
HAL Id: hal-01396481
https://hal.science/hal-01396481v1

Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TFAN stream description
Khaled Mamou, Titus Zaharia, Marius Preda, Francoise Preteux

To cite this version:
Khaled Mamou, Titus Zaharia, Marius Preda, Francoise Preteux. TFAN stream description. [Research
Report] Dépt. ARTEMIS (Institut Mines-Télécom-Télécom SudParis). 2008. �hal-01396481�

https://hal.science/hal-01396481v1
https://hal.archives-ouvertes.fr

Erreur ! Source du renvoi introuvable. 1

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE NORMALISATION

ISO/IEC JTC 1/SC 29/WG 11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC 1/SC 29/WG 11/ m15825

Bursa, Korea, October 2008

Title: TFAN stream description

Authors Khaled Mamou, Titus Zaharia, Marius Preda, Francoise Prêteux

Source Institut TELECOM, TELECOM & Management SudParis, ARTEMIS Department

Status: Proposal

This contribution describes the Triangle Fan-based encode (TFAN) binary stream syntax.

1. TFAN stream

1.1 Overview

TFAN is a tool to compress an IndexFaceSet (IFS) node representing a triangular mesh by encoding the
mesh geometry and connectivity. The mesh geometry information is defined by a subset of the following
attributes:

 position coordinates,

 normals,

 texture coordinates,

 colours, and

 other attributes.

The mesh connectivity is composed of the subset of the following elements:

 position coordinates index,

 normal index,

 texture coordinates index, and

 others attributes index.

TFAN offers the functionality of preserving the vertices or the vertices and triangles orders. The data in a
TFAN stream is structured into two components:

- The TFAN stream header: indicating general information about the IFS (number of coordinates,
number of triangles …), and

- The TFAN data buffer containing the geometry and connectivity information.

 The FAMC bitstream structure is illustrated in Figure XXX.1.

Figure XXX.1 — TFAN bitstream structure.

TFANStream

TFANStreamHeader TFANDataBuffer

Figure XXX.2 illustrates the TFAN decoding process.

Figure XXX.2 — TFAN decoding process.

The following sections describe in detail the structure of the TFAN stream.

1.2 TFAN inclusion in the scene graph

TFAN stream is associated with an IndexedFaceSet by using the BitWrapper mechanism with value of field
type equals to 3.

1.3 TFANStream class

1.3.1 Syntax

class TFANStream{
 TFANStreamHeader header;
 TFANDataBuffer data;
}

1.3.2 Semantics

TFANStreamHeader: contains the header buffer.

TFANDataBuffer: contains the data buffer.

1.4 TFANStreamtHeader class

1.4.1 Syntax

class TFANStreamHeader {
 unsigned int (32) startCode;
 unsigned int (32) streamSize;
 float (32) creaseAngle;
 bit (1) ccw;
 bit (1) solid;
 bit (1) convex;
 bit (1) colorPerVertex;
 bit (1) normalPerVertex;
 bit (1) otherAttributesPerVertex;
 bit (1) isTringularMesh;

 bit (1) isOptimisedForParallelDeconding;
 unsigned int (32) numberOfCoord;
 unsigned int (32) numberOfTexCoord;
 unsigned int (32) numberOfNormal;
 unsigned int (32) numberOfColor;
 unsigned int (32) numberOfOtherAttributes;
 if (numberOfOtherAttributes >0) dimensionOfOtherAttributes;
 if (numberOfCoord>0) unsigned int (32) numberOfCoordIndex;
 if (numberOfTexCoord>0) unsigned int (32) numberOfTexCoordIndex;
 if (numberOfNormal>0) unsigned int (32) numberOfNormalIndex;
 if (numberOfColor>0) unsigned int (32) numberOfColorIndex;
 if (numberOfOtherAttributes >0) unsigned int (32) numberOfOtherAttributesIndex;
}

1.4.2 Semantics

startCode: a 32-bit unsigned integer equals to TFANStreamStartCode.

TFANStreamStartCode: a constant that indicates the beginning of a TFAN stream.

TFANStreamStartCode = 00 00 01 F0.

streamSize: a 32-bit unsigned integer describing the size in bytes of the current TFAN stream.

creaseAngle: a 32-bit float indicating the IFS creaseAngle parameter which controls the default normal
generation process.

ccw: 1-bit describing the IFS ccw parameter which indicates whether the vertices are ordered in a counter-
clockwise direction when the mesh is viewed from the outsides.

solid: 1-bit describing the IFS solid parameter which indicates whether the shape encloses a volume.

convex: 1-bit describing the IFS solid parameter which indicates whether all faces in the shape are convex
(should be always 1 for triangular meshes).

colorPerVertex: 1-bit describing the IFS colorPerVertex parameter which indicates whether the colors are
defined per vertex.

normalPerVertex: 1-bit describing the IFS normalPerVertex parameter which indicates whether the normals
are defined per vertex.

otherAttributesPerVertex: 1-bit describing whether the other attributes are defined per vertex.

isTriangularMesh: 1-bit describing whether the mesh is triangular (should be always 1).

isOptimizedForParallelDecoding: 1-bit describing whether the stream is optimized for parallel decoding
(should be always 0).

numberOfCoord: a 32-bit unsigned integer indicating the number of positions coordinates.

numberOfNormal: a 32-bit unsigned integer indicating the number of normals.

numberOfTexCoord: a 32-bit unsigned integer indicating the number of texture coordinates.

numberOfOtherAttributes: a 32-bit unsigned integer indicating the number of the other attributes.

dimensionOfOtherAttributes: a 32-bit unsigned integer indicating the dimension (i.e., number of attributes)
of the other attributes.

numberOfCoordIndex: a 32-bit unsigned integer indicating the number of indices associated to the positions
coordinates.

numberOfNormalIndex: a 32-bit unsigned integer indicating the number of the number of indices associated
to the normals.

numberOfTexCoordIndex: a 32-bit unsigned integer indicating the number of the number of indices
associated to the texture coordinates.

numberOfOtherAttributesIndex: a 32-bit unsigned integer indicating the number of the number of indices
associated to the other attributes.

1.5 TFANDataBuffer class

1.5.1 Syntax

class TFANDataBuffer {
 if (numberOfCoordIndex >0)
 TFANConnectivityDecoder(3, numberOfCoord, numberOfCoordIndex) coordIndex;
 if (numberOfTexCoordIndex >0)
 TFANConnectivityDecoder(3, numberOfTexCoord, numberOfTexCoordIndex) texCoordIndex;
 if (numberOfNormalIndex >0)
 {
 If (normalPerVertex == 1)
 TFANConnectivityDecoder(3, numberOfNormal, numberOfNormalIndex) normalIndex;
 else
 TFANConnectivityDecoder(1, numberOfNormal, numberOfNormalIndex) normalIndex;
 }
 if (numberOfColorIndex >0)
 {
 If (colorPerVertex == 1)
 TFANConnectivityDecoder(3, numberOfColor, numberOfColorIndex) colorIndex;
 else
 TFANConnectivityDecoder(1, numberOfColor, numberOfColorIndex) colorIndex;
 }
 if (numberOfOtherAttributesIndex >0)
 {
 If (otherAttributesPerVertex == 1)
 TFANConnectivityDecoder(3, numberOfOtherAttributes, numberOfOtherAttributesIndex)
otherAttributesIndex;
 else
 TFANConnectivityDecoder(1, numberOfOtherAttributes, numberOfOtherAttributesIndex)
otherAttributesIndex;
 }

 if (numberOfCoord >0) TFANGeometryDecoder(coordIndex, 0) coord;

 if (numberOfTexCoord >0)
 {
 If (numberOfTexCoordIndex >0) TFANGeometryDecoder(texCoordIndex, 3) texCoord;
 else TFANGeometryDecoder(coordIndex, 3) texCoord;
 }

 if (numberOfNormal >0)
 {
 If (normalPerVertex == 1)
 {
 If (numberOfNormalIndex >0) TFANGeometryDecoder(normalIndex, 3) normal;
 else TFANGeometryDecoder(coordIndex, 3) normal;
 }
 else
 {
 If (numberOfNormalIndex >0) TFANGeometryDecoder(normalIndex, 1) normal;
 else TFANGeometryDecoder(coordIndex, 1) normal;
 }
 }

 if (numberOfColor >0)
 {
 If (colorPerVertex == 1)
 {

 If (numberOfColorIndex >0) TFANGeometryDecoder(colorIndex, 3) color;
 else TFANGeometryDecoder(coordIndex, 3) color;
 }
 else
 {
 If (numberOfColorIndex >0)
 TFANGeometryDecoder(colorIndex, 1) color;
 else
 TFANGeometryDecoder(coordIndex, 1) color;
 }
 }

 if (numberOfOtherAttributes >0)
 {
 If (otherAttributesPerVertex == 1)
 {
 If (numberOfOtherAttributesIndex >0)
 TFANGeometryDecoder(otherAttributesIndex, 3) otherAttributes;
 else
 TFANGeometryDecoder(coordIndex, 3) otherAttributes;
 }
 else
 {
 If (numberOfOtherAttributesIndex >0)
 TFANGeometryDecoder(otherAttributesIndex, 1) otherAttributes;
 else
 TFANGeometryDecoder(coordIndex, 1) otherAttributes;
 }
 }
}

1.5.2 Semantics

coordIndex: bitstream describing the IFS coordIndex field.

texCoordIndex: bitstream describing the IFS texCoordIndex field.

normalIndex: bitstream describing the IFS normalIndex field.

colorIndex: bitstream describing the IFS colorIndex field.

otherAttributesIndex: bitstream describing the indices associatd to the other attributes of the mesh.

coord: bitstream describing the IFS coord field.

texCoord: bitstream describing the IFS texCoord field.

normal: bitstream describing the IFS normal field.

color: bitstream describing the IFS color field.

otherAttributes: bitstream describing the other attributes associated to the mesh.

1.6 TFANConnectivityDecoder class

1.6.1 Syntax

class TFANConnectivityDecoder(dim, nV, nT) {
 if (dim == 3)
 {
 TFANConnectivityDecoderNTFans(nV) nTFans;
 TFANConnectivityDecoderDegrees degrees;
 TFANConnectivityDecoderCases cases;
 TFANConnectivityDecoderVerticesIndices verticesIndices;

 TFANConnectivityDecoderOps ops;
 If (vertexOrderPres == 1) {
 TFANConnectivityDecoderOrder vo;
 }
 If (triangleOrderPres == 1) {
 TFANConnectivityDecoderOrder to;
 }

 }
}

1.6.2 Semantics

dim: parameter indicating the dimension the connectivity array to be decoded (should be either 1 or 3).

nV: parameter indicating the number of vertices for the connectivity array to be decoded.

nT: parameter indicating the number of triangles for the connectivity array to be decoded.

nTFans: bitstream of type TFANConnectivityDecoderNTFans describing for each vertex the number of
triangle fans incidents to it.

degrees: bitstream of type TFANConnectivityDecoderDegrees describing for each triangle fan the number of
its triangles.

cases: bitstream of type TFANConnectivityDecoderCases describing for each triangle fan its topological
configuration.We refer to Annex A and Annex B for a description of the TFAN encoding process and a detailed
specification of the 10 topological configurations (or cases) considered by the TFAN codec.

verticesIndices: bitstream of type TFANConnectivityDecoderVerticesIndices describing for each triangle fan
the indices of the vertices composing it. We refer to Annex A and Annex B for a description of the TFAN
encoding process.

ops: bitstream of type TFANConnectivityDecoderOps describing for each vertex of a triangle fan if it should be
created by the decoder (i.e., new vertex) of an old one (i.e., already created). We refer to Annex A and Annex
B for a description of the TFAN encoding process.

vo: bitstream of type TFANConnectivityDecoderOrder describing for each vertex its original order (i.e.,
position in the original IFS).

to: bitstream of type TFANConnectivityDecoderOrder describing for each triangle its original order (i.e.,
position in the original IFS).

1.7 TFANGeometryDecoder class

1.7.1 Syntax

class TFANGeometryDecoder(dim, nV) {
 unsigned char (8) q;
 unsigned char (8) decodingMode;
 unsigned char (8) predMode;
 unsigned char (8) M;
 unsigned char (8) K;
 float (32) minValues[dim];
 float (32) maxValues[dim];

 if (predMode == 3)
 unsigned int (32) nbrPredModes;

 unsigned int(32) streamSize;

 if (predMode_ == 3) {
 for(int v = 0; v < nbrPredModes; v++) {
 vertexPredMode[v]= arithmetic_decoder.Decode();

 }
 }

 if (decodingMode == 0) {
 for(int v = 0; v <nV; v++) {
 for (int i = 0; i < dim; i++) {
 dV = arithmetic_decoder.Decode();
 if (dV <= 2*M) {
 errTable[v*dim+i] = dV - M;
 }
 else {
 if (dV == 2*M+1) {
 errTable[v*dim+i] = - (arithmetic_decoder.ExpGolombDecode(K) + M + 1);
 }
 else {
 errTable[v*dim+i] = arithmetic_decoder.ExpGolombDecode(K) + M + 1;
 }
 }
 }
 }
 }
 else {
 for(int v = 0; v < nV; v++) {
 for (int i = 0; i < DIM; i++) {
 bit (1) rep = arithmetic_decoder.Decode();
 if (rep == 0){
 errTable[v*DIM+i] = errTable[(v-1)*dim+i];
 }
 else {
 dV = arithmetic_decoder.Decode();
 if (dV <= 2*M) {
 errTable[v*dim+i] = dV - M;
 }
 else {
 if (dV == 2*M+1) {
 errTable[v*dim+i] = - (arithmetic_decoder.ExpGolombDecode(K) + M + 1);
 }
 else {
 errTable[v*dim+i] = arithmetic_decoder.ExpGolombDecode(K) + M + 1;
 }
 }
 }
 }
 }
 }
}

1.7.2 Semantics

q; a 8-bit unsigned integer indicating the number of quantization bits.

decodingMode; a 8-bit unsigned integer indicating the applied encodingMode. Table XXX.1 summarizes all
possible configurations.

Table XXX.1 — Decoding mode: all possible configurations.

decodingMode value Decoding mode

0 No prediction with respect to the previous value.

1 One bit encoded to indicate if the residual error to
be decoded is the same as the last decoded one.

2-255 Reserved for ISO purposes

predictionMode; a 8-bit unsigned integer indicating the applied predictionMode. Table XXX.2 summarizes all
possible configurations.

Table XXX.2 —Prediction mode: all possible configurations.

predictionMode value Prediction mode

0 Barycenteric prediction: the predicted value
associated to the current vertex is equal to the
barycenter of its neighbors.

1 Delta prediction: the predicted value associated to
the current vertex is equal to the value of the last
decoded one.

2 Parallelogram prediction: the predicted value
associated to the current vertex is obtained by
applying the parallelogram prediction rule while
considering all the decoded neighbors.

3 Adaptive prediction: one bit per vertex is encoded
to indicate if mode 0 or mode 2 should be applied.

4 Parallelogram prediction: the predicted value
associated to the current vertex is obtained by
applying the parallelogram prediction rule while
considering only the neighbors in a triangle fan.

5-255 Reserved for ISO purposes

M: a 8-bit unsigned integer describing the interval of values described by the arithmetic encoded
representation. More specifically, if a decoded value ranges in the interval]-M, M[it is decoded only with the
arithmetic decoder. Otherwise, an additional part is decoded with an Exponential Golomb code representation.

K: a 8-bit unsigned integer describing the order of the Exponential Golomb code representation.

minValues: an array of 32-bits float of dimension dim indicating the minimal values reached. These values
are needed for the unquantization process.

maxValues: an array of 32-bits float of dimension dim indicating the minimal values reached. These values
are needed for the unquantization process.

nbrPredModes: a 32-bit unsigned integer describing the number of prediction modes to be decoded.

streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the
order stream.

nbrPredModes: a 32-bit unsigned integer describing the number of prediction modes to be decoded.

predModes: a bits array of dimension nbrPredModes describing for each vertex the prediction mode (0 or 2)
to be applied.

errTable: a integer array of dimension (nV*dim) describing for each vertex the its quantized prediction
residual.

dV: am integer value ranging in the interval [-M, M].

1.8 TFANConnectivityDecoderNTFans class

1.8.1 Syntax

class TFANConnectivityDecoderNTFans(nV) {

 unsigned char(8) maxNTFans;
 unsigned int(32) streamSize;
 for (int v = 0; v < nV; v++)
 {
 nbrTFans[v] = aithmetic_decoder.decode();
 }
}

1.8.2 Semantics

nV: parameter indicating the number of vertices for the connectivity array to be decoded.

maxNTFans: a 8-bit unsigned integer indicating the maximal number of triangle fans per vertex. This value is
exploited to initialize the statistics model of the arithmetic encoding.

streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the
numbers of triangles fans.

nbrTFans: an array of integer of dimension nV indicating for each vertex the number of triangles fan incident
to it.

1.9 TFANConnectivityDecoderDegrees class

1.9.1 Syntax

class TFANConnectivityDecoderDegrees{
 unsigned int (32) nDegrees;
 unsigned int (32) maxDegree;
 unsigned int (32) streamSize;

 for (int v = 0; v < nDegrees; v++) {
 degrees[v]=arithmetic_encoder.decode();
 }
}

1.9.2 Semantics

nDegrees: a 32-bit unsigned integer describing the number of degrees to be decoded.

maxNTFans: a 8-bit unsigned integer indicating the maximal number of triangle fans per vertex. This value is
exploited to initialize the statistics model of the arithmetic decoder.

streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the
degrees.

degrees: an array of integer of dimension nDegrees indicating the dimension of each triangle fan.

1.10 TFANConnectivityDecoderCases class

1.10.1 Syntax

class TFANConnectivityDecoderCases {
 unsigned int (32) streamSize;
 for (int v = 0; v < nDegrees; v++) {
 cases[v]=arithmetic_decoder.Decode();
 }
}

1.10.2 Semantics

nDegrees: a 32-bit unsigned integer describing the number of degrees to be decoded and obtained when
decoding the last TFANConnectivityDecoderDegrees stream.

streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoder stream for the
TFAN topological configurations.

cases: an array of integer of dimension nDegrees indicating for each triangle fan its topological configuration.

1.11 TFANConnectivityDecoderVerticesIndices class

1.11.1 Syntax

class TFANConnectivityDecoderVerticesIndices {
 unsigned int (32) nBitsVerticesIndices;
 unsigned int (32) streamSize;

 for (int v = 0; v < nBitsVerticesIndices; v++) {
 binaryStreamVerticesIndices[v] = arithmetic_decoder.Decode();
 }
}

1.11.2 Semantics

nBitsVerticesIndices: a 32-bit unsigned integer describing the number of bits of the binary version of the
vertices indices stream.

streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the
vertices indices.

binaryStreamVerticesIndices: an array of bits of dimension nBitsVerticesIndices. It should be interpreted as
stream of type TFANBinaryStreamVerticesIndices.

1.12 TFANConnectivityDecoderOps class

1.12.1 Syntax

class TFANConnectivityDecoderOps {
 unsigned int (32) nOps;
 if (nOps > 0) {
 unsigned int (32) streamSize;
 for (int v = 0; v < nOps; v++) {
 ops[v]=arithmetic_decoder.Decode();
 }
 }
}

1.12.2 Semantics

nOps: a 32-bit unsigned integer describing the number of operation values to be decoded.

streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the
operation stream.

ops: an array of bits of dimension nOps indicating for each vertex of a triangle fan if it should be created by
the decoder or not.

1.13 TFANConnectivityDecoderOrder class

1.13.1 Syntax

class TFANConnectivityDecoderOrder(N) {

 unsigned char(8) K;
 unsigned int (32) streamSize;

 map[0] = aithmetic_decoder.ReadBinary(nBitsFLOrder);

 int d = 0;
 for (int v = 1; v < N; v++) {
 bit (1) rep = arithmetic_decoder.Decode();
 if (rep == 0) {
 unsigned int (32) d = arithmetic_decoder.ExpGolombDecode(K) + 1;
 bit (1) sign = arithmetic_decoder.Decode();
 if (sign == 1) d = -d;
 map[v] = vertexMapR[v-1] + d;
 }
 else {
 map[v]= arithmetic_decoder.ReadBinary(nBitsFLOrder);
 }
 }
}

1.13.2 Semantics

N; a parameter indicating the number of the vertices or triangles to be reordered.

K: a 8-bit unsigned integer describing the order of the Exponential Golomb code representation.

nBitsFLOrder; value indicating the number of bits needed to encode the parameter N.

streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the
order stream.

rep: a 1-bit value indicating if the FL binary representation should be used or the Exponential Golomb one.

sign: a 1-bit value indicating if the sign of the Exponential Golomb decoded value.

map: an array of integers of dimension N indicating for each vertex or triangle its original position.

1.14 TFANBinaryStreamVerticesIndices class

1.14.1 Syntax

class TFANBinaryStreamVerticesIndices {
 unsigned char(8) nBitsFL;
 unsigned int minValue;
 for (int v = 0; v < nVerticesIndices; v++) {
 verticesIndices[v]=stream.ReadBinary(nbits) + minV;
 }
}

1.14.2 Semantics

nBitsFL: a 8-bit unsigned integer describing the number of bits used for the fixed length binarization of the
vertices indices.

minValue: a 32-bit unsigned integer describing the minimal shift value that should be subtracted from all the
vertices indices.

nVerticesIndices: a parameter describing the number of vertices indices. It is derived as follows. If nBitsFL=
0 then nVerticesIndices = 0. Otherwise, nVerticesIndices = (nBitsVerticesIndices -40)/ nBitsFL.

verticesIndices: an array of integer of dimension nVerticesIndices describing the vertices indices.

ANNEX A: TFAN connectivity encoding process

The TFAN technique encodes the mesh connectivity by exploiting a deterministic traversal of mesh vertices
combined with a decomposition of the mesh triangles into triangle fans. The TFAN encoder describes the
connectivity of any triangular mesh, by encoding for each triangle fan the following information:

a) the degree: number of triangles composing the triangle fan,

b) a binary sequence indicating for each vertex the set of its already visited neighboring vertices,

c) a sequence of relative indices with respect to a local list L, used to identify the indices of the already visited
vertices.

In order to efficiently compress such a representation, the TFAN approach distinguishes 9 topological
configurations which are encoded in a specific and more compact manner. The generic case (all
configurations not described by the 9 special configurations), called configuration 10, is handled by directly
encoding the information a), b) and c).

1) Definitions

A Triangle Fan (TF) of degree d is an ordered set of d triangles {0,..., 1}()j i dt defined by an ordered sequence

of 2d vertices 0 1 1(, ,...,)dv v v , such that :

 0 1 20,1,..., 1 , , ,j j jj d t v v v

Figure 1 illustrates a triangle fan of degree 4.

Figure 1: A triangle fan of degree 4 described by the vertices 0 1 2 3 4 5(, , , , ,)v v v v v v .

By definition, a triangle fan satisfies the following properties:

- Two successive triangles of a triangle fan are adjacent (i.e., share a common edge).

- All the triangles of a triangle fan have the some orientation.

- All the triangles of a triangle fan share a common vertex 0v , called central vertex or

centre of the triangle fan.

Let us note that the common orientation of the triangles implies a unique order of traversal of the triangle fan
vertices. The triangle fan TF is then completely determined by giving the ordered sequence of vertices

0 1 1(, ,...,)dv v v enumerated starting by the central vertex.

2) Construction of the TFAN representation

The global schema of the TFAN approach can be described as follows. At the initialization step, all the mesh
vertices and triangles are considered as non-visited (or non-traversed). The TFAN encoder exploits a FIFO

structure F in order to store the mesh vertices. The first non-visited vertex is pushed in F .

At each iteration, a vertex is extracted from F . Let jv be the extracted vertex at iteration j . The vertex jv is

then marked as visited, its new traversal order is stored in ()jO v and all the non-visited triangles incident to

jv are decomposed into a set of triangles fans. Let us note that different decomposition strategies are

possible. In the current version of the TFAN encoder we have adopted an iterative approach described here-
below.

At each iteration, a triangle fan ()nTF j is created by starting from the triangle 0t with the minimal number of

non-visited neighbors (i.e., triangles sharing an edge with 0t) having the same orientation as 0t . The triangle

0t is added to the triangle fan ()nTF j and marked as visited. If 0t has non-visited neighbors with the same

orientation, then a neighbor 1t is randomly chosen, added to ()nTF j and marked as visited. The same

operation is then applied to 1t . This process is iterated until there are no more non-visited neighbors. If there

still non-visited triangles incident to jv , then a new triangle fan is created by starting again from the triangle

with the minimal number of non-visited neighbors having the same orientation.

Let:

- 1,..., ()
(())n n N j
TF j

 be the set of the ()N j triangle fans associated to the vertex jv ,

- , (1), (2),... ((,) 1)n n n

j j j jv w w w d j n the ordered vertices of the triangle fan ()nTF j and (,)d j n its

degree.

We define ()L j as the list of vertices sharing with jv at least one visited triangles and having a traversal

order higher than jv . The list ()L j is sorted (in the increasing order) by considering the following order

relationship:

 1 2 1 2 1 2, (), () ()w w L j w w O w O w .

At the exception of vertex jv , all the vertices of the triangle fan ()nTF j are treated while considering the

order defined by the triangle fan ()nTF j . Here, a binary value ()n

js k is associated to each vertex ()n

jw k , in

order to indicate if it has been visited or not. All the tags ()n

js k associated to the same triangle fan are stored

in a FIFO (,)S j n .

If the vertex ()n

jw k was not visited (i.e., () 0n

js k) , the it is marked as visited, added to the FIFO F and

inserted at the end of the list ()L j . Its traversal order is stored in (())n

jO w k .

If the vertex ()n

jw k was visited (i.e., () 1n

js k), we distinguish two cases. If ()n

jw k belongs to ()L j then its

relative index ()n

j k in the list ()L j is stored in the FIFO (,)I j n . Otherwise, the negative value

() () (())n n

j j jk O v O w k is stored in (,)I j n . Let us recall that by definition of ()L j , all its vertices have

a traversal order higher to jv . Therefore, the quantity ()n

j k is always negative. This property will be

exploited at the decoder side in order to determine if the index of the vertex ()n

jw k is located in the list ()L j

or not.

When all the vertices of the triangles fan ()nTF j are treated, its triangles are marked as visited and the same

process is iterated until all the mesh vertices will be visited. If the FIFO F becomes empty and there still non-

visited vertices, then the first non-visited vertex is added to F and the process restarted.

In conclusion, the information necessary to completely represent the mesh connectivity is composed of the
following elements:

- The number V of mesh vertices,

- The sequence {1,..., }(()) j VN j indicating for each vertex jv the number of its triangles fans,

- The sequence
{1,..., }

{1,..., ()}((,))
j V

n N jd j n

 describing the degrees of all the triangles fans incident to the

vertex jv ,

- The FIFO
{1,..., }

{1,..., ()}((,))
j V

n N jS j n

describing for each triangle fan the set of its visited vertices,

- The sequence of the indices FIFOs
{1,..., }

{1,..., ()}((,))
j V

n N jI j n

 which describes the indices of the visited

vertices.

Figure 2 presents the pseudo-code of the TFAN encoding algorithm. Figure 3, illustrates an encoding
example.

Algorithm : TFAN encoder

Objective : Encode the connectivity of a triangular mesh

Input : List of triangles

Output : V , {1,..., }(()) j VN j ,
{1,..., }

{1,..., ()}((,))
j V

n N jd j n

,

{1,..., }

{1,..., ()}((,))
j V

n N jS j n

,

{1,..., }

{1,..., ()}((,))
j V

n N jI j n

{

{}F

ordreVisite 1

0j

For {1,..., }h V

 If (hv non visited) {

 F .PushBack(hv)

 MarkAsVisited (hv)

 () ordreVisite++hO v

 while(F non empty){

 j

 jv F .PopFirst()

 ()L j F .ComputeOrderedListOfNonVisitedNeighbors()

 1,..., ()
(())n n N j
TF j

TriangleFanDecomposition(j)

 For 1,..., ()n N j {

 For 1,..., (,)k d j n {

 If (the vertex ()n

jw k is non visited)} {

 () 0n

js k

 Mark as visited(()n

jw k)

 ()L j .PushBack(()n

jw k)

 (())n

jO w k ordreVisite

 F .PushBack(()n

jw k)

 }

 else {

 () 1n

js k

 If (() ()n

jw k L j){

 () ()n

j k L j .FindIndex(()n

jw k)

 (,)I j n .PushBack(()n

j k)

 }

 else {

 (,)I j n .PushBack(()n

j k)

 (,)I j n .PushBack(() (())n

j jO v O w k)

 }

 }

 }

 MarkAllTheTrianglesAsVisited (()nTF j)

 }

 }

 }

 }

}

Figure 2 : Pseudo-code of the TFAN encoding algorithm.

(a) 10V (b) (1) 1N , (1,1) 1d ,

(1,1) {0,0}S

(c) (2) 2N , (2,1) 1d ,

(2,1) {0,1}S , (2,1) {1}I

(d) (2,2) 2d ,

(2,2) {0,0,0}S

(e) (3) 0N (f) (4) 0N

(g) (5) 1N , (5,1) 1d ,

(5,1) {0,1}S , (5,1) {1}I

(h) (6) 2N , (6,1) 1d ,

(6,1) {0,1}S , (6,1) {2}I

(i) (6,2) 1d , (6,6) {0,1}S ,

(6,2) {1}I

(j) (7) 0N (k) (8) 0N (l) (9) 0N

(m) (10) 0N (n) Legend

Figure 3 : Example of TFAN encoding.

3) Compression of the TFAN representation

In order to compress the TFAN representation, it is necessary to compactly encode for each triangle fan

()nTF j its (,)d j n and the two lists (,)S j n and (,)I j n . Let us note that we can directly encode these

information by applying an arithmetic encoder. However, in order to obtain more efficient compression
performances, we propose to distinguish 9 frequent topological configurations, which we encode more
compactly. In order to handle all the other cases, a tenth configuration is introduced. It consists in directly

encoding the information (,)d j n , (,)S j n and (,)I j n .

Let (,)C j n be the configuration associated to the triangle fan ()nTF j . Table 1 describes the ten

configurations retained by the TFAN approach.

The determined configurations are finally encoded by applying an arithmetic encoder.

Configuration Initial information Encoded information

(,) 1C j n (,)d j n ,

1 (,)

(,) {1,0,0,...,0,0,1}

d j n

S j n

and (,) {1,2}I j n

(,) 1C j n and (,)d j n

(,) 2C j n (,)d j n ,

1 (,)

(,) {1, , ,..., , ,1}

d j n

S j n X X X X

and (,) {1, , ,..., , ,2}I j n X X X X

(,) 2C j n , (,)d j n ,

(,) 1

'(,) { , ,..., , }

d j n

S j n X X X X

 and

(,) { , ,..., , }I j n X X X X

(,) 3C j n (,)d j n ,

1 (,)

(,) {0,0,...,0,0,1}

d j n

S j n

and (,) {1}I j n

(,) 3C j n and (,)d j n

(,) 4C j n (,)d j n ,

1 (,)

(,) {0,0,...,0,0,1}

d j n

S j n

and (,) {2}I j n

(,) 4C j n and (,)d j n

(,) 5C j n (,)d j n ,

1 (,)

(,) {1,0,...,0,0,0}

d j n

S j n

and (,) {1}I j n

(,) 5C j n and (,)d j n

(,) 6C j n (,)d j n ,

1 (,)

(,) {1,0,...,0,0,0}

d j n

S j n

and (,) {2}I j n

(,) 6C j n and (,)d j n

(,) 7C j n (,)d j n ,

1 (,)

(,) {0,0,...,0,0,0}

d j n

S j n

and (,) {}I j n

(,) 7C j n and (,)d j n

(,) 8C j n (,)d j n ,

1 (,)

(,) {1,0,0,...,0,0,1}

d j n

S j n

and (,) {2,1}I j n

(,) 8C j n and (,)d j n

(,) 9C j n (,)d j n ,

1 (,)

(,) {1, , ,..., , ,1}

d j n

S j n X X X X

and (,) {2, , ,..., , ,1}I j n X X X X

(,) 9C j n , (,)d j n ,

(,) 1

'(,) { , ,..., , }

d j n

S j n X X X X

 and

(,) { , ,..., , }I j n X X X X

(,) 10C j n (,)d j n ,

1 (,)

(,) { , ,..., , }

d j n

S j n X X X X

and (,) { , ,..., , }I j n X X X X

(,) 10C j n ,

(,)d j n ,

1 (,)

(,) { , ,..., , }

d j n

S j n X X X X

and (,) { , ,..., , }I j n X X X X

Tableau 1: The 10 configurations considered by the TFAN approach (X represents an arbitrary value).

ANNEX B: TFAN connectivity decoding process

The TFAN decoded reconstructs the mesh connectivity by successively decoding the set of the triangle fans.
Let us note that the mesh vertices are traversed in the order defined by the encoder. Figure 4 describes the
pseudo-code of the TFAN decoding algorithm.

At the iteration j , the non-decoded triangle fans
 1,..., ()

(())n n N j
TF j

 incidents to the vertex j are

reconstructed as follows. First, the ordered list ()L j of the neighboring vertices of jv with a higher index is

computed and the number of triangles fans ()N j is decoded. The triangle fans are then generated in the

order of their encoding. In order to reconstruct the triangle fan ()nTF j , the decoder reads from the binary

stream the following elements :

- The degree (,)d j n of the triangle fan,

- The FIFO (,)S j n indicating the set of the visited vertices, and

- The FIFO of indices (,)I j n .

The triangle fan ()nTF j is initialized with an sequence containing only the vertex j . The other vertices are

added successively in the order of their encoding. Let ()n

jw k be the vertex number k of the current triangle

fan. In order to determine if it is a new vertex or an already decoded one, the TFAN decoder extracts from the

FIFO (,)S j n one bit ()n

js k associated to the vertex ()n

jw k .

If () 0n

js k , then ()n

jw k is a new vertex. It is then created by assigning it an index equal to its traversal

order. This index is then added to the triangle fan ()nTF j and at the end the list ()L j . The traversal order is

finally incremented by 1.

If () 1n

js k , the vertex ()n

jw k is identified as already decoded. In order to determine its index, the decoder

extracts the first element ()n

j k of the FIFO (,)I j n . If () 0n

j k , the index of the vertex ()n

jw k is

obtained by reading the element ()n

j k of ()L j . Otherwise (i.e., () 0n

j k), the index of ()n

jw k is

()n

jj k . In both cases the vertex index is added to ()nTF j .

Algorithm : TFAN Decoder

Objective: Decode the connectivity of a triangular mesh

Input: V , {1,..., }(()) j VN j ,
{1,..., }

{1,..., ()}((,))
j V

n N jd j n

,

{1,..., }

{1,..., ()}((,))
j V

n N jS j n

,

{1,..., }

{1,..., ()}((,))
j V

n N jI j n

Output: List of triangles

{

{}F

ordreVisite 1

For {1,..., }j V

 If (j ordreVisite) {

 ordreVisite

 }

 ()L j F . ComputeOrderedListOfNonVisitedNeighbors()

 Lire(()N j)

 For {1,..., ()}n N j

 Lire((,)d j n)

 Lire((,)S j n)

 Lire((,)I j n)

 () { }nTF j j

 For {1,...,1 (,)}k d j n

 () (,). ()n

js k S j n PopFirst

 If (() 0n

js k) {

 ()nTF j .PushBack(ordreVisite)

 (,)L j n .PushBack(ordreVisite)

 ordreVisite

 }

 Else

 {

 () (,). ()n

j k I j n PopFirst

 If (() 0n

j k)

 {

 ()nTF j .PushBack((())n

jL k)

 }

 else

 {

 ()nTF j .PushBack(()n

jj k)

 }

 }

 }

}

Figure 4: Pseudo-code of the TFAN decoder.

