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Abstract

This article expands on Curry’s work on how to implement the prob-
lem of inverse interpolation on the ENIAC (1946) and his subsequent work
on developing a theory of program composition (1948-1950). It is shown
that Curry’s hands-on experience with the ENIAC on the one side and
his acquaintance with systems of formal logic on the other, were conduc-
tive to conceive a compact “notation for program construction”which in
turn would be instrumental to a mechanical synthesis of programs. Since
Curry’s systematic programming technique pronounces a critique of the
Goldstine-von Neumann style of coding, his “calculus of program com-
position”not only anticipates automatic programming but also proposes
explicit hardware optimisations largely unperceived by computer history
until Backus’ famous ACM Turing Award lecture (1977). The cohesion
of these findings asks for an integrative historiographical approach. An
appendix gives, for the first time, a full description of Curry’s arithmetic
compiler.

This article frames Haskell B. Curry’s development of a general approach to pro-
gramming. Curry’s work grew out of his experience with the ENIAC in 1946,
took shape by his background as a logician and finally materialised into two
lengthy reports (1948 and 1949) that describe what Curry called the ‘composi-
tion of programs’. Following up to the concise exposition of Curry’s approach
that we gave in [32], we now elaborate on technical details, such as diagrams,
tables and compiler-like procedures described in Curry’s reports. The ends of
studying such details is not solely about adding to a historical picture but is
a prerequisite in order to fundamentally question sedimented historical narra-
tives. Capital in this respect, is our in-depth discussion of the transition from
Curry’s concrete ‘hands-on’ experience with the ENIAC towards a general the-
ory of combining programs. Our results contest the decisive role traditionally
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ascribed to von Neumann, Goldstine and Burks in laying the logical foundations
of computer science. It turns out that their series of technical reports describing
methods of tackling the “coding and planning of problems” [19] for computers
with the help of ‘flow-charts’ is neither highly systematic, nor unrivalled or, for
that reason, canonical.

1 The ENIAC Experience

The ENIAC (Electronic Numerical Integrator and Computer) is one of the first
computers worldwide. It was revealed to the public in 1946 and publicised widely
in the scientific and popular press. In the journal Nature it was described as
“an electronic computing machine” [22], in Popular Science the ENIAC was
announced somewhat catchier as “lightning strikes mathematics” [35]. Until
the mid-fifties, the ENIAC would remain the fountainhead of the new general-
purpose digital electronic devices that we nowadays call computers. Although
originally conceived as a calculator for ballistic tables, the outstanding role of
ENIAC as a de facto operating and publicly known computing machine created
an unparalleled pole of interest which attracted diverse disciplines to research
and explore the ‘arrival of computation’ after the Second World War. This
circumstance enticed historians to either overemphasise the advent of this very
machine as the inauguration of the era of digital computing [5, p. 15] or to decon-
struct the “standard narrative, which begins with the abacus and then follows a
by now familiar sequence of devices - mechanical and electromechanical, analog
and digital - all converging on ENIAC” [28, p. 8]. However, by reexamining
rather technical details we may reach another view on the significance of this
early computer which overcomes the always difficult historiographical opposi-
tion of a machine-centred history versus its discursification into a patchwork of
diverse disciplines. That is, an ‘integrative’ approach which is sensitive to both
the hardware details of the machine and the human’s knowledge, needs and
experience. This approach perfectly agrees with the insight that a computer
“could not dictate how it was to be used”, but may not postpone investigations
“until people figured out what to do with it”[27, p. 123]. “Impact” sets in before
that. For instance when truly studying the ENIAC in its actual use, alterna-
tive ways of engaging with the conditions imposed by the hardware at hand are
disclosed. In sum, we might think of computers as the locus of ‘habitus’ which
shapes dispositives.

“ENIAC, as is well known, was the first general-purpose electronic digital
computer to be designed, built and successfully used”[17, p. 13]. No less known
is that it had not the alluring simplicity of the EDVAC design, nor had it
any programming interface. Instead, it exposed the architecture of a highly
parallel and modular machine and for each new program, cables had to be
plugged in the right devices, adaptors used on the right connections, dials and
switches set for the right values etc. Thus, it need not surprise that the planning
of a computation, not only the translation of the mathematics into a general
scheme but also the realisation of the scheme as a combination of cables and
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switch-settings, could take weeks and had to be done with utmost care. This
frequent and time-consuming re-wiring of the machine—or the so-called ‘local’ or
‘direct-programming’ of the ENIAC—constituted one of the severe ‘bottlenecks’
of doing things with ‘programmable calculators’, and that this fundamental
problem had to be tackled at some point already sprang to the minds of ENIAC’s
inventors and “users” while building and using the machine. Hence the ENIAC
not only flashed upon mathematics but also posed a provocation to the logics
of programming.

To examine the machine and face these issues, a Computations Committee
was set up at Ballistic Research Laboratory (BRL) at the Aberdeen Proving
Ground in the middle of 1945 [36]. The committee had four members: F.L. Alt,
L.B. Cunningham, H.B. Curry and D.H. Lehmer. Curry and Lehmer prepared
for testing the ENIAC, Cunningham was interested in the standard punch card
section and Alt worked with Bell and IBM relay calculators. Lehmer’s test
program for the ENIAC was already studied in [31] and [3]. Here, we will deal
with Haskell B. Curry’s work on the problem of inverse interpolation, a principal
problem in the calculation of ballistic tables, and how this led him to develop a
theory of programming.

Curry is best known as a logician. He is remembered for his work on com-
binators [10], the verb ‘to curry’ and the Curry-Howard-isomorphism. The
’leitmotiv’ of Curry’s research on mathematical logic may be summarised by
the following quote from his retiring address as the president of the Association
for Symbolic Logic [10, p. 49]:

[I]t is evident that one can formalise in various ways and that some
of these ways constitute a more profound analysis than others. Al-
though from some points of view one way of formalisation is as good
as any other, yet a certain interest attaches to the problem of simpli-
fication [...] In fact we are concerned with constructing systems of an
extremely rudimentary character, which analyse processes ordinarily
taken for granted.

This guiding principle will be seen at work in Curry’s involvement with the
ENIAC while conducting the way from a specific practice of wiring to a general
theory of programming.

In combining experience with ENIAC, researching for more efficient and
systematic ways to program a machine and by developing a simple most compact
symbolism, Curry’s contribution can be regarded as a very early example of the
20th century consilience between logic, computing and engineering.

During the years 1946 to 1950, Curry wrote three reports and one short
paper. The first report [16] is a collaboration with Willa Wyatt. It describes
the set-up of inverse interpolation for the ENIAC. The second and third re-
port [11, 12] develop the theory of program composition and apply it to the
problem of inverse interpolation. A summary of these two reports is given in
[13]. Despite the fact that the reports [11, 12] were never classified, this work
went almost completely unnoticed in the history of programming as well as in
the actual history and historiographies. Only Knuth and Pardo in their history
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of programming languages briefly considered Curry’s work [25, pp. 211–213].
Backus [2] however, only made frequent references to Curry’s logical work, but
equalised his efforts with those attributed to Church’s lambda calculus or Mc-
Carthy’s pure Lisp.

Curry himself does not seem to have ever returned to the topic after 1950.
In 1950, he received a two-year Fulbright Grant to work together with Robert
Feys from the university of Louvain (Belgium). This resulted in the famous
Combinatory Logic (Vol. 1, 1958) co-authored by Curry and Feys. Although
his reviews for AMS Mathematical Reviews (now MathSciNet) seem to suggest
that Curry tried to keep up with the developments in programming or the use of
logic in computers, he never again published on programming and concentrated
mainly on his work in combinatory logic and on his philosophical work.

1.1 Curry and Wyatt: A study of programming on the
ENIAC (1946)

In 1946–1947, Curry together with Willa Wyatt and Max Lotkin, drew up a
series of BRL technical reports in preparation of using the ENIAC to compute
ballistic tables. These were A study of inverse interpolation on the ENIAC

(1946, Curry with Willa Wyatt); A study of fourth order interpolation on the

ENIAC (1946, Curry with Max Lotkin) and Inversion on the ENIAC using

osculatory interpolation (1947, Max Lotkin alone). The first report is the most
interesting, since “the problem of inverse interpolation is studied with reference
to the programming on the ENIAC as a problem in its own right [our italics].”
[16, p. 6] The report was written in collaboration with Willa Wyatt, one of the
all-female team of ENIAC programmers [17, p. 26], who surely provided a lot of
the technical details and variations. The Curry-Wyatt report was declassified
in 1999.

The main problem of the report is stated as follows: “Suppose we have a
table giving values of a function x(t) [...] for equally spaced values of the ar-
gument t. It is required to tabulate t for equally spaced values of x.” [16, p.6]
Given the coordinates of the target, the tables computed with the method of
the report would allow to find the right angle of departure of a missile as well
as the appropriate fuse time. The general problem of iteration was analysed
at length and Curry finally opted for an algorithm that may not converge ex-
tremely rapidly but instead would be more stable and need less parameters.
Card readings and printings (at the beginning and ending of each calculation
cycle) eat up 3000 addition times, while in comparison even the slow convergent
calculation takes only 60 addition times, so that in any case, “the bulk of the
time [...] is taken up by card feeding.” Therefore, a simpler and more stable
algorithm has to take precedence over an optimally fast one —for as a lesson of
the ENIAC: “a far more important consideration than speed of convergence is
simplicity of programming” [16, p. 14].1

1This is completely in tune with Lehmer’s observation that because of its speed, the ENIAC
often calls for an “idiot approach” [3, p. 135–136].
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The set-up of the computation is detailed with over 40 figures of wirings
for parts of the program and contains various remarks on exploiting the pe-
culiarities of the ENIAC’s hardware. Although the practical goal was simply
to compute firing tables, Curry and Wyatt aimed at a more general solution
and discussed number of modifications of the problem. Hence they planned the
scheme for a maximum of functions to be possibly interpolated at once, viz. to
compute four values , x, y, z and w at a time. As a consequence, “the Eniac is
jammed full” [16, p. 7]. The modifications had to cope with this very ‘classical
ENIAC-problem’ of economising on a part of hardware here, just to be able
to use it there. So there was always a tradeoff between the sophistication of
computational procedure and the number of values or functions calculated at a
time. The amount of hardware tied up in the realisation of a specific program
thus afforded to make clear choices which put a limit to both the generality
and effectivity of any one solution. Especially accumulators—being at the same
time the main memory units and local programming controls—were always at
a premium in the ENIAC.

As a result, the analysis of the report distinguishes between stages and
processes of computations, where processes are major, repeatable subprograms
grouping the logical progress within the entire problem solving procedure, whereas
stages represent smaller, ’primitive’ entities of ever-recurring computations. For
example the inverse interpolation program consists of 6 major processes:

1. Set up

2. Preparation for the primary interpolation

3. Iteration

4. Secondary interpolation for y

5. Secondary interpolation for z

6. Secondary interpolation for w and closure

The first and second parts of processes 4, 5 and 6 run concurrently with 2 and
3 respectively. The sequencing is thus mainly: 1 – 2 (4a, 5a, 6a) – 3 (4b, 5b,
6b) – 6c (closure). The branching points of the main program are in processes
1 and 3. On the ENIAC, branching is done by discriminations on the sign of a
number. In Curry and Wyatt’s program, the master programmer controls the
discriminations (or the conditionals, to use a more modern word).
Further, each process is broken up into stages. Each stage is a program sequence
with an input and one or more outputs. About the analysis into stages Curry
and Wyatt pointed out one important practical advantage: “The stages can
be programmed as independent units, with a uniform notation as to program
lines, and then put together; and since each stage uses only a relatively small
amount of the equipment the programming can be done on sheets of paper of
ordinary size.” [16, p. 10] Hence, arranging hand-written sheets of previously
wired stages can replace the wiring of a complete process from scratch. The
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‘logic of stages’ thus allows for modifications of the problem to be obtained
simply by reshuffling sheets/stages without having to alter the total structure
of the program. In this sense, the concept of stages forms an integral part to
the generality of their case study on inverse interpolation. Moreover, “when
an operation involves elements which recur more frequently than others, the
more often recurring elements can be grouped into a stage by themselves, which
stage can run concurrently with other stages.” [16, p. 31] Clearly, since basic
elements of a complex computation make up the stages and frequency indicates
where stages may be introduced or repeated, the concept of stages indicates
where computations can be run in parallel (concurrently). In other words, the
technique developed by Curry and Wyatt not just managed but actually fea-
tured the parallel hardware-design of the original machine. However, significant
improvements in speed and processing of this sort were disabled from 1948 on-
wards when a permanent, monolithic wiring, the so-called ‘converter code’ [7],
serialised ENIAC. This code subjected the machine to von Neumann’s serial
philosophy of ‘one operation at a time’—in fact an act of appropriation which
“spoiled the ENIAC”[26].

Yet before this incidence of conversion, stages were explicated by the wiring
diagrams themselves which served as markers in the complex set-up and as
departure points for further programming. This can be gathered from the wiring
diagram where each of the 12 controls of an accumulator has an input and an
output that refers to a specific stage. Concerning the management of hardware
resources, Curry and Wyatt noted that the wiring diagram showed “the stage
numbers for a particular control” and also “what controls are still available for
further programming” [16, p. 40]. Since every stage is an “autonomous piece of
computation”, any change can still be applied to stages, obviously within the
limits of the ENIAC’s hardware not used up already by a given possibly parallel
process.

Curry’s experience with putting the inverse interpolation on the ENIAC was
a point of initiation for a series of further investigations into programming, such
that he could reuse the interpolation problem as a prototypical example in his
later reports. Curry was convinced that “this [interpolation] problem is almost
ideal for the study of programming; because, although it is simple enough to
be examined in detail by hand methods; yet it is complex enough to contain
a variety of kinds of program compositions.” [13, p. 102] This claim is amply
illustrated at the end of the 1946-report. Curry and Wyatt list no less than 21
possible modifications of their program [16, p. 54–57]. These modifications can
be grouped roughly in four categories:

1. Adding more parameters to the problem and ‘complexifying’ the mathe-
matical procedure

2. Dropping (a) parameter(s) of the problem and simplifying the mathemat-
ical procedure

3. Alternative ways to wire processes, especially alternatives for doing (com-
plex) discriminations
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Figure 1: Curry and Wyatt’s wiring diagram for the first 10 accumulators of
ENIAC. Each column corresponds to an accumulator. Each accumulator has 12
controls (8 transceivers and 4 receivers) where each connects to specific stages.
The twelve lines correspond to the controls.
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4. Adding error checking and catching routines

The first and last group of modifications depend on feeding extra information in
the basic scheme through external cards or through the (unused) function tables
and by adding extra wiring while (re)using parts of the hardware not tied up by
the basic scheme. As examples of the first group, one may quote the change of
an interpolation formula requiring extra card information and a different wiring
of controls of the accumulators (pp. 11–12 and 55); or, as another example, the
transformation of a fixed parameter λ into a variable parameter representing
the range of variation determined by “two transceivers free in [Accumulator N]
and five in [Accumulator M]” (p. 44). The first example mentioned alters a
stage and its set-up whereas the second adds a stage to the general structure.

The important idea of adding routines for internal data-checking and error-
handling is a prominent one, a concept recurring in Curry’s work from 1948–
1950. In order to create an error channel, Curry links up several discriminations
that test whether certain error conditions are met, i.e if some “error signals”
were received [16, p. 23]. These signals arrive at specific positions of a free
stepper located at the master programmer. When the ENIAC stops on error,
the position of that stepper will indicate a certain kind of error significantly
easing the affair of debugging. Also here, a stepper not yet tied up in the main
scheme could be used.

It is worth noting that alternative ways of forking discriminations on the
ENIAC have a non-trivial impact on wiring. While the general structure of
divisions into stages remains unchanged, the consumption of output terminals
and transceivers of accumulators used to perform the typical sign-discrimination
(see above) could be diminished by transferring some of these classical ENIAC-
discriminations to the steppers of the master programmer, thereby economising
the use of working memory.2 In traditional ENIAC parlance the, general prin-
ciple applied here is “sav[ing] a dummy at the expense of an addition time”
[16, p. 27]. Since the ENIAC, in fact, outran its contemporary competitors (the
IBM or BTL relay calculators) by a speed-factor of 100, availability of work-
ing memory took precedence over clock cycles, such that the described wiring
tricks and tradeoffs were important and determined largely the usability range
of the machine. This principle, as we have seen, is also at work when adopting
and simplifying sophisticated mathematical procedures, e.g. when sacrificing
fast convergence behaviour for a smaller amount of parameters to compute.
Consequentially, the technique of ‘freeing up dummies’ occurs systematically in
the report of 1946 whenever modifications could not be entered into the basic
scheme for lack of memory. However, what appears to be a mere mannerism of
the ENIAC, will prove to be instructive for Curry’s further investigations into
a theory of program composition.

2More details on these two kinds of wiring conditional branching on the Eniac, see [3,
Sec. 2.4]. If a transceiver of an accumulator is used for discrimination, or, in general, for
steering another program, it is called a dummy (program).
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1.2 Goldstine and von Neumann: From ENIAC to ED-
VAC (1946–1950)

Although Haskell Curry was involved with the ENIAC since 1946, it is not the
name ‘Curry’ or ‘Haskell’ that spontaneously arises if one thinks of a logician
in relation with computers in the years 1946–1950. That would rather be John
von Neumann, ‘Johnny the MANIAC—father of all JOHNNIACs’. As H.H.
Goldstine recounted, he met von Neumann in a train station in 1944, talked with
him about the ENIAC in progress and got the famous mathematician interested
[20, p. 182]. Von Neumann’s later involvement with ENIAC and computers is by
now a standard part of the history of computers and of computing (see e.g. [1]).
Yet for a significant comparison, it is mainly von Neumann’s (and Goldstine’s)
study of setting up a process on a computer that is of relevance here.

Soon after the completion of the ENIAC, it became clear that the machine
would not only be used to compute ballistic tables, but also for many other
problems. Setting up a problem on the ENIAC was, unfortunately, not a simple
process and took a lot of time. Therefore, in the years 1947–1948, a rewiring of
the ENIAC was effectuated, changing the machine from a locally programmed,
parallel machine into a centrally programmed, sequential machine [33]. This
‘reconstruction’ of the ENIAC was the outcome of a group process, involving
the team of ENIAC engineers, the team of mathematicians from the Ballistic
Research Laboratory and Los Alamos that wanted to set up programs on the
ENIAC, and the all-female team of programmers of the ENIAC. Through their
cooperation an instruction code for the ENIAC was developed and the ENIAC
was rewired accordingly. The main ideas for this instruction code came from
Adèle Goldstine (wife of Herman, programmer of the ENIAC and author of its
technical description), Richard F. Clippinger (of Ballistic Research Laboratory)
and John von Neumann.

A telling anecdote concerning ‘instruction codes’ illustrates the interplay of
practical and theoretical issues, or even more to the matter, of programmers
and mathematicians: For a complete list of instructions that von Neumann had
proposed, a halt order was plainly missing. However, Betty Holberton, one of
the programmers, convinced him of the need to include it. For a certain reason
von Neumann held up the opinion, “you don’t need it”, yet Holberton replied,
“but we are not all Von Neumann’s, we will make mistakes” [37, p. 78]. Indeed,
a halt order is useful for stopping the machine and analysing what was going
wrong. In von Neumann’s view the machine only ought to stop “naturally” that
is after the program has been executed successfully.

According to von Neumann, once the translation of a problem into mathe-
matics is achieved, the actual coding does not present any real challenge and no
real problems are deemed to arise [19, part I]. Error handling is to be done before
the execution of a program. Thus, this anecdote is not only an illustration of
the impact of practical, everyday experiences with the ENIAC but of more the-
oretical and historical concern: it is characteristic of von Neumann’s approach
to programming. His ethos ultimately led to the above coupe of converting the
ENIAC into a serial machine.
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Following the experience with ENIAC, von Neumann and Goldstine quickly
embarked on the conception and usage of a new machine, the EDVAC3, that
would be a sequential, stored-program computer from the start. This materi-
alised into a series of reports describing the architecture of the new machine
(hence the name ‘von Neumann architecture’) and how to set up programs on
this new machine. The reports that interest us here, are the three volumes of
Planning and coding of problems for an electronic computing instrument [19]
which appeared in 1947 (vol. I, general principles and flowcharts; vol. II, coding
examples for numerical and combinatorial problems) and 1948 (vol. III, com-
bining routines) respectively.

Table 1: Table of basic orders [19]

Nr Symb. Description

1 x Clear A and add number located at x into it
2. x- Clear A and subtract number at position x into it
3. x M Clear A and add the absolute value of the number located at

x into it
4. x -M Clear A and subtract the absolute value of the number at po-

sition x into it
5. x h Add number located at x into the A
6. x h- Subtract number at position x into the A
7. x hM Add the absolute value of the number located at x into the A
8. x h-M Subtract the absolute value of the number at position x into

the A
9. xR Clear R and add number located at position x into it
10. A Clear the A and shift the number held in the register into it
11. x X Clear the A and multiply the number located at position x by

the number in the register
12. x ÷ Clear register and divide the number in the A by the number

located at x leaving the remainder in A and the quotient in R
13. x C Shift the control to the left of the order pair at position x
14. x C’ Shift the control to the right of the order pair at position x
15. x Cc If the number in A ≥ 0 shift the control as in x C
16. x Cc If the number in A ≥ 0 shift the control as in x C’
17. x S Transfer the number in A to position x
18. x Sp Replace the left-hand 12 digits of the left-hand order located

at position x by the 12 digits 9 to 20 in A
19. x Sp’ Replace the left-hand 12 digits of the right-hand order located

at position x by the 12 digits 29 to 40 in A
20. R Replace the content ǫ0ǫ1ǫ2 . . . ǫ39 of A by ǫ0ǫ0ǫ1ǫ2 . . . ǫ39

Continued on next page

3The EDVAC also called IAS (Institute for Advanced Study) machine when referring to
the actual machine built at Princeton.
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Table 1 – continued from previous page

Nr Symbol Description

21. L Replace the content ǫ0ǫ1ǫ2 . . . ǫ39 and η0η1η2 . . . η39 of A and
R by ǫ0ǫ2ǫ3 . . . ǫ390 and η1η2η3 . . . η39ǫ1

In the first volume of Planning and coding, Goldstine and von Neumann give
a table of the machine instructions of the IAS machine (see Table I). Of special
interest in this table are the Sp and Sp′ orders, called ‘partial substitutions’ by
von Neumann. These orders shift the first half of a word to the second half (or
vice versa). In the case the word contains an order (of length half a word) and
an address (also half a word), these orders can exchange orders for addresses or
vice versa. For von Neumann, the importance of these partial substitutions can
hardly be over-estimated, because they allow a program to change its own code:
“the machine’s ability to modify its own orders [...] is absolutely necessary for
a flexible code” [18, p. 31].4 Goldstine and von Neumann then explain how to
transform a problem into a program and how flowcharts can be used to do the
coding:

Since coding is not a static process of translation, but rather the
technique of providing a dynamic background to control the auto-
matic evolution of a meaning, it has to be viewed as a logical prob-
lem and one that represents a new branch of formal logics [...] this
is not a mere question of translation (of a mathematical text into
a code), but rather a question of providing a control scheme for a
highly dynamical process, all parts of which may undergo repeated
and relevant changes in the course of this process. [...] We therefore
propose to begin the planning of a coded sequence by laying out a
schematic of the course of C through that sequence, i.e. through the
required region of the selectron memory. This schematic is the flow
diagram of C. [19, vol. 2, p. 1 and 4]

The second volume of Planning and coding applied these general principles to
other frequently occurring mathematical problems. provided detailed flowcharts
for a variety of concrete problems. For the last and third volume that appeared
in 1948, Goldstine and von Neumann had promised to explain how to combine
several of these routines in one program. Indeed, they wanted to “avoid the
need for recoding [a routine] each time when it occurs” and have a routine that
can “insert [already] coded sequences as wholes” into a new program. In short,
a meta-routine for substituting a subroutine in the main routine [19, vol. 3,

3In volume 1, orders are ordered in pairs in the memory because orders are “less than
half as long as a forty binary digit number, and hence the orders are stored in the Selectron
memory in pairs.”

4This is a recurring theme in von Neumann’s writings on computing, especially when
talking about (self-reproducing) automata.
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p. 2]. The solution to this task is a ‘preparatory routine’ that allows to copy
a given routine to a given memory location in the main routine, automatically
altering the memory positions of the program. This ‘preparatory routine’ only
works under certain restrictions, in particular, the subroutine may not alter any
of the memory locations of the main routine.

Estimating Goldstine and von Neumann’s work on programming, one should
say that they propose more a set of heuristic tools (such as flowcharts) and a
demo-set of example routines than a theory of programming. The translation
of mathematics is seen as the most important step and its implementation on a
machine is treated as a derived, secondary problem—but never, as Curry states,
“in it’s own right”. Even the ‘preparatory routine’ is not developed in its full
generality and remains rather involved and complicated. Also typical is the
absence of error routines, most obvious by the missing halt order. All in all,
their strategy stuck close to the machine, not gaining enough abstraction to
arrive at a more general approach worth to be called programming. Although
the impact of the Goldstine-von Neumann reports on the history of computing
and programming was considerably large, if not decisive, one cannot say that
this helped constituting a systematic logical approach. That such an approach
to programming was not impossible at that time, however, is shown by Curry’s
work.

2 On the composition of programs

In 1949 and 1950 Curry wrote two lengthy reports [11, 12] for the Naval Ord-
nance that proposed a theory of programming that is very different from the
Goldstine-von Neumann (GvN hereafter) approach [19] (see Sec. 1.2). In fact,
it will be shown that Curry’s approach is much more advanced than the GvN
reports as far as programming is concerned, providing a detailed theory of pro-
gram compositions that is ultimately understood as a calculus of compositions
and thus more akin to Backus’ idea of an algebra of programs [2].
But why did Curry develop his theory of compositions and what was its pur-
pose? This was clearly enunciated in [11, p.5]:

In the present state of development of automatic digital computing
machinery, a principal bottleneck is the planning of the computation
[...] Ways of shortening this process, and of systemizing it, so that
a part of the work can be done by the technically trained personnel
or by machines, are much desired. The present report is an attack
on this problem from the standpoint of composition of computing
schedules [...] This problem is here attacked theoretically by using
techniques similar to those used in some phases of mathematical
logic.

Indeed, Curry considered the preparation of programs for the machine as the
principal bottleneck for the development of computing machines, a concern that
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directly related to Curry’s ENIAC experience with its direct and local program-
ming method. In contrast with GvN, Curry not only developed a notation
for programs but also a general theory of program composition that could be
mechanised. He thus made the firsts steps towards automatic programming, i.e.,
compiling. As G.W. Patterson stated in a 1957 (!) review on [13]: “automatic
programming is anticipated by the author” [34, p. 103]

The sheer practical necessity to theoretically ‘attack’ the problem of program
compositions was not the only influence of Curry’s ENIAC experience. Also the
‘logical nature’ of the inverse interpolation problem contributed significantly to
Curry’s ‘strategy’ [11, p.7]:

The present attack [goes] back for its fundamental philosophy to the
Aberdeen report [16]. In fact, it was evolved with reference to inverse
interpolation. That problem [has] shown itself to be well suited for
the purpose. It is simple enough so that it is scarcely economical for
a big machine; yet it has a structure showing several different kinds
of compositions

Curry considers two different phases in programming a given problem, in his
particular case, the inverse interpolation problem [12, p.2]:

The first step [is] to analyze the inverse interpolation problem into
its main constituent parts, and then to study the kinds of compo-
sition necessary to reconstruct the program from these main parts.
[B]eyond this point there is the consideration of how these major
parts [m]ay be compounded from simpler parts. This analysis, and
the corresponding synthesis, occupies the later chapters of [12]

The study of the different kinds of compositions and how they can be synthesised
in general forms the major bulk of [11] and will be discussed in Sec. 2.2. The
application of the theory to the inverse interpolation problem was postponed
to Chapter 1 of [12], even though it was “conceived as a part of [the] first
memorandum”. The analysis of the major parts into simpler parts as well as
the corresponding synthesis is addressed in [12] and will be discussed in Sec.
2.3.

Note, in what follows, all technical terminology is Curry’s unless indicated
otherwise. Our own vocabulary, especially when slightly anachronistic, is made
recognisable by single quotes.

2.1 Definitions and assumptions

Unlike modern programming languages that have as a design goal to be as
machine-independent as possible, Curry chose to build up his theory with ref-
erence to a concrete machine, viz. the IAS computer with von Neumann archi-
tecture as described in [4]. He left “the question of ultimate generalization [i.e.
machine-independence] until later”, but did make considerable idealisations of
the IAS machine. Curry introduced several definitions in targeting this idealised
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IAS machine and made assumptions that were used to deal with practical prob-
lems of programming.
The target machine has 3 main parts: a memory, an arithmetic unit (consisting
mainly of accumulators A) and a control (keeping track of the active location
in memory). The memory consists of locations and each location can store a
word and is identified by its location number. There are two types of words:
quantities and orders. An order consists of three main parts: an operator and
two location numbers, a datum location and an exit location. There are four
‘species’ of orders: arithmetical, transfer, control and stop orders. Roughly
speaking, a transfer order moves a word from one position to another, a con-
trol order changes location numbers. A program was defined by Curry as an
assignment of n+ 1 words to the first n+ 1 locations.5 A program that exists
exclusively of orders resp. quantities is called an order program resp. a quantity
program. A normal program X is a program where the orders and quantities
are strictly separated into an order program A and a quantity program C with
X = AC.
Note that it is impossible to tell from the appearance of a word, if it is a quantity
or an order. Curry considered this as an important problem [11, p.98]:

from the standpoint of practical calculation, there is an absolute sep-
aration between [quantities and orders]. Accordingly, the first stage
in a study of programming is to impose restrictions on programs
in order that the words in all the configurations of the resulting
calculation can be uniquely classified into orders and quantities.

Curry introduced a classification of the kinds of programs allowed. In this con-
text, the mixed arithmetic order is crucial. This is an arithmetical operation
that involves an order as datum. This corresponds, of course, to von Neumanns
‘partial substitutions’. For example, an important use of mixed arithmetic or-
ders is looking up consecutive data in a table. Here, it is employed to effectively
calculate with location numbers. To enable this, Curry added the table con-

dition, i.e. it is allowed to add an integer to a location number to get a next
value, but only within a limited range (the range of the table in which you look
up values). Ultimately, this resulted in the notion of a regular program, which is
either a primary program or a secondary program that satisfies the table condi-
tion where a primary program has no mixed arithmetic orders, but a secondary
program at least one. In any case, the calculation has to terminate. This care-
ful categorisation of programs allowed Curry to ‘tame’ or at least control the
impact of mixed arithmetic orders (or ‘partial substitutions’). These categorisa-
tions and restrictions contrast strongly with von Neumann’s enthusiasm about
changing the code of a program while running, and appears more in alliance
with the caution the German computer pioneer Konrad Zuse expressed.6

5Note that Curry uses the word “program” throughout in both [11, 12]. This might be seen
as a confirmation of Grier’s hypothesis that the verb “to program” originated in ENIAC circles
[21]. Note also that the word “assignment”, as used by Curry, does not have the technical
content this term has nowadays in computer science.

6Cf. the following quote from Zuse: “The idea of general calculating or information pro-
cessing, as we say today, induced me to consider that the program, too, is information and
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2.2 Steps of program composition part I

Next we discuss Curry’s ‘first step’ in the programming of a problem, a study
of the different kinds of compositions and the techniques he provided to ‘recon-
struct’ a program from its subprograms. As Curry explained in the introduction
of [11]:

Suppose that we wish to perform a computation which is a complex
of simple processes that have already been planned. Suppose that
for each of these component processes we have a plan recorded in
the form of what is here called a program, by means of a system of
symbolization called a code. It is required to form a program for the
composite computation.

2.2.1 Transformations and replacement

The first step in program composition as discussed by Curry concerns the def-
inition of the different transformations needed in order to attain compositions
on the machine level. Let X = M0M1M2...Mp and Y = N0N1N2...Nq be two
regular programs with N0,M0 initiating orders, T (k) = k′ with k ≤ p, k′ ≤ q
some numerical function. Given a program X then {T }(X) computes the pro-
gram Y such that:

{T }(X) =















N0 = M0

Ni = Mki
if there are {k1, ..., ki, ..., kt} for which T (kj) = i, i > 0 (∗)
and if t > 1, ∃f such that f(k1, ..., kt) = ki

Ni = J if there is no k such that T (k) is defined

where J is a blank. {T }(X) is called a transformation of the first kind. This
boils down to a reshuffling of the words in X , where it is not necessary that
every word in X reappears in Y . Note that the function f is needed in order
for {T } to be uniquely defined.

A transformation of the second kind (T)(X) gives the Y such that q = p
and every word Ni ∈ Y is derived from a word Mi ∈ X by replacing every
location number k in every order Mi of X by T (k). If Mi is a quantity then
Ni = Mi. This results in changing the datum and exit numbers in the orders
to correspond with the reshuffling from the transformation of the first kind.
Given programs X and Y and θ a set of integers then the transformation θ

Y
X

can be processed by itself or by another program.[...] In hardware it means that we not only
have a controlling line going from left to right, but also from right to left. I had the feeling
that this line could influence the whole computer development in a very efficient but also
very dangerous way. Setting up this connection could mean making a contract with the devil.
Therefore, I hesitated to do so, being unable to overlook all the consequences, the good as
well as the bad. [...] My colleagues on the other side had no scruples about the problem I just
mentioned. John von Neumann and others constructed a machine with a storage for all kinds
of information including the program. [...] My own design for future machines on paper were
more structured with instructions stored independently and special units for the handling of
addresses and subroutines nested in several levels.” [38, p. 616]
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called a replacement gives a program Z of length r+ 1 where r = p if p ≥ q else
r = q and for each word Li ∈ Z, 0 ≤ i ≤ r:

Li =















M0 if i = 0
Mi if i /∈ θ, i ≤ p
Ni if i ≤ q and (i ∈ θ or i > p)
J if i ∈ θ, i > q

Thus, a replacement is a program made up from two programs by putting, in
certain locations of one program, words from corresponding locations in the
other program. Curry then gave definitions for transformations of the second
kind with replacement, defined as { θ,T

Y
} = θ

Y
({T }(X)) and transformations

of the third kind. This last class concerns transformations that result from
combining transformations of the first and second kind with replacements:

[T ](x) = {T }(T )(x)
[ T
Y

] = { T
Y
}(T )(x)

[θT ](x) = { θT
0 }(T )(x)

[ θT
Y

](x) = { θT
Y
}(T )(x)

Note that 0 is a void program.
This part of the theory of program composition is in fact heavily inspired

by the theory of combinators on which Curry wrote his PhD in 1930 [8]. In
particular, if one looks at the condition (∗) in the definition of {T }(k), this a
projection function needed to select a value kj . If all kj ’s are the same then:

there is a unique normal variator (i.e. combinator corresponding
to a variation of “Umwandlung”) U such that UN1N2 . . . Nq ⇒
M1M2 . . .Mp where ⇒ is a reduction in the sense of combinatory
logic, and the words are regarded merely as names for “entities”
which can be manipulated according to the rules of the theory of
combinators. [11, p. 27]

With the help of the language of combinators, Curry then rewrote the function
T (k) as BanKbn . . . Ba2Kb2 .Ba1Kb1 . Here B is the combinator of composition
(Bxyz = Bx(yz)), K selects the argument x (Kxy = x). This T (k) transforms
k in k if 0 < k ≤ a1; in k + b1 if a1 < k ≤ a2 . . . in k + b1 + . . .+ bn if an < k.
The transformation T (k) will accordingly be called K-free if (∗) has at least
one solution, W -free if it has no multiple solutions and C-free, if T is monotone
increasing.7

2.2.2 Compositions

Using these transformations of the first, second and third kind, Curry embarked
on the study of diverse program compositions. He considered the following
compositions: simple substitution, multiple substitution, reduction to a single

7Note that K, W and C are all combinators corresponding respectively to Kxy = x,
Wxy = Wxyy and Cxyz = xzy.
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quantity program, loop programs and finally complex programs. This means:
finding the right combination of the different transformations and determining
the numerical functions T (k) used in the transformations. Here, we will just
discuss how a simple substitution can be achieved.

Let Y = BC and X = AC be normal programs, with α, β, γ the respective
lengths ofA,B,C, m is the location number of a wordM in A where the program
Y is to be substituted and n the location number of the starting location of B.
The following numerical functions are needed:

T1(k) =







k for 0 < k < m
m+ n− 1 for k = m
k + β − 1 for m < k ≤ α+ γ

T2(k) =

{

m+ k − n for n ≤ k ≤ n+ β
α+ k − n for n+ β < k ≤ n+ β + γ

Then with θ the set of k’s with n ≤ k < m+ β, the simple substitution of Y in
X at M is given by Z = [ θT1

[T2](Y ) ](X). Consider that, if M is an output of X , the

simple substitution of Y in X results in the program composition Z, denoted
as:

Z = X → Y

Figure 2 gives an intuitive idea of how the transformations and replacement
work together in this concrete case.

To ‘close’ this formalism and make it into a proper algebraic structure, Curry
introduced a neutral element for composition: In case B is only a stop order,
then Y will be written as 0 and X → 0 = X [11, p. 38].

The discussion proceeds with the composition of multiple programs or mul-
tiple substitution. Let X = A0C and Yi = AiC be regular programs then
Z = X → Y1& . . .&Yn is defined as the program obtained by substituting Y1

for O1; . . .; Yn for On, with the Oi outputs of X . Curry remarked that, “with a
proper renumbering of outputs” we have Z = (. . . ((X → Y1) → Y2) . . . → Yn)
(or to put it in modern terms Z can be “curried”!). After multiple substitution
(and the characterisation of the respective T -functions) follows the rather impor-
tant treatment of the reduction to a single quantity program. Given X = A0C0

and Yi = AiCi, a quantity program D can be constructed where each quantity
with location number k in every Ci can be identified with some quantity in D
by the functions Si(k). Taking αi for the length of Ai, now one can define a
T -function T ′

i(k) = αi + Si(k − αi), or equivalently in the notation of combi-
natory logic, T ′

i = BαiJi. Combining these T ′
i functions with the respective

T ′′
i-functions of multiple substitution of all Ai’s on D, Curry arrived at an

explicit description of Ti(= T ′′
iT

′
i)-functions that describe the reduction to a

single quantity program Z = BD. This characterisation of Z by the T ’s allows
for “a practical procedure for constructing the program Z” [11, p. 43].

In the first column of a sheet of columnar paper we write the suc-
cessive locations of Z [...] In the second column we write the trans-
formation T0 by going through X and writing h in the kth row
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A C ... B C

A1
... A2 C ∅

|B|
m n

|B|

A C ... B C

... B ... C ∅

m n

A C ... B C

A1 B A2 C ∅

m n

Figure 2: From top to bottom: The T1(X) transformation; the T2(Y ) trans-
formation; and finally the substitution [ ΘT1

[T2](Y ) ](X) that substitutes Y in X at
position m.

whenever T0(h) = k; if h is one of the mi, we put in parentheses.
In the (i + 2)nd column we do the same for Ti. It is then easy to
write out Z. Given any k ≤ [begin position of Z] there will be only
one column in which there is an unparenthesized h. That column
shows which program, X or Yi, should be used. We now look up
this order in the given program and make the appropriate transfor-
mation. This can be done by finding h in the appropriate column
and replacing it by the corresponding k.

This manual pencil-and-paper procedure is useful for the construction of pro-
grams as Curry illustrated when he later resynthesises his inverse interpolation
program using composition and basic programs. This tabular procedure is sim-
ilar to our Fig. 2, but rotated over 90 degrees, with the columns representing
programs. An example of the procedure is given in the table on page 28 in the
next section. Of course, if a fully automatic procedure would have been feasible
in 1950, the mere collation and comparison of T functions would have sufficed
to find the construction of the composed program.

Finally, a last class of important program compositions is characterised, the
loop, “programs which double back on themselves” or “a kind of substitution
of part of X in itself” [11, p. 44–45]. To do this, one needs e.g. a T -function
for which T (mi) = T (ni) = j with ni < mi. At location mi there is a jump or
unconditional control shift to ni.

8

Curry concluded this report by observing that the “same programs can be
constructed in different ways, [i]n other words, there are equivalences among

8These T -functions are no longer W -free or C-free (though still K-free), but can, “to boot
if we want it” (p. 44), be regarded as such to start the program.
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our programs.” [11, p. 49] Indeed, as his introduction of a neutral element
of composition (cfr. p. 17) made clear, Curry was aware that a calculus or
an algebra of programs under the operation “composition” (or “→”) could be
defined and studied. One such property of the algebra of composition is X →
0 = X but also associativity can be proven: (X → Y ) → Z = X → (Y → Z)
[11, p. 50]. This aspect of Curry’s composition of programs preempts the work
of the Russians I. Ianov [23] and A.A. Markov Jr [29].

Given that Curry was inspired by his combinators (cfr. p. 16) or that he
envisioned an algebra of program schemes, nowadays one is inclined to ask: did
Curry use ideas or concepts that stem from Turing’s, Church’s or Post’s anal-
yses of computability?9 The answer seems to be a plain No, simply because
Curry’s main occupation was how to synthesise a complex program from basic
ones, rather than the determination of general characteristics of what could be
done in principal by a machine. Curry was more interested in issues that di-
rectly relate to a theory of programming rather than a theory of computability.
Curry’s main example was not an abstract universal procedure, but a practical,
though complex computation: the inverse interpolation routine. This maybe
partly due to the addressee, namely the Naval Ordnance for which these reports
were written. These people were surely more familiar with mathematical of dif-
ferential equations than with mathematical logic, and probably more interested
in what these new machines are capable of in the field of ballistics.

2.3 Steps of program compositions part II

Having established the different types of composition, Curry considered the
problem of how the major constituent parts of a program could be analysed
into simpler programs and how these simpler programs can be synthesised into
the main programs. Here, his experience with the ‘logic of stages’ (see p. 6)
when programming the ENIAC was capital.

2.3.1 Basic programs

Since Curry’s ‘fundamental philosophy (cf. p. 3 above) aimed at an analysis of
programs into their “most rudimentary components” relative to a given machine,
these components were called basic programs [12, p. 3]:

[The] analysis can, in principle at least, be carried clear down until
the ultimate constituents are the simplest possible programs. These
programs, which are here called basic programs, each consist of a
simple order plus the necessary outputs and data. Of course, it
is a platitude that the practical man would not be interested in
composition techniques for programs of such simplicity, but it is
a common experience in mathematics that one can deepen one’s
insight into the most profound and abstract theories by considering
trivially simple examples

9We are indebted to Peter van Emde Boas for raising this question.
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As is evident, this approach was inspired by Curry’s interest in systems of
symbolic logic that are of “an extremely rudimentary character” (cf. p. 3).
Later, in a short 1952 note, Curry showed that this philosophy contrasted with
the GvN-approach [13, p. 100]:

Von Neumann and Goldstine have pointed out that [we] should not
use the technique of program composition to make the simpler sorts
of programs, – these would be programmed directly –, but only to
avoid repetitions in forming programs of some complexity. Never-
theless, there are three reasons for pushing the technique clear back
to formation of the simplest possible programs from the basic pro-
grams, viz.: (1) Experience in logic and in mathematics shows that
an insight into principles is often best obtained by a consideration of
cases too simple for practical use [...] (2) It is quite possible that the
technique of program composition can completely replace the elabo-
rate methods of Goldstine and von Neumann [...] (3) The technique
of program composition can be mechanized; if it should prove desir-
able to set up programs [...] by machinery, presumably this may be
done by analyzing them clear down to the basic programs

A basic program consists of a single order plus its necessary outputs and data.
Two important concepts in this context are locatum and term. A locatum is a
variable that designates a word in the machine. It can take different values in
different stages of a computation and in similar computations based on different
data. Unspecified locata are written as λ, µ, memory locata as x, y, z, u, v, w.10

A term is a word constructed by the machine from its locata at any stage. The
constants 0, 1 and locata are basic terms, a general, unspecified term will be
written as ξ, η, ζ. To be able to represent terms as functions of other terms,
Curry introduced indeterminate terms or variables, denoted by s, t, that can
appear in functions, written as φ, ψ, ω.

If ξ is a term and λ a locatum, then:

{ξ : λ} (1)

is a program that calculates the term ξ and stores it in the locatum λ. This
is what we would call in modern computer science terms an ‘assignment’. If a
number of terms is connected with logical operators, equalities and inequalities,
one obtains a predicate Φ and {Φ} will then designate a discrimination which
tests whether Φ is true or not. The fundamental principle for the analysis into
basic programs is:

{φ(ξ) : λ} = {ξ : µ} → {φ(µ) : λ} (2)

where φ is a function which depends on a set L of locata and ξ is a term
constructed from locata in L. The equation (2) can be read as a definition of
the left hand side by its righthand-side. This principle allows for the analysis

10Note that words in the accumulator (A) or in the register (R) are usually indicated by A
resp. R.
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of a program into basic programs by recursive definitions that rely on forms
of (2). Note however that this definitional character of (2) is only acceptable
if the locata in L are not changed by {ξ : µ}. Because this criterion recurs
often, we will indicate it as criterion (⋄). Indeed, if, for instance, φ(x) = A+ x,
ξ = x, λ = µ = A (with A the content of the accumulator) then the left hand
side results in A+ x whereas the right hand side results in 2x.

Now, what kind of programs are basic programs? An obvious choice would
be those commands on the GvN list of basic IAS machine orders (Table 1).
Indeed, Curry started from this list, but inserted important additions. There
were several reasons for doing so. To begin, Curry pointed out that there are
certain gaps in he GvN list, viz. some orders have no symmetric counterpart.
But, the more important reason for introducing new basic programs was rooted
in Curry’s machine-awareness: some programs should be basic because they
are used very frequently and, if they would be basic, would speed-up the pro-
gramming process and save memory during the actual automated analysis into
basic programs (see e.g. Sec. 2.3.2 and Appendix). Remember that, besides
the ‘human bottleneck’ of the programming, memory was the other principal
limiting factor, being ‘more expensive’ than time in those early machines: “The
most important considerations are efficient use of the memory and efficiency
in programming. The size of the memory determines the kind of problems the
machine can handle.” [12, p. 97]

Yet, for Curry, it was not only the actual machine architecture which is
subject to a lot of technical contingencies that should determine the choice of
basic programs. The logical analysis and the general problem of synthesising
programs also had a word in the determination of what should be part of the
machine’s architecture or hard-wired into the machine. The relation between
the machine and its programming should not only be a one-way, but a two-way
relationship, where the affordances of programming should have an influence on
the design of the machine.

Curry was acutely aware that this was an important issue. Already in his
preface to the 1950-report, he strongly advised that “considerations affecting the
design of the machine are likely to arise, so that it is advantageous that such
studies [as Curry’s] be prosecuted before the designs are completely frozen.”
[12, p. 5]. In his factual analysis, Curry took into account practical, machine-
bound properties of speed and memory. Intriguingly, this was achieved by a
theory that took distance from the actual machine, thereby not only introducing
abstractions and possible generalisations but also optimisations.

Grounded in this philosophy, Curry came up with a new list of basic pro-
grams (Table 2). The most important difference between Curry’s and GvN’s
list of basic orders are the receptive programs. Roughly speaking, receptive
programs are programs in which the accumulator is a ‘passive’ receiver of some
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value. These values are the outcomes of the functions πi(t):

π0(t) = +t π1(t) = −t
π2(t) = +|t| π3(t) = −|t|
π4(t) = A+ t π5(t) = A− t
π6(t) = A+ |t| π7(t) = A− |t|

Clearly, all πi(t) with i > 3 can be rewritten as A + πi(t) with 0 ≤ i < 4.
Consider now receptive programs of the form

{πi(ξ) : A} (3)

with ξ a definite basic term. Thus, if i < 4 then (3) comes down to replacing
the content of A by that of ξ, if i > 3 then (3) amounts to adding or subtracting
some number from the content of A. If ξ is simply a locatum in the memory,
then (3) with 0 ≤ i < 8 are the first 8 basic orders in the Table 1. Going beyond
this table, Curry also considered the cases of (3) where:

(a) ξ = R (b) ξ = A
(c) ξ = 0 (d) ξ = 1

Curry discussed each of these cases (a)-(d) separately in order to see whether
they suggested orders that should be included as basic programs.

(a) ξ = R. The program with i = 0 (put R in A) is included in Table 1,
viz. number 10 of the list. Curry saw no reason not to include the other
possible programs for this case with i > 0 (i.e. put −R, |R| or −|R| in
A), they appear as numbers 8, 9 and 10 in his list of basic orders (Table 2).

(b) ξ = A. For i > 3 this comes down to clearing or doubling the content
of the accumulator. For π0(A) nothing is done to A. Conclusion: only
the programs for πi=1,2,3(A) have to be retained (4, 5 and 6 in Curry’s list).

(c) ξ = 0. For {πi>3(0) : A} nothing changes to the content of A, for
{πi≤3(0) : A} the accumulator is cleared. One order suffices to do that,
{π0(0) : A}, order 1 in Curry’s list, absent in GvN’s Table 1. The inclusion
of this order makes it possible to clear the accumulator without the need
of an extra memory position which stores 0.

(d) ξ = 1. The cases {πi=0,1(1) : A} are retained as orders 2 and 3 in Curry’s
list of basic programs. Although absent in the GvN-list, Curry pointed out
that these orders would occur very frequently, e.g. as a counter for keeping
track in iterations. Again, if it would be hardwired into the machine, it
could save memory and time needed to access the memory.
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This analysis motivated Curry to add no less than 14 basic programs to
the GvN list (Table 1). Two more basic receptive programs were included
that allowed for the logical “freak situation” [11, p. 17] as he phrased the very
violation of ‘type determinations’, that is, when an order is manipulated as a
datum. These programs are written as d(∗) and e(∗) respectively. The order
d(∗) reads the location number of its own datum and thus makes available
the location number of the order in the control. It is this kind of operation
that allows to e.g. ‘scroll’ through a series of values in the memory. The
table condition for regular programs that involve mixed arithmetic orders (see
p. 14) limits the possibilities for this order, it can only be used for i = 0, 4:
{πi=0,4(∗) : A}. The order e(∗) reads the location number of its own exit
number into the accumulator. One last important basic program Curry added
was the stop order.

Table 2 shows the complete list of Curry’s basic orders. The second column
gives the symbol for the program, the third the details of the program, i.e., the
order, the datum and exit location. The last column makes the comparison with
the GvN list (Table 1). The orders that are not included in the GvN list are
indicated by a. Note that here, πi(c) stands for functions πi(t) with i ≤ 3. I.e.,
the contents of A is first cleared before adding a new number to it. Similarly,
πi(h) stands for functions πi(t), i > 3 where a number is added to the content
of A. The symbol U (unity) stands for ξ = 1, Z (zero) for ξ = 0.

Table 2: Table of Curry’s basic programs

Nr. for i = Symbol Program effects GvN for i =
0 1 2 3 o d e A R X 0 1 2 3

1 {0 : A} c Z 2 0 - - a
2 3 {πi(1) : A} πi(c) U 2 πi(1) - - a a

4 5 6 {πi(A) : A} πi(c) A 2 πi(A) - - a a a
7 8 9 10 {pii(R) : A} πi(c) R 2 πi(R) R - A a a a
11 12 13 14 {πi(x) : A} πi(c) 3 2 πi(x) - x x x- xM x-M
15 {d(∗)} : A} Gc 3 2 d(∗) x a
16 17 {A+ πi(1) : A} πi(h) U 2 A+ πi(1) - - a a
18 19 20 21 {A+ πi(R) : A} πi(h) R 2 A+ πi(R) R - a a a a
22 23 24 25 {A+ πi(x) : A} πi(h) 3 2 A+ πi(x) - x h -h Mh -Mh
26 {A+ d(∗) : A} Gh 3 2 A+ d(∗) - x a
27 {r} r – 2 r(A) - R
28 {l} l – 2 l(A) - L
29 {xR : A} X 3 2 x X
30 {A : R} R A 2 A A - a
31 {x : R} R 3 2 A - A xR
32 {A/x : R} ÷ 3 2 A A x ÷
33 {A : x} S 3 2 A - A S
34 {A : d(∗)} Sd 3 2 A - Sp

Continued on next page
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Table 2 – continued from previous page

Nr. for i = Symbol Program effects GvN for i =
0 1 2 3 o d e A R X 0 1 2 3

35 {A : e(∗)} Se 3 2 A - a
36 {K} Kc 2 – - - - C
37 {A < 0} Kh 3 2 - - - Cc
38 stop 0 – – - - - a

Curry’s theoretical and logical thinking about programming not only re-
sulted in an extended and more complete list of basic programs, it also resulted
in two automatable methods for reducing the class of all receptive basic pro-
grams to only five and four basic receptive programs respectively, i.e., methods
that allow to program certain basic receptive programs in terms of others. As
Curry remarked [12, p.29]:

the set of basic receptive programs is redundant in the sense that
some of them have the same effect as composite programs made up
from the others.

The two methods of reduction rely on the principle (2) (p. 20), a principle
that also played a key role in Curry’s method for automating the analysis of a
program into its basic programs (See 2.3.2 and Appendix). And what’s even
more, his reductions had an impact on the use of memory. The first method
does not use auxiliary memory, the second does.11 We will only discuss the
first method here, reducing all basic receptive programs 1–14 and 16–25 from
Table 2 to only five basic receptive programs. We insist on introducing it here
because it provides an intuition of how to turn the basic idea of Curry’s whole
thinking, to break up a given expression into smaller expressions up until its
most ‘rudimentary’ components, into an algorithm. In a way this can be seen
as Curry’s transposition to the computer age of what logicians were doing in
the 1920s, trying to express mathematical discourse with a minimum of logical
operators.

In what follows, φ(t) is a function independent from A and ξ is either 1 or
a locatum in the memory or the register R. The fact that two programs X and
Y have the same output with the same effect is written as X ∼= Y .12

Now using (2) we can rewrite (3) as:

{φ(ξ) : A} ∼= {0 : A} → {A+ φ(ξ) : A}

11This suggests a trade-off between the minimum number of basic programs needed and the
amount of auxiliary memory.

12Note that this is the standard notation from recursive function theory to indicate that
two functions f and g either are both defined and have the same values or are either both
undefined. This notation was introduced by Stephen C. Kleene [24] and was most probably
known to Curry.

24



According to the criterion (∗), this can only be true if φ(t) = πi(t), i ≤ 3 (else,
{0 : A} changes the locata on which φ(ξ) depends, i.e., the accumulator. We
also have:

{A− ξ : A} ∼= {−A : A} → {A+ ξ : A} → {−A : A}

This reduces cases i = 5, 7 to i = 4, 6.
Using these two formulae for reduction, 25 basic programs can now be synthe-
sised from the following 5 ‘primitive’ ones.

{0 : A}
{−A : A}
{A+ πi(t) : A} i = 0, 2
{A+ πi(R) : A} i = 0, 2
{A+ 1 : A}

2.3.2 An arithmetic compiler

The task Curry set out to complete next, was the analysis and synthesis of
arithmetic programs, viz. how to analyse an expression such as (x+1)(y+1)(z+
1) into its basic programs and synthesise it into a program of compositions of
basic programs. The basic formula {φ(ξ) : λ} = {ξ : µ} → {φ(µ) : λ} once more
provided the basis, but now as the starting point of an inductive scheme. This
scheme resulted in a “more or less complete theory for the construction of an
arbitrary [arithmetic] program” [12], where an arithmetic program, as defined
by Curry, is a program that does not involve discriminations or mixed arithmetic
orders (i.e., orders d(∗)). Furthermore, as Curry emphasised, the details of the
scheme resulted in a [13, p. 101]:

systematic method of defining a program ζ : λ the writing out of the
program, although somewhat involved , is none the less completely
automatic

In modern words this amounts to a complete description of an arithmetic com-
piler, some years before people like Böhm, Rutishauser in 1952 [25, 218–227]
or Laning and Zierler in 1954 [25, 236–240] came up with a description of a
compiling routine. Because of its historical value, the detailed description of
this paper compiler is included in the Appendix.

Two important features of the ‘arithmetic compiler’ should be highlighted.
First, the focus on economising memory space in the ‘compiling’ process, sec-
ond, the observation that mathematical equivalence does not imply program
equivalence.

For his ‘compiler’ Curry distinguished between elementary arithmetic pro-

grams and general arithmetic programs. For each type he developed a separate
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‘compiling’ method. The difference between the two lies in the fact that pro-
grams of the first type can be compiled without using auxiliary memory loca-
tions. This takes full advantage of memory savings made possible by relying on
(the redundancy of) the set of basic programs (cf. Appendix for more details).
In this context Curry recommended to either hard-wire all basic programs or to
hard-wire a limited set of them together with the automatic method of reduction
for basic programs (as described in sec. 2.3.1, p. 24) [12, p. 38–39]:

[T]he possibility of making such [arithmetic] programs without using
auxiliary memory is a great advantage to the programmer. There-
fore, it is recommended that, if it is not practical to design the ma-
chine so as to allow these additional orders, then a position in the
memory should be permanently set aside for making the reductions
contemplated [before]

Curry also emphasised that his method does not uniquely determine a def-
inition of a given arithmetic expression in terms of basic programs, since a
given algebraic form for some arithmetic expression can often be worked out in
different ways. Indeed, algebraic equivalence of arithmetic expressions like for
instance:

(x+ 1)(y + 1) = xy + x+ y + 1

does not necessarily imply the expressions will be synthesised as identical pro-
grams. Indeed, the left-hand side compiles to:

{ζ : λ} = {x : A} → {x+ 1 : A} → {A : w} → {y : A} → {A+ 1 : A} → {A : R}
→ {Rw : A} → {A : λ}

the right-hand side to:

{ζ : λ} = {x : R} → {yR : A} → {A+x : A} → {A+y : A} → {A+1 : A} → {A : λ}

As a consequence, depending on the particular methods one is using, a shorter
or a longer program might result, or a program that uses more or less auxil-
iary memory locations. This immediately links back to Curry’s persistence in
developing not only a practical theory of programming, taking into account the
characteristics of the machine itself, but also a true calculus of programs (see
Sec. 2.2.2, p. 19).

Lastly, a technical detail should be mentioned. While discussing the neces-
sity to specify the actual auxiliary locata needed when combining arithmetic
programs with others, Curry considered the possibility of assigning a term si-

multaneously to different locata, a kind of ‘parallel assignment’. This is written
as:

{ζ : λ1, λ2, . . . , λn}

Indeed, this is a very useful operation in the context of parallel programming
and most probably stems directly from Curry’s ENIAC experience.
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2.3.3 Discrimination and secondary programs

The analysis and synthesis of discrimination and secondary programs (the lat-
ter ones involve mixed arithmetic orders) was not treated with full generality
in Curry’s report. Contrary to the arithmetic program, no “compiler” was de-
scribed. Yet, a partial treatment was laid out that mainly focused on those
compositions needed to complete the specific inverse interpolation program.

The basic discrimination program is represented by {A < 0}, if written in
full length it is the program consisting of the order Kh (order 37 in Table. 2)
and two outputs O1 and O2, where O1 and O2 are the two possible outcomes or
branches of the conditional tested by the value in the accumulator. O1 if A < 0,
O2 if A ≥ 0. Normally, the output O1 is consecutive to the Kh order and
O2 is another location in the program to which the discrimination can jump.
To generalise this basic discrimination, Curry began to set out compositional
definitions of four principal kinds of discriminations

{ξ < 0} = {ξ : A} → {A < 0}
{ξ > 0} = {−ξ < 0}
{ξ < η} = {ξ − η < 0}
{ξ > η0} = {η − ξ < 0}

Then Curry proceeded to show how to analyse and synthesise simple proposi-
tional functions. Consider the logical combinations Φ1∧Φ2 and Φ1∨Φ2 (logical
AND and OR) and the logical negation {∼ Φ}. The corresponding discrimina-
tion programs may be defined as [12, p. 49]:

{Φ1 ∧ Φ2} = {Φ1} → ({Φ2} → O1 & O2) & O2

{Φ1 ∨ Φ2} = {Φ1} → O1 & ({Φ2} → O1 & O2)
{∼ Φ} = {Φ} → ({Kc} → O2) & O1

Here, {A} → {B} & O2 means if A true then do B else go to output O2. With
these three equations it is now possible to synthesise a large class of logical
propositions whose truth values could be used in a discrimination.

The remainder on discrimination programs mainly focussed on “practical”
programs, needed for the synthesis of the inverse interpolation. This included
iteration control and tests for “betweenness”, or “bracket tests” that check
whether a given number falls within a certain interval. An example of one side
of a bracket test, {x < y}, is given in Table 3.

As far as the iteration controls are considered, it is said that “any collection of
programs will have standard procedures for controlling iterations.” [12, p. 59]
Iteration control programs involve three programs: A working program Y to
be iterated and with an output that will increase a quantity i, a preliminary
program X and a terminal program Z to be initiated after the last iteration.
Now, there are two possibilities, an iteration control can receive a signal from X ,
make a discrimination and then proceed to Y , or, the iteration control receives
its signal from Y and then makes a discrimination. The increase of the quantity
i is always after Y . These two cases are called initial and final iteration control,

27



{x : A} {A− y : A} {A < 0}
1 +c 3 -h 3 Kh 3
2 0 0 0
3 x x 0

{x < y} {x : A} {A− y : A} {A < 0}
1 +c 6 1
2 –h 7 (2) 1
3 Kh 5 (2) 1
4 0 2
5 0 3
6 x 3
7 y 3

Table 3: The example is {x < y} = {x − y < 0} which is the result of the
composition {x : A} → {A − y : A} → {A < 0}. In the first four lines,
the instructions for the basic programs are given. The remaining lines list the
program formed by the multiple composition. The ‘compiling’ tabular procedure
to construct a program resulting from multiple composition is used. (Cfr. [12,
p. 66])

or, to put it in more modern terms, a ‘for-loop’ and a ‘while-loop’. An iteration
with initial control can thus be synthesised as follows: {A : i} → {A−m : A} →
{A < 0} → ({i : A} → {A+ 1 : A} → {Kc}) & Oz . The Kc order jumps back
to the beginning ({A : i}) and m is the number of iterations.

Secondary programs do not fall under the theory developed in the 1949-
report [11], but some instances of them are often needed. With an eye on the
synthesis of the inverse interpolation program, Curry developed three types of
secondary programs: remote control programs, tabulation/read-out programs
and preparatory programs. Caution is demanded, since “the locata being sub-
stituted are likely to occur in such a variety of locations in the interiors of pro-
grams that [...] this would make our notation break down.” [12, p. 78] However,
the combination Curry presented “can be handled by the present technique,
and [...] at least in the cases considered here, they will do what they are sup-
posed to do.” A remote control program might be best understood as a kind
of exception handling. It was already useful back on the ENIAC, e.g. when
an “irregular calculation” would normally “lead to an error signal” but “is not
pathological”.[12, p. 74] Instead of stopping the program in such a case, a signal
can trigger a so called ‘remote control’ that will modify the normal calculation
program. In general, one will need two nested simple remote control programs,
that can be combined with other subprograms. A simple remote control is the
following:
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1 Gc = {d(∗) : A} 5
2 Sd = {A : d(∗)} 4
3 O1

4 O2

5 O3

Here, O1 is the normal output, O2 and O3 are secondary outputs. Given
two such controls Y1 and Y2, with Y2 nested in Y1, Y1 will ‘program’ the normal
situation (give the normal order of commands), but if it comes upon Y2 in this
regular situation, Y2 will ‘reprogram’ the normal calculation to provide for the
irregular situation (change order of commands).

Another classic situation where a secondary program is required, occurs
when using tables. In order to go to a next value, or jump to another value in
the table, it is necessary to ‘calculate’ with the address numbers. However, this
sort of ‘pointer-arithmetic’ is only allowed within a certain range and finds its
modern parallel in automatic memory protection schemes. To provide for this,
Curry defined:

1 Gh = {A+ d(∗) : A} 5
2 Sd = {A : d(∗)} 4
3 O1

4 O2

5 -

The dash at 5 indicates that it is irrelevant what its contents are and, amus-
ingly, is called a dummy named Fooo. In the case when only quantities are
involved, Curry introduced a new notation: with α location number, L(α) gives
the word at location α. This exactly corresponds to the modern notion of
‘pointers.’

Finally, in respect to the preparatory programs, Curry referred to Goldstine
and von Neumann’s routine as “a device for picking out a certain segment of
the memory and increasing all the datum numbers of the orders in that segment
by a fixed amount.” [12, p. 90] Curry, in fact, translated the GvN-routine into
his system of symbols, but instead of using this routine to synthesise the seven
parts of his inverse interpolation, he chose another solution [12, p. 95]:

[A]lthough [GvN’s preparatory routine] has some automatic features
to recommend it, it seems more complicated than is really necessary.
A substitution program could be constructed along the lines of Sec-
tions B and C [tabulation routines] which would be simpler.

2.4 Role of Notation and System of Symbolisation

The transition in Curry’s thinking from his encounter with the ENIAC towards
a theory of program composition is reflected by successive stages that would
‘transmute’ this experience into “a system of symbolization” [11, p. 1]. Symbol-
isation acts as a mediator between the case study of inverse interpolation on the
ENIAC in 1946 and the later, fully developed program composition technique of
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1950. In his laboratory memorandum of 1949 Curry was pretty aware that ‘the
fact that the illustrations are postponed to this later paper [of 1950] may make
the present theory seem somewhat abstruse”, but nonetheless felt confident that
‘by means of a system of symbolization” his ‘attack’ of the given problem would
be far more systematic and deliver, “in fact, a notation for program construction
which is more compact than the “flow charts” of Goldstine and van Neumann.”
[11, p. 7]

In lack of a physical machine that would actually implement Curry’s pro-
gramming technique, notation is the very medium that can transform the ‘logic
of stages’ drawn on paper (cf. Fig. 1) into a virtual procedure of symbol substi-
tutions and thus beyond any visual control flow still drawn on paper by GvN.
Indeed: “The present theory develops in fact a notation for program construc-
tion” [11, p.7]. Consequentially, already prior to a final mechanisation of his
‘abstruse’ technique, the bare practicability of such a notation raises the ques-
tion for a suitable code.

This connects to Curry’s acute sensitivity to notation he cultivated within
the field of logics. As gets obvious from a 1937 paper [9], Curry had worked
on the perfection of Peano’s notation on the use of dots instead of brackets. In
particular, he developed a notation that allowed for a deep nesting of terms,
while keeping the structure of iterative formulae most transparent. Curry’s
key concept to achieve a transparent notation was ‘significance’ such that in
principle any nested formula is an entity in itself. When some ten years later
Curry developed his notation for a theory of compositions, the ‘logic of stages’
suggested by the hardware architecture of ENIAC would match up with stages
of symbolisation in logics. Since each component of a program requires a certain
‘significance’, that justifies to be considered a proper program term at all, the
“conditions of significance” [9, p. 28] are reflected in the notation of composition.

The elementary notations used by Curry are X → Y for composition, {A :
B} for assignment, and X → Y & Z for a conditional, meaning thatX is either
followed by Y or Z depending on the output of X . For a multiple substitution
and complex composition, Curry finally came up with the following notation,
X → (Y → (Z → O1 & < X > & < Z >)) for a program that is the
composition of X with Y with Z that can lead to three outputs, to Output 1,
back to X or back to Z (< X > shows that X has already occurred).

For more complex compositions, while holding up “to keep the notation
straight”, Curry gave a historical account of contemplatable forms to notate
logical expressions – quite unusual to encounter in a technical military report
[11, 45–49]. To avoid that a “large number of parentheses” may ruin the per-
spicuousness of the formula, Curry reviewed Peanese dot notation, Polish prefix
operator notation (where “parentheses can be inserted in only one way”), a
Frege-like notation (“perspicuous”, but “it must be remembered, Frege’s nota-
tion died with him”), and finally flow charts (“a quasi-graphical representation
of the flow of the control”). In practice, Curry switched between notations,
mainly using his original notation with &’s and brackets, sometimes, for very
complex programs, the Peano-Curry notation, and for clearly indicating the
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discriminations, a variant of Frege’s notation. For instance:

X → (Y → (Z → O1 & < X > & < Z >) & < X >) & < O1 >

is written in Peano-Curry notation (with the ∗ showing previous occurrence) as
follows:

X →: Y → .Z → O1 & X ∗ & Z ∗ . & X∗ : & O1∗

In the Frege-variant this same program looks like:

X // Y // Z // O1

// O1∗ // X∗ // X∗

// Z∗

3 Discussion

At first sight, and what might look as contradicting our ’integrative’ approach
stated in the introduction, it appears striking that Curry started his work on
programming while having no actual machine at his disposal. However this
only happened after a concrete experience with the ENIAC. This incidence
suggests that lack of an actual machine helped him to make abstractions from
the machine but more to point it seems that Curry’s formalist procedures guided
him to generalise the problems of programming by breaking them into his logic
of stages reflecting the modular design of the machine and recompose these
stages as a comprehensive theory informed by the architecture of yet another
machine.

This observation might help to explain part of the differences between von
Neumann’s and Curry’s approach to programming after their outset at the
ENIAC. Indeed, contrary to Curry, von Neumann was confronted with com-
puters on a daily basis. He was involved with the construction of the IAS
machine and he still paid frequent visits to ENIAC. As is clear from Sec. 2.2
and 2.3, the differences between GvN and Curry are legion: GvN’s [19] approach
boils down to a set of heuristic tools (such as flowcharts) which were illustrated
by a demo-set of example routines, whereas Curry takes off from a singular
‘prototype’-problem to develop a complete theory of program compositions.

Originally, Curry feared that the third part of the GvN reports [19, Part
III] Combining routines might overlap with his own work on composition of
programs [11, p. 6]. Yet by 1950, Curry had seen this report and promptly
concluded that his approach differed significantly from GvN’s [12, pp. 3–4]. One
might even say Curry was rather disappointed by the content of this final part
of GvN, for he remarks that they only give “a preparatory program for carrying
out on the main machine a rather complicated kind of program composition.“
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Curry continued his critique in a telling manner that underlined a still valid
distinction between a proper programmer and a quick hacker [12, p. 4]:

But one comment seems to be in order in regard to [GvN’s] arrange-
ment. The scheme allows certain data to be inserted directly into
the machine by means of a typewriter-like device. Such an arrange-
ment is very desirable for trouble-shooting and computations of a
tentative sort, but for final computations of major importance it
would seem preferable to proceed entirely from a program or pro-
grams recorded in permanent form, not subject to erasure, such that
the computation can be repeated automatically [...] on the basis of
the record.

To this Curry added the following footnote in order to strengthen his point:
“It is said that during the war an error in one of the firing tables was caused by
using the wrong lead screw in the differential analyser. Such an error would have
been impossible if the calculation had been completely programmed.” Clearly,
this comment indicates that Curry was not only highly aware of the significance
of a digital approach but also of the possible merits of higher-level programming
and the prospects of automated program optimisation. Exactly these features
are absent in GvN and seem to have been systematically underestimated by
them.

Another affirmation is Curry’s list of basic programs which extends those
given by GvN. This ’extension’ was actually a systematisation of GvN’s ad-hoc
list arranged by Curry’s logical thinking and rendered concrete by his sensitivity
to the machine’s limited memory.

Another important point made by Curry concerns the fact that he well knew
that his notation may appear “less formidable”, but would at least be adequate
for automatic programming, whereas the ’prodigious’ flow chart notation of GvN
is not. Therefore, “it will be found that another form of program composition
will be necessary” [12, p. 3] and, indeed, “it is quite possible that the technique of
program composition can completely replace the elaborate methods of Goldstine
and von Neumann”[13, p.100]. Consequentially, at least in his case, “flow charts
will be used [...] primarily as an expository device”[11, p.7], since:

several persons have noticed that the technique in reference (g)[GvN
1947] involves a lot of more fuss then is really necessary [but] the
procedures suggested by the theory of program composition [...] ap-
pear to lead to a less formidable technique, even when the problems
are planned in detail from scratch. [11, p.50]

Although Curry’s approach allows for a larger distance between the programmer
and the machine, for it provides a less machine-dependent “system of symbol-
ization”, this does not mean that Curry’s theory itself ‘takes distance’ from
the machine. In effect and to bring out this point one might formulate the
alleged oxymoron that because the applied logician makes abstractions from
the machine he is more machine-aware than GvN. In order to emphasise the
significance of logics for any field of human ventures, Curry noted:
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The objective was to create a programming technique based on a
systematic logical theory. Such a theory has the same advantages
here that it has in other fields of human endeavor. Toward that
objective a beginning has been made. [C]onsiderations affecting the
design of the machine are likely to arise, so that is advantageous
that such studies [as Curry’s] be prosecuted before the designs are

completely frozen [m.i.]. Efficiency in the management of an eventual
computing enterprise can no doubt be furthered by such a study as
this, but if it is to have that effect it must be pursued while the
plans are still in the formative stage, and it must be carried beyond
the stage of preliminary analysis to the point where it can be tried
on practical problems. [12, p. 5]

Certainly, even if being all but certain “that the actual formation of the com-
posite program can be carried out by a suitable machine” [11, p.7] this does
not conjure one into existence. As far as practicability is concerned, it seems
as if Curry’s foray towards automatic programming shared the same fate as
McCarthy’s Lisp compiler, namely in waiting for an appropriate machine with
enough memory. Curry was pretty aware that if ever his replacement and synthe-
sis “process could be carried out with a suitable machine; considerable memory
might be involved, but not extensive calculation” [11, p. 43–44]. This con-
tingency, of course, is not without a certain irony, because contrary to Lisp,
Curry’s proposed substitution process of symbols was particularly concerned to
minimise the waste of memory resources—when they are finally compiled to be
run.

Seen historically, it appears that advanced and far reaching concepts in the
field of programming antedated the progressiveness of machine development.
Indeed, it is by making abstraction from the machine that it becomes possible
to think about concrete improvements of the machine. This at least, is signifi-
cant for Curry’s work on program composition and his concept of an economis-
ing calculus. However, such prosperous options in the springtime of computer
languages were shock-frozen by a mono-culture of the so-called von Neumann
architecture as Backus’ alert Turing Award Lecture of 1977 raised the issue [2,
p. 614]:

For twenty years programming languages have been steadily pro-
gressing toward their present condition of obesity; as a result, the
study and invention of programming languages has lost much of its
excitement.

27 years after Curry’s work on programming, when Backus gave a historical
reassessment of his own field and searched for a new functional “algebra of
programs”, he rediscovered one of Curry’s dearest insights that if once “given a
certain memory capacity, the principle bottleneck for efficient performance is the
preparation of problems for the machine” [12, p. 97]. Still, and tellingly enough,
the addressee of Backus’ historical speech has not changed denouncing the “von
Neumann bottleneck”[2, p. 614], by now a winged-word, for being the culprit
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of the current misery. Backus, in fact, did refer to Curry’s well-known work
on combinators [15] but subsumed him under the same category of “applicative
models” together with Church’s lambda calculus [6] and pure Lisp [30].” [2,
p. 615] Obviously unaware of Curry’s eager for practical simplicity and the logi-
cian’s explicit concernment with a still unsealed hardware-design, he concluded
that “applicative computing systems [...] have not provided a foundation for
computer design”[2, p. 616] and, as a consequence, assessed Curry’s approach
alongside with lambda calculus, or Lisp:

Moreover, most applicative systems employ the substitution opera-
tion of the lambda calculus as their basic operation. This operation
is one of virtually unlimited power, but its complete and efficient
realization presents great difficulties [...] for example, pure Lisp is
often buried in large extensions with many von Neumann features.
The resulting complex systems offer little guidance to the machine
designer. [2, p. 616]

Yet, after our detailed tracing of Curry’s “attack” of the matter and proof of
his ‘fundamental philosophy’ to be directly motivated by his ENIAC experience,
one feels kind of obliged to modify this picture and to point out Curry’s warning
at the end of his last report on programming that “features of machine design
which will cause an improvement in programming technique should be very
seriously considered.”[12, p. 97]

In this respect, it seems appropriate to mention at least a few of these ‘Curry-
features’ and their relation to hardware modifications undertaken to widen the
von Neumann bottleneck. Outstanding and first of all, there is Curry’s in-
depth classification of basic programs with regard to the demand of auxiliary
memory (cf. sec. 2.3.1). Though for Haskell today laziness seems to prevail
over eagerness for simplicity, the avoidance of side-effects, meaning programs
that would “not disturb any locations in the memory”, as Haskell Brooks Curry
used to say, surely counts as one of the most important features of the functional
programming paradigm and is a manifest design-goal,13 when Haskell states [12,
p.38–39]:

Now the possibility of making such [arithmetic] programs without
using auxiliary memory is a great advantage to the programmer.
Therefore, it is recommended that, if it is not practical to design the
machine so as to allow these additional orders, then a position in the
memory should be permanently set aside for making the reductions
contemplated.

A compliance with Curry’s emphasised request for an extended set of orders and
reserved memory locations right inside the ALU would certainly have helped to

13Astonishingly, the Haskell community does not seem to provide any explicit motivation
for their own name-giving and, with regard to their logo, even stumble into the same felicity as
Backus by equalising Church’s lambda calculus and Haskell’s theory of program composition:
“The language is named for Haskell Brooks Curry, whose work in mathematical logic serves
as a foundation for functional languages. Haskell is based on the lambda calculus, hence the
lambda we use as a logo.” Cf. http://www.haskell.org/haskellwiki/Introduction

34



circumvent the chronic stack-overflow issues associated with the paradigm of
functional programming or might have even accelerated the inventions of back-
side caches (like L2/L3 memory) attached straight to the CPU. Furthermore,
the rather early effort to provide for index registers can be seen in relation to
Curry’s table condition and as a means to avoid the “freak-condition” of self-
manipulating orders featured so prominently in the von Neumann style of pro-
gramming when indirectly paging through memory locata. Also the introduction
of modern memory management units designed to prevent out-of-context access
of data (or stored orders) in RAM can be regarded as devices to fulfil some
of Curry’s logical restrictions, now imprinted directly in hardware. Not in the
least Curry’s idea of assigning a term simultaneously to different locata (p. 26),
might have allowed for a parallelisation of processes much earlier. Telling thereof
is the interesting fact that today’s on-chip parallelism schemes depend—much
like Curry’s theoretical synthesis—on a strict discrimination of instructions and
data in order to drive their pipelines. In this respect, and most exciting per-
haps, Curry’s practical solution of the inverse interpolation problem back on the
ENIAC can be regarded as ‘pipelining’ different processes concurrently through
the accumulators of the machine (cf. p. 5).

Taking up our historiographical stand, accounts in the history of computing
often tend to overemphasise only one aspect of computing (engineering, log-
ics, programming, etc) culminating in the neglect of others, and thus forgetting
about the actual computer as a meeting point rather than a divide. If one looks
at ENIAC as a bifurcation point in the history of sciences, where things begin
and develop fast and in different ways, one must recognise that an encounter
with the ENIAC helped to beget the classic framework of a von Neumann ma-
chine and the associated von Neumann style of programming, but also inspired a
different approach found in Curry’s contributions. By following Curry’s steps of
program composition, starting from the concrete meeting between an advanced
logician and the archaic “behemoth” ENIAC, it is clear that a confrontation
between the physical machine and abstract symbolic logic can result in a the-
ory of programming that functions as an interface between both sides. This
interface is not a visual display of program schemes like the GvN flowchart but
is mounted on a system of symbolisation that acquires “significance” as the
details of the composition are sketched and put together. Since this meets “a
somewhat similar situation which has arisen in combinatoric logic” [11, p. 27]
, as Curry referred to his backgrounds, one may say that the German notion
of “Umwandlung”—imported to allow for logical reductions, or for symbol se-
quences to “be manipulated according to the rules of the theory of combinators
[11, p. 27] (cf. sec. 2.4) —has been ‘curried’ to its essential meaning, namely for
‘transmuting’ into an algorithm of symbol substitutions that we nowadays call
a compiler.

As a result, ‘impact’ of reciprocal permeation of architectural hardware de-
sign and logical software schemes sets in before the automation of programming
becomes viable. Hence, re-reading Backus’ text [2], filtered back and through
Curry’s work, it nearly seems that Curry might have liberated us from the von
Neumann style, well before it was established. Constructive suggestions were
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explicitly made: “say by removing the tube A-43 on the drawing PX 8-304,
[since] the stepping of the stepper can then be controlled by the counters”. [16,
p. 57] How much of ‘Curry’, or how much of an engagement of symbolic logic
with electronic circuits would have been necessary to significantly change the
historical course of things, and thus to what extent ‘currying’ could have been
transmuted into ‘engineering’, remains an open question.

This matter cannot, however, be looked into further. [12, p. 96]

Appendix: An arithmetic compiler

In what follows we give the details of Curry’s arithmetic compiler.
An arithmetic term ζ is defined by induction as follows. Let L be a class of

locata and let t1, ..., tn be indeterminate terms. Then ζ is an arithmetic term
if, either, ζ is an initial term viz.:

ζ = 0
ζ = 1
ζ = ti i = 1, 2, . . . , n
ζ = λ where λ is in L

or, with ξ and η arithmetic terms:

ζ = πi(ξ) i = 1, 2, 3
ζ = ξ + η
ζ = ξη
ζ = ξ/η

An arithmetic function φ(t1, . . . , tn) is defined by:

φ(t1, . . . , tn) = ζ

with ζ an arithmetic term.
Similarly, Curry defined the class of elementary terms by induction on a

class L of locata and indeterminates t1, ..., tn. A term ζ is elementary if, ζ is
an initial term, or, given an elementary term ξ and a location x in the memory
from the locata L:

ζ = πi(ξ) i = 1, 2, 3
ζ = ξ + πi(x) i = 0, 1, 2, 3
ζ = ξ + πi(1) i = 0, 1
ζ = ξx
ζ = ξ/x

An elementary function based on L is a function φ(t1, . . . , tn) defined by:

φ(t1, . . . , tn) = ζ

with ζ an elementary term. The order of a term is defined as the number of
times the inductive process needs to be applied. E.g., if ξ is of order n then
πi(ξ) will be of order n+ 1.
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What exactly is the difference between arithmetic and elementary terms?
The definition of elementary terms involves the basic operations of addition,
multiplication and division between an elementary term and a memory loca-
tion (or, in case of addition, unity). For arithmetic terms these operations
are between two arithmetic terms. As will be explained, this has an impact
on the need for auxiliary memory locations when applying the principle (2),
{φ(ξ) : λ} = {ξ : µ} → {φ(µ) : λ}, to define any arithmetic term (elementary
or not) as a composition of basic programs. Remember that the right-handside
({ξ : µ} → {φ(µ) : λ}) can only function as a proper definition of the left-
handside ({φ(ξ) : λ}, if {ξ : µ} does not change the locata on which {φ(ξ)
depends (cf. criterion (⋄)). For elementary terms, this is guaranteed by the
inductive definition Curry provided. For the arithmetic terms, auxiliary mem-
ory is sometimes needed. Intuitively speaking, this is the case when one is
confronted with the situation when it is required to use a given location (for ex-
ample, the accumulator A) whereas its content is needed at some later time. To
understand this problematics better, think of the classical problem of switching
values in variables. If x = a and y = b, to arrive at x = b and y = a you need
an extra memory location.

An arithmetic program is the ‘assignment’ of an arithmetic terms ζ to some
locatum λ, viz.

{ζ : λ}

The method for defining any arithmetic program as a composition of basic
programs relies on the associativity properties of → discussed in Sec. 2.2.2 as
well as on the following four special cases of principle (2):

(α1) {ζ : λ} = {ζ : A} → {A : λ}
(α2) {ζ : λ} = {ζ : R} → {R : λ}
(β1) {φ(ξ) : A} = {ξ : A} → {φ(A) : A}
(β2) {φ(ξ) : R} = {ξ : R} → {φ(R) : R}

The condition (⋄) on memory is “vacuous” in the case of α1 and α2, since
no functions are involved. In the case of β1 and β2, one has to be careful that
{ξ : A} and {ξ : R} do not disturb any memory locata, viz. φ should not involve
A or R as a parameter.14 Using the instances α1 − β2 of (2) it is now possible
to proceed by induction to define any elementary function with ζ an elementary
term without disturbing any locations in the memory, except, possibly, λ itself.
However, this is only possible if Curry’s additional basic programs from Sec.
2.3.1 are hard-wired into the machine. Else, even the simple program {A : R}
would disturb the memory locata and would thus require auxiliary memory
locations.

14This is the case if:

φ(t) =

8

>

>

>

<

>

>

>

:

πi(t) i + 1, 2, 3
t + πi(x) i = 0, 1, 2, 3
t + πi(1) i = 0, 1
tx
t/x

Hence, when ζ is an elementary term.
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Elementary Arithmetic Programs The inductive definition of any arith-
metic program {ζ : λ} differentiates between several cases of ζ (being an ele-
mentary term):

a. If ζ is a basic term:

1. The program P is basic if either (1) λ = A, (2) ζ = A, (3) ζ = x, λ =
R.

2. Else, reduce by α1 to case where ζ = A, λ = A.

b. ζ = πi(ξ), i = 1, 2, 3:

1. The program is basic if λ = A, ξ = A,R, x, or 1.

2. If λ = A and P is not basic, reduce to ξ = A by (β1).

3. If λ 6= A reduce to λ by (α1)

c. ζ = ξ + πi(x) or ζ = ξ + πi(1), (i = 0, 1, 2, 3)

1. The program is basic if λ = ξ = A.

2. If λ = A, ξ 6= A, reduce to ξ = A by (β1)

3. If λ 6= A, reduce to λ = A by (α1)

d. ζ = xξ

1. The program is basic if λ = A, ξ = R

2. If λ = A, ξ 6= R, reduce to ξ = R by (β2)

3. If λ 6= A, reduce to λ = A by (α1)

e. ζ = ξ/x

1. The program is basic if λ = R, ξ = A

2. If λ = R, ξ 6= A reduce to ξ = A by (β1)

3. If λ 6= R reduce to λ = R by (α2)

Clearly, the principles α1–β2 are the main principles for breaking up an arith-
metic program {ζ : λ} into smaller programs, by reducing the elementary term
ζ of order n into elementary terms of a lower order, ultimately resulting of the
analysis of {ζ : λ} into basic programs. Note that for each of the cases (a)-(d),
the first step is always to check whether or not λ = A. If this is not the case,
then α1 is used to set λ = A. Similarly for case (e), division, if λ 6= R then α2

is used to set λ = R.15

Curry remarked that for any arithmetic program {ζ : λ}, with ζ elementary,
then, if “all missing parentheses in the algebraic notation for ζ are supplied,
so that it is clear in what order the operations are to be performed, then it is

15Note that the fact that one needs α2 instead of α1 for case (e) is explained by the fact
that the basic program for division from Table 2 is {A/x : R} and thus an assignment to the
register.
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uniquely determined which of the cases a-e applies.” [12, p. 40] If one adds to
this method a specification of the order in which operations x+ y and xy need
to be performed (“say, the first one occurring in such cases”), then his method
is a [13, p. 101]:

systematic method of defining a program ζ : λ the writing out of the
program, although somewhat involved , is none the less completely
automatic

In order to illustrate his method, Curry applied it to the following example of
an elementary term:

ζ = y0 + x1(y1 + x2(y2 + x3y3))

Define:
η2 = y2 + x3y3
η1 = y1 + x2η2

then:
ζ = y0 + x1η1

Clearly, ζ falls under case (c) of the inductive definition, hence by (c.3) we get:

{ζ : λ} = {ζ : A} → {A : λ}

By c.2, we get:
{ζ : A} = {x1η1 : A} → {A+ y0 : A}

By d.2 we get:
{x1η1 : A} = {η1 : R} → {x1R : A}

Combining the last three equations we get the following definition for {ζ : λ}:

{ζ : λ} = {η1 : R} → {x1R : A} → {A+ y0 : A} → {A : λ}

Similarly with R for λ:

{η1 : R} = {η2 : R} → {x2R : A} → {A+ y1 : A} → {A : R}
{η2 : R} = {y3 : R} → {x3R : A} → {A+ y2 : A} → {A : R}

Thus:
{y0 + x1(y1 + x2(y2 + x3y3)) : λ}

is defined as the following composition of basic programs:

{y3 : R} → {x3R : A} → {A+ y2 : A} → {A : R} → {x2R : A}
→ {A+ y1 : A} → {A : R} → {x1R : A} → {A+ y0 : A} → {A : λ}

By using the theory of composition explained in Sec. 2.2.2, it is possible to
transform this composition into an actual program executable by the machine,
including among other things, the actual datum location numbers for each of
the basic programs and the like. Because this is possible (and ‘automatic’ in its
literal sense ) “it would be pedantic to go through the details” [12, p. 51].

39



General Arithmetic Programs As explained in the previous section, the
fundamental difference between elementary arithmetic programs and general
arithmetic programs is that elementary programs, after analysis into basic pro-
grams, do not need auxiliary memory positions for their synthesis. General
arithmetic programs that are assignments of an non-elementary arithmetic term
ζ to a locatum λ do need auxiliary memory. Thus, the method developed for ele-
mentary programs has to be modified for non-elementary arithmetic programs.
Hence, Curry introduced the notion of a degree m of an arithmetic program.
The degree m of an arithmetic program is the number m of auxiliary memory
positions needed for the program to work properly. The term ζ assigned to λ is
then called a term of degree m.

In order to define general arithmetic programs as compositions of basic pro-
grams, Curry again proceeded by induction. If ζ in {ζ : λ} is elementary, then
ζ has degree m = 0. For terms ζ not elementary, Curry provided techniques to
reduce a program of degree m 6= 0 to a composition of programs of degree 0,
i.e. elementary programs, which in their turn can be reduced to a composition
of basic programs. Given a non-elementary arithmetic program, the first step,
if necessary, is to set λ = A (using α1) for those arithmetic terms ζ of the form
πi(ξ), ξ + η or ξη (note that this is the same for elementary terms).16 It is
assumed that the arithmetic term ζ = φ(ξ) and that, initially, φ(t) is a function
independent from A and R. We already have that {ζ : λ} is reduced to {ζ : A}
by α1.

There are two cases to be considered: either ξ 6= A or ξ = A. If ξ 6= A then
we can use β1, thus:

{φ(ξ) : A} = {ξ : A} → {φ(A) : A} (4)

Assume now that the two components on the right have degree m and n respec-
tively. Curry pointed out that then the m auxiliary memory locations of the
first component can be chosen such that φ(t) is independent of them and the n
memory locations of the second component can be chosen such that as many of
them as possible are among the first m. Then it easily follows that the analysis
into components by β1 results in two components neither of which has a higher
degree than the degree of the program analysed.

The second case to be considered, which occurs in the second component of
(4), is the case where ξ = A in φ(ξ). If the program is not elementary then:

φ(ξ) = ψ(ξ, η)

In this case, we need to clear the accumulator to perform the calculation and thus
need to use an auxiliary memory location w to temporarily store the contents
of A. To this end, Curry introduced the following equation:

{φ(A) : A} = {A : w} → {φ(w) : A} (5)

16Curry did not consider arithmetic non-elementary terms of the form ξ/η, but the method
for defining arithmetic terms that involve division can be easily constructed on the basis of
the method for the other cases. Thus, if ζ = ξ/η then the first step is to set λ = R. In what
follows we will only consider the arithmetic terms ζ that do not involve a division.
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It easily follows from this equation that if {φ(w) : A} is a program of degree m
then {φ(A) : A}.
The reductions (4) and (5) give a process that allows to express an arithmetic
program {ζ : λ} in terms of simpler programs, similar to {ζ : λ} but of a
lower degree. By lowering the ‘complexity’ of the structure of the program, one
ultimately arrives at a composition of basic programs. Curry was aware that the
method does not uniquely determine a definition in terms of basic programs for
a given arithmetic expression, since a given algebraic form for some arithmetic
expression can often be worked out in different ways. As a consequence, the
number and order auxiliary locata may be different.

To illustrate this point, let us consider the following example of an non-
elementary arithmetic program:17

ζ = (x + 1)(y + 1) (6)

Let:
ξ1 = x+ 1 η1 = y + 1

Then:
ζ = ξ1η1

Then, as the first step, if λ 6= A we use α1 to get λ = A:

{ζ : λ} = {ζ : A} → {A : λ}

Then, applying (4) we get:

{ζ : A} = {ξ1 : A} → {Aη1 : A}

Clearly, {ξ1 : A} is an elementary program so we easily have:

{ξ1 : A} = {x : A} → {x+ 1 : A}

The program {Aη1 : A} however is not elementary so we need (5):

{Aη1 : A} = {A : w} → {wη1 : A}

Now, {wη1 : A} is elementary. By applying Curry’s definition for elementary
programs we ultimately get:

{wη1 : A} = {y : A} → {A+ 1 : A} → {A : R} → {Rw : A}

Combining all these compositions we get:

{ζ : λ} = {x : A} → {x+ 1 : A} → {A : w} → {y : A} → {A+ 1 : A} → {A : R}
→ {Rw : A} → {A : λ}

However, this is not the shortest program of basic programs for (6). Indeed, we
could also have used the fact that:

(x+ 1)(y + 1) = xy + x+ y + 1

17Curry considered the slightly more complicated example (x + 1)(y + 1)(z + 1).

41



Thus, the following program is also a composition of basic programs for (6):

{ζ : λ} = {x : R} → {yR : A} → {A+x : A} → {A+y : A} → {A+1 : A} → {A : λ}

Thus, in the first case, ζ is a non-elementary term, in the second, ζ is in fact
elementary; and depending on the way (x+1)(y+1) is worked out, two different
programs result, the one shorter than the other. This observation leads one to
considerations concerning the uniqueness of program for a given term. As Curry
pointed out, a term should be [12, p.46]:

thought of as the result of a process of construction from the locata.
Different processes of construction should be thought of as different
terms, even though the results are algebraically equal.

In other words, the terms ζ in the two examples are not the same kind of terms
and thus we have two different programs. From this point of view, it follows from
the definition of an arithmetic term that ζ in the second example can actually
not be regarded as an arithmetic term at all, since its method of construction
does not follow the method for constructing an arithmetic term. Although this
differentiation does not comply with the intuition of a human mathematician
in the process of calculation, it makes sense for a machine that automatically
‘compiles’ its routines of computation. Again Curry preferred a method that,
although it would not be the one used by a human mathematician, it is very
suitable to be used by a machine (cf. p. 4).
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Haskell: Curry’s Contribution to Programming (1946-1950). In F. Ferreira,
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