1.5.2 Semantics coordIndex: bitstream describing the IFS coordIndex field. texCoordIndex: bitstream describing the IFS texCoordIndex field. normalIndex: bitstream describing the IFS normalIndex field. colorIndex: bitstream describing the IFS colorIndex field. otherAttributesIndex: bitstream describing the indices associatd to the other attributes of the mesh. coord: bitstream describing the IFS coord field. texCoord: bitstream describing the IFS texCoord field. normal: bitstream describing the IFS normal field.

This contribution describes the Triangle Fan-based encode (TFAN) binary stream syntax.

TFAN stream 1.1 Overview

TFAN is a tool to compress an IndexFaceSet (IFS) node representing a triangular mesh by encoding the mesh geometry and connectivity. The mesh geometry information is defined by a subset of the following attributes: The following sections describe in detail the structure of the TFAN stream.



TFAN inclusion in the scene graph

TFAN stream is associated with an IndexedFaceSet by using the BitWrapper mechanism with value of field type equals to 3.

TFANStream class

Syntax class TFANStream{

TFANStreamHeader header; TFANDataBuffer data; }

Semantics

TFANStreamHeader: contains the header buffer.

TFANDataBuffer: contains the data buffer. TFANStreamStartCode: a constant that indicates the beginning of a TFAN stream. TFANStreamStartCode = 00 00 01 F0.

1.4

streamSize: a 32-bit unsigned integer describing the size in bytes of the current TFAN stream. creaseAngle: a 32-bit float indicating the IFS creaseAngle parameter which controls the default normal generation process.

ccw: 1-bit describing the IFS ccw parameter which indicates whether the vertices are ordered in a counterclockwise direction when the mesh is viewed from the outsides. solid: 1-bit describing the IFS solid parameter which indicates whether the shape encloses a volume.

convex: 1-bit describing the IFS solid parameter which indicates whether all faces in the shape are convex (should be always 1 for triangular meshes).

colorPerVertex: 1-bit describing the IFS colorPerVertex parameter which indicates whether the colors are defined per vertex.

normalPerVertex: 1-bit describing the IFS normalPerVertex parameter which indicates whether the normals are defined per vertex.

otherAttributesPerVertex: 1-bit describing whether the other attributes are defined per vertex. isTriangularMesh: 1-bit describing whether the mesh is triangular (should be always 1).

isOptimizedForParallelDecoding: 1-bit describing whether the stream is optimized for parallel decoding (should be always 0). nV: parameter indicating the number of vertices for the connectivity array to be decoded.

nT: parameter indicating the number of triangles for the connectivity array to be decoded. nTFans: bitstream of type TFANConnectivityDecoderNTFans describing for each vertex the number of triangle fans incidents to it. degrees: bitstream of type TFANConnectivityDecoderDegrees describing for each triangle fan the number of its triangles.

cases: bitstream of type TFANConnectivityDecoderCases describing for each triangle fan its topological configuration.We refer to Annex A and Annex B for a description of the TFAN encoding process and a detailed specification of the 10 topological configurations (or cases) considered by the TFAN codec.

verticesIndices: bitstream of type TFANConnectivityDecoderVerticesIndices describing for each triangle fan the indices of the vertices composing it. We refer to Annex A and Annex B for a description of the TFAN encoding process. ops: bitstream of type TFANConnectivityDecoderOps describing for each vertex of a triangle fan if it should be created by the decoder (i.e., new vertex) of an old one (i.e., already created). We refer to Annex A and Annex B for a description of the TFAN encoding process.

vo: bitstream of type TFANConnectivityDecoderOrder describing for each vertex its original order (i.e., position in the original IFS).

to: bitstream of type TFANConnectivityDecoderOrder describing for each triangle its original order (i.e., position in the original IFS).

1.7

(predMode_ == 3) { for(int v = 0; v < nbrPredModes; v++) { vertexPredMode[v]= arithmetic_decoder.Decode(); } } if (decodingMode == 0) { for(int v = 0; v <nV; v++) { for (int i = 0; i < dim; i++) { dV = arithmetic_decoder.Decode(); if (dV <= 2*M) { errTable[v*dim+i] = dV -M; } else { if (dV == 2*M+1) { errTable[v*dim+i] = -(arithmetic_decoder.ExpGolombDecode(K) + M + 1); } else { errTable[v*dim+i] = arithmetic_decoder.ExpGolombDecode(K) + M + 1; } } } } } else { for(int v = 0; v < nV; v++) { for (int i = 0; i < DIM; i++) { bit (1) rep = arithmetic_decoder.Decode(); if (rep == 0){ errTable[v*DIM+i] = errTable[(v-1)*dim+i]; } else { dV = arithmetic_decoder.Decode(); if (dV <= 2*M) { errTable[v*dim+i] = dV -M; } else { if (dV == 2*M+1) { errTable[v*dim+i] = -(arithmetic_decoder.ExpGolombDecode(K) + M + 1); } else { errTable[v*dim+i] = arithmetic_decoder.ExpGolombDecode(K) + M + 1; } } } } } } }

Semantics

q; a 8-bit unsigned integer indicating the number of quantization bits. decodingMode; a 8-bit unsigned integer indicating the applied encodingMode. K: a 8-bit unsigned integer describing the order of the Exponential Golomb code representation.

minValues: an array of 32-bits float of dimension dim indicating the minimal values reached. These values are needed for the unquantization process.

maxValues: an array of 32-bits float of dimension dim indicating the minimal values reached. These values are needed for the unquantization process.

nbrPredModes: a 32-bit unsigned integer describing the number of prediction modes to be decoded.

streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the order stream.

nbrPredModes: a 32-bit unsigned integer describing the number of prediction modes to be decoded.

predModes: a bits array of dimension nbrPredModes describing for each vertex the prediction mode (0 or 2) to be applied.

ANNEX A: TFAN connectivity encoding process

The TFAN technique encodes the mesh connectivity by exploiting a deterministic traversal of mesh vertices combined with a decomposition of the mesh triangles into triangle fans. The TFAN encoder describes the connectivity of any triangular mesh, by encoding for each triangle fan the following information: a) the degree: number of triangles composing the triangle fan, b) a binary sequence indicating for each vertex the set of its already visited neighboring vertices, c) a sequence of relative indices with respect to a local list L, used to identify the indices of the already visited vertices.

In order to efficiently compress such a representation, the TFAN approach distinguishes 9 topological configurations which are encoded in a specific and more compact manner. The generic case (all configurations not described by the 9 special configurations), called configuration 10, is handled by directly encoding the information a), b) and c).

1) Definitions

A Triangle Fan (TF) of degree d is an ordered set of d triangles {0,..., 1} () ,,,,)

j i d t  defined by an ordered sequence of 2 d  vertices 0 1 1 (, ,...,) d v v v  , such that :     0 1 2 0,1,..., 1 , , , j j j j d t v v v     
v v v v v v .
By definition, a triangle fan satisfies the following properties:

-Two successive triangles of a triangle fan are adjacent (i.e., share a common edge).

-All the triangles of a triangle fan have the some orientation.

-All the triangles of a triangle fan share a common vertex

2) Construction of the TFAN representation

The global schema of the TFAN approach can be described as follows. At the initialization step, all the mesh vertices and triangles are considered as non-visited (or non-traversed). The TFAN encoder exploits a FIFO structure F in order to store the mesh vertices. The first non-visited vertex is pushed in F .

At each iteration, a vertex is extracted from F . Let j v be the extracted vertex at iteration j . The vertex j v is then marked as visited, its new traversal order is stored in () j Ov and all the non-visited triangles incident to j v are decomposed into a set of triangles fans. Let us note that different decomposition strategies are possible. In the current version of the TFAN encoder we have adopted an iterative approach described herebelow.

At each iteration, a triangle fan () n TF j is created by starting from the triangle 0 t with the minimal number of non-visited neighbors (i.e., triangles sharing an edge with 0 t) having the same orientation as 0 t . The triangle 0 t is added to the triangle fan () n TF j and marked as visited. If 0 t has non-visited neighbors with the same orientation, then a neighbor 1 t is randomly chosen, added to () n TF j and marked as visited. The same operation is then applied to 1 t . This process is iterated until there are no more non-visited neighbors. If there still non-visited triangles incident to We define () Lj as the list of vertices sharing with j v at least one visited triangles and having a traversal order higher than j v . The list () Lj is sorted (in the increasing order) by considering the following order relationship:

  When all the vertices of the triangles fan () n TF j are treated, its triangles are marked as visited and the same process is iterated until all the mesh vertices will be visited. If the FIFO F becomes empty and there still non- visited vertices, then the first non-visited vertex is added to F and the process restarted.

In conclusion, the information necessary to completely represent the mesh connectivity is composed of the following elements:

-The number

Figure

 Figure XXX.1 -TFAN bitstream structure.

Figure

 Figure XXX.2 -TFAN decoding process.

 errTable: a integer array of dimension (nV*dim) describing for each vertex the its quantized prediction residual.dV: am integer value ranging in the interval[-M, M]. indicating the number of vertices for the connectivity array to be decoded. maxNTFans: a 8-bit unsigned integer indicating the maximal number of triangle fans per vertex. This value is exploited to initialize the statistics model of the arithmetic encoding.streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the numbers of triangles fans.nbrTFans: an array of integer of dimension nV indicating for each vertex the number of triangles fan incident to it. 32-bit unsigned integer describing the number of degrees to be decoded. maxNTFans: a 8-bit unsigned integer indicating the maximal number of triangle fans per vertex. This value is exploited to initialize the statistics model of the arithmetic decoder. streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the degrees.degrees: an array of integer of dimension nDegrees indicating the dimension of each triangle fan. for (int v = 0; v < nDegrees; v++) { cases[v]=arithmetic_decoder.Decode(32-bit unsigned integer describing the number of degrees to be decoded and obtained when decoding the last TFANConnectivityDecoderDegrees stream. streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoder stream for the TFAN topological configurations. cases: an array of integer of dimension nDegrees indicating for each triangle fan its topological configuration. 32-bit unsigned integer describing the number of bits of the binary version of the vertices indices stream. streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the vertices indices. binaryStreamVerticesIndices: an array of bits of dimension nBitsVerticesIndices. It should be interpreted as stream of type TFANBinaryStreamVerticesIndices. 32-bit unsigned integer describing the number of operation values to be decoded. streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the operation stream. ops: an array of bits of dimension nOps indicating for each vertex of a triangle fan if it should be created by the decoder or not. parameter indicating the number of the vertices or triangles to be reordered. K: a 8-bit unsigned integer describing the order of the Exponential Golomb code representation. nBitsFLOrder; value indicating the number of bits needed to encode the parameter N. streamSize: a 32-bit unsigned integer describing the size in bytes of the arithmetic encoded stream for the order stream. rep: a 1-bit value indicating if the FL binary representation should be used or the Exponential Golomb one. sign: a 1-bit value indicating if the sign of the Exponential Golomb decoded value. map: an array of integers of dimension N indicating for each vertex or triangle its original position. bit unsigned integer describing the number of bits used for the fixed length binarization of the vertices indices. minValue: a 32-bit unsigned integer describing the minimal shift value that should be subtracted from all the vertices indices. nVerticesIndices: a parameter describing the number of vertices indices. It is derived as follows. If nBitsFL= 0 then nVerticesIndices = 0. Otherwise, nVerticesIndices = (nBitsVerticesIndices -40)/ nBitsFL. verticesIndices: an array of integer of dimension nVerticesIndices describing the vertices indices.

Figure 1

 1 Figure 1 illustrates a triangle fan of degree 4.

Figure 1 :

 1 Figure 1: A triangle fan of degree 4 described by the vertices

0v

 , called central vertex or centre of the triangle fan. Let us note that the common orientation of the triangles implies a unique order of traversal of the triangle fan vertices. The triangle fan TF is then completely determined by giving the ordered sequence of vertices  enumerated starting by the central vertex.

 j v , then a new triangle fan is created by starting again from the triangle with the minimal number of non-visited neighbors having the same orientation.

Figure 2

 2 Figure2presents the pseudo-code of the TFAN encoding algorithm. Figure3, illustrates an encoding example.

TFANStreamtHeader class 1.4.1 Syntax

	bit (1) isOptimisedForParallelDeconding;
	unsigned int (32) numberOfCoord;
	unsigned int (32) numberOfTexCoord;
	unsigned int (32) numberOfNormal;
	unsigned int (32) numberOfColor;
	unsigned int (32) numberOfOtherAttributes;
	if (numberOfOtherAttributes >0) dimensionOfOtherAttributes;
	if (numberOfCoord>0) unsigned int (32) numberOfCoordIndex;
	if (numberOfTexCoord>0) unsigned int (32) numberOfTexCoordIndex;
	if (numberOfNormal>0) unsigned int (32) numberOfNormalIndex;
	if (numberOfColor>0) unsigned int (32) numberOfColorIndex;
	if (numberOfOtherAttributes >0) unsigned int (32) numberOfOtherAttributesIndex;
	}
	1.4.2 Semantics
	startCode: a 32-bit unsigned integer equals to TFANStreamStartCode.
	class TFANStreamHeader {
	unsigned int (32) startCode;
	unsigned int (32) streamSize;
	float (32) creaseAngle;
	bit (1) ccw;
	bit (1) solid;
	bit (1) convex;
	bit (1) colorPerVertex;
	bit (1) normalPerVertex;
	bit (1) otherAttributesPerVertex;
	bit (1) isTringularMesh;

TFANGeometryDecoder class 1.7.1 Syntax

	class TFANGeometryDecoder(dim, nV) {
	unsigned char (8) q;
	unsigned char (8) decodingMode;
	unsigned char (8) predMode;
	unsigned char (8) M;
	unsigned char (8) K;
	float (32) minValues[dim];
	float (32) maxValues[dim];

if

(predMode == 3)

unsigned int (32) nbrPredModes;

unsigned int(32) streamSize; if

Table XXX

 XXX

	.1 summarizes all
	possible configurations.

Table XXX .1 -Decoding mode: all possible configurations.

 XXX

	decodingMode value	Decoding mode
	0	No prediction with respect to the previous value.

1

One bit encoded to indicate if the residual error to be decoded is the same as the last decoded one.

2-255

Reserved for ISO purposes predictionMode; a 8-bit unsigned integer indicating the applied predictionMode. Table

XXX

.2 summarizes all possible configurations.

Table XXX .2 -Prediction mode: all possible configurations.

 XXX

	predictionMode value	Prediction mode
	0	Barycenteric prediction: the predicted value
		associated to the current vertex is equal to the
		barycenter of its neighbors.
	1	Delta prediction: the predicted value associated to
		the current vertex is equal to the value of the last
		decoded one.
	2	Parallelogram prediction: the predicted value
		associated to the current vertex is obtained by
		applying the parallelogram prediction rule while
		considering all the decoded neighbors.
	3	Adaptive prediction: one bit per vertex is encoded
		to indicate if mode 0 or mode 2 should be applied.
	4	Parallelogram prediction: the predicted value
		associated to the current vertex is obtained by
		applying the parallelogram prediction rule while
		considering only the neighbors in a triangle fan.
	5-255	Reserved for ISO purposes

M: a 8-bit unsigned integer describing the interval of values described by the arithmetic encoded representation. More specifically, if a decoded value ranges in the interval]-M, M[it is decoded only with the arithmetic decoder. Otherwise, an additional part is decoded with an Exponential Golomb code representation.

numberOfTexCoordIndex: a 32-bit unsigned integer indicating the number of the number of indices associated to the texture coordinates. numberOfOtherAttributesIndex: a 32-bit unsigned integer indicating the number of the number of indices associated to the other attributes.

1.5

(5,1) 1 d  ,

(5,1) {0,1} S  ,

(5,1) {1} (,) I j n . Let us note that we can directly encode these information by applying an arithmetic encoder. However, in order to obtain more efficient compression performances, we propose to distinguish 9 frequent topological configurations, which we encode more compactly. In order to handle all the other cases, a tenth configuration is introduced. It consists in directly encoding the information (,) d j n , (,) S j n and (,) I j n .

Let

(,) C j n be the configuration associated to the triangle fan () n TF j . Table 1 describes the ten configurations retained by the TFAN approach.

The determined configurations are finally encoded by applying an arithmetic encoder.

Configuration

Initial information Encoded information

(,) {1, 0, 0,..., 0, 0,1}

(,) {1, , ,..., , ,1} (,) (,)

(,) { , ,..., , } I j n X X X X  Tableau 1: The 10 configurations considered by the TFAN approach (X represents an arbitrary value).

ANNEX B: TFAN connectivity decoding process

The TFAN decoded reconstructs the mesh connectivity by successively decoding the set of the triangle fans. Let us note that the mesh vertices are traversed in the order defined by the encoder. Figure 4