray follows directly from the fact that the 
metric is strong, whereas the passage from the material to spatial representation is much 
more involved since it requires the composition and multiplication under the critical 
Sobolev exponent 3/2. We close the paper with two applications. The first one is the 
proof of long time existence of special solutions called Teichons by analogy with the 
peakons for the Camassa–Holm equations. It turns out that these singular solutions are 
actually smoother than the generic geodesics. In the second application, we use again long 
time existence of Weil–Petersson geodesics to positively address a comment of Sharon 
and Mumford [35], namely that there exists a unique geodesic between each two shapes 
in the plane.

Plan of the paper. Section 2 reviews the basic facts concerning the universal Teichmüller 
space T (1) endowed with its classical infinite dimensional complex Banach manifold 
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structure. In particular, we recall that this manifold structure is not compatible with the 
natural group operation and that the formula for the Weil–Petersson Riemannian metric 
on T (1) is divergent. These difficulties are solved by endowing T (1) with a new complex 
Hilbert manifold structure, the Takhtajan–Teo topology, that we review in Section 3. 
This approach allows us to define a new topological group and Hilbert manifold of 

homeomorphisms of the circle, that replaces the group of Sobolev diffeomorphisms in 
the case of the critical exponent s = 3/2. In particular, we show that the model space 
is given by Sobolev H3/2 vector fields on the circle. Section 4 is devoted to the proof of 
a technical result, namely, the composition of diffeomorphisms of the circle of Sobolev 
class strictly lower than the critical index 3/2 is also a diffeomorphism of the same 
type. In Section 5 we prove that this new Hilbert manifold is continuously embedded 
in the topological group of all homeomorphisms of the circle that are of Sobolev class 
H3/2−ε for all ε > 0. In Section 6 we exploit the strongness of the Weil–Petersson 
metric to show that the Hilbert manifold T (1) is geodesically and Cauchy complete. 
The passage from the Lagrangian to the spatial formulation of geodesics is carried out 
in Section 7, using multiplication and composition under critical exponents in Sobolev 
spaces. Section 8 is concerned with particular solutions of the Euler–Weil–Petersson 
equation, called Teichons, by analogy with the peakons of the Camassa–Holm equations. 
These Teichons are shown to be particular Weil–Petersson geodesics. Finally, Section 9
considers application to imaging from the functional analytic point of view developed in 
the paper.

2. The universal Teichmüller space

In this section we recall some basic classical facts we shall need about universal Te-
ichmüller space, for the reader’s convenience and to establish notation. A more complete 
exposition can be found in [1,12,14,24,29].

Notation and some important facts. Let Ĉ be the Riemann sphere. Let the open unit 
disk in the complex plane be denoted by D := {z ∈ C | |z| < 1} and its exterior by 
D∗ := {z ∈ Ĉ | |z| > 1}. We denote by d2z the usual two dimensional Lebesgue measure 
on C, that is, d2z := i

2 (dz ∧ dz̄).
Consider the separable complex Banach space L1(D∗) of integrable complex valued 

functions on D∗. Its dual can be isometrically identified with the non-separable complex 
Banach space L∞(D∗) of essentially bounded complex valued functions on D∗. In the con-
text of Teichmüller theory, the elements of L∞(D∗) are called the Beltrami differentials 
on D∗.

Define the closed subspace

A1(D∗) =
{
φ ∈ L1(D∗)

∣∣ φ is holomorphic on D∗}
of L1(D∗). Its dual can be identified with the quotient Banach space L∞(D∗)/N (D∗), 
where
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N (D∗) :=

⎧⎨⎩μ ∈ L∞(D∗)

∣∣∣∣∣∣
ˆ

D∗

μ(z)φ(z)d2z = 0, ∀φ ∈ A1(D∗)

⎫⎬⎭
is the space of infinitesimally trivial Beltrami differentials. There is a canonical splitting
L∞(D∗) = N (D∗) ⊕ Ω−1,1(D∗), (2.1)

where Ω−1,1(D∗) is the closed non-separable Banach subspace of L∞(D∗) defined by

Ω−1,1(D∗) :=
{
μ ∈ L∞(D∗)

∣∣∣μ(z) = (1 − |z|2)2φ(z), φ a holomorphic map on D∗
}
.

This projection allows us to identify L∞(D∗)/N (D∗) with Ω−1,1(D∗), whose elements 
are called, by definition, harmonic Beltrami differentials on D∗. We can write this space 
as

Ω−1,1(D∗) :=
{
μ(z) = (1 − |z|2)2φ(z)

∣∣∣ φ ∈ A∞(D∗)
}
,

where A∞(D∗) is the non-separable complex Banach space

A∞(D∗) =
{
φ holomorphic in D∗

∣∣∣∣ sup
z∈D∗

|φ(z)(1 − |z|2)2| < ∞
}
.

All the results of this section remain valid when D∗ is replaced by D.

The real Lie group PSU(1, 1). Recall that the biholomorphic maps of the Riemann sphere 
Ĉ are of the form

z �→ az + b

cz + d
where a, b, c, d ∈ C, ad− bc = 1.

The set of such maps form a group under composition that is readily checked to be 
isomorphic to the complex matrix Lie group

PSL(2,C) := SL(2,C)/{±I}

of complex dimension 3, called the group of Möbius transformations. The subgroup of 
all biholomorphic maps of the Riemann sphere which preserve the unit disc D are of the 
form

z �→ az + b

b̄z + ā
, where a, b ∈ C, and |a|2 − |b|2 = 1.

This group is isomorphic to the real three dimensional Lie group

PSU(1, 1) := SU(1, 1)/{±I}.
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The elements of PSU(1, 1) preserve the unit circle S1 and are uniquely determined by 
their restriction to the circle S1. Being conformal, these maps are orientation preserving 
on the disk. Since the circle inherits the natural boundary orientation, it follows that 
PSU(1, 1) can be regarded as a subgroup of Diff+(S1), the orientation preserving C∞

diffeomorphisms of the circle S1.

View this way, and using the standard chart θ �→ eiθ of the circle, the Lie algebra of 

PSU(1, 1) consists of periodic functions of the form

psu(1, 1) = {fa,b,c(θ) = a + b sin θ + c cos θ | a, b, c ∈ R} .

The Lie algebra bracket on this space of functions is minus the usual Jacobi–Lie bracket 
on vector fields. This Lie algebra bracket is given as follows: for Lie algebra elements 
f(θ)∂/∂θ and g(θ)∂/∂θ, their bracket is

[f, g](θ) = g(θ)f ′(θ) − g′(θ)f(θ).

Quasiconformal maps. Let φ : A → φ(A) be an orientation preserving homeomorphism 
defined on an open subset A of the complex plane. The map φ is said to be quasiconformal
if it has all directional derivatives (in the sense of distributions) in L1

loc(A) and if there 
is μ ∈ L∞(A) with ‖μ‖∞ < 1 such that

∂z̄φ = μ∂zφ. (2.2)

This is called the Beltrami equation with coefficient μ. If A and φ(A) have boundaries 
which are Jordan curves (that is, curves homeomorphic to a circle), then any quasicon-
formal map on A extends to an orientation preserving homeomorphism from cl(A) to 
cl(φ(A)) (see Theorem I.8.2 in [25]).

In a similar way, an orientation preserving homeomorphism between Riemann surfaces 
is said to be quasiconformal if its local expressions are quasiconformal maps between open 
subsets of the complex plane. The only Riemann surface we will consider is the Riemann 
sphere Ĉ.

The universal Teichmüller space. We recall below two equivalent models for the universal 
Teichmüller space, by following the presentation given in [37]. See also [1,24,29]. We 
denote by B∗

1 the unit open ball in L∞(D∗).

• Model A. Extend every μ ∈ B∗
1 to D by the reflection

μ(z) = μ

(
1
z

)
z2

z2 , z ∈ D.

Thus we get a new map, also denoted by μ ∈ L∞(C). We denote by ωμ : Ĉ → Ĉ the 
unique solution of the Beltrami equation
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∂z̄ωμ = μ∂zωμ

which fixes ±1, −i. This ωμ is obtained by applying the existence and uniqueness theorem 
of Ahlfors–Bers (see [2]); ωμ is a homeomorphism of Ĉ and it satisfies
ωμ(z) = ωμ

(
1
z

)
due to the reflection symmetry of μ. As a result, S1, D and D∗ are invariant under ωμ.
• Model B. Extend every μ ∈ B∗

1 to be zero outside D∗. We denote by ωμ : Ĉ → Ĉ the 
unique solution of the Beltrami equation

∂z̄ω
μ = μ∂zω

μ,

satisfying the conditions f(0) = 0, ∂zf(0) = 1, and ∂2
zf(0) = 0, where f is the holo-

morphic mapping f := ωμ|D. This ωμ is a homeomorphism of Ĉ and is also obtained by 
applying the existence and uniqueness theorem of Ahlfors–Bers.

The relation between these two models is given by the following standard result.

Theorem 2.1. For μ, ν ∈ B∗
1 , we have the equivalence

ωμ|S1 = ων |S1 ⇐⇒ ωμ|D = ων |D.

See [24], Chapter III, Theorem 1.2 for a proof. We now recall the definition of the 
universal Teichmüller space.

Definition 2.2. The universal Teichmüller space is the quotient space:

T (1) := B∗
1/∼,

relative to following equivalence relation on B∗
1 :

μ ∼ ν ⇐⇒ ωμ|S1 = ων |S1 ⇐⇒ ωμ|D = ων |D.

In view of this definition T (1), endowed with the quotient topology, is clearly con-
nected. It turns out that T (1) is contractible ([24], Chapter III, Theorem 3.2).

The Bers embedding and the complex Banach manifold structure. The embedding of 
T (1) into A∞(D) plays a crucial in the theory of Teichmüller spaces. We recall below the 
classical Bers theorem about this embedding.

Theorem 2.3. The Bers embedding

β : T (1) → A∞(D), β([μ]) := S (ωμ|D) ,
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is an injective mapping from T (1) onto an open subset of A∞(D). Its image contains the 
ball of radius 2 and is contained in the ball of radius 6. Here S denotes the Schwarzian 
derivative of a conformal map f , that is,

∂3
zf 3

(
∂2
zf
)2
S(f) :=
∂zf

− 2 ∂zf
.

Theorem 2.4. There is a unique Banach manifold structure on T (1) relative to which the 
projection map

π : B∗
1 → T (1)B

is a holomorphic submersion. Relative to this Banach manifold structure, the Bers em-
bedding

β : T (1)B → A∞(D)

is a biholomorphic map onto its image.

It can be shown that the kernel of the tangent map T0π : L∞(D∗) → T0T (1)B is 
given by N (D∗), so the tangent space T0T (1)B can be identified with the Banach space 
L∞(D∗)/N (D∗)  Ω−1,1(D∗).

It is known that the topology of T (1) is that of a metric space relative to the Teich-
müller distance τ (see [24], Chapter III, §2). Since this distance function will not be used 
in the sequel, we will not recall the definition. Nevertheless, it is interesting to recall 
that the metric space (T (1), τ) is complete. By Theorem 2.3, T (1) is homeomorphic to 
an open subset of the Banach space A∞(D), which is clearly incomplete.

Quasisymmetric homeomorphisms of the circle. An orientation preserving homeomor-
phism η of the circle S1 is quasisymmetric if there is a constant M such that for every 
x and every |t| ≤ π/2

1
M

≤ η(x + t) − η(x)
η(x) − η(x− t) ≤ M.

Note that the definition implies that M ≥ 1. Here we identify the homeomorphisms of 
the circle with the strictly increasing homeomorphisms of the real line satisfying the 
condition η(x + 2π) = η(x) + 2π. The set of all quasisymmetric homeomorphisms of 
the circle is denoted by QS(S1), it is a group under the composition of maps. The link 
with the quasiconformal mappings on the disc is given by the Beurling–Ahlfors extension 
theorem (see [5]).

Theorem 2.5. An orientation preserving homeomorphism of the circle admits a quasi-
conformal extension to the disc if and only if it is quasisymmetric.
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Note that this extension is far from being unique. From this result, it follows that the 
restriction to the circle of a solution ωμ of the Beltrami equation with coefficient μ ∈ B∗

1
is a quasisymmetric homeomorphism of the circle. We therefore obtain that the map

Φ : T (1) −→ QS(S1)fix, [μ] �−→ ωμ|S1 (2.3)
is a bijection, where QS(S1)fix denotes the subgroup of QS(S1) consisting of quasisym-
metric homeomorphisms fixing the points ±1 and −i.

This bijection endows the group QS(S1)fix with the structure of a complex Banach 
manifold by pushing forward this structure from T (1)B. The resulting Banach manifold 
is denoted by QS(S1)Bfix. This bijection also endows the set T (1) with a group structure 
by pulling back the group structure of QS(S1)fix. A straightforward computation shows 
that this group structure reads

[ν] · [μ] =
[
μ + (ν ◦ ωμ)rμ
1 + μ̄(ν ◦ ωμ)rμ

]
, rμ = ∂zωμ

∂zωμ
. (2.4)

Relative to the complex Banach manifold structure, the right translations R[μ] are bi-
holomorphic mappings for all [μ] ∈ T (1). The left translations are not continuous in 
general, therefore T (1)B is not a topological group (see Theorem 3.3 in [24]).

Note that QS(S1)fix can be identified with the quotient space QS(S1)/ PSU(1, 1) (or 
PSU(1, 1)\ QS(S1)). Indeed, given η ∈ QS(S1), there exists only one γ ∈ PSU(1, 1) such 
that η ◦ γ (or γ ◦ η) fixes the points ±1 and −i. Note that the projections QS(S1) →
QS(S1)/ PSU(1, 1) and QS(S1) → PSU(1, 1)\ QS(S1) are not group homomorphisms, 
when the quotient space is endowed with the group structure of QS(S1)fix.

The tangent space of QS(S1)Bfix. Recall that the tangent space to a point m of a Banach 
manifold M is defined as a space of equivalence of smooth curves. Two curves are said 
to be equivalent at m if they are tangent at this point in a chart. In general there is 
not a canonical realization of the tangent space. Nevertheless, in the case of manifolds 
of maps such a canonical realization exists.

We recall below how tangent spaces to manifolds of maps are concretely constructed 
(see [32] and [10]). If s > dimM/2 then it is well-known that the set Hs(M, N) of 
Hs-Sobolev class maps between two boundaryless compact manifolds M and N admits 
a smooth Hilbert manifold structure. Let us recall the basic ideas of this construction. 
To get a feeling of what a tangent vector at f ∈ Hs(M, N) might be, let us take a path 
t ∈ ]−ε, ε[ �→ ft ∈ Hs(M, N) such that the map ft(m) is jointly smooth in (t, m) ∈
]−ε, ε[×M . Then t ∈ ]−ε, ε[ �→ ft(m) ∈ N is a smooth path in N and hence 
∂ft(m)/∂t|t=0 is a tangent vector to N at the point f0(m). This suggests that a tangent 
vector at f is an Hs-map Uf : M → TN satisfying Uf (m) ∈ Tf(m)N for every m ∈ M , 
that is, a vector field covering f . Hence the candidate tangent space is

TfH
s(M,N) = {Uf ∈ Hs(M,TN) | Uf (m) ∈ Tf(m)N}.
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Now one proceeds constructing charts for Hs(M, N) with these Hilbert spaces as models, 
using the exponential map of some Riemannian metric on N . Once the manifold structure 
on Hs(M, N) has been obtained, one proves the identity

(
d
)

∂

dt
ft (m) =

∂t
(ft(m))

for a smooth path t ∈ ]−ε, ε[ �→ ft ∈ Hs(M, N).
In our case, QS(S1)Bfix is also a space of maps, as opposed to T (1)B. Hence one would 

like to study QS(S1)Bfix in the spirit of manifolds of maps. However, the topologies are 
different and to implement manifold of maps constructions one needs to use theorems in 
complex analysis as opposed to the standard facts in Sobolev space theory. Our goal is 
to obtain a concrete realization of the tangent space at η := Φ([μ]) ∈ QS(S1)Bfix to the 
complex Banach manifold QS(S1)Bfix. Note that we already have an abstract description 
of this tangent space, namely, it is T[μ]Φ 

(
T[μ]T (1)B

)
. However, so far we do not have any 

concrete realization of this complex Banach space. We will show below that it is equal 
to the right translate of a very concrete function space on S1, the Zygmund space. In 
the process we will explicitly calculate TRη.

Recall that the Banach manifold structure on QS(S1)Bfix is defined by the condition 
that the bijection Φ : T (1)B → QS(S1)fix, Φ([μ]) := ωμ|S1 is a diffeomorphism. This 
simply says that the manifold charts of QS(S1)Bfix are of the form (ϕ ◦Φ−1, Φ(U)) where 
(ϕ, U) are the manifold charts of T (1)B. A curve ηt ∈ QS(S1)Bfix is smooth if it is of the 
form ηt = ωμ(t)|S1 , where μ(t) is a smooth curve in the open ball B∗

1 . The problem of 
finding a concrete expression of the vector d

dtηt is equivalent to that of finding a concrete 
realization of the tangent spaces Tη QS(S1)fix or a concrete expression for TηΦ. A first 
step in this direction is the following theorem. The first part is a direct consequence of 
Theorem 11 in [2]. The expression (2.5) is the reformulation for the disk of Eq. (2.34) 
in [29]; see §1.2.11–1.2.12 of this book for additional information and the proof of this 
formula.

Theorem 2.6. Let μ(t) ∈ B∗
1 be a smooth curve such that μ(0) = 0. Then for all z ∈ S1, 

the curve t �→ ωμ(t)(z) ∈ S1 is smooth in a neighborhood of t = 0. The derivative at t = 0
is given by

∂

∂t

∣∣∣∣
t=0

ωμ(t)(z) = Vν(z),

where ν ∈ L∞(C) is μ̇(0) extended to C by reflection, and

Vν(z) = − (z + 1)(z + i)(z − 1)
π

¨

C

ν(w)
(w + 1)(w + i)(w − 1)(w − z)d

2w. (2.5)
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This theorem generalizes to the case where μ(0) is not 0. Indeed, since right translation 
on B∗

1 is smooth, the curve t �→ μ(t) · μ(0)−1 is smooth. Here the dot denotes the group 
multiplication on B∗

1 given in (2.4). We have

∂
∣∣ ∂

∣∣

∂t
∣∣
t=0

ωμ(t)(z) =
∂t
∣∣
t=0

ωμ(t)·μ(0)−1(ωμ(0)(z)) = Vν(ωμ(0)(z)),

where ν is the extension of ∂
∂t

∣∣
t=0 (μ(t) · μ(0)−1) by reflection.

Here is a reformulation of these results. Let ηt be a smooth curve in QS(S1)Bfix. Then 
for all z ∈ S1, the curve ηt(z) is differentiable as a curve on S1 and the time derivative 
is of the form

∂

∂s

∣∣∣∣
t=0

ηt(z) = Vν(η0(z)), (2.6)

where Vν is a vector field on S1 of the form (2.5).
The next theorem states that the vector field Vν belongs to the Zygmund space on S1

defined by

Z(S1) :=
{
u ∈ C0(S1)

∣∣ there is a C such that

|u(x + t) + u(x− t) − 2u(x)| ≤ C|t| for all x, t ∈ S1} .
Here, the continuous vector fields u on the circle are identified with continuous 
2π-periodic functions on the real line. We also define the subspace

Z(S1)0 :=
{
u ∈ Z(S1) | u(±1) = u(−i) = 0

}
.

Relative to the Zygmund norm

‖u‖Z := ‖u‖∞ + sup
x,t∈S1

|u(x + t) + u(x− t) − 2u(x)|
|t| , (2.7)

Z(S1) is a nonseparable Banach space and Z(S1)0 a closed subspace (see [9,14]).
It is known that for all 0 < α < 1 and s < 1 we have the strict continuous inclusions

Λ1(S1) ⊂ Z(S1) ⊂ Λα(S1), and Z(S1) ⊂ Hs(S1),

where Λ1(S1) denotes the space of Lipschitz functions on the circle, Λα(S1) denotes the 
space of α-Hölder functions on the circle, and Hs(S1) denotes the space of Sobolev class 
Hs functions on the circle. In terms of the Fourier series representation we have

Hs(S1) =
{
u(x) =

∑
n∈Z

une
inx

∣∣∣∣∣ u−n = un and
∑
n∈Z

|n|2s|un|2 < ∞
}
.
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These continuous inclusions are particular cases of embedding theorems for spaces of 
Besov–Triebel–Lizorkin type, see [39] and [34] for example.

Theorem 2.7. For all ν ∈ L∞(D∗), we have Vν ∈ Z(S1)0. Moreover the linear map
[ν] ∈ L∞(D∗)/N(D∗)  Ω−1,1(D∗) �→ Vν ∈ Z(S1)0 (2.8)

is an isomorphism of Banach spaces, where L∞(D∗)/N(D∗) is endowed with the quo-
tient norm and Z(S1)0 is endowed with the cross-ratio norm, a norm equivalent to the 
Zygmund norm defined in (2.7).

See Chapter 3 in [14], and [13,15] for the definition of the cross-ratio norm and proofs 
of this theorem. On Z(S1) the cross-ratio norm is actually a seminorm whose kernel is 
given by psu(1, 1).

Using the preceding discussion, it follows that for two smooth curves η1
t and η2

t in 
QS(S1)Bfix such that η2

0 = η1
0 = η, they are tangent at the point η with respect to the 

Banach manifold structure if and only if

∂

∂t
(η1

t (z)) = ∂

∂t
(η2

t (z)), ∀ z ∈ S1.

By formula (2.6) and Theorem 2.7 it follows that a realization of the tangent space to 
QS(S1)Bfix at η is

Tη QS(S1)Bfix = Z(S1)0 ◦ η.

Remark. It is worth noting here the difference between the usual theory of Hs-diffeo-
morphism groups and QS(S1)Bfix. The formula above completely determines Tη QS(S1)Bfix. 
The same formula is also valid for the group of Hs-diffeomorphisms Diffs(M), namely, 
Tη Diffs(M) = Xs(M) ◦ η, where Xs(M) is the Hilbert space of Hs-vector fields on M . 
However, for the diffeomorphism group one can go further and say that Tη Diffs(M) =
Xs(M) ◦ η = {Uη ∈ Hs(M, TM) | Uη(m) ∈ Tη(m)M}, a realization that is not available 
for Tη QS(S1)Bfix. �

With respect to this realization, the tangent map to Φ at [0] is

T[0]Φ : L∞(D∗)/N (D∗) → Tid QSfix(S1) = Z(S1)0, T[0]Φ([ν]) = Vν ,

and the derivative of a smooth curve ηt is the vector in Tηt
QS(S1)Bfix given by

(
d

dt
ηt

)
(z) = ∂

∂t
(ηt(z)).
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Of course, the previous equality holds only if the curve ηt is known to be smooth with 
respect to the Banach manifold structure induced by Φ. It is not sufficient that for all z, 
the curve t �→ ηt(z) is smooth.

Right translation by γ is given by Rγ(ξ) = ξ ◦ γ and it is known to be a smooth map. 
Using the preceding results we have, for uη ∈ Tη QS(S1)B ,
fix

(TRγ(uη)) (z) =
(

d

dt

∣∣∣∣
t=0

Rγ(ηt)
)

(z) = d

dt

∣∣∣∣
t=0

∂

∂t
(ηt(γ(z)))

=
(

d

dt

∣∣∣∣
t=0

ηt

)
(γ(z)) = uη(γ(z)).

Thus, we have TRγ(uη) = uη ◦ γ.
The isomorphism between the tangent space Tid QS(S1)Bfix and the Banach model 

space A∞(D) of T (1)B is given by taking the tangent map at the identity to the map 
β ◦ Φ−1 : QS(S1)Bfix → T (1)B → A∞(D), where β denotes the Bers embedding and Φ is 
the diffeomorphism defined in (2.3). It was proved [38], Theorem 2.11, that we have

Tid
(
β ◦ Φ−1) :∑

n∈Z

une
inx ∈ Tid QS(S1)Bfix �−→ i

∑
n≥2

(n3 − n)unz
n−2 ∈ A∞(D).

Using the complex Banach manifold structure of QS(S1)Bfix thought of as a real man-
ifold, it is possible to endow the whole group QS(S1) with a real Banach manifold 
structure, by declaring that the bijection

Ψ : QS(S1) −→ PSU(1, 1) × QS(S1)Bfix, (2.9)

defined by the condition

Ψ(η) = (η̂, η0) ⇐⇒ η = η̂ ◦ η0, (2.10)

is a diffeomorphism. The group QS(S1) endowed with this Banach manifold structure 
is denoted by QS(S1)B . Its properties are given in the theorem below. We will use the 
following lemma which shows that the choice of an other subgroup fixing three points 
does not change the Banach manifold structure on QS(S1).

Lemma 2.8. Let QS(S1)1 be a subgroup of QS(S1) consisting of quasisymmetric home-
omorphisms fixing three points. Then QS(S1)1 can be endowed with a Banach manifold 
structure in the same way as QS(S1)fix. The bijection

PSU(1, 1) × QS(S1)Bfix → PSU(1, 1) × QS(S1)B1

defined by

(γ0, η0) �→ (γ1, η1), such that γ0 ◦ η0 = γ1 ◦ η1,

is a smooth diffeomorphism.
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Proof. By definition of the Banach manifold structures on QS(S1)fix and QS(S1)1, we 
obtain that the map

QS(S1)fix → QS(S1)1, η �→ γ ◦ η, (2.11)
where γ is the unique Möbius transformation such that γ ◦ η ∈ QS(S1)1, is a diffeomor-
phism.

We now show that the map (γ0, η0) �→ (γ1, η1) is smooth. Since γ0 ◦ η0 = γ1 ◦ η1, we 
have η1 = (γ−1

1 ◦ γ2) ◦ η0. Thus, using (2.11), we obtain that the map (γ0, η0) �→ η1 is 
smooth. In order to show that (γ0, η0) �→ γ1 is smooth, we consider the map

F : PSU(1, 1) × QS(S1)fix × PSU(1, 1) → R3, F (γ, η, ξ) = (γ(η(xi)) − ξ(xi)),

where (xi), i = 1, 2, 3, denote the fixed points associated to the group QS(S1)1. Note 
that F is smooth and that F (γ0, η0, ξ) = 0 if and only if ξ = γ1. The partial derivative 
of F with respect to the variable ξ and in the direction V ∈ Tξ PSU(1, 1) is computed to 
be

∂F

∂ξ
(γ0, η0, ξ)(V ) = −(V (xi)),

therefore the linear map ∂F
∂ξ (γ0, η0, ξ) : Tξ PSU(1, 1) → R3 is an isomorphism, and by 

the implicit function theorem, the correspondence (γ0, η0) �→ η1 is smooth. �
As a consequence of this lemma, we obtain that the identification of QS(S1) with 

PSU(1, 1) ×QS(S1)Bfix or PSU(1, 1) ×QS(S1)B1 gives the same Banach manifold structure.

Theorem 2.9. The tangent space at the identity to the real Banach manifold QS(S1)B is 
the Zygmund space Z(S1). The group QS(S1)B is not a topological group but the right 
translations are smooth; QS(S1)B contains the subgroup QS(S1)Bfix as a closed submani-
fold of codimension 3.

Proof. From the definition of the Banach manifold structure we have

Tid QS(S1)B = psu(1, 1) ⊕ Tid QS(S1)Bfix.

Recall that Tid QS(S1)Bfix consists of vector fields in Z(S1) such that u(±1) = u(−i) = 0. 
Therefore by adding any element of psu(1, 1) we recover the whole space Z(S1). The set 
QS(S1)Bfix is clearly a subgroup of QS(S1)B . It is also a closed submanifold since it is 
identified with the closed submanifold {e} × QS(S1)Bfix in PSU(1, 1) × QS(S1)Bfix.

We now show that the right translations Rξ : QS(S1)B → QS(S1)B , η �→ η ◦ ξ are 
smooth for each fixed ξ ∈ QS(S1). We first prove this for ξ ∈ QS(S1)fix. Using the 
diffeomorphism (2.9), the correspondence η �→ η ◦ ξ reads (η̂, η0) �→ (η̂, η0 ◦ ξ). This 
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is a smooth map since right translations are known to be smooth on QS(S1)Bfix. We 
now consider the case ξ ∈ PSU(1, 1). Note that for any ξ we can define the subgroup 
QS(S1)ξ consisting of quasisymmetric homeomorphisms of the circle fixing the three 
points ξ−1(−1), ξ−1(1) and ξ−1(−i). As a map from PSU(1, 1) ×QS(S1)Bfix to PSU(1, 1) ×
QS(S1)B , the correspondence η �→ η◦ξ reads (η̂, η0) �→ (η̂◦ξ, ξ−1◦η0◦ξ). By the preceding 
ξ

lemma it suffices to show that this last correspondence is smooth. For the first factor 
this is trivial since right translation on PSU(1, 1) is smooth. Hence it suffices to show 
that the map

η0 ∈ QS(S1)Bfix �→ ξ−1 ◦ η0 ◦ ξ ∈ QS(S1)Bξ

is smooth. This follows from the fact this map is induced by the smooth map

μ ∈ L∞(D∗) �→ (μ ◦ ξ)∂zξ
∂zξ

∈ L∞(D∗).

To show that Rξ is a smooth map for all ξ ∈ QS(S1) it suffices to write ξ = ξ̂ ◦ξ0 with 
(ξ̂, ξ0) ∈ PSU(1, 1) × QS(S1)fix. We then have Rξ = Rξ0 ◦Rξ̂, which is a composition of 
smooth maps by the preceding arguments. �

As in the case of QS(S1)Bfix, we can show that Tη QS(S1)B = Z(S1) ◦ η. Let ηt be a 
smooth curve in QS(S1)B . By definition, see (2.10), we can write ηt = η̂t ◦ (ηt)0, where 
η̂t is a smooth curve in PSU(1, 1) and (ηt)0 is a smooth curve in QS(S1)Bfix. Therefore, 
we obtain that for all z ∈ S1 the curve ηt(z) is smooth. A direct computation shows for 
a smooth curve ηt we have

∂

∂t

∣∣∣∣
t=0

ηt(z) = V (η0(z)),

where V ∈ Z(S1). This shows that a canonical realization of the tangent space 
Tη QS(S1)B is given by Z(S1) ◦ η, and that the tangent map to right translation is 
TRγ(uη) = uη ◦ γ.

A system of neighborhoods of the identity in QS(S1)B is given by {U(ε) | ε > 0}, 
where U(ε) consists of all quasisymmetric homeomorphisms η ∈ QS(S1) such that

1
1 + ε

≤ η(x + t) − η(x)
η(x) − η(x− t) ≤ 1 + ε and sup

x∈S1

{
|η(x) − x|, |η−1(x) − x|

}
< ε.

At other points, the neighborhoods are obtained by right translation.

Relation with diffeomorphism groups. We have the following chain of subgroup inclusions

Diff+(S1) ⊂ Diffs
+(S1) ⊂ DiffC1

+ (S1) ⊂ QS(S1), (2.12)
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for all s > 3/2. The differential properties are the following. The group Diff+(S1) is 
endowed with the C∞ Fréchet manifold structure. The group Diffs

+(S1) denotes the 
group of all orientation preserving Sobolev class Hs diffeomorphisms of the circle. It is 
endowed with the Sobolev Hs Hilbert manifold structure; this is possible for all s > 3/2. 
The group DiffC1

(S1) is endowed with the C1 Banach manifold structure. All these 
+
manifold structures are real and not complex. Recall that Diff+(S1) is a Fréchet Lie 
group (see [21]), Diffs

+(S1) and DiffC1

+ (S1) are topological groups with smooth right 
translations [10,31], QS(S1) has smooth right translations but is not a topological group 
(Theorem 2.9). Note also that all the inclusions are smooth. The two first inclusions 
on the left have dense ranges and the last inclusion on the right is neither dense nor 
closed. The closure of DiffC1

+ (S1) in QS(S1) determines the topological group S(S1) of 
symmetric homeomorphisms of the circle. We refer to [15,14] for the definition and the 
properties of S(S1).

The same differential properties hold for the corresponding subgroups fixing the points 
±1 and −i. We get the inclusions

Diff+(S1)fix ⊂ Diffs
+(S1)fix ⊂ DiffC1

+ (S1)fix ⊂ QS(S1)fix, (2.13)

for all s > 3/2. These subgroups have the additional property to be also complex mani-
folds. The tangent spaces at the identity to these subgroups, denoted by

C∞(S1)0 ⊂ Hs(S1)0 ⊂ C1(S1)0 ⊂ Z(S1)0, (2.14)

are obtained by imposing the conditions u(±1) = u(−i) = 0 on the elements of the 
tangent spaces at the identity to the corresponding large groups in (2.12).

Note that an other realization of the tangent spaces at the identity to these subgroups 
is given by imposing the conditions u−1 = u0 = u1 = 0 on the Fourier coefficients. This 
corresponds to thinking of these subgroups as quotient spaces of the corresponding groups 
by the Möbius group PSU(1, 1); therefore the vector fields are taken modulo psu(1, 1). 
The tangent spaces at the identity in this interpretation are denoted by

h∞ ⊂ hs ⊂ hC
1 ⊂ hQS .

More on the complex structure. Recall that the complex structure of T (1)B is the triv-
ial one induced by the assumption that the projection B∗

1 → T (1)B is a holomorphic 
submersion. Therefore the complex structure operator is simply multiplication by i. We 
denote by J the complex structure operator induced on the Banach manifold QS(S1)Bfix. 
The following theorem due to [30] shows that J takes a remarkably simple expression in 
terms of Fourier series.

Theorem 2.10. The complex structure on the Banach manifold QS(S1)Bfix is the right-
invariant structure given at the identity by the map J : hQS → hQS defined by
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J

⎛⎝ ∑
n �=−1,0,1

une
inx

⎞⎠ = i
∑

n �=−1,0,1

sgn(n)une
inx.

The operator J is in fact the Hilbert transform on the circle
J(u)(x) = 1
2π

ˆ

S1

u(s) cot
(
s− x

2

)
ds.

For J, we keep the sign conventions in [37] which differ by an overall minus sign from 
the one in [30].

The Weil–Petersson metric. The Weil–Petersson Hermitian metric on T (1)B is the right-
invariant metric whose value at the identity [0] is given by

〈μ, ν〉 :=
ˆ

D∗

μ(z)ν(z) 4
(1 − |z|2)2 d

2z. (2.15)

This metric was introduced by Nag and Verjovsky [30] as a direct generalization of 
the Weil–Petersson metric on the finite dimensional Teichmüller spaces. As remarked 
by these authors, this Hermitian metric does not make sense for all μ, ν ∈ Ω−1,1(D∗). 
Indeed, it converges only for μ, ν in the Hilbert space H−1,1(D∗) ⊂ Ω−1,1(D∗) defined by

H−1,1(D∗) =

⎧⎨⎩μ ∈ Ω−1,1(D∗)

∣∣∣∣∣∣
ˆ

D∗

|μ(z)|2 1
(1 − |z|2)2 d

2z < ∞

⎫⎬⎭
=
{
μ(z) = (1 − |z|2)2φ(z)

∣∣∣ φ ∈ A2(D∗)
}
,

where

A2(D∗) =

⎧⎨⎩φ holomorphic in D∗

∣∣∣∣∣∣
ˆ

D∗

|φ(z)|2(1 − |z|2)2d2z < ∞

⎫⎬⎭ .

Using the identifications

Tid QS(S1)Bfix = hQS
T[0]Φ

←−−−− T[0]T (1)B
T[0]β

−−−−→ A∞(D),

the metric on hQS has the expression

hid(u, v) = π

2

∞∑
n=2

n(n2 − 1)unvn (2.16)
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and one can see that it converges only for u, v ∈ h
3
2 , the subspace of Sobolev class H 3

2

real vector fields on the circle with u0 = u1 = 0, a subspace strictly included in hQS . 
Therefore we obtain that

T[0]Φ
(
H−1,1(D)

)
= h

3
2 . (2.17)
On the other hand, the metric on A∞(D) is given by the expression

hid(φ, ψ) = 1
4

ˆ

D

φ(z)ψ(z)(1 − |z|2)2d2z, (2.18)

which converges only for φ, ψ in the strict subspace A2(D) of A∞(D). We obtain hence 
that

T[0]β
(
H−1,1(D)

)
= A2(D). (2.19)

The corresponding Weil–Petersson Riemannian metric on QS(S1)Bfix, considered as a 
real manifold, is given by

gid(u, v) = π

2 Re
( ∞∑

n=2
n(n2 − 1)unvn

)
= π

4
∑

n �=−1,0,1

|n|(n2 − 1)unvn. (2.20)

The imaginary part of the Hermitian metric is the symplectic two-form

ωid(u, v) = π

2 Im
( ∞∑

n=2
n(n2 − 1)unvn

)
= − iπ

4
∑

n �=−1,0,1

n(n2 − 1)unvn. (2.21)

As it was the case for the Weil–Petersson Hermitian metric, g and ω are only defined on 
the subspace h

3
2 of Tid QS(S1)Bfix = hQS ∼= Z(S1)0.

In order to solve the convergence problem in (2.15), Takhtajan and Teo [37] introduce 
a new complex Hilbert manifold structure on T (1), such that the natural inner product 
is given by the Weil–Petersson Hermitian metric.

3. Takhtajan–Teo theory

The complex Hilbert manifold structure on T (1). The first step is to define an 
A2(D)-Hilbert manifold structure on the set A∞(D). This is done by defining a col-
lection of charts on the set A∞(D) as follows. Each point φ ∈ A∞(D) is declared to have 
a chart domain given by φ + A2(D) and the chart map is given by mapping the point 
φ +ψ ∈ φ +A2(D) to ψ ∈ A2(D). This construction makes, in an elementary way, A∞(D)
into an A2(D)-Hilbert manifold. Of course this sort of construction can be done for any 
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vector space X that has a subspace Y that is, in its own right, a Hilbert manifold. Clearly, 
the resulting Hilbert manifold A∞(D) modeled on A2(D) is not connected. Indeed, to 
each [φ] ∈ A∞(D)/A2(D) we associate the connected component φ + A2(D). This map 
is a bijection between the quotient space A∞(D)/A2(D) and the set of all uncountably 
many connected components of A∞(D), the latter being viewed as an A2(D)-Hilbert 

manifold.

In a similar way, Takhtajan and Teo [37] define an A2(D)-Hilbert manifold structure 
on the set T (1), following the same approach as above for A∞. The details of the con-
struction are, however, considerably more technical. For details see [37], Theorem 3.10. 
The resulting Hilbert manifold T (1), modeled on A2(D), is also not connected, but 
rather has uncountably many components. The sets T (1) and A∞(D) endowed with the 
A2(D)-Hilbert manifold structures are denoted by T (1)H and A∞(D)H .

Normally one could view such a construction with some skepticism; however, as we 
shall see, [37] prove some profound things about this type of construction. The main 
results of [37] regarding T (1)H are as stated in the following theorem and in the properties 
below.

Theorem 3.1. The Bers embedding

β : T (1)H → A∞(D)H , β([μ]) := S (ωμ|D) ,

is a biholomorphic mapping from T (1)H onto an open subset of A∞(D)H . In particu-
lar, the tangent map T[0]β induces an isomorphism H−1,1(D∗)  A2(D). The connected 
components of T (1)H are the inverse images of the connected components of β

(
T (1)H
)
.

The connected component of [0] ∈ T (1)H is denoted by T (1)H◦ . The manifolds T (1)H
and T (1)H◦ have the following very attractive properties:

• The Weil–Petersson metric is strong on T (1)H , since it is the natural Hermitian inner 
product on the tangent spaces. As a consequence, g and ω are also strong with respect 
to the Hilbert manifold structure. Moreover, (T (1)H , J, ω) is a strong Kähler–Einstein 
Hilbert manifold with negative constant Ricci curvature and negative sectional and 
holomorphic sectional curvatures.

• The right translations on T (1)H are biholomorphic mappings.
• The connected component T (1)H◦ is a topological group.
• The connected component T (1)H◦ is the closure in T (1)H of the subgroup

Φ−1 (Diff+(S1)fix
)
; see (2.3) for the definition of Φ.

Recall that a Riemannian metric g on a Hilbert manifold Q is said to be strong if for 
all q ∈ Q, the associated flat map TqQ → TqQ

∗, vq �→ gq(vq, ·) is an isomorphism. 
Equivalently, g is strong if for all q, the inner product gq induces the Hilbert space 
topology on TqQ.
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The Hilbert manifold T. As in the Banach case, the bijection Φ : T (1) → QS(S1)fix
defined in (2.3) endows the group QS(S1)fix with the structure of a complex Hilbert 
manifold denoted by QS(S1)Hfix. In addition, by (2.15), (2.16) and (2.17), the Banach 
space isomorphism
T[0]Φ : T[0]
(
T (1)B
)

= Ω−1,1(D∗) → Tid QS(S1)Bfix = Z(S1)0, ν �→ Vν

restricts to a Hilbert space isomorphism

T[0]Φ : T[0]
(
T (1)H
)

= H−1,1(D∗) → Tid QS(S1)Hfix = H
3
2 (S1)0.

Consider a smooth curve t �→ ηt ∈ QS(S1)Hfix, then ηt is smooth as a curve in QS(S1)Bfix. 
Therefore, by Theorem 2.6, the curve t �→ ηt(z) ∈ S1 is smooth for all z ∈ S1. As in the 
case of QS(S1)Bfix we obtain that(

d

dt
ηt

∣∣∣∣
t=0

)
(z) = ∂

∂t

∣∣∣∣
t=0

(ηt(z)) = V (η0(z)), (3.1)

where V ∈ H
3
2 (S1)0. Therefore, a canonical realization of the tangent space at η is given 

by

Tη QS(S1)Hfix = H
3
2 (S1)0 ◦ η.

As before, we denote by QS(S1)Hfix,◦ the connected component of the identity of the 
Hilbert manifold QS(S1)Hfix. The key object of interest to us in this paper is the Hilbert 
manifold T defined to be

T := Φ(T (1)H◦ ) = QS(S1)Hfix,◦.

Let us now summarize some of the key properties of T.

• T is a complex Hilbert manifold and a connected topological group
• Right translations on T are biholomorphic maps Rη : T → T

• The group Diff+(S1)fix of smooth orientation preserving diffeomorphisms of S1 that 
fix the three points ±1, −i is dense in T

• The tangent space at the identity, TeT is equal to H
3
2 (S1)0  h

3
2 .

• The Weil–Petersson metric on T is a right invariant strong and smooth metric that 
makes T into a Kähler–Einstein manifold with negative constant Ricci curvature and 
negative sectional and holomorphic sectional curvatures.

As we have seen, the tangent space at the identity is the space of H 3
2 vector fields 

on S1 vanishing at ±1, −i. This is a Hilbert space of real vector fields, identified with 
real valued functions that also has a complex structure given in Theorem 2.10. Since the 
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derivative of right translation by η ∈ T from TidT → TηT is a Hilbert space isomorphism, 
the topology on the other tangent space is equivalent to the H

3
2 topology as well. Thus, 

the topology induced on the tangent spaces of T by the Weil–Petersson Riemannian 
metric (given by Eq. (2.20)) is also the H

3
2 topology, by strongness of the metric.

Moreover, again by strongness and smoothness of the Weil–Petersson Riemannian 

metric, its exponential maps form coordinate charts. Since these charts map into the 
space of H 3

2 functions, we can say that T is an H
3
2 Hilbert manifold. Since, as explained, 

the topology on T is the H
3
2 topology and since Diff+,fix(S1) is dense in T, we can think 

of T as the H
3
2 -completion of Diff+,fix(S1).

The Hilbert manifold QS(S1)H◦ . Using the Hilbert manifold structure of QS(S1)Hfix, it is 
possible to endow the whole group QS(S1) with a real Hilbert manifold structure, by 
declaring that the bijection

Ψ : QS(S1) −→ PSU(1, 1) × QS(S1)Hfix, (3.2)

defined by the condition Ψ(η) = (η̂, η0) ⇐⇒ η = η̂ ◦ η0, is a diffeomorphism. The group 
QS(S1) endowed with this Hilbert manifold structure is denoted by QS(S1)H and its 
connected component of the identity by QS(S1)H◦ .

In the same way as in Theorem 2.9 we prove the following result.

Theorem 3.2. The tangent space at the identity to the real Hilbert manifold QS(S1)H
is the space H

3
2 (S1) of H 3

2 real valued functions on S1. The manifold QS(S1)H has 
smooth right translations and contains the subgroup QS(S1)Hfix as a closed submanifold 
of codimension 3. Moreover, the connected component of the identity QS(S1)H◦ inherits 
from QS(S1)Hfix,◦ the property of being a topological group.

Proof. It suffices to show that the composition and inversion are continuous maps on 
QS(S1)H◦ . Using the diffeomorphism

η ∈ QS(S1)H◦ �→ (η̂, η0) ∈ PSU(1, 1) × QS(S1)Hfix,◦,

the composition reads

(η̂, η0), (ξ̂, ξ0) → (η̂ ◦ a, b ◦ ξ0), (3.3)

where a ∈ PSU(1, 1) and b ∈ QS(S1)Hfix,◦ are uniquely determined by the condition 

a ◦ b = η0 ◦ ξ̂. Since a is determined by the condition a(xi) = η0(ξ̂(xi)), xi = −1, 1, −i, 
the map (η0, ξ̂) �→ a is clearly continuous. Now we have b = a−1 ◦ η0 ◦ ξ̂. The map 
(a, η0, ξ̂) �→ b is continuous since, in terms of Beltrami coefficients it reads

(a, μ, ξ̂) �→ (μ ◦ ξ̂)∂z ξ̂
∂z ξ̂

.
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By combining these observations with the fact that composition on QS(S1)Hfix,◦ and 
PSU(1, 1) is continuous, we obtain that the map (3.3) is continuous. The inversion reads

(η̂, η0) �→
(
η̂−1, (η−1)0

)
,

thus, we have η−1
0 ◦ η̂−1 = η̂−1 ◦ (η−1)0. As before, η̂−1 and (η−1)0 depends continuously 

on (η−1
0 , η̂−1). Using that inversion on QS(S1)Hfix,◦ and PSU(1, 1) is continuous, we obtain 

the result. �
As before, we can show that, for a smooth curve in QS(S1)H , the curve ηt(z) is smooth 

in S1 for all z ∈ S1. A canonical realization of the tangent space at η is H 3
2 (S1) ◦ η.

From the preceding theorem, the group QS(S1)H◦ inherits from T the following prop-
erties

• Elements η ∈ QS(S1)H◦ are symmetric homeomorphisms η : S1 → S1

• QS(S1)H◦ is a real Hilbert manifold and a connected topological group
• Right translations on QS(S1)H◦ are smooth diffeomorphisms Rη : QS(S1)H◦ →

QS(S1)H◦
• The group Diff+(S1) of smooth orientation preserving diffeomorphisms of S1 is dense 

in QS(S1)H◦
• The tangent space at the identity, Te QS(S1)H◦ is equal to H

3
2 (S1).

We summarize in the diagram below the various spaces that appear at the tangent 
space level. The maps T[0]β and T[0]Φ are complex Banach space isomorphisms. All other 
arrows are continuous inclusions. The two horizontal arrows on the right are continu-
ous inclusions whose images are codimension three subspaces. The vertical arrows have 
ranges that are neither closed nor dense.

A∞(D) Ω−1,1(D∗) Z(S1)0 Z(S1)

A2(D) H−1,1(D∗) H
3
2 (S1)0 H

3
2 (S1)

� � � �

� � �

� � �

T[0]β

T[0]β T[0]Φ

T[0]Φ

Below is the corresponding diagram at manifold level. The maps β and Φ are dif-
feomorphisms relative to the indicated complex Banach and complex Hilbert manifold 
structures. The two images of β are open in the indicated Banach spaces. The two hor-
izontal arrows on the right are codimension three embeddings with closed range. All 
spaces in this diagram are connected. The four vertical arrows are smooth inclusions 
whose inverses from their ranges are discontinuous; the first three vertical arrows are 
also holomorphic maps.
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A∞(D) ⊃ β(T (1)B) T (1)B QS(S1)Bfix QS(S1)B

� � � �

� � �
β Φ
A2(D) ⊃ β(T (1)H◦ ) T (1)H◦ QS(S1)Hfix,◦ QS(S1)H◦� � �
β Φ

4. Sobolev multiplication and composition below critical index

This section is dedicated to the complete proof of a new technical result that is crucial 
in the study of the regularity of the elements in QS(S1)H◦ : composition of diffeomorphisms 
of the circle of Sobolev class strictly lower than the critical index 3/2. To do this, we 
first need a preliminary result on multiplications of functions of Sobolev class below the 
critical index 1/2 for which we give an elementary proof.

Recall that for an integer s ≥ 0 and 1 ≤ p ≤ ∞, the W s,p-norm defined on smooth 
functions on S1 := R/Z is given by

‖f‖W s,p =
s∑

i=0
‖f (i)‖Lp

where f (i) denotes the ith derivative of f . Note that all functions are periodic of period 
1. When s > 0 is not an integer, and 1 ≤ p < ∞, the W s,p-norm on smooth functions 
on S1 is given by

‖f‖W s,p = ‖f‖Wk,p +

⎛⎝ˆ
S1

ˆ

S1

|f (k)(x) − f (k)(y)|p
|x− y|1+σp

dxdy

⎞⎠1/p

, (4.1)

where k = [s] and s = k + σ, 0 < σ < 1. The Banach space W s,p(S1) is the completion 
of C∞(S1) with respect to the norm ‖ ‖W s,p . Recall the following classical result. If 
1 ≤ p, q < ∞ and r, s ∈ R such that r ≥ s and r − 1

p ≥ s − 1
q we have the continuous 

inclusion

W r,p(S1) ⊂ W s,q(S1), (4.2)

as a particular case of embeddings between Triebel–Lizorkin spaces; see (8) in §3.3.1 of 
Triebel [39].

4.1. Multiplication

One of the standard multiplication theorems (see the theorem in §2.8.3 of Triebel [39]) 
states that for p > 1, W s,p is a multiplicative algebra, that is, multiplication defines a 
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continuous bilinear operation W s,p ×W s,p → W s,p, if and only if s > n/p. Notice that 
in one dimension, for multiplication in the case p = 2, the critical index is s = 1/2. Our 
objective in this section is to explore such results for smaller s.

The book [34] (see Chapter 4 and in particular Theorem 1 of §4.6.1) presents general 
results on the multiplication in Triebel–Lizorkin spaces, using paradifferential techniques. 

A similar result is proved in [8] for Sobolev spaces. Here we give an elementary proof in 
the case of Sobolev spaces on the circle which will be crucial for the composition results 
presented in the next subsection. We begin with the following result.

Lemma 4.1. For all ε1, ε2 > 0 such that

max {ε1, ε2, ε1 + ε2} ≤ 1
2 ,

pointwise multiplication on C∞(S1) extends to a continuous bilinear map

H
1
2−ε1(S1) ×H

1
2−ε2(S1) → L2(S1).

Proof. By (4.2), given δ ≤ 1
2 we have the continuous inclusion

H
1
2−δ(S1) ⊂ Lq(S1),

for all 1 ≤ q ≤ 1/δ (note that 1/δ ≥ 2). By the Hölder inequality, we have

ˆ

S1

|fg|2 ≤

⎛⎝ˆ
S1

f2α

⎞⎠1/α⎛⎝ ˆ
S1

g2α′

⎞⎠1/α′

,
1
α

+ 1
α′ = 1.

The right hand side of the inequality is finite if we can find α, α′ such that

1
α

+ 1
α′ = 1, 2α ≤ 1/ε1 and 2α′ ≤ 1/ε2.

Such a choice is possible if and only if ε1 + ε2 ≤ 1
2 . In this case, we have

‖fg‖2
L2 ≤ ‖f‖2

L2α‖g‖2
L2α′ ≤ C‖f‖2

H
1
2−ε1

‖g‖2
H

1
2−ε2

,

by continuity of the inclusion (4.2). �
Theorem 4.2. Assume that ε1, ε2 > 0 are such that max{2ε1 + ε2, 2ε2 + ε1} ≤ 1

2 , and 
assume that ε satisfies max{2ε1 + ε2, 2ε2 + ε1} ≤ ε ≤ 1

2 . Then pointwise multiplication 
on C∞(S1) extends to a continuous bilinear map

H
1
2−ε1(S1) ×H

1
2−ε2(S1) → H

1
2−ε(S1).

In particular, if f, g ∈ H
1
2−ε(S1) for all ε > 0 then fg ∈ H

1
2−ε(S1) for all ε > 0.
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Proof. By Lemma 4.1, we already know that fg ∈ L2(S1). We now show that the 
quantity

ˆ ˆ |f(x)g(x) − f(y)g(y)|2
|x− y|2(1−ε) dxdy
S1 S1

is finite. We have
¨

S1×S1

|f(x)g(x) − f(y)g(y)|2
|x− y|2(1−ε) dxdy

=
¨

S1×S1

|(f(x) − f(y))g(x) + f(y)(g(x) − g(y))|2
|x− y|2(1−ε) dxdy

≤ 2
¨

S1×S1

|f(x) − f(y)|2|g(x)|2
|x− y|2(1−ε) dxdy + 2

¨

S1×S1

|f(y)|2|g(x) − g(y)|2
|x− y|2(1−ε) dxdy

≤ 2

⎛⎝ ¨

S1×S1

|f(x) − f(y)|2α
|x− y|2α(1−ε) dxdy

⎞⎠1/α⎛⎝ ¨

S1×S1

|g(x)|2α′
dxdy

⎞⎠1/α′

+ 2

⎛⎝ ¨

S1×S1

|g(x) − g(y)|2β
|x− y|2β(1−ε) dxdy

⎞⎠1/β⎛⎝ ¨

S1×S1

|f(x)|2β′
dxdy

⎞⎠1/β′

≤ 2‖f‖2
W 1−ε−1/2α,2α‖g‖2

L2α′ + 2‖g‖2
W 1−ε−1/2β,2β‖f‖2

L2β′ ,

where 1 < α, α′, β, β′ < ∞ are such that

1
α

+ 1
α′ = 1 and 1

β
+ 1

β′ = 1.

By (4.2), these norms are finite if and only if the following conditions are verified:

• 1
2 −ε1 ≥ 1 −ε − 1

2α and 1
2 −ε1− 1

2 ≥ 1 −ε − 1
2α − 1

2α . These conditions are equivalent 
to the condition ε ≥ ε1 + 1

α′ ;
• 2α′ ≤ 1

ε2
;

• 1
2 −ε2 ≥ 1 −ε − 1

2β and 1
2 −ε2− 1

2 ≥ 1 −ε − 1
2β − 1

2β . These conditions are equivalent 
to the condition ε ≥ ε2 + 1

β′ ;
• 2β′ ≤ 1

ε2
.

Equivalently, we must be able to choose 1 < α′, β′ < ∞ such that

2ε2 ≤ 1
α′ ≤ ε− ε1 and 2ε1 ≤ 1

β′ ≤ ε− ε2.
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This is possible if and only if

ε1, ε2 <
1
2 and ε ≥ max{2ε1 + ε2, 2ε2 + ε1}.

The continuity of multiplication follows from these estimations. �

It is known that this conclusion is false for ε1 = ε2 = ε = 0. Indeed, Hs(S1) is a 

multiplicative algebra under pointwise multiplication if and only if s > 1/2; see §2.8.3 
in [39].

Define the space

H
1
2−(S1) :=

⋂
s<1/2

Hs(S1) � H1/2(S1),

and endow it with the coarsest topology such that each inclusion

H
1
2−(S1) → Hs(S1), s < 1/2

is continuous, that is, H 1
2−(S1) has the initial topology defined by the inclusions 

H
1
2−(S1) → Hs(S1), s < 1

2 . This makes H 1
2−(S1) into a Fréchet space. Note that 

we have the continuous and strict inclusion

H
1
2 (S1) � H

1
2−(S1).

For example, the function u : S1 → R defined by

u(x) :=
{ 1 on [0, 1/2[

0 on [1/2, 1[,

is in H
1
2−(S1) but is not in H

1
2 (S1); see Lemma 3, §2.3.1 in [34].

Applying Theorem 4.2 to the space H
1
2−(S1) we conclude the following.

Corollary 4.3. The Fréchet space H
1
2−(S1) is a multiplicative algebra.

4.2. Composition

We identify an orientation preserving homeomorphism η : S1 → S1 with a continuous 
increasing function η : R → R such that η(x + 1) = η(x) + 1. This increasing function, 
defined by the condition

η(ei2πx) = ei2πη(x),

is unique up to an additive element k ∈ Z. Note that η − id is periodic and so may 
be viewed as a real valued function on S1. We say that a homeomorphism η is in 



F. Gay-Balmaz, T.S. Ratiu / Advances in Mathematics 279 (2015) 717–778 743

W s,p(S1, S1) if and only if η− id is in W s,p(S1). If η is differentiable, then the derivative 
η′ is periodic; that is, η′(x +1) = η′(x), and thus η′ can be viewed as a map η′ : S1 → R.

Let ξ : S1 → S1 be an orientation preserving homeomorphism and suppose that ξ
is absolutely continuous. Then ξ is almost everywhere differentiable and the change of 
variables formula
ˆ

S1

f(ξ(x))ξ′(x)dx =
ˆ

S1

f(y)dy,

is valid, for all f ∈ L1(S1); see Corollary 20.5 in [17].
In particular, this formula is valid when ξ ∈ H1(S1, S1) since in dimension one, 

absolutely continuous functions are exactly functions in W 1,1, see Theorem 2.17 in [7].

Lemma 4.4. Let f ∈ L4(S1) and η : S1 → S1 be an orientation preserving homeomor-
phism such that η−1 ∈ H1(S1, S1). Then f ◦ η ∈ L2(S1) and

‖f ◦ η‖2
L2 ≤ ‖f‖2

L4‖(η−1)′‖L2 .

As a consequence, for f ∈ Hs(S1), s ≥ 1
4 , we have f ◦ η ∈ L2(S1) and

‖f ◦ η‖2
L2 ≤ ‖f‖2

Hs‖(η−1)′‖L2 .

Proof. Since η−1 is in H1, we can use the change of variables formula and by the Cauchy–
Schwarz inequality we obtain

ˆ

S1

|f ◦ η|2 =
ˆ

S1

|f |2(η−1)′ ≤

⎛⎝ˆ
S1

|f |4
⎞⎠1/2⎛⎝ˆ

S1

|(η−1)′|2
⎞⎠1/2

.

Using (4.2), for all s ≥ 1/4 we have the continuous inclusion

Hs(S1) ⊂ L4(S1).

This proves the second assertion. �

We now prove a result about continuity with respect to η. This will need a stronger 
assumption on η.

Lemma 4.5. Let f ∈ Hs(S1), s ≥ 1/4. Let η be an orientation preserving homeomorphism 
of S1 such that η, η−1 ∈ H

3
2−ε(S1, S1) and let (ηn)n∈N be a sequence of orientation 

preserving homeomorphisms of S1 such that ηn, η−1
n ∈ H

3
2−ε(S1, S1), ηn → η, and 

η−1
n → η−1 in H

3
2−ε. Then, if ε ≤ 1/2, we have

‖f ◦ ηn − f ◦ η‖L2 → 0.



744 F. Gay-Balmaz, T.S. Ratiu / Advances in Mathematics 279 (2015) 717–778

Proof. Since s ≥ 1/4, Lemma 4.4 implies that f ◦ η, f ◦ ηn ∈ L2(S1). Next we turn to 
estimating ‖f ◦ ηn − f ◦ η‖L2 .

Given (an arbitrarily small) M > 0, there exists a smooth function f∞ ∈ C∞(S1) such 
that ‖f − f∞‖Hs < M . Since f∞ is uniformly continuous, there exists δ = δ(M) < M

such that |f∞(x) − f∞(y)| < M for all |x − y| < δ. There exists n0 ∈ N such that 

‖ηn − η‖

H
3
2−ε < δ and ‖η−1

n − η−1‖
H

3
2−ε < δ for all n ≥ n0. Since the H

3
2−ε topology is 

stronger than the C0 topology (since ε < 1), we also have ‖ηn − η‖C0 < δ for all n ≥ n0. 
Using a change of variables, we obtain

‖f ◦ ηn − f ◦ η‖2
L2 =

ˆ

S1

|f ◦ ηn − f ◦ η|2

≤ 4

⎡⎣ˆ
S1

|f ◦ ηn − f∞ ◦ ηn|2 +
ˆ

S1

|f∞ ◦ ηn − f∞ ◦ η|2 +
ˆ

S1

|f∞ ◦ η − f ◦ η|2
⎤⎦

≤ 4

⎡⎣ˆ
S1

|f − f∞|2(η−1
n )′ +

ˆ

S1

M2 +
ˆ

S1

|f − f∞|2(η−1)′
⎤⎦

≤ 4

⎡⎢⎣
⎛⎝ˆ
S1

|f − f∞|2α
⎞⎠1/α⎛⎝ˆ

S1

|(η−1
n )′|α′

⎞⎠1/α′

+
ˆ

S1

M2

+

⎛⎝ˆ
S1

|f − f∞|2α
⎞⎠1/α⎛⎝ˆ

S1

|(η−1)′|α′

⎞⎠1/α′⎤⎥⎦
≤ 4
[
‖f − f∞‖2

L2α‖(η−1
n )′‖Lα′ + M2 + ‖f − f∞‖2

L2α‖(η−1)′‖Lα′
]
.

These norms are finite if and only if

s ≥ 0, s− 1
2 ≥ − 1

2α ,
1
2 − ε ≥ 0, and 1

2 − ε− 1
2 ≥ − 1

α′ ,

or, equivalently

α′ ≥ 1
2s , ε ≤ 1

2 , and α′ ≤ 1
ε
.

It is possible to find such an α′ > 1, if and only if

1
ε
> 1 and 1

ε
≥ 1

2s .

Since s ≥ 1/4, the only condition is ε ≤ 1/2. In this case, we find
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‖f ◦ ηn − f ◦ η‖2
L2

≤ 4
[
‖f − f∞‖2

Hs‖(η−1
n )′‖

H
1
2−ε + M2 + ‖f − f∞‖2

Hs‖(η−1)′‖
H

1
2−ε

]
≤ 4
(
M2‖(η−1

n )′‖
H

1
2−ε + M2 + M2‖(η−1)′‖

H
1
2−ε

)

≤ 4M2

(
‖(η−1

n )′ − (η−1)′‖
H

1
2−ε + ‖(η−1)′‖

H
1
2−ε + 1 + ‖(η−1)′‖

H
1
2−ε

)
= 4M2

(
M + 1 + 2‖(η−1)′‖

H
1
2−ε

)
.

Since M > 0 can be arbitrary small, the result is proved. �
This proof shows that if f is continuous, for example when s > 1/2, it suffices to have 

ηn → η in C0 to obtain the same result, under the hypotheses of Lemma 4.4. However 
it is crucial for us to have s < 1/2.

Lemma 4.6. For all f ∈ H
1
2 (S1) and each orientation preserving homeomorphism η of 

S1 such that η, η−1 ∈ H
3
2−ε(S1, S1), where 0 < ε < 1

3 , we have

f ◦ η ∈ H
1
2−δ(S1), where δ > ε

2 − ε

1 − ε
.

More precisely, there are constants 0 < α1, α2 < 2 and C > 0 such that

‖f ◦ η‖
H

1
2−δ ≤ C‖f‖2

H
1
2

(
‖(η−1)′‖L2 + ‖(η−1)′‖α1

H
1
2−ε

‖η‖α2

H
3
2−ε

)
.

In particular, if η, η−1 ∈ H
3
2−ε(S1, S1) for all ε > 0, then

f ◦ η ∈ H
1
2−δ(S1), for all δ > 0.

Proof. By Lemma 4.4, we already know that f ◦ η ∈ L2(S1). We are searching for 
0 < δ < 1/2 such that

¨

S1

|f(η(x)) − f(η(y))|2
|x− y|2(1−δ) dxdy < ∞.

Given r > 0 and using the Hölder inequality, we have

¨

S1

|f(η(x)) − f(η(y))|2
|x− y|2(1−δ) dxdy =

¨

S1

|f(η(x)) − f(η(y))|2
|η(x) − η(y)|r

|η(x) − η(y)|r
|x− y|2(1−δ) dxdy

≤

⎛⎝¨
S1

|f(η(x)) − f(η(y))|2α
|η(x) − η(y)|rα dxdy

⎞⎠1/α⎛⎝¨
S1

|η(x) − η(y)|rα′

|x− y|2(1−δ)α′ dxdy

⎞⎠1/α′
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≤

⎛⎝¨
S1

|f(x) − f(y)|2α
|x− y|rα (η−1)′(x)(η−1)′(y)dxdy

⎞⎠1/α⎛⎝¨
S1

|η(x) − η(y)|rα′

|x− y|2(1−δ)α′ dxdy

⎞⎠1/α′

⎛⎝¨ |f(x) − f(y)|2αβ
⎞⎠1/αβ⎛⎝¨ −1 ′ β′ −1 ′ β′

⎞⎠1/αβ′
≤
S1

|x− y|rαβ
S1

(η ) (x) (η ) (y) dxdy

×

⎛⎝¨
S1

|η(x) − η(y)|rα′

|x− y|2(1−δ)α′ dxdy

⎞⎠1/α′

≤ ‖f‖2
Wσ1,2αβ‖(η−1)′‖2/α

Lβ′ ‖η‖rWσ2,rα′ (4.3)

for

σ1 = r

2 − 1
2αβ , σ2 = 2(1 − δ)

r
− 1

rα′ = 1 − 2δ
r

+ 1
αr

.

These quantities are finite if and only if the following conditions hold:

• 1
2 ≥ r

2 −
1

2αβ and 12 −
1
2 ≥ r

2 −
1

2αβ − 1
2αβ . If 1 < r < 2, these conditions are equivalent 

to the condition

αβ ≤ 2
r
.

• β′ ≤ 1
ε . This is equivalent to the condition

β ≥ 1
1 − ε

.

• 3
2 − ε ≥ 1−2δ

r + 1
αr and 3

2 − ε − 1
2 ≥ 1−2δ

r + 1
αr − 1

rα′ = 2
r ( 1

α − δ). These conditions 
are equivalent to the conditions

α ≥ 1
r(3

2 − ε) + 2δ − 1
, α ≥ 1

r
2 (1 − ε) + δ

.

Recall that δ > 0 and 0 < ε ≤ 1/2. So, if we take 4/3 < r < 2 we get

r

(
3
2 − ε

)
+ 2δ − 1 ≥ r

2(1 − ε) + δ.

Thus, in this case, it suffices to assume that

α ≥ 1
r
2 (1 − ε) + δ

.
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Summarizing, we need to find 1 < α, β < ∞ such that

β ≥ 1
1 − ε

, α ≤ 2
rβ

and α ≥ 1
r
2 (1 − ε) + δ

. (4.4)
The last two conditions can be fulfilled if and only if

2
rβ

> 1 and 2
rβ

≥ 1
r
2 (1 − ε) + δ

.

This is equivalent to

β <
2
r

and β ≤ 1 − ε + 2δ
r
. (4.5)

These conditions can be fulfilled if and only if

2
r
> 1 and 1 − ε + 2δ

r
> 1.

The first condition holds since we already assumed that r < 2. The second reads

δ >
rε

2 . (4.6)

Now we want to choose 1 < β < ∞. The first inequality in (4.4) and (4.5) show that 
this is possible if and only if

1
1 − ε

≤ 2
r

and 1
1 − ε

≤ 1 − ε + 2δ
r
,

that is,

r ≤ 2(1 − ε) and δ ≥ rε

2
2 − ε

1 − ε
.

If 0 < ε < 1/3, then it is possible to choose 4/3 < r < 2 such that r ≤ 2(1 − ε). Then, 
given this r, we can choose δ such that

δ ≥ rε

2
2 − ε

1 − ε
.

Note that the condition δ > rε
2 is automatically satisfied since

2 − ε

1 − ε
≥ 2.

The choice
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δ > ε
2 − ε

1 − ε

works. The estimation of f ◦ η in the H
1
2−δ-norm follows from (4.3) and the estimation 

given on the L2 norm in Lemma 4.4. �

Next, we give a slight improvement of Lemma 4.6 by decreasing the regularity re-

quirements on f .

Lemma 4.7. For all f ∈ H
1
2−τ (S1), 0 < τ ≤ 1

4 , and each orientation preserving homeo-
morphism η of S1 such that η, η−1 ∈ H

3
2−ε(S1, S1), where 0 < ε + τ < 1

3 , we have

f ◦ η ∈ H
1
2−δ(S1), where δ > (τ + ε)2 − ε

1 − ε
.

More precisely, there are constants 0 < α1, α2 < 2 and C > 0 such that we have

‖f ◦ η‖
H

1
2−δ ≤ C‖f‖2

H
1
2−τ

(
‖(η−1)′‖L2 + ‖(η−1)′‖α1

H
1
2−ε

‖η‖α2

H
3
2−ε

)
.

In particular, if f ∈ H
1
2−τ (S1) for all τ > 0 and η, η−1 ∈ H

3
2−ε(S1, S1) for all ε > 0, 

then

f ◦ η ∈ H
1
2−δ(S1), for all δ > 0.

Proof. By Lemma 4.4, we already know that f ◦η ∈ L2(S1). As in the preceding lemma, 
we are searching for 0 < δ < 1

2 such that

¨

S1

|f(η(x)) − f(η(y))|2
|x− y|2(1−δ) dxdy < ∞.

Given r > 0 we can do the same estimations as before, and the norms are finite if and 
only if the following conditions hold (only the first item is different):

• 1
2 − τ ≥ r

2 − 1
2αβ and 1

2 − τ − 1
2 ≥ r

2 − 1
2αβ − 1

2αβ . If 1 < r < 3
2 , these conditions are 

equivalent to the condition

αβ ≤ 2
r + 2τ .

• β′ ≤ 1
ε . This is equivalent to the condition

β ≥ 1
1 − ε

.
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• 3
2 − ε ≥ 1−2δ

r + 1
αr and 3

2 − ε − 1
2 ≥ 1−2δ

r + 1
αr − 1

rα′ = 2
r ( 1

α − δ). These conditions 
are equivalent to the conditions

α ≥ 1
r(3

2 − ε) + 2δ − 1
, α ≥ 1

r
2 (1 − ε) + δ

.

If we take 4
3 < r < 2 we have

r

(
3
2 − ε

)
+ 2δ − 1 ≥ r

2(1 − ε) + δ.

Thus, in this case, it suffices to assume that

α ≥ 1
r
2 (1 − ε) + δ

.

Thus, we need to find 1 < α, β < ∞ such that

β ≥ 1
1 − ε

, α ≤ 2
(r + 2τ)β and α ≥ 1

r
2 (1 − ε) + δ

.

The last two conditions can be fulfilled if and only if

2
(r + 2τ)β > 1 and 2

(r + 2τ)β ≥ 1
r
2 (1 − ε) + δ

.

This is equivalent to

β <
2

r + 2τ and β ≤ r(1 − ε) + 2δ
r + 2τ .

These conditions can be fulfilled if and only if

2
r + 2τ > 1 and r(1 − ε) + 2δ

r + 2τ > 1.

The first condition holds since we already assumed that r < 3
2 . The second reads

δ > τ + rε

2 .

Now we want to choose 0 < β < ∞. This is possible if and only if

1
1 − ε

≤ 2
r + 2τ and 1

1 − ε
≤ r(1 − ε) + 2δ

r + 2τ ,

that is,
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r ≤ 2(1 − ε− τ) and δ ≥ 2τ + rε(2 − ε)
2(1 − ε) .

If 0 < ε + τ < 1
3 , then it is possible to choose 4

3 < r < 2 such that r ≤ 2(1 − ε − τ). 
Then, given this r, we can choose δ such that
δ ≥ 2τ + rε(2 − ε)
2(1 − ε)

Note that the condition δ > τ + rε
2 is automatically satisfied since

2τ + rε(2 − ε)
2(1 − ε) ≥ 2τ

2(1 − ε) + rε

2
2 − ε

1 − ε
≥ τ

1 − ε
+ rε

2 2 > τ + rε

2 .

The choice

δ >
τ + ε(2 − ε)

1 − ε

works. The estimation on the H
1
2−δ norm follows from the estimation given in this proof 

and the one given on the L2 norm in Lemma 4.4. �
Lemma 4.8. Let (ηn)n∈N be a sequence of orientation preserving homeomorphisms of 
S1 such that ηn, η−1

n ∈ H
3
2−ε(S1, S1), where 0 < ε < 1

3 . Suppose that ηn → η and 
η−1 → η−1 in H

3
2−ε, where η is an orientation preserving homeomorphism of S1 such 

that η, η−1 ∈ H
3
2−ε(S1, S1). Then for all δ > ε2−ε

1−ε and for all f ∈ H
1
2 (S1), we have

‖f ◦ ηn − f ◦ η‖
H

1
2−δ → 0.

In particular, if the hypotheses on (ηn)n∈N and η hold for each ε > 0, then

‖f ◦ ηn − f ◦ η‖
H

1
2−δ → 0, for all δ > 0.

The following generalization is also valid: We can allow f to be in H
1
2−τ , with the 

conditions 0 ≤ τ < 1
4 and 0 < τ + ε < 1

3 . The same conclusion holds if

δ >
τ + ε(2 − ε)

1 − ε
.

If the hypotheses on f hold for each τ > 0 and the hypotheses on (ηn)n∈N and η hold for 
each ε > 0, then

‖f ◦ ηn − f ◦ η‖
H

1
2−δ → 0, for all δ > 0.
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Proof. Given M > 0, we can choose f∞ ∈ C∞(S1) such that ‖f − f∞‖
H

1
2
< M . We 

have:

‖f ◦ ηn − f ◦ η‖
H

1
2−δ

∞ ∞ ∞ ∞
≤ ‖(f − f ) ◦ ηn‖
H

1
2−δ + ‖f ◦ ηn − f ◦ η‖

H
1
2−δ + ‖(f − f) ◦ η‖

H
1
2−δ (4.7)

Lemma 4.6 implies

‖(f∞ − f) ◦ ηn‖
H

1
2−δ ≤ CM

(
‖(η−1

n )′‖L2 + ‖(η−1
n )′‖α1

H
1
2−ε

‖ηn‖α2

H
3
2−ε

)
.

If n is sufficiently large, we have ‖ηn − η‖
H

3
2−ε < M and ‖η−1

n − η−1‖
H

3
2−ε < M . Thus 

we can write

‖ηn‖ ≤ M + ‖η‖, ‖η−1
n ‖ ≤ M + ‖η−1‖

relative to any weaker norm. Hence we obtain

‖(f∞ − f) ◦ ηn‖
H

1
2−δ

≤ CM
[
M + ‖(η−1)′‖L2 +

(
M + ‖(η−1)′‖

H
1
2−ε

)α1 (
M + ‖η‖

H
3
2−ε

)α2]
,

which can be arbitrary small, by appropriately choosing M . The same method works for 
the last term ‖(f∞ − f) ◦ η‖

H
1
2−δ .

We now show that, given f∞ the sequence ‖f∞ ◦ ηn − f∞ ◦ η‖
H

1
2−δ tends to zero as 

n → ∞. To do this, we begin by noting that the integral
¨

S1×S1

|η(x) − η(y)|2
|x− y|2(1−δ) dxdy

is convergent because η ∈ H
3
2−ε(S1, S1) ⊂ H

1
2−δ(S1, S1). Let N > 0 be given. Then, 

there exists τ > 0 such that τ < N and

‖η‖
H

1
2−δ
τ

:=
¨

|x−y|<τ

|η(x) − η(y)|2
|x− y|2(1−δ) dxdy < N

(see, for example, Corollary 5.24 in [20]). For this τ > 0 there exists n0 ∈ N such that

‖ηn − η‖C0 = sup
x∈S1

|ηn(x) − η(x)| < τ,

‖ηn − η‖
H

3
2−ε < τ,

for all n ≥ n0. Since f∞ is smooth, it is Lipschitz; let L denote the Lipschitz constant. 
Thus, for n ≥ n0, we have
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¨

S1×S1

|f∞(ηn(x)) − f∞(ηn(y)) − f∞(η(x)) + f∞(η(y))|2
|x− y|2(1−δ) dxdy

=
¨

|x−y|<τ

+
¨

|x−y|≥τ
≤ 2L2
¨

|x−y|<τ

|ηn(x) − ηn(y)|2 + |η(x) − η(y)|2
|x− y|2(1−δ) dxdy

+ 2
¨

|x−y|≥τ

|f∞(ηn(x)) − f∞(η(x))|2 + |f∞(ηn(y)) − f∞(η(y))|2
|x− y|2(1−δ) dxdy

≤ 2L2
(
‖ηn‖

H
1
2−δ
τ

+ ‖η‖
H

1
2−δ
τ

)
+ 2

τ2(1−δ)

¨

|x−y|≥τ

(
|f∞(ηn(x)) − f∞(η(x))|2 + |f∞(ηn(y)) − f∞(η(y))|2

)
dxdy

≤ 2L2
(
‖ηn − η‖

H
1
2−δ
τ

+ 2‖η‖
H

1
2−δ
τ

)
+ 2

τ2(1−δ)

(
L2τ2 + L2τ2)

≤ 2L2(‖ηn − η‖
H

1
2−δ + 2‖η‖

H
1
2−δ
τ

) + 4L2τ2δ ≤ 2L2(τ + 2N) + 4L2τ2δ

≤ L2(6N + 4N2δ).

Thus, for any N > 0 there exists n0 ∈ N such that

¨

S1×S1

|f∞(ηn(x)) − f∞(ηn(y)) − f∞(η(x)) + f∞(η(y))|2
|x− y|2(1−δ) dxdy ≤ L2(6N + 4N2δ),

which shows that ‖f∞ ◦ ηn − f∞ ◦ η‖
H

1
2−δ → 0 by Lemma 4.5.

Now we return to the estimate (4.7). For the M > 0 chosen there, we therefore can 
find n1 ∈ N such that for all n ≥ n1, we have ‖f∞ ◦ ηn − f∞ ◦ η‖

H
1
2−δ < M . This shows 

that the right hand side of the inequality (4.7) is arbitrarily small.
The generalization is proved in the same way. �

Theorem 4.9. If u ∈ H
3
2 (S1) and η is an orientation preserving homeomorphism of S1

such that η, η−1 ∈ H
3
2−ε(S1, S1), for all ε > 0, then

u ◦ η ∈ H
3
2−ε(S1),

for all ε > 0. Moreover the map

η �→ u ◦ η ∈ H
3
2−ε(S1)
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is continuous in the following sense: If (ηn)n∈N is a sequence of orientation preserving 
homeomorphisms with ηn, η−1

n ∈ H
3
2−ε(S1, S1), such that

ηn → η in H
3
2−ε(S1, S1), η−1

n → η−1 in H
3
2−ε(S1, S1),
and

η, η−1 ∈ H
3
2−ε(S1, S1), for all ε > 0,

then

‖u ◦ ηn − u ◦ η‖
H

3
2−ε → 0, for all ε > 0.

The following generalization is also valid: We can allow u to be in H
3
2−τ , for all τ > 0, 

and the same conclusion holds.

Proof. We already know by Lemma 4.4 that u ◦ η ∈ L2(S1). The candidate for the first 
derivative of u ◦ η is (u′ ◦ η)η′. By Lemma 4.8, we have u′ ◦ η ∈ H

1
2−ε(S1) for all ε > 0. 

Since η′ ∈ H
1
2−ε(S1) for all ε > 0, we obtain that (u′ ◦ η)η′ ∈ H

1
2−ε(S1) for all ε > 0 by 

Theorem 4.2. From Lemma 4.5, we conclude that

‖u ◦ ηn − u ◦ η‖L2 → 0.

We have (u ◦ η)′ = (u′ ◦ η)η′. By Lemma 4.8, we know that

‖u′ ◦ ηn − u′ ◦ η‖
H

1
2−δ → 0, for all δ > 0,

since u′ ∈ H
1
2 . By the hypotheses, we also have

‖η′n − η′‖
H

1
2−δ → 0, for all δ > 0.

Thus, by Theorem 4.2, we have ‖(u ◦ ηn)′ − (u ◦ η)′‖
H

1
2−δ → 0, for all δ > 0. �

Theorem 4.10. Let (un)n∈N be a sequence such that un ∈ H
3
2−ε(S1) for all n ∈ N and 

all ε > 0, and suppose that

un → u in H
3
2−ε(S1), for all ε > 0.

Let (ηn)n∈N be a sequence of orientation preserving homeomorphisms of S1 such that 
ηn, η−1

n ∈ H
3
2−ε(S1, S1) for all n ∈ N and all ε > 0, and suppose that

ηn → η, η−1
n → η−1 in H

3
2−ε(S1, S1), for all ε > 0.
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Then

‖un ◦ ηn − u ◦ η‖
H

3
2−ε → 0, for all ε > 0.

Proof. We have
‖un ◦ ηn − u ◦ η‖
H

3
2−ε ≤ ‖(un − u) ◦ ηn‖

H
3
2−ε + ‖u ◦ ηn − u ◦ η‖

H
3
2−ε .

The second term converges to zero for all ε > 0 by Theorem 4.9. Next, we show that the 
first term also converges to zero for all ε > 0. Using the estimation given in Lemma 4.4, 
we have

‖(u− un) ◦ ηn‖2
L2 ≤ ‖u− un‖2

H
3
2−ε

‖(η−1
n )′‖L2

≤ ‖u− un‖2
H

3
2−ε

(
‖(η−1

n )′ − (η−1)′‖L2 + ‖(η−1)′‖L2
)

which can be arbitrary small. Using the estimation given in Lemma 4.7, we have

‖(u− un)′ ◦ ηn‖
H

1
2−δ ≤ C‖(u− un)′‖2

H
1
2−τ

(
‖(η−1

n )′‖L2 + ‖(η−1
n )′‖α1

H
1
2−ε

‖ηn‖α2

H
3
2−ε

)
which can be arbitrary small. Using Theorem 4.2, we obtain that

‖((u− un)′ ◦ ηn)η′n‖H 1
2−δ → 0.

Thus, for the first term, we have ‖(un − u) ◦ ηn‖
H

3
2−ε → 0, for all ε > 0. �

Corollary 4.11. Let (ηn)n∈N and (ξn)n∈N be two sequences of orientation preserving home-
omorphisms of S1 such that ηn, η−1

n , ξn, ξ−1
n ∈ H

3
2−ε(S1, S1) for all n ∈ N and all ε > 0, 

and suppose that

ηn → η, η−1
n → η−1 in H

3
2−ε(S1, S1), for all ε > 0,

and

ξn → ξ, ξ−1
n → ξ−1 in H

3
2−ε(S1, S1), for all ε > 0.

Then

ξn ◦ ηn → ξ ◦ η, (ξn ◦ ηn)−1 → (ξ ◦ η)−1 in H
3
2−ε(S1, S1), for all ε > 0.

Proof. We can write ξn(x) = x + un(x), where un ∈ H
3
2−ε(S1) for all ε > 0. We have 

ξn(ηn(x)) = ηn(x) + un(ηn(x)), that is, ξn ◦ ηn = ηn + un ◦ ηn. We have ξn → ξ in 
H

3
2−ε(S1, S1) if and only if un → u in H

3
2−ε(S1). Thus, by Theorem 4.10, we have 

ξn ◦ ηn = ηn + un ◦ ηn → η + u ◦ η = ξ ◦ η. The same considerations hold for the 
inverses. �
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5. Regularity in T and QS(S1)H◦

As we have seen before, QS(S1)H◦ is a Hilbert manifold and a topological group with 
smooth right translation, modeled on the Hilbert space H

3
2 (S1). It contains the Fréchet 

Lie group Diff+(S1) as a dense subgroup.

Recall that for s > 3/2, the group Diffs

+(S1) has exactly the same properties, namely, 
it is a smooth Hilbert manifold and a topological group with smooth right translation, 
modeled on the Hilbert space Hs(S1). It contains the Fréchet Lie group Diff+(S1) as a 
dense subgroup. Also, it is known that if η is a C1 diffeomorphism of S1 and if η is of 
class Hs, s > 3/2, then its inverse η−1 is automatically of class Hs. Therefore, the set 
defined by

Diffs
+(S1) := DiffC1

+ (S1) ∩Hs(S1, S1)

consists of Sobolev class Hs diffeomorphisms of S1. Moreover it is a group and an open 
subset of the Hilbert manifold Hs(S1, S1).

The flow of an H3/2 vector field. A similar definition is not possible in the critical case s =
3/2, since H

3
2 functions on S1 are not C1 in general. It is therefore natural to ask if there 

exists a group, denoted by Diff
3
2
+(S1), which replaces the group Diffs

+(S1) in the limiting 

case s = 3/2. The discussion above suggests that one can define Diff
3
2
+(S1) := QS(S1)H◦ . 

Note that in the case of Diffs
+(S1) with s > 3/2, the regularity of the group elements (the 

diffeomorphisms) and that of the model space (the vector fields) is the same, namely, 
the Sobolev Hs regularity. Since QS(S1)H◦ is modeled on H

3
2 (S1) it is natural to ask 

whether or not the group elements are in H
3
2 . The answer depends on examining the 

flows of H 3
2 (S1)-vector fields. Since H

3
2 (S1) ⊂ Z(S1), by [33], H 3

2 (S1)-vector fields have 
quasisymmetric flows; in particular, there is existence and uniqueness of integral curves. 
Unfortunately the flow need not be in H

3
2 (S1), as shown by the following theorem of [11].

Theorem 5.1. Let u ∈ C0
(
[0, T ], H 3

2 (S1)
)

and let η(t, x) be the solution of the ODE

⎧⎨⎩
d

dt
η(t, x) = u(t, η(t, x))

η(0, x) = x.
(5.1)

Then t �→ η(t, ·) is in L∞ ([0, T ],W 1+r,p(S1)
)

for all 0 < r < 1/2 and 1 ≤ p < 1/r.
Consider the vector field v on S1 given by

v(x) :=

⎛⎜⎝ xˆ

0

1/2ˆ

y

1
s
√

| log(s)| log | log(s)|
dsdy

⎞⎟⎠ϕ(x),

where ϕ is a smooth function such that
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Fig. 1. The graph in (q, r)-space of the Sobolev embedding W s,p(S1) ⊂ W r,q(S1). If u ∈ W s,p(S1), then 
u ∈ W r,q(S1) for all (q, r) ∈ D(p,s) including the boundary L(p,s). The hyperbola part of L(p,s) has 
horizontal asymptote r = s − 1

p .

0 ≤ ϕ ≤ 1, ϕ(x) = 1 for x ∈ [0, 1/4], ϕ(x) = 0 for x ∈ [1/2, 1].

Then, v ∈ H
3
2 (S1) but its flow is neither Lipschitz nor in W 1+r,1/r(S1, S1) for all 

0 < r < 1. In particular the flow of v is not in H
3
2 (S1, S1).

We now interpret the result of this theorem in terms of the Sobolev embedding. Recall 
that for all s, r ≥ 0 and p, q ≥ 1 such that s ≥ r and s − 1/p ≥ r − 1/q we have the 
continuous inclusion

W s,p(S1) ⊂ W r,q(S1).

Given a pair (p, s) ∈ [1, ∞[× [0, ∞[, we consider the domain D(p,s) in the plane defined 
by

D(p,s) :=
{

(q, r) ∈ [1,∞[× [0,∞[
∣∣∣∣ s ≥ r and s− 1

p
≥ r − 1

q

}
,

and the curve

L(p,s) :=
{
(q, t(q)) ∈ [1,∞[× [0,∞[

∣∣ t(q) = max{r | (q, r) ∈ D(p,s)}
}
⊂ D(p,s),

as in Fig. 1.
The interpretation of this graph is the following. Given u ∈ W s,p(S1), we have u ∈

W r,q(S1) for all (q, r) ∈ D(p,s). In particular, this also holds if (q, r) ∈ L(p,s).
Now consider a given time dependent vector field t �→ u(t, ·) ∈ C0

(
[0, T ], H 3

2 (S1)
)

with flow t �→ η(t, ·). Then from the above theorem and discussion, for all t ∈ [0, T ] we 
have



F. Gay-Balmaz, T.S. Ratiu / Advances in Mathematics 279 (2015) 717–778 757
Fig. 2. The graph in (q, r)-space of the regularity of the flow of an H 3
2 vector field on S1. The flow t 
→ η(t, ·)

of u ∈ C0
(
[0, T ], H

3
2 (S1)
)

is in L∞ ([0, T ],W r,q(S1, S1)
)
, for all (q, r) ∈ D(2,3/2) \L(2,3/2). The hyperbola 

part of L(2,3/2) has horizontal asymptote r = 1. The flow is not in the hyperbola part of L(2,3/2).

t �→ η(t, ·) ∈ L∞ ([0, T ],W r,q(S1, S1)
)
, for all (q, r) ∈ D(2,3/2) \ L(2,3/2).

This figure illustrates that the result in Theorem 5.1 is sharp.
In particular, the flow map generated by the time dependent vector field u ∈

C0
(
[0, T ], H 3

2 (S1)
)

is in L∞
(
[0, T ], H 3

2−ε(S1, S1)
)

for all ε > 0. This corresponds to 

the vertical interval {q = 2, 0 ≤ r < 3/2}; see Fig. 2. The counterexample in the theorem 
shows that the flow is not in the hyperbola part of L(2,3/2) and hence, in general, η(t, ·)
is not in H

3
2 (S1, S1).

Regularity. We now apply this result to the study of the regularity of the elements in 
QS(S1)H◦ . Consider an element η ∈ QS(S1)H◦ . By connectedness, we can consider a 
smooth curve η(t) such that η(0) = id and η(1) = η. This defines a continuous curve 
u(t) := TRη(t)−1 (η̇(t)) ∈ Tid QS(S1)H◦ = H

3
2 (S1) whose flow is given by η. Using the 

first equality in (3.1) and the previous theorem, we obtain that η and η−1 are in the 
Sobolev class H 3

2−ε for all ε > 0. Thus, we have

QS(S1)H◦ ⊂ H
3
2−ε(S1, S1), for all ε > 0.

The next theorem, shows that this inclusion is continuous.

Theorem 5.2. Let (ηn)n∈N be a sequence in QS(S1)H◦ such that ηn → id relative to the 
Hilbert manifold topology of QS(S1)H◦ . Then

ηn → id and η−1
n → id in H

3
2−ε, for all ε > 0.

Proof. By Theorem 3.2, it suffices to prove this in T = QS(S1)Hfix,◦. Let ηn(t) be a smooth 
curve in T such that ηn(0) = id and ηn(1) = ηn. For n sufficiently large, ηn lies in a local 
chart U around id, and we can choose ηn(t) to be locally a straight line. Thus, ηn(t)
can be seen as a sequence in Ck ([0, 1],T) , k ≥ 1, converging to the constant curve id in 
Ck([0, 1], T), k ≥ 1. Define un(t) := η̇n(t) ◦ ηn(t)−1 ∈ H

3
2 (S1). Note that η̇n(t) converges 
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to 0 in Ck−1([0, 1], T). By Lemma 5.3 below, the curve t �→ un(t) is continuous and 
the sequence un(t) converge to the constant curve 0 in C0([0, 1], T). Since the Banach 
manifold structure of QS(S1)B is weaker than the Hilbert manifold structure, ηn(t) also 
converges to id as a curve in Ck

(
[0, 1],QS(S1)B

)
, k ≥ 1. This implies that for ε > 0, we 

have
sup
t∈[0,1]

sup
x∈S1

|ηn(t)(x) − id| < ε,

for n sufficiently large. Thus, for all t, ηn(t) converges to id in C0(S1) and in particular 
in Lp(S1), for all p.

By Figolli [11], we know that the flow of the time dependent vector field u ∈
C0([0, 1], H 3

2 (S1)) is in H
3
2−ε(S1, S1) for all ε > 0. Moreover, by putting together all 

the estimations done in [11], we obtain, for all ε > 0, the inequality

‖η(t)′‖
H

1
2−ε ≤ A‖u′‖B

L∞
(
[0,T ],H

1
2
) (1 + ‖η‖CL∞([0,T ],Lp) + ‖u′‖D

L∞
(
[0,T ],H

1
2
)) ,

where all constants 0 < A, B, C, D < ∞ and 1 < p < ∞ depend on ε.
Thus, if ηn(t) converges to id in C0(S1) and un(t) converges to 0 in H

3
2 , then, for 

all t, ηn(t) converges to id in H
3
2−ε(S1), for all ε > 0. For t = 1, this implies that the 

sequence (ηn)n∈N converges to id in H
3
2−ε for all ε > 0. �

Lemma 5.3. Let G be a Hilbert manifold and a topological group whose right-translations 
Rg are smooth. Suppose that G carries a strong and right G-invariant smooth Rieman-
nian metric γ. Then the map

(g, ξh) ∈ G× TG �−→ TRg(ξh) ∈ TG (5.2)

is continuous. In particular, the map

(g, ξ) ∈ G× g �−→ TRg(ξ) ∈ TG

is a homeomorphism.
This result applies to G = T, endowed with the Weil–Petersson metric.

Proof. Since γ is a strong Riemannian metric, we can consider the associated exponential 
map exp : O ⊂ TG → G × G, where O is a neighborhood of the zero section. By 
restricting O, exp is a diffeomorphism onto its image. Using this diffeomorphism, and 
the fact that exp is G-invariant, the map (5.2) reads (g, h, f) �→ (hg, fg), which is 
continuous, since G is a topological group. �

Denote by Homeo+(S1, S1) the group of all orientation preserving homeomorphisms 
of S1. Define the space
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Diff
3
2−
+ (S1) :=

{
η ∈ Homeo+(S1, S1)

∣∣∣ η, η−1 ∈ H
3
2−ε(S1, S1), ∀ ε > 0

}
. (5.3)

As a consequence of Corollary 4.11, we obtain the following result.

Corollary 5.4. Diff
3
2−
+ (S1) is a group under composition.
As for H 1
2−(S1), there are elements η in Diff

3
2−
+ (S1) which are not in H

3
2 (S1, S1). 

The composition of two element in H
3
2 (S1, S1) is not in H

3
2 (S1, S1) in general, but only 

in H
3
2−ε(S1, S1) for all ε > 0.

Endow Diff
3
2−
+ (S1) with the coarsest topology, such that each inclusion

η ∈ Diff
3
2−
+ (S1) �→ (η, η−1) ∈ Hs1(S1, S1) ×Hs2(S1, S1), s1, s2 <

3
2

is continuous, that is, Diff
3
2−
+ (S1) has the initial topology defined by these in-

clusions. Thus, the topology is given by the system of neighborhoods V(ξ) =
{U(ξ, r, R) | r < 3/2, R > 0} of an element ξ, where

U(ξ, r, R) :=
{
η ∈ Diff

3
2−
+ (S1)

∣∣∣ ‖η − ξ‖Hr < R, ‖η−1 − ξ−1‖Hr < R
}
.

Applying again Corollary 4.11 we conclude the following.

Corollary 5.5. With this topology, Diff
3
2−
+ (S1) is a topological group.

Using Theorem 5.2, we obtain the following result.

Theorem 5.6. The natural inclusion

QS(S1)H◦ ⊂ Diff
3
2−
+ (S1)

is continuous.

Remark. We owe the following statement and proof to P. Michor. The topological group 

Diff
3
2−
+ (S1) acts on H

3
2−(S1, S1) by smooth right translations. The proof is based on the 

convenient calculus introduced and developed in [21]. Without loss of generality, one can 

replace H
3
2−(S1, S1) by H

3
2−(S1). Let η ∈ Diff

3
2−
+ (S1) (see (5.3)). Let t �→ f(t) be a 

smooth curve in H
3
2−ε(S1) for a fixed ε > 0. We have to show that t �→ f(t) ◦ η is again 

smooth in H
3
2−ε(S1). To prove this, we need to test against linear functionals α in a set 

S ⊂ H− 3
2+ε(S1) which is large enough to jointly recognize bounded sets in H

3
2−ε(S1). 

A weakly dense set of functionals suffices, so we may take α ∈ S = C∞(S1). We have

t �→ 〈f(t) ◦ η, α〉 =
ˆ

S1

f(t)(η(x))α(x)dx =
ˆ

S1

f(t)(y)α(η−1(y))(η−1)′(y)dy
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which is again smooth since (α ◦ η−1)(η−1)′ ∈ H
1
2−(S1) ⊂ H− 3

2+ε(S1). The change of 
variable in the integral above is allowed by Corollary 20.5 in [17].

Conjecture. Given u(t) ∈ C0([0, T ], H3/2(S1)), there exists a C1-curve t �→ η(t) ∈
QS(S1)H such that η̇(t) = TRη(t)(u(t)).
◦

Let us formulate precisely the problem. Given is u ∈ C0 ([0, T ], H3/2(S1)
)
. We know 

by Reimann [33] that there exists a unique flow η(t, x) such that

d

dt
η(t, x) = u(t, η(t, x)),

where η(t, ·) is quasisymmetric for all t. The statement of the conjecture is the stronger 
assertion that this curve is in QS(S1)H◦ and is differentiable with respect to the Hilbert 
manifold structure of QS(S1)H◦ . This is a natural question since H3/2(S1) is precisely 
the tangent space to QS(S1)H◦ at the identity.

If this conjecture holds, there are several interesting consequences.

(1) The Hilbert manifold QS(S1)H◦ contains exactly the flows of the time depen-
dent vector fields u ∈ C0 ([0, T ], H3/2(S1)

)
. This is in analogy to the standard 

fact that Diffs(S1) contains exactly the flows of the time dependent vector fields 
u ∈ C0 ([0, T ], Hs(S1)

)
when s > 3/2. This is a limiting case of the construction 

of groups of diffeomorphisms from time-dependent admissible vector fields used in 
imaging, as pointed out by P. Michor (see [40–42]).

(2) There exists η ∈ QS(S1)H◦ which is not in H3/2.

Proof. Take the flow of v in Theorem 5.1. Then η is not H3/2 but it belongs to QS(S1)H◦
because of the conjectured result. �
(3) For all s > 3/2 we have Diffs(S1) ⊂ QS(S1)H◦ .

Proof. Let η ∈ Diffs(S1). Take a smooth path t �→ ηt in Diffs(S1), such that η1 = η. 
This is possible because Diffs(S1) is connected in the Hs topology. The path t �→ ηt is 
the flow of the Hs time-dependent vector field η̇t ◦ η−1

t , which is also of Sobolev class 
H3/2. Thus η belongs to QS(S1)H◦ , again because of the above conjectured result. This 
proves the inclusion. �
Lie algebra structure. It is known that for all s > 3/2, the group Diffs

+(S1) is a Hilbert 
manifold modeled on the Hilbert space Xs(S1) of all Sobolev class Hs vector fields 
on S1. More precisely, Diffs

+(S1) is an open set in the Hilbert manifold Hs(S1, S1). 
It is also known that, with respect to the Hilbert manifold structure, Diffs

+(S1) is a 
topological group with smooth right translations. For s > 3/2, the subgroup Diffs

+(S1)fix
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of Diffs
+(S1) consisting of diffeomorphisms fixing the points ±1 and −i, is a closed 

codimension 3 Hilbert submanifold. The tangent space at the identity is

gs := Hs(S1)0 = {u ∈ Xs(S1) | u(±1) = u(−i) = 0}.
We now describe the Lie algebra bracket on the formal Lie algebra g
3
2 of T. Of course 

since T is not a literal Lie group, we must proceed formally, as one does with diffeo-
morphism groups. The bracket should be the same as that on the Lie algebra of smooth 
vector fields, which, as we saw earlier, is, on Lie algebra elements f(θ)∂/∂θ and g(θ)∂/∂θ,

[f, g](θ) = g(θ)f ′(θ) − g′(θ)f(θ)

We assert that this makes sense for f, g ∈ g
3
2 , producing a vector field in H

1
2 . To see this, 

we use a standard result about pointwise multiplication in Hr, namely the following (see 
for instance, Theorem 9.13 in [32]):

Theorem 5.7. If t > n
2 and r ≥ −t, pointwise multiplication extends from

C∞(M,R) × C∞(M,R) → C∞(M,R)

to a continuous bilinear map

Ht(M,R) ×Hr(M,R) → Hmin{r,t}(M,R). (5.4)

In particular, for |r| ≤ t, Hr(M, R) is an Ht(M, R)-module.

6. Completeness of the universal Teichmüller space

We denote by g the Weil–Petersson Riemannian metric on T. Recall that this makes T
into a strong Riemannian Hilbert manifold that is also a topological group with smooth 
right translations and that g is right invariant. The results below apply equally well 
to T (1)H ; recall that T is diffeomorphic to the connected component of the identity of 
T (1)H .

By invariance of the metric under right translations and the fact that the metric is 
strong, we obtain the following result.

Proposition 6.1. The Riemannian manifold (T, g) is geodesically complete. The geodesic 
spray of the metric gH is smooth and there is an associated Levi-Civita connection. The 
curvature and Ricci tensors are bounded operators, the sectional curvature is negative, 
and thus, there are no conjugate points.
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Proof. Recall that the geodesic spray of the metric is defined by the condition

iZΩ = dE, (6.1)

where E : TT → R is the right invariant kinetic energy of the Weil–Petersson metric gH
and where Ω is the strong symplectic form on TT that is obtained by the Hilbert bundle 
isomorphism of TT to T ∗T associated to the (strong) Weil–Petersson metric. Since Ω is 
a strong symplectic form and E is a smooth function, Eq. (6.1) defines a smooth vector 
field Z on the tangent bundle TT of the Hilbert manifold T. Therefore we obtain the 
local existence and uniqueness of a smooth geodesics with initial velocity u ∈ g

3
2 .

To show that the integral curves of Z are globally defined, we use the following 
standard argument. Indeed, one has

Lemma 6.2. Let G be a smooth strong Riemannian Hilbert manifold that is also a topo-
logical group with smooth right translation. Then geodesics on G exist for all time.

Proof. We begin by showing that for any v ∈ TidG the geodesic γv satisfying γ̇v(0) = v

exists for all time. Since γλv(t/λ) = γv(t) for any λ > 0 and t in the domain of definition 
of γv, it suffices to prove the statement for ‖v‖ small.

The local existence and uniqueness theorem for Z implies that there is a ball B ⊂ TidG

of initial velocities, τ > 0, and a smooth map F : B× ]−τ, τ [→ TG, such that the curve 
vu : ]−τ, τ [→ TG, defined by vu(t) := F (u, t) is an integral curve of Z with initial 
condition vu(0) = u. In particular, all integral curves of Z starting in B exist for a time 
at least |t| < τ . Now extend the integral curve v(t) starting at v0 ∈ B to a maximal 
time interval [0, T [. By conservation of energy, we have ‖v(t)‖ = ‖v0‖ for all t ∈ [0, T [. 
Since the topology of the manifold coincides with the topology defined by the geodesic 
distance, v(t) lies in the ball obtained by right translation of B to the point x(t), where 
x(t) ∈ G is the base point of v(t). Since right translation is a diffeomorphism and the 
vector field Z is smooth and right invariant, the time of existence for initial conditions 
in this translated ball is at least τ . Thus v(t) can be extended beyond T which proves 
that it exists for all t ∈ R.

For geodesics starting at points whose base is not the identity, one uses right transla-
tion to reduce to this cases. �

The existence of the associated Levi-Civita connection ∇ follows as in the finite di-
mensional case, since the metric is strong. Consider the curvature tensor

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

In local charts, for u, v, w ∈ g
3
2 , the curvature tensor has the expression

R(x)(u, v, w) = DΓ(x)(v) · (u, z) − DΓ(x)(u) · (v, z)
− Γ(x)(u,Γ(x)(v, w)) − Γ(x)(v,Γ(x)(u,w)),
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where Γ(x) denotes the local Christoffel map associated to the geodesic spray, that is, we 
have Z(x, u) = (x, u, u, Γ(x)(u, u)) in local coordinates. By strongness of the metric, we 
know that D is the Fréchet derivative with respect to the strong topology H

3
2 . Therefore, 

for all η ∈ T, R(η) is a bounded trilinear operator on TηT (1)H with respect to the Hilbert 
topology. Note that this argument does not work in the case of a weak Riemannian metric 

with smooth geodesic spray. Indeed, when the metric is weak, the Fréchet derivative D
is taken relative to a weaker topology and an explicit proof is needed to show that the 
curvature operator is bounded (see [28] for an example where this situation occurs; this 
is the case for the L2 weak metric appearing in the study of the Euler equations).

Theorem 7.11 in [37], states that the Ricci tensor Ric is well-defined as the trace of 
the curvature tensor and that

Ric = − 13
12πg.

It follows that the Ricci tensor is a bounded bilinear operator.
Given a WP geodesic γ, we consider the Jacobi equation along γ

∇γ̇∇γ̇X −R(γ)(X, γ̇)γ̇ = 0. (6.2)

Since the curvature operator is bounded, using the same arguments as in Proposition 3.10 
in [28], we obtain that for u, v ∈ g

3
2 there exists a unique vector field X(t) along γ that 

is a solution of (6.2) satisfying X(0) = u and ∇γ̇X(0) = v. Since the sectional curvature 
is negative (see Theorem 7.14 in [37]), there are no conjugate points. �
Corollary 6.3. The Riemannian exponential map expη : TηT (1)H◦ → T (1)H◦ at any point 
η ∈ T (1)H◦ is a covering map. The Riemannian manifold (T, g) is a complete metric 
space relative to the distance function induced by the strong Weil–Petersson Riemannian 
metric.

Proof. The first statement consists of the extension of the Cartan–Hadamard Theorem 
to the infinite dimensional case ([23], Chapter IX, §3, Theorem 3.8).

Recall that any strong Riemannian metric on a Hilbert manifold induces a distance 
function. For general infinite dimensional strong Riemannian Hilbert manifolds, Cauchy 
completeness implies geodesic completeness but the converse is, in general, false ([23], 
Chapter VIII, §6). However, if the sectional curvature is ≤ 0 and the manifold is con-
nected, Corollary 3.9 in Chapter IX, §3 of [23] proves that geodesic completeness and 
Cauchy completeness are equivalent. �
7. The Euler–Weil–Petersson equation

In this section we shall study the geodesic equation in Eulerian (spatial) representa-
tion.
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The associated Euler–Poincaré equation. Using the general theory of Euler–Poincaré 
reduction, we know that for γt a geodesic of the Weil–Petersson metric on T, the curve

ut := γ̇t ◦ γ−1
t ∈ TidT = g

3
2

should formally be a solution of the Euler–Poincaré equation

d

dt

δ�

δut
= − ad∗

ut

δ�

δut
,

where � : g
3
2 → R, l(u) = 1

2gid(u, u) is the Weil–Petersson Lagrangian. We call this 
equation the Euler–Weil–Petersson equation (or the EWP equation for short). For the 
moment we shall proceed somewhat formally and then after this, will turn to the rigorous 
interpretation of the equation. Below we derive the EWP equation explicitly and examine 
several representations of it.

The solution of the Euler–Poincaré equation formally does not depend on the choice 
of the duality pairing. Consider the L2 pairing on L2(S1)

〈u, v〉 =
ˆ

S1

uv. (7.1)

This pairing extends to a pairing between Hs(S1) and H−s(S1) for any s ∈ R. Therefore 
the dual space to the closed subspace gs = {u ∈ Hs(S1) | u(±1) = u(−i) = 0} of 
Hs(S1), s > 1/2, with respect to the pairing (7.1), is H−s(S1)/N , where N = {v ∈
H−s(S1) | 〈v, u〉 = 0, for all u ∈ gs}.

With respect the pairing (7.1), the Weil–Petersson Lagrangian reads

�(u) = 1
2 〈Qop(u), u〉, (7.2)

where Qop : Hs(S1) → Hs−3(S1), s ∈ R, is the symmetric operator given by

Qop

(∑
n∈Z

une
inx

)
= 1

8
∑
n∈Z

|n|(n2 − 1)une
inx = 1

8
∑

n �=−1,0,1

|n|(n2 − 1)une
inx.

Properties of the operator Qop. We have Qop = 1
8 J ◦(∂3 + ∂) where J is the Hilbert-

transform of Theorem 2.10. Thus, while Qop is not literally a third order elliptic dif-
ferential operator, it has similar properties. Namely, since J : Hs(S1) → Hs(S1) is 
an isomorphism for all s and since ∂3 + ∂ is literally a third order elliptic differential 
operator, we have the properties

(1) Qop : Hs(S1) → Hs−3(S1) and
(2) Qop(u) ∈ Hs(S1) ⇒ u ∈ Hs+3(S1).
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We have

ker(Qop) = psu(1, 1) and Im(Qop) =

⎧⎨⎩ ∑
n �=−1,0,1

vne
inx

∣∣∣∣∣∣ v−n = vn

⎫⎬⎭ ∩Hs−3(S1).
We now study the kernel and image of Qop|gs , the restriction of Qop to gs for s > 1/2. 
Since ker(Qop) = psu(1, 1) as we have observed, we see that kerQop|gs = kerQop ∩ gs =
{0} because elements of psu(1, 1) that vanish at three points are identically zero. Thus, 
Qop|gs is injective.

Next, we consider the image of Qop|gs . We claim that

Im(Qop|gs) = Im(Qop).

Indeed, for m ∈ Im(Qop) there exists u ∈ Hs(S1) such that m = Qop(u). Let ū ∈
psu(1, 1) be such that ū and u have the same values at ±1 and −i. We have u − ū ∈ gs

and Qop(u − ū) = Qop(u) = m, therefore m ∈ Im(Qop|gs).
It follows, in particular, that

Qop : g 3
2 → Im(Qop) ⊂ H− 3

2 (S1)

is an isomorphism. As a consequence, note that the representation of l given by (7.2) is 
well-defined on g

3
2 since u ∈ H

3
2 (S1) and Qop(u) ∈ H− 3

2 (S1).
With respect to the pairing (7.1), the infinitesimal coadjoint action reads

ad∗
u m = 2mu′ + m′u; (7.3)

more precisely we should write ad∗
u[m] = [2mu′ + m′u], where [n] := n + N denotes the 

equivalence class modulo N for any n ∈ H− 3
2 (S1). One can check that [2mu′ + m′u]

does not depend on the choice of m ∈ [m].
The functional derivative of l is

δl

δu
= Qop(u).

Thus, the Euler–Weil–Petersson equation reads

ṁ + 2mu′ + m′u = 0, m = Qop(u) ∈ H− 3
2 (S1). (7.4)

However, there is a major difficulty with this formal argument. Namely, (7.3) as well 
as (7.4) make no sense as written. We will repair this deficiency shortly, but to appreciate 
the problem, we make some further remarks about this form of the EWP equation.

We assert that the expression ad∗
u m = 2mu′ + m′u is not well defined for u ∈ g

3
2 . 

Indeed, Theorem 5.7 and Theorem 4.2 clearly do not apply to our situation, and this 
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suggests that pointwise multiplication of u′ ∈ H
1
2 and m ∈ H− 3

2 is not defined. Thus, it 
seems that one cannot write the Euler–Poincaré equation. As another way of expressing 
the same essential difficulty, one can try to write the Euler–Poincaré equation in weak 
form to see if it makes sense. As we shall see, it does not, again as written. Indeed, write
〈

d

dt
m,ϕ

〉
= 〈m, [u, ϕ]〉, ∀ϕ ∈ C∞(S1), m = Qop(u). (7.5)

This is also not well-defined since on the right hand side there is an L2 pairing between 
m ∈ H− 3

2 and [u, ϕ] ∈ H
1
2 .

Remark. This sort of difficulty does not occur for the Camassa–Holm (or Euler, or Euler-
alpha) equation. For example, for the Camassa–Holm equation, we have ṁ + 2mu′ +
m′u = 0; that is u̇ + Q−1

op (2mu′ + m′u) = 0, where here, m = Qop(u) = (1 − α2∂2)u. 
Since u ∈ Hs, s > 3/2, we have m ∈ Hs−2 and so, by Theorem 5.7, 2mu′ +m′u ∈ Hs−3. 
Therefore Q−1

op (2mu′ + m′u) ∈ Hs−1. We also know that u ∈ C0(I, Hs) ∩ C1(I, Hs−1). 
Thus, it is meaningful to write the Camassa–Holm equation in Euler–Poincaré form.

The geometric form of the EWP equation. We now claim that the preceding difficulties 
disappear if one writes the equation directly in terms of u without introducing the dual 
space. In doing so, we will heavily exploit the fact that the spray of the WP metric is 
smooth.

Let γ(x, t) be a WP geodesic, for x ∈ S1. Thus, as a function of t, and thought of as 
a curve in T, it is smooth because the spray of the WP metric is smooth. Thus, γ̇ and 
γ̈ are well defined. According to the fact that there is a smooth WP spray, we can write

γ̈ = Z(γ̇).

By definition of u, we have

u(γ(x, t), t) = γ̇(x, t).

This makes sense and defines a continuous curve ut ∈ g
3
2 because, by Takhtajan–Teo 

theory, T is a topological group, right multiplication is smooth and the tangent space 
at the identity is g 3

2 . Since multiplication on the left is not smooth, ut need not be 
differentiable as a curve in g

3
2 . A formal computation shows that ut can, at most, be 

differentiable as a curve in H
1
2 . This is made precise in the following theorem.

Theorem 7.1. Let γt be a geodesic of the Weil–Petersson metric. Then the continuous 
curve t ∈ R �→ ut := γ̇t ◦ γ−1

t ∈ H
3
2 (S1) is continuously differentiable as a curve in 

H
1
2 (S1). Its derivative is given by

u̇t = −u′
tut + Z(ut). (7.6)
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Proof. Using Lemma 5.3, the map

U = u ◦ η ∈ TT �→ (u, η) ∈ g
3
2 × T

is continuous. Thus, with Corollary 4.11, the inclusion
TT ⊂ H
3
2−(S1) =

⋂
s<3/2

Hs(S1)

is continuous. Since the candidate for the time-derivative of ut is Z(ut) −u′
tut, we proceed 

as follows.
We have∥∥∥∥ut+h − ut

h
−Z(ut) + u′

tut

∥∥∥∥
1/2

=

∥∥∥∥∥ γ̇t+h ◦ γ−1
t+h − γ̇t ◦ γ−1

t

h
−Z(ut) + u′

tut

∥∥∥∥∥
1/2

≤
∥∥∥∥∥ γ̇t+h ◦ γ−1

t+h − γ̇t ◦ γ−1
t+h

h
−Z(ut)

∥∥∥∥∥
1/2

(7.7)

+

∥∥∥∥∥ γ̇t ◦ γ−1
t+h − γ̇t ◦ γ−1

t

h
+ u′

tut

∥∥∥∥∥
1/2

. (7.8)

We now treat the term (7.7). We have∥∥∥∥∥ γ̇t+h ◦ γ−1
t+h − γ̇t ◦ γ−1

t+h

h
−Z(ut)

∥∥∥∥∥
1/2

≤
∥∥∥∥( γ̇t+h − γ̇t

h
−Z(γ̇t)

)
◦ γ−1

t+h

∥∥∥∥
1/2

+
∥∥Z(γ̇t ◦ γ−1

t+h) −Z(γ̇t ◦ γ−1
t )
∥∥

1/2 .

Since Z(γ̇t) = γ̈t, the expression γ̇t+h−γ̇t

h −Z(γ̇t) converges to 0, as h → 0, with respect 
to the Weil–Petersson topology. Thus, by Theorem 4.10 the limit of the first term is 0. 
The limit of the second term is clearly 0. Note that the previous estimations can be done 
with the stronger norms H 3

2−ε, for all ε > 0.
We now treat the term (7.8). We have∥∥∥∥∥ γ̇t ◦ γ−1

t+h − γ̇t ◦ γ−1
t

h
+ u′

tut

∥∥∥∥∥
1/2

=

∥∥∥∥∥ut ◦ (γt ◦ γ−1
t+h) − ut

h
+ u′

tut

∥∥∥∥∥
1/2

. (7.9)

Thus, we need to show that for each t, the continuous curve

h �→ ut ◦ γt ◦ γ−1
t+h ∈ TT ⊂ H

3
2−ε(S1), for all ε > 0, (7.10)
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is differentiable at h = 0, as a curve in H
1
2 (S1). We first prove that for all 0 < ε1 < 1

the curve

h �→ γt ◦ γ−1
t+h ∈ T ⊂ H

3
2−ε1(S1, S1),
is differentiable at h = 0, where H
3
2−ε1(S1, S1) is endowed with its natural Hilbert 

manifold structure (which exists because 3
2 − ε1 > 1

2 ). Note that∥∥∥∥∥γt ◦ γ−1
t+h − id

h
+ ut

∥∥∥∥∥
3
2−ε1

→ 0

is equivalent to ∥∥∥∥γt − γt+h

h
+ ut ◦ γt+h

∥∥∥∥
3
2−ε1

→ 0,

by Theorem 4.10. Furthermore, we have∥∥∥∥γt+h − γt
h

− ut ◦ γt+h

∥∥∥∥
3
2−ε1

≤
∥∥∥∥γt+h − γt

h
− ut ◦ γt

∥∥∥∥
3
2−ε1

+ ‖ut ◦ γt − ut ◦ γt+h‖ 3
2−ε1

.

The limit of the first term is zero since γ̇t = ut ◦ γt with respect to the Weil–Petersson 
topology. The second term converges to zero since h �→ γt+h is continuous with respect 
to the Weil–Petersson topology and by Theorem 4.10.

In order to show that the curve (7.10) is differentiable at 0, as a curve in H
1
2 (S1), we 

need to show that the map

η ∈ H
3
2−ε1(S1, S1) �→ u ◦ η ∈ H

1
2 (S1)

is differentiable at id. Note that this map is only well-defined on a subset of 
H

3
2−ε1(S1, S1), which contains T, and is not continuous with respect to the topology of 

H
3
2−ε1(S1, S1). Moreover, η ∈ H

3
2−ε1(S1, S1) and u ∈ H

3
2 does not imply that u ◦ η ∈

H
1
2 (S1) because the hypotheses of Theorem 4.10 require that η−1 ∈ H

3
2−ε1(S1, S1) for 

small ε1 > 0. Theorem 5.2 shows that the domain of this map contains T because any 
η ∈ T satisfies η, η−1 ∈ H

3
2−ε1(S1, S1) for all ε1 > 0.

In spite of these problems, we shall prove that this map, defined only on its domain, 
is differentiable at id.

Recall that the functions in H1 are absolutely continuous and so are differentiable a.e. 
For absolutely continuous functions, the fundamental theorem of calculus is still valid 
(see [17], §18). Since u is in H

3
2 (S1), we can write, for all x, v ∈ R,

u(x + v) − u(x) =
1ˆ

0

u′(x + tv)v dt.
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Thus, at points x at which u is differentiable, we have, for all v,

u(x + v) − u(x) − u′(x)v =
1ˆ

0

(u′(x + tv) − u′(x))v dt.
Let w ∈ H
3
2−ε1(S1) = TeH

3
2−ε1(S1, S1). Since the previous formula is valid for all v, we 

can write

u(x + w(x)) − u(x) − u′(x)w(x) =
1ˆ

0

(u′(x + tw(x)) − u′(x))w(x)dt. (7.11)

By Theorem 4.10 and Theorem 5.7 we know that t ∈ [0, 1] �→ (u′ ◦ (id + tw) − u′)w ∈
H

1
2 is a continuous function if ε1 > 0 sufficiently small, and for admissible w, that is, such 

that id+w and its inverse are in H
3
2−ε1(S1). For the same reasons u ◦(id+w) −u −u′w ∈

H
1
2 (S1). Thus, it makes sense to ask whether the identity

u ◦ (id + w) − u− u′w =
1ˆ

0

(u′ ◦ (id + tw) − u′)wdt (7.12)

holds as an equality in H
1
2 (S1). The two sides of the equality above can be evaluated 

for all x in a subset of S1 whose complement has measure zero. For x in this set, the 
evaluation of the left hand side of (7.12) clearly coincides with the left hand side of 
(7.11). The evaluation at x of the right hand side of (7.12) equals the right hand side of 
(7.11) by the definition of the integrals in both formulas.

Given M > 0, there is δ > 0 such that if ‖w‖ 3
2−ε1 < δ we have

‖u′ ◦ (id + tw) − u′‖ 1
2
< M,

by Theorem 4.10. Using the properties of the integral in Hilbert spaces and Theorem 5.7, 
we obtain∥∥∥∥∥∥

1ˆ

0

(u′ ◦ (id + tw) − u′)wdt

∥∥∥∥∥∥
1
2

≤ C‖u′ ◦ (id + tw) − u′‖1/2‖w‖ 3
2−ε1 ≤ CM‖w‖ 3

2−ε1 .

This proves that

‖u ◦ (id + w) − u− u′w‖ 1
2
≤ CM‖w‖ 3

2−ε1 .

Therefore, the map

η ∈ H
3
2−ε1(S1, S1) �→ u ◦ η ∈ H

1
2 (S1)
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is differentiable at id with respect to admissible directions. Since this map is well-defined 
on the curve h �→ γt ◦ γ−1

t+h, and since this curve is differentiable at 0, we obtain that the 
curve

h �→ ut ◦ γt ◦ γ−1
t+h ∈ H

1
2 (S1)
is differentiable at h = 0 and its derivative is −u′
tut. Thus we obtain that the expression 

(7.9) converges to zero, for all t ∈ R. This proves that the curve t �→ ut is differentiable 
and its derivative is

u̇t = −u′
tut + Z(ut).

Since we already know that t �→ ut is continuous in H
3
2 (S1), we obtain, by Theorem 5.7

and by the smoothness of the geodesic spray, that t �→ −u′
tut + Z(ut) is a continuous 

curve in H
1
2 (S1). This show that t �→ ut is in C1

(
R, H

1
2 (S1)
)
. �

This shows the remarkable fact that the Eulerian representation of the geodesics of the 
Weil–Petersson metric on the universal Teichmüller space have the same property as the 
Eulerian representation of geodesics in fluid mechanics (incompressible Euler, Euler-α, 
higher dimensional Camassa–Holm). Namely, the regularity of the Eulerian velocity is 
always of the form

vt ∈ C0([0, T ], Hs) ∩ C1([0, T ], Hs−1), for all s > n

2 + 1.

However, note that for the Euler–Weil–Petersson equation we are obliged to use the 
critical exponent s = 3/2. Long time existence follows from the strongness of the metric, 
as we have seen in Proposition 6.1, that is, we have

ut ∈ C0
(
R, H

3
2

)
∩ C1
(
R, H1/2

)
.

Summary. We conclude this section by giving a brief summary of the properties of the 
WP geodesics on the Riemannian manifold (T, g). Recall that T is by definition the 
Hilbert manifold Φ(T (1)H◦ ), where T (1)◦ is the connected component of the identity of 
the universal Teichmüller space endowed the with the Takhtajan–Teo Hilbert manifold 
structure. Alternatively, T can also be seen as the closure of the diffeomorphism group 
Diff+,fix(S1) in the group QS(S1)Hfix of quasisymmetric homeomorphisms relative to the 
Hilbert manifold structure. The homeomorphisms in T as well as their inverse, are of 
Sobolev class Hs for all s < 3

2 .
Given a homeomorphism γ in T and a direction uγ ∈ TγT, there exists a unique 

geodesic γ(t) starting at γ with initial velocity uγ . Moreover, this geodesic can be ex-
tended for all time. The associated Eulerian velocity u(t) := γ̇(t) ◦ γ(t)−1 solves the 
Euler–Weil–Petersson equations and defines a continuous curve in H

3
2 , differentiable as 

a curve in H
1
2 .
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8. Teichons as particular WP geodesics

In this section we consider particular solutions of the Euler–Weil–Petersson equation, 
analogue to the peakons solutions of the Camassa–Holm equations. They are naturally 

called Teichons. Recall that in the case of Camassa–Holm equations, these peakons are 
singular solutions and are not obtained by solving the geodesic spray equations on the 
group of Sobolev diffeomorphism Diffs

+(S1), s > 3/2. As we will see below, the situation 
is different for the Teichons. For the Camassa–Holm equations, the peakons are given by 
expression of the form u(x) =

∑N
j=1 pjG(x − qj), where G denotes the Green’s function 

of the operator (1 − α2∂2
x). The associated momentum m = (1 − α2∂2

x)u is interpreted 
as a momentum mapping for the left action of the diffeomorphism group Diff+(S1) on 
the Cartesian product of N circles.

Teichons. In the case of the Euler–Weil–Petersson equation, the Green’s function is

G(x) = 4
π

∑
n �=−1,0,1

einx

|n|(n2 − 1) ,

since for Qop = 1
8 J ◦(∂3

x + ∂x) we have

Qop(G) = 1
2π
∑

n �=−1,0,1

einx = P(δ) = 1
2π
∑

n �=−1,0,1

einx,

where δ is the Dirac distribution and P is the projection onto the space hs = {u ∈
Hs(S1) | u0 = u1 = u−1 = 0}, s ∈ R. From the expression for the Green’s function, we 
see that

G ∈ h5/2−ε, for all ε > 0.

Recall that Qop : hs → hs−3 is an isomorphism. For s > 1/2, Qop : gs → hs−3 is also an 
isomorphism.

We search for solutions of the weak Euler–Weil–Petersson equation (7.5) of the form

u(x, t) =
N∑
j=1

pj(t)G(x− qj(t)) (8.1)

and want to determine (qj(t), pj(t)). We begin by noting that it makes sense to search 
for solutions of this type. Indeed, all the terms in the equation 〈ṁ, ϕ〉 + 〈m,u′ϕ〉 −
〈m,uϕ′〉 = 0 make sense. In the second term m ∈ H− 1

2−ε(S1) and u′ ∈ H
3
2−ε(S1)

so the L2 integral of their product makes sense for this form of u. In the third term, 
m ∈ H− 1

2−ε(S1) and u ∈ H
5
2−ε(S1) so the L2 integral of their product also makes sense.
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Let

m(x, t) = (Qopu)(x, t) =
N∑
j=1

pj(t)(Pδ)(x− qj(t)) = P

⎛⎝ N∑
j=1

pj(t)δ(x− qj(t))

⎞⎠ .
Assume that

N∑
j=1

pj(t) =
N∑
j=1

pj(t)eiqj(t) =
N∑
j=1

pj(t)e−iqj(t) = 0. (8.2)

Now note these three expressions are 2π times the n = 0, ±1 Fourier coefficients of ∑N
j=1 pj(t)δ(x − qj(t)). Therefore, under the conditions (8.2),

m(x, t) =
N∑
j=1

pj(t)δ(x− qj(t)).

Note that m(·, t) ∈ h−1/2−ε. A direct computation shows that 〈ṁ, ϕ〉 + 〈m,u′ϕ〉 −
〈m,uϕ′〉 = 0 for every ϕ ∈ C∞(S1) if and only if

∂tqj =
N∑
i=1

piG(qi − qj) = ∂H

∂pj
, ∂tpj = −

N∑
i=1

pipjG
′(qi − qj) = −∂H

∂qj
, (8.3)

relative to the collective Hamiltonian H : [T ∗S1]N → R given by

H(q,p) = 1
2

N∑
i,j=1

pipjG(qi − qj).

The conditions (8.2) are conserved along the flow of (8.3) and thus we need to impose 
them only on the initial conditions, that is,

N∑
j=1

pj(0) =
N∑
j=1

pj(0)eiqj(0) =
N∑
j=1

pj(0)e−iqj(0) = 0. (8.4)

Note that since G ∈ H
5
2−ε(S1), the right hand side of (8.3) is in H

3
2−ε(S1) ⊂ C0(S1)

and thus the solution is C1 in time.
Recall that the Euler–Weil–Petersson equation in weak form makes no sense if u is 

only in H3/2(S1), but here the Ansatz u(x, t) =
∑N

j=1 pj(t)G(x −qj(t)) is in H5/2−ε(S1), 
for all ε > 0, therefore it makes sense to say that u(x, t) =

∑N
j=1 pj(t)G(x − qj(t)) is a 

weak solution of the Euler–Weil–Petersson equation.
Note that the solutions of (7.5) are in H

5
2−ε(S1) for all t near zero and so they 

necessarily lie in H
3
2 (S1). Thus they are solutions of the spatial representation (7.6) of 
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the geodesic spray of the Weil–Petersson metric on T (1)H◦ . Consequently t �→ ηt, where 
ηt is the solution of the equation η̇t(x) = u(t, ηt(x)), is a solution of the geodesic spray of 
the Weil–Petersson metric. We summarize all these comments in the following statement.

Theorem 8.1. The Hamiltonian system (8.3) with conditions (8.4) has infinite time 

solutions. The functions u(x, t) given by (8.1) with (qj(t), pj(t)) solution of (8.3) are 
particular solutions of the geodesic spray of the Weil–Petersson metric on T (1)H◦ in spa-
tial representation.

The long time existence result of solutions of the type (8.1) was independently ob-
tained by Kushnarev [22] by a direct analysis of the Hamiltonian system (8.3). Due to 
the similarity to soliton and peakon solutions for the KdV and Camassa–Holm equations, 
solutions of the type (8.1) are called Teichons.

Momentum mapping interpretation. As in the case of the peakons of the Camassa–Holm 
equations, see [18], the momentum m = Qopu associated to the Teichons solutions is 
given by momentum mapping. To see this, it suffices to remark that

J : [T ∗S1]N → h−3/2, J(q,p) = P

⎛⎝ N∑
j=1

pjδ(x− qj)

⎞⎠
is the momentum mapping associated to the cotangent lift of left composition by T.

Teichons versus peakons. The situation is totally different for the peakon solution of the 
Camassa–Holm equations. In this case the Green’s function is in H

3
2−ε, therefore, the 

peakons solutions for Camassa–Holm are really less regular than the solutions obtained 
by geometric means which require s > 3/2. This is exactly backwards for EWP, the 
Teichons are more regular than the geodesics.

We now mention another difference between Peakons and Teichons. For peakons for 
the Camassa–Holm equations, to make sense of weak solutions, one has to multiply by 
a test function of space–time, not just space, see [3].

9. Application to pattern recognition

The goal of this section is to apply the properties of the Euler–Weil–Petersson spray 
to image recognition. Sharon and Mumford [35] used the Weil–Petersson metric to com-
pare images and introduced the fingerprint map to identify a space of smooth shapes 
with the group of diffeomorphisms by means of conformal welding. We shall prove that 
the fingerprint map extends to certain completions of these spaces relative to the Weil–
Petersson metric. This enables us to make use of the Takhtajan–Teo theory and the 
results of the present paper. The fact that the universal Teichmüller space is geodesi-
cally complete with negative curvature enables us to positively address a comment of 
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Sharon and Mumford [35], namely that there exists a unique geodesic between each two 
shapes in the plane.

Conformal welding. Given a closed Jordan curve Γ in the Riemann sphere Ĉ, we denote 
by Ω and Ω∗ the two components of the open subset Ĉ\Γ of Ĉ. By the Riemann mapping 

∗ ∗
theorem we can find conformal maps f : D → Ω and g : D → Ω . These maps extend 
to homeomorphisms between the closures of the domains and, by restriction of these 
extensions to S1, we can form the orientation preserving homeomorphism

h := g−1 ◦ f

of the circle. A homeomorphism of the circle arising this way is called a conformal weld-
ing. If Γ is a smooth curve, then f and g extend to smooth maps of the corresponding 
boundaries. In this case h is a smooth diffeomorphism of S1. It is well known that there 
exist homeomorphisms which are not conformal weldings. We have the following well-
known existence and uniqueness result in the case of quasisymmetric homeomorphisms.

Theorem 9.1. Let η ∈ QS(S1)fix. Then η is a conformal welding and the decomposition 
η = g−1 ◦ f is unique up to left composition of f and g by a Möbius transformation.

This theorem follows easily form the fact that for each η ∈ QS(S1)fix we can write

η = ωμ|S1 = (ωμ ◦ ω−1
μ )−1 ◦ ωμ|S1 . (9.1)

To the decomposition η = g−1 ◦f we can associate the Jordan curve Γ := f(S1) = g(S1), 
and from (9.1) we know that Γ is the image of S1 by a quasiconformal mapping of Ĉ. 
Such a curve is called a quasicircle.

The fingerprint map. The set of all quasicircles in the complex plane is denoted by QC. 
It is known (see lemma p. 123 in [19]) that if η is a smooth diffeomorphism, then the 
quasicircle Γ associated to the decomposition η = g−1 ◦ f is a smooth curve. We denote 
by S the subset of all smooth and simple closed curves in C and by QC and S the 
corresponding quotient spaces associated to the action of the group of transformations 
{az + b | a > 0, b ∈ C}.

For a quasicircle Γ ∈ QC we denote by Γ+ the open subset of Ĉ bounded by Γ and 
containing the point ∞ and by Γ− the other open subset bounded by Γ. Using the fact 
that each quasicircle is the image of S1 by a quasiconformal mapping of Ĉ which is 
conformal on D (see Lemma I.6.2 in [24]) we can find a quasiconformal map φ− of Ĉ
verifying the following two conditions:

• φ−(D) = Γ−,
• φ−|D is conformal.

Similarly, we can find a quasiconformal map φ+ of Ĉ such that



F. Gay-Balmaz, T.S. Ratiu / Advances in Mathematics 279 (2015) 717–778 775

• φ+(D∗) = Γ+,
• φ+|D is conformal,
• φ+(∞) = ∞ and ∂zφ+(∞) > 0.

Note that we have φ−(S1) = φ+(S1) = Γ. Note also that given Γ ∈ QC, the conformal 

map φ−|D is uniquely determined up to right composition with an element in PSU(1, 1)
and the conformal map φ+|D∗ is uniquely determined by the three previous conditions. 
Therefore, we can consider the map

QC → PSU(1, 1)\QS(S1)  QS(S1)fix, Γ �→ [φ−1
+ ◦ φ−|S1 ].

This map is invariant under scalings and translations in QC and therefore induces a map

F : QC → QS(S1)fix.

By Theorem 9.1, each η ∈ QS(S1)fix is a conformal welding, therefore we can write η =
g−1◦f . Since f and g are unique up to left composition with a Möbius transformation, we 
can impose the normalization conditions g(∞) = ∞ and ∂zg(∞) > 0. Setting Γ := g(S1), 
we obtain that F(Γ) = η. This proves that this map is surjective. Suppose now that 
we have an other decomposition η = ḡ−1 ◦ f̄ where ḡ verifies the same normalization 
conditions. Since ḡ = γ ◦ g for γ a Möbius transformation, we must have γ(z) = az + b

where a > 0 and b ∈ C. This proves that F is a bijection. Note that the map F restricts 
to a map

F : S → Diff+(S1)fix.

This restricted map is actually the fingerprint map considered in [35]. In this paper, 
the set S is seen as the space of all smooth shapes in the plane up to scalings and 
translations. Using the map F , each equivalence class of shapes is identified with a 
unique diffeomorphism η ∈ Diff+(S1)fix. The Weil–Petersson metric on Diff+(S1)fix can 
be used as a metric on this space of shapes. This point of view is developed in [35] with 
applications to 2D-shape analysis and leads to interesting numerical computations.

Hilbert manifold structure. Recall from Section 3 the following two important facts.

• The group QS(S1)fix can be endowed with a smooth Hilbert manifold structure on 
which the Weil–Petersson metric is strong. This manifold is denoted by QS(S1)Hfix
and has uncountably many connected components.

• The completion in QS(S1)Hfix of the subgroup Diff+(S1)fix of smooth diffeomorphisms 
is the connected component of the identity in QS(S1)Hfix.

Using the fingerprint map, we can pull back the Hilbert manifold structure of QS(S1)Hfix
to the set QC of all quasicircles up to scalings and translations. The connected component 
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QC◦ of S1 in QC is therefore the completion of the shape space S. We thus have the 
smooth inclusions

S ⊂ QC◦ ⊂ QC.
Since in the completion QC◦ the Weil–Petersson metric is strong and has non-positive 
sectional curvature, we have the following theorem.

Theorem 9.2. Let Γ1, Γ2 be two shapes in QC◦. Then in any homotopy class of curves 
from Γ1 to Γ2, there is precisely one Weil–Petersson geodesic from Γ1 to Γ2.

This discussion gives a positive answer to a question posed by Sharon and Mumford 
[35] in the introduction. Thus, integrating the Weil–Petersson metric along a geodesic 
gives the distance between two shapes.
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