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We study some sequences of polynomials that appear when we consider the successive derivatives of the tree function (or Lambert's W function). We show in particular that they are related with a generalization of Cayley trees, called Greg trees. Besides the combinatorial result in itself, it is interesting to see how this is related with previous work: similar problems were considered first by Ramanujan, and more recently in the theory of completely monotonic functions and its link with probability. Also of great interest is the fact that these Greg trees were introduced as genealogical trees in a problem of textual criticism, where they had a priori no mathematical meaning.

Introduction

Lambert's W function is a special function that has been widely studied and naturally appear in various contexts in pure or applied sciences, see for example the comprehensive article by Corless et al. [START_REF] Corless | On the Lambert W function[END_REF]. It is usually defined by the equation W (z)e W (z) = z.

We are interested here in the computation of derivatives of this function. We can derive the first values from the defining equation, and the general pattern that appears is [START_REF] Berndt | Ramanujan's Notebooks, Part I[END_REF] d n dz n W (z) = exp (-nW (z))

(1 + W (z)) 2n-1 P n (W (z))

for some polynomials P n (this is done in [START_REF] Corless | On the Lambert W function[END_REF]). Kalugin and Jeffrey [START_REF] Kalugin | Unimodal sequences show Lambert W is Bernstein[END_REF] proved that the polynomials (-1) n-1 P n have positive coefficients, settling a conjecture of Sokal. This result was motivated by the fact that we can deduce the sign of all these functions: they are alternately positive and negative, and it follows that W (z) is a so-called Bernstein function [START_REF] Schilling | Bernstein functions, Theory and applications[END_REF]. Various similar results have been obtained in a rather analytical perspective [START_REF] Kalugin | Stieltjes and other integral representations for functions of Lambert[END_REF][START_REF] Kalugin | Bernstein, Pick, Poisson and related integral expressions for Lambert W. Integral Transforms[END_REF], and a probability law related with W (z) as a Bernstein function is studied in [START_REF] Pakes | Lambert's W, infinite divisibility and Poisson mixtures[END_REF]. In fact, the polynomials P n are closely related with another sequence that appeared first in Ramanujan's notebook (see [START_REF] Berndt | Ramanujan's Notebooks, Part I[END_REF] and [19]), and inspired quite a few combinatorial works [START_REF] Chen | Bijections behind the Ramanujan polynomials[END_REF][START_REF] Dumont | Ramamonjisoa: Grammaire de Ramanujan et arbres de Cayley[END_REF][START_REF] Guo | A generalization of the Ramanujan polynomials and plane trees[END_REF][START_REF] Howard | Explicit formula for numbers of Ramanujan[END_REF][START_REF] Lin | Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials[END_REF][START_REF] Zeng | A Ramanujan sequence that refines the Cayley formula for trees[END_REF]. The goal of this article is to introduce Greg trees in this context. They are a generalization of Cayley trees, and were defined by Flight [START_REF]Flight: How many stemmata?[END_REF] as genealogical trees for manuscripts. (Flight named these trees after Sir Walton Wilson Greg, a renowned British scholar who worked in textual criticism, and was in particular an expert of Shakespeare's texts [START_REF] Wilson | Sir Walter Wilson Greg[END_REF].) Similar trees were also considered in [START_REF] Felsenstein | The number of evolutionary trees[END_REF] as some kind of phylogenetic trees. The connection was noticed by Knuth, in the correction of Exercise 50 of Section 7.2.1.5 in the Prefascicle 3B of the Art of Computer Programming [START_REF] Knuth | The art of computer programming[END_REF]. Here, we explain this connection, by showing that some operations on Greg trees can prove formulas of the kind of Equation [START_REF] Berndt | Ramanujan's Notebooks, Part I[END_REF]. In fact, we study here three closely-related sequences of polynomials F n , G n and H n . The first one is related with Ramanujan's polynomials, and the latter two give the enumeration of Greg trees, respectively in the rooted and unrooted cases. (Note that these sequences can be seen as particular cases of a two-variable polynomials, see Section 7. However, from the point of view of the enumeration of Greg trees, only these cases are consedered.)

Definitions

Since the defining equation W (z)e W (z) = z has several solutions, W (z) can be considered as a multivalued function. Here we only consider the principal branch, and see

W (z) as a holomorphic function on C -(-∞, -1 e ], such that W (z) = n≥1 (-n) n-1 z n n!
in a neighborhood of 0 (see [START_REF] Corless | On the Lambert W function[END_REF]). From the function W (z), we define the tree function:

T 1 (z) = -W (-z).
It is well-known that n n-1 is number of rooted Cayley trees [START_REF] Cayley | A theorem on trees[END_REF], so that T 1 (z) is the exponential generating function of these. More generally, let us define:

T α (z) = n≥1 n n-α z n n! .
We have T (z) = T 1 (z) and we will also consider the cases where α = 0 or α = 2. In particular, the generating function unrooted Cayley trees is:

T 2 (z) = n≥1 n n-2 z n n! .
There are several relations linking these functions, for example:

T 0 (z) = 1 1 -T (z) , T ′ 2 (z) = T (z) z , T 2 (z) = T (z) -1 2 T (z) 2 .
We will use these identities in the sequel but leave as an exercise to find either an analytical or a bijective proof for each of them. Whereas T 1 and T 2 are clearly interesting in a combinatorial context, we will see that T 0 is also related with a nice sequence of polynomials, but we do not get into other cases.

Proposition 2.1. There are polynomials F n (x), G n (x) and H n (x) such that for any n ≥ 1 we have:

(2) d n dz n T 0 (z) = exp (nT (z)) (1 -T (z)) n+2 F n T (z) 1 -T (z)
.

(3)

d n dz n T 1 (z) = exp (nT (z)) (1 -T (z)) n G n T (z) 1 -T (z) . (4) d n dz n T 2 (z) = exp (nT (z)) (1 -T (z)) n-1 H n T (z) 1 -T (z)
.

With the initial case

F 1 (x) = G 1 (x) = H 1 (x) = 1
, these polynomials satisfy the recursion:

F n+1 (x) = (2n + 2 + (n + 2)x)F n (x) + (1 + x) 2 F ′ n (x), G n+1 (x) = (2n + nx)G n (x) + (1 + x) 2 G ′ n (x), H n+1 (x) = (2n -1 + (n -1)x)H n (x) + (1 + x) 2 H ′ n (x).
(

) 5 
Proof. We only present the case of T 1 (z) and the other two are similar. By differentiation of T 1 (z) = ze T 1 (z) , we get: z) , hence:

T ′ 1 (z) = e T 1 (z) + zT ′ 1 (z)e T 1 (
T ′ 1 (z) = e T 1 (z) 1 -ze T 1 (z) = e T 1 (z) 1 -T 1 (z)
.

This proves the case n = 1, and the general case is done inductively. Indeed, suppose that G n exists such that Identity (3) is true, by differentiating both sides, we get:

d n+1 dz n+1 T 1 (z) = nT ′ (z)e nT (z) (1-T (z)) n G n T (z) 1-T (z) + nT ′ (z)e nT (z) (1-T (z)) n+1 G n T (z) 1-T (z) + T ′ (z)e nT (z) (1-T (z)) n+2 G ′ n T (z)
1-T (z) , and then:

d n+1 dz n+1 T 1 (z) = ne (n+1)T (z) (1-T (z)) n+1 G n T (z) 1-T (z) + ne (n+1)T (z) (1-T (z)) n+2 G n T (z) 1-T (z) + e (n+1)T (z) (1-T (z)) n+3 G ′ n T (z) 1-T (z) , d n+1 dz n+1 T 1 (z) = e (n+1)T (z) (1-T (z)) n+1 n 2-T (z) 1-T (z) G n T (z) 1-T (z) + 1 (1-T (z)) 2 G ′ n T (z) 1-T (z)
.

This equation shows that G n+1 exists, with:

G n+1 T (z) 1-T (z) = n 2-T (z) 1-T (z) G n T (z) 1-T (z) + 1 (1-T (z)) 2 G ′ n T (z)
1-T (z) . This gives the recursion since we have G n+1 in terms of G n .

Similar computations give the result for F n and H n .

The first values of these polynomials are as follows:

n Fn(x) Gn(x)

1 1 1 2 3x+4 x+2 3 15x 2 +40x+27 3x 2 +10x+9 4 105x 3 +420x 2 +565x+256 15x 3 +70x 2 +113x+64 5 945x 4 +5040x 3 +10150x 2 +9156x+3125 105x 4 +630x 3 +1450x 2 +1526x+625 6 10395x 5 +69300x 4 +185850x 3 +250768x 2 +170359x+46656 945x 5 +6930x 4 +20650x 3 +31346x 2 +24337x+7776
n Hn(x)

1 1 2 1 3 x+3 4 3x 2 +13x+16 5 15x 3 +85x 2 +171x+125 6 105x 4 +735x 3 +2005x 2 +2551x+1296 7 945x 5 +7875x 4 +26950x 3 +47586x 2 +43653x+16807
The coefficients of G n (x) are Sloane's A048160, and those of H n (x) are A048159. These two triangles of integers were defined by Flight [START_REF]Flight: How many stemmata?[END_REF]. The row sums, i.e. the integers G n (1), appear in Felsenstein's article [START_REF] Felsenstein | The number of evolutionary trees[END_REF].

We also have to examine some of the shifted polynomials:

n Fn(x-1) Gn(x-1)

1 1 1 2 3x+1 x+1 3 15x 2 +10x+2 3x 2 +4x+2 4 105x 3 +105x 2 +40x+6 15x 3 +25x 2 +18x+6 5 945x 4 +1260x 3 +700x 2 +196x+24 105x 4 +210x 3 +190x 2 +96x+24 6 10395x 5 +17325x 4 +12600x 3 +5068x 2 +1148x+120 945x 5 +2205x 4 +2380x 3 +1526x 2 +600x+120
n Hn(x-1)

1 1 2 1 3 x+2 4 3x 2 +7x+6 5 15x 3 +40x 2 +46x+24 6 105x 4 +315x 3 +430x 2 +326x+120 7 945x 5 +3150x 4 +4900x 3 +4536x 2 +2556x+720
The coefficients of F n (x -1) are A075856 and appeared in Ramanujan's notebooks [19] (with a definition equivalent to the present one), and several other works [START_REF] Gould | A set of polynomials associated with the higher derivatives of y = x x[END_REF][START_REF] Goulden | On a sequence arising in algebraic geometry[END_REF].

The polynomials G n (x -1) appeared in [START_REF] Shor | A new proof of Cayley's formula for counting labeled trees[END_REF] where it is shown that they count rooted Cayley trees according to the number of improper edges (see below). The unrooted analog H n (x -1) appeared in Zeng's article [START_REF] Zeng | A Ramanujan sequence that refines the Cayley formula for trees[END_REF]. The coefficients of these polynomials are respectively A054589 and A217922.

Greg trees Definition 3.1 ([8]

). Let n ≥ 0. A Greg tree of size n is a tree such that:

• there are n vertices labeled by integers from 1 to n, and the other vertices are unlabeled, • the unlabeled vertices have degree at least 3.

Let G n denote the set of Greg trees with n labeled vertices. Let unl(T ) denote the number of unlabeled vertices of some T ∈ G n . Let C n ⊂ G n denote the subset of Cayley trees, i.e. those T with unl(T ) = 0.

Figure 1 shows the Greg trees of size 3. Since we do not specify a bound on the number of unlabeled vertices, it is not a priori clear that there is a finite number of Greg trees of size n. But the condition that unlabeled vertices have degree at least 3 gives such a bound. Indeed, let u be the number of unlabeled vertices in a Greg tree of size n, so u + n is the total number of vertices and there are u + n + 1 edges. The condition on the degree easily gives 2(u + n + 1) ≥ 3u, hence u ≤ 2(n + 1). Definition 3.2. Let G • n denote the set of rooted Greg trees, i.e. Greg trees of size n with a distinguished vertex called the root, but with the additional rule that if the root is unlabeled it may have degree 2.

Let C • n ⊂ G • n denote the subset of rooted Cayley trees. See Figure 2 for the rooted Greg trees of size 2. We represent the root as a vertex with a double line circle. Note that since only the root is allowed to have degree 2, the same argument as in the unrooted case gives a bound on the number of unlabeled vertices, so that there is a finite number of rooted Greg trees of size n. Theorem 3.3. For any n ≥ 1, we have:

(6) G n (x) = T ∈G • n x unl(T ) , H n (x) = T ∈Gn
x unl(T ) .

It possible to prove this theorem by examining how to build a Greg tree of size n + 1 from a Greg tree of size n, which leads precisely to the relations in [START_REF] Dumont | Ramamonjisoa: Grammaire de Ramanujan et arbres de Cayley[END_REF] as was done in [START_REF]Flight: How many stemmata?[END_REF]. But we take a different point of view here. Rather than the recursion in (5), we show that the structure of the right-hand sides of (3) and ( 4) is explained through some combinatorial operations on Greg trees. Definition 3.4. Let T ∈ C m and n < m. We define a Greg tree T | n ∈ G n as the result of the following process:

• Remove all labels greater than n (thus creating new unlabeled vertices).

• Remove each unlabeled vertex of degree 2, and join the two pendant edges into a single edge.

• Remove each unlabeled vertex of degree 1, as well as the incident edge.

• Repeat the last two steps, until the result is a Greg tree.

This process is illustrated in Figure 3. Proposition 3.5. Let T ∈ G n . We have: [START_REF] Flajolet | Analytic combinatorics[END_REF] m≥n X∈Cm X|n=T

z m-n (m -n)! = e nT (z) (1 -T (z)) n-1 T (z) 1 -T (z) unl(T )
.

Proof. In this proof, we make an extensive use of the symbolic method for labeled combinatorial objects [START_REF] Flajolet | Analytic combinatorics[END_REF], which permits to obtain the result in a purely combinatorial manner. The idea is to find a canonical decomposition for a Cayley tree X ∈ C m satisfying X| n = T , as a collection of rooted Cayley trees indexed in a particular way. Note that this tree X is considered as having size m -n, i.e. only the labels greater than n are part of the labeled combinatorial structure. We rewrite the right hand side of the equation as:

(8) e nT (z) 1 1 -T (z) n-1+unl(T ) T (z) unl(T ) .

Then the construction is as follows:

• To each of the n labeled vertices of T , we associate an unordered collection of rooted trees, each giving a factor e T (z) . • To each of the n -1 + unl(T ) edges of T , we associate an ordered collection of rooted trees, each giving a factor 1 1-T (z) . • To each of the unl(T ) unlabeled vertices of T , we associate a rooted tree, each giving a factor T (z). Here, we understand that all these trees are part of the same combinatorial structure, i.e. each integer between n + 1 and m appears exactly once as the label of a vertex of some tree. We have thus defined a combinatorial class whose generating function is clearly given by Equation ( 8), and it remains to check that it maps bijectively to the set of X such that X| n = T . We can build such a Cayley tree X satisfying X| n = T from a collection of trees as above in a straightforward way:

• An unordered collection C of rooted trees associated to a labeled vertex v is attached to T by adding an edge from v to the root of each tree in C. • An ordered collection C of rooted trees associated to an edge e (say, from vertices v 1 to v 2 ) is attached to T by: removing e, adding an edge from v 1 to the root of the first tree in C, an edge from the root of a tree in C to the root of the next tree, and an edge from the root of the last tree in C to v 2 . • A rooted tree associated with an unlabeled vertex of T is attached to T by putting its root in place of the unlabeled vertex. The fact that we have a bijection can be proved formally by an induction on m, for example. We omit details.

As a consequence of the previous proposition, we have:

d n dz n T 2 (z) = d n dz n m≥0 T ∈Cm z m m! = m≥n T ∈Cm z m-n (m -n)! = U ∈Gn m≥n T ∈Cm T |n=U z m (m -n)! = U ∈Gn e nT (z) (1 -T (z)) n-1 T (z) 1 -T (z) unl(T ) = e nT (z) (1 -T (z)) n-1 H n T (z) 1 -T (z)
.

So the combinatorics of Greg trees proves the formula in Equation ( 4). Note in particular that we do not use the recursion for the polynomial H n (x) or for the construction of Greg trees.

As for the rooted case, the operation T → T | n can be defined in a similar way. The only difference is that an unlabeled vertex with degree 2 is removed only if it is not the root. Similarly, we have:

Proposition 3.6. Let T ∈ G • n .
We have:

(9) m≥n X∈C • m X|n=T z m-n (m -n)! = e nT (z) (1 -T (z)) n T (z) 1 -T (z) unl(T )
.

And we can deduce Equation (3) in the same way as we obtained Equation (4). For the sake of completeness, let us mention that we could have considered a slightly more general definition for rooted Greg trees, by allowing an unlabeled root to have degree 1 or 2. Then the generating function in size n is the polynomial (1 + x)G n (x), and this can be easily proved bijectively (the term xG n (x) gives the generating function for the case where the root is unlabeled and has degree 1). The formulas for G n (x) can be modified accordingly. In particular, the previous proposition would be perhaps more natural with this alternative definition, as there would be (1 -T (z)) n-1 in the denominator just as in Proposition 3.5 instead of (1 -T (z)) n .

The reason of our choice is that the present definition of Greg trees agrees with [START_REF]Flight: How many stemmata?[END_REF], and considering G n (x) rather than (1 + x)G n (x) makes a better connection with previous works mentioned in the introduction. It would also be possible to define birooted Greg trees, where we have two (ordered) roots allowed to have degree 1 or 2, and the generating function of these is

x unl(T ) = (1 + x) 3 F n (x). The proof is along the same line: they appear by the operation T → T | n defined on bi-rooted Cayley trees (whose exponential generating function is T 0 (z)).

Generating functions

It is possible to write down formulas for the generating functions of the polynomials F n (x), G n (x) and H n (x). These essentially follow from Equations ( 2), ( 3), ( 4) and Taylor series expansions. Proof. We see T (z) 1-T (z) as the composition of T (z) and z 1-z . The compositional inverse of these two functions are respectively ze -z and z 1+z . The result follows.

Let us define F 0 (x) = 1 1+x , G 0 (x) = x 1+x , and H 0 (x) = x(x+2) 2(x+1) . Although these are not polynomials, we can check that Equations (2), (3), (4), and the recursions in Equation ( 5) are true for n = 0, so these definitions are rather natural. In particular, the generating functions have a nice form as follows:

Theorem 4.2. n≥0 u n n! F n (x) = 1 (1 + x) 2 T 0 u + x 1 + x e -x 1+x , n≥0 u n n! G n (x) = T u + x 1 + x e -x 1+x , n≥0 u n n! H n (x) = (1 + x)T 2 u + x 1 + x e -x 1+x
.

Proof. Let us begin with the case of G n (x). By a Taylor series expansion and the definition of G n (x) in Equation ( 3), we have:

T (y + z) = n≥0 y n n! d n dz n T (z) = n≥0 1 n! e T (z) y 1 -T (z) n G n T (z) 1 -T (z)
.

Therefore, to get the result we can make the substitions:

u = e T (z) y 1 -T (z) , x = T (z) 1 -T (z)
.

From the lemma above, we obtain that z = x 1+x e -x 1+x . Since T (z) = ze T (z) , we can check that xy = zu. So:

y + z = u x + 1 z = u + x 1 + x e -x 1+x
and the result follows. The other two generating functions are obtained by expanding T 0 (y + z) and T 2 (y + z) and making the same substitution.

Note that we have proved in particular that

H(x, u) = (1 + x) G(x, u) -1 2 G(x, u) 2 where G(x, u) = n≥0 u n n! G n (x) and H(x, u) = n≥0 u n n! H n (x).
To understand this bijectively, it is better to use the generating functions without constant terms:

G = n≥1 u n n! G n (x), H = n≥1 u n n! H n (x).
Then the relation becomes H = G -1+x 2 G2 , which we can rewrite as G = H + 1+x 2 G2 . Then we distinguish three cases for a rooted Greg tree:

• the root is the vertex with label 1,

• the root is unlabeled and has degree 2,

• the other cases. Clearly, the first two cases give the generating functions H and x 2 G2 . So it remains to check that the other cases give the generating function 1 

2

G2 . So let T ∈ G •

n be among these other cases. Since the vertex with label 1 is not the root, we can define an edge e as the first one in the shortest path from the root to the vertex with label 1. Then, remove this edge and say that its two endpoints are the roots of the two subtrees thus created. Since the root is not an unlabeled vertex with degree 2, these two subtrees are indeed Greg trees. In this way we obtain the generating function 1 

2

G2 .

In the other direction, we can have G n in terms of H n . Indeed we have the relation:

(10) G n (x) = (n + (n -1)x)H n (x) + (x + x 2 )H ′ n (x)
. This also can be proved combinatorially. We distinguish the following cases for a rooted Greg tree:

• The root is a labeled vertex.

• The root is an unlabeled vertex with degree at least 3.

• The root is an unlabeled vertex with degree equal to 2. The first two cases give the generating functions nH n (x) and xH ′ n (x). It remains to show that the last case give the generating function (n -1)xH n (x) + x 2 H ′ n (x). This can be interpreted by the fact that the generating function for Greg trees with a distinguished edge (with no restriction) is (n -1)H n (x) + xH ′ n (x). We leave the details as an exercise.

The W function has the Bernstein property

It was briefly explained in the introduction that the positivity of the polynomials (-1) n+1 P n (x) (where P n (x) is defined via Equation ( 1)) shows that W (z) is a Bernstein function. In fact Kalugin and Jeffrey [START_REF] Kalugin | Unimodal sequences show Lambert W is Bernstein[END_REF] show much more than the positivity: the coefficients of (-1) n+1 P n (x) form a unimodular and log-concave sequence. Another proof of the latter property is given by Lin and Zeng [START_REF] Lin | Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials[END_REF]Proposition 5.1].

The goal of this section is to show that the sequences F n , G n and H n are also related with some Bernstein functions in the same way as P n .

We refer to the book [START_REF] Schilling | Bernstein functions, Theory and applications[END_REF] for the theory of completely monotonic functions and Bernstein functions. In particular, we do not present here the motivation for studying this kind of functions. Let us just mention that Bernstein functions appear in measure theory, because they are related with convolution semigroups of probability laws over positive reals. See [START_REF] Pakes | Lambert's W, infinite divisibility and Poisson mixtures[END_REF] for some probabilistic aspects of the function W (z) related with the Bernstein property.

Definition 5.1. Let f : (0, ∞) → R of class C ∞ . We say that
• f is completely monotonic if for all z > 0 and n ≥ 0, (-1) n f (n) (z) ≥ 0,

• f is a Bernstein function if f (z) > 0 for any z > 0, and f ′ is completely monotonic.

Theorem 5.2 (Kalugin and Jeffrey [START_REF] Kalugin | Unimodal sequences show Lambert W is Bernstein[END_REF]). W (z) is a Bernstein function.

Proof. The regularity and positivity are rather elementary and the only difficulty is to check that (-1) n-1 W (n) (z) ≥ 0 for n ≥ 1. From T (z) = -W (-z) and the definition of G n in (3), we have

(-1) n-1 d n dz n W (z) = exp (-nW (z)) (1 + W (z)) n G n -W (z) 1 + W (z) .
Since W (z) > 0, we have -1 < -W (z) 1+W (z) < 0. So it remains to show that G n (x) > 0 for any n ≥ 1 and -1 < x < 0. As was mentioned above, the polynomials G n (x -1) were considered by Shor [START_REF] Shor | A new proof of Cayley's formula for counting labeled trees[END_REF] who showed that they count Cayley trees according to the number of improper edges, and in particular, they have positive coefficients. It follows that G n (x) > 0 for n ≥ 1 and -1 < x < 0.

Remark 5.3. The polynomials G n (x -1) are the same as those denoted R n (x) in [START_REF] Lin | Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials[END_REF] where they are called Ramanujan polynomials. Lin and Zeng show in [17, Proposition 5.1] that we have the relation [START_REF] Guo | A generalization of the Ramanujan polynomials and plane trees[END_REF] P

n (x) = (-1 -x) n-1 G n -x 1 + x ,
and also show properties of the coefficients of P n such as log-concavity from properties of G n (x). Note that Equation [START_REF] Guo | A generalization of the Ramanujan polynomials and plane trees[END_REF] could also be obtained by comparing Equations ( 1) and (3).

Theorem 5.4. -T 2 (-z) = 1 2 W (z) 2 + W (z) is a Bernstein function. Proof. Whenever f (z) is a Bernstein function, e -f (z) is completely monotonic, see [START_REF] Schilling | Bernstein functions, Theory and applications[END_REF]Theorem 3.6]. In the case of W (z), we have e

-W (z) = 1 z W (z). A primitive of W (z)/z is W (z) z dz = 1 2 W (z) 2 + W (z) = -T 2 (-z).
Since it has nonnegative values, it follows that 1 2 W (z) 2 + W (z) is also a Bernstein function.

This result can be also proved by checking the signs of the derivatives, and the fact that the polynomials H n (x) defined in Equation ( 4) are nonnegative on (-1, 0). This can also be proved by checking the sign of the derivatives, and the fact that the polynomials F n (x) defined in Equation ( 2) are nonnegative on (-1, 0).

In fact, on the analytical level it is rather elementary to prove that W (z) has stronger a property than being a Bernstein function. We follow the terminology from [START_REF] Schilling | Bernstein functions, Theory and applications[END_REF], and call Nevanlinna-Pick function a holomorphic function that preserves the complex upper half-plane H + = {z ∈ C : ℑ(z) > 0}. Those functions that are nonnegative on (0, ∞) are a particular class of Bernstein, called complete Bernstein functions. See [START_REF] Schilling | Bernstein functions, Theory and applications[END_REF]Chapter 6] for details, in particular Theorems 6.2 and 6.7. 

(-∞, -1 e ]. From W (z)e W (z) = z, it follows that W (z) ∈ R ⇒ z ∈ R. The image of H + is a connected set included in C -R, so it is included either in H + or H -.
In a neighborhood of 0, we have W (z) = z + O(z 2 ), so we can conclude that W maps H + into itself. Then, Theorem 6.2 from [START_REF] Schilling | Bernstein functions, Theory and applications[END_REF] shows the result.

Improper edges in Cayley trees

The notion of improper edges in Cayley trees was introduced by Shor [START_REF] Shor | A new proof of Cayley's formula for counting labeled trees[END_REF], and then used by Chen and Guo [START_REF] Chen | Bijections behind the Ramanujan polynomials[END_REF], Guo and Zeng [START_REF] Guo | A generalization of the Ramanujan polynomials and plane trees[END_REF], Zeng [START_REF] Zeng | A Ramanujan sequence that refines the Cayley formula for trees[END_REF]. Definition 6.1. Let T ∈ C • n . A vertex v 2 is called a descendant of a vertex v 1 if the shortest path from the root to v 2 goes through v 1 . Let e be an edge of T , and let u and v denote its two endpoints in such a way that v is a descendant of u. The edge e of T is called improper if the label of u is greater than that of (at least) one of its descendants. Let imp(T ) denote the number of improper edges of T . Then Shor's result is:

G n (x -1) = T ∈C • n x imp(T ) .
His definition of this polynomial is a recursion for the coefficients which is equivalent to [START_REF] Dumont | Ramamonjisoa: Grammaire de Ramanujan et arbres de Cayley[END_REF]. The unrooted analog (and in fact a more general statement) is due to Zeng [START_REF] Zeng | A Ramanujan sequence that refines the Cayley formula for trees[END_REF]: by considering an unrooted tree as a rooted tree where the root is the vertex labeled 1, we have a notion of improper edge on unrooted tree, and

H n (x -1) = T ∈Cn
x imp(T ) .

Hence we have:

T ∈C • n (1 + x) imp(T ) = T ∈G • n x unl(T ) , T ∈Cn (1 + x) imp(T ) = T ∈Gn
x unl(T ) .

This calls for bijective proofs: we would like to find an explicit map α : G • n → C • n with the property that, for all T ∈ C • n , U ∈α -1 (T )

x unl(U ) = (1 + x) imp(T ) , and with the analog property for the unrooted case. We leave this as an open problem for interested readers.

In one direction, we have the map T → T | n from Cayley trees to Greg trees (with fewer vertices), and we have the map α from Greg trees to Cayley trees. It could be interested to see how these maps are related. For example, we can consider the composition β n : T → α(T | n ), which gives a Cayley tree on n vertices for each Cayley tree T on more vertices. The properties of the map α and T → T | n show that each class β -1 n (T ) has a simple generating function:

m≥n U ∈Cm βn(U )=T z m-n (m -n)! = V ∈α -1 (T ) m≥n U ∈Cm U |n=V z m-n (m -n)! = V ∈α -1 (T ) e nT (z) (1 -T (z)) n-1 T (z) 1 -T (z) unl(V )

=

e nT (z) (1 -T (z)) n-1+imp(T ) .

In particular, this property of the map β n gives an alternative way to compute d n dz n T (z), since we get:

d n dz n T (z) = m≥n T ∈Cm z m-n (m -n)! = U ∈Cn T ∈β -1 n (U ) z |T | |T |! = e nT (z) (1 -T (z)) n-1 U ∈Cn 1 (1 -T (z)) imp(T ) .
It could be quite interesting to find an explicit description of such a map β n , although it is a weaker problem than finding one for the map α.

Final remarks

The three sequence of polynomials studied in this article have a common generalization. Following Zeng [START_REF] Zeng | A Ramanujan sequence that refines the Cayley formula for trees[END_REF], we consider the double sequence of polynomials

Q n,k (x) = (x + n -1)Q n-1,k (x) + (n + k -2)Q n-1,k-1 (x),
where n ≥ 1, 0 ≤ k ≤ n -1, and Q 1,0 (x) = 1. We have Q n,k (x) = ψ k+1 (n -1, x + n) where ψ k (r, x) was defined by Ramanujan [19] 

Then one can check that

n-1 k=0 Q n,k (-1)x k = xF n-1 (x -1), n-1 k=0 Q n,k (0)x k = G n (x -1), n-1 k=0 Q n,k (1)x k = H n (x -1).
However, it is not clear if Greg trees are in some way related with Q n,k (x) for other values of x.
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