
HAL Id: hal-01396469
https://hal.science/hal-01396469v1

Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Scalable High Resolution Traffic Heatmaps: Coherent
Queue Visualization for Datacenters

Andreea Anghel, Robert Birke, Mitch Gusat

To cite this version:
Andreea Anghel, Robert Birke, Mitch Gusat. Scalable High Resolution Traffic Heatmaps: Coherent
Queue Visualization for Datacenters. 6th International Workshop on Traffic Monitoring and Anal-
ysis (TMA), Apr 2014, London, United Kingdom. pp.26-37, �10.1007/978-3-642-54999-1_3�. �hal-
01396469�

https://hal.science/hal-01396469v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Scalable High Resolution Traffic Heatmaps:
Coherent Queue Visualization for Datacenters

Andreea Anghel, Robert Birke, and Mitch Gusat

IBM Research – Zurich, Switzerland
{aan,bir,mig}@zurich.ibm.com

Abstract. We propose a new high resolution – temporal and spatial
– 10 Gbps Ethernet monitoring technique based on time-coherent con-
gestion ‘heatmaps’, revealing (all) the queue occupancies at µs granu-
larity. Notably, queues are sampled with a slightly modified version of
the new commodity Ethernet hardware congestion management proto-
col, i.e., IEEE 802 Quantized Congestion Notification. Our technique is
evaluated through high-accuracy Layer-2 simulations of a 10 Gbps data-
center Ethernet fabric. Early results reveal that our proposal enables the
detection of ephemeral – yet consequential – events and transients essen-
tial for datacenter workload characterization: e.g., TCP Incast, Head-of-
Line blocking and congestion trees, which may trigger within 10s of µs
and were not directly detectable until now.

Keywords: Network monitoring, L2 sampling, Traffic analysis, QCN

1 Introduction

The proliferation of Big Data applications – such as Hadoop, MapReduce – to-
gether with 10-100 Gbps datacenter networks (DCNs) – such as Converged En-
hanced Ethernet (CEE), with µs latency – raises new challenges. One of them is
the need for faster and scalable network monitoring methods. Deep understand-
ing of such workloads and their communication patterns is key to the design of
future workload-optimized datacenters. For example, the ability to accurately
detect and optimize (via adapted routing) workload-induced congestion at fine
granularity has significant potential in terms of reducing system cost and im-
proving the application run-time [1]. Switches today have outdated monitoring
software that cannot cope with the sampling frequency and the network scale
needed to orchestrate large datacenters. Hence our target is to coherently (i.e.,
time-space synchronized) and scalably detect, record and replay ephemeral – yet
consequential – transients, essential for workload characterization: e.g., TCP In-
cast [2], Head-of-Line blocking [3], and congestion trees [4], phenomena that may
trigger within few 10s of µs and significantly affect the network and workload
performance.

To address these issues, a significant improvement is required in the way we
design and implement network monitoring. The challenges of 10-100 Gbps load
monitoring and visualization for high resolution datacenter network management

are three-fold. Space-wise, how to collect, correlate and visualize several 1000s of
queues, quasi-simultaneously (correlation may be due to either Hadoop/HPC-
like workload phases, or the activation of low-level flow control). Time-wise, we
face a resolution challenge, i.e., the “µs wall” – one must detect, record, visualize,
and/or react to network events that happen at µs (packet duration) timescales.
Finally, the method must conceptually scale to million-node datacenters and
Tbps link speeds. Hence the need for commodity hardware queue samplers, pos-
sibly reusing existing resources. All while helping the users and operators to
better understand their load dynamics and nature.

As an exemplary Big Data workload, the Hadoop Partition/Aggregate pat-
tern consists of multiple congestive episodes within few 100s of µs, known as TCP
Incasts. The Aggregate phases actually determine the load, dynamic behavior,
stability, and finally the user-perceived performance. However, the Incast phases
at and above 10 Gbps are too volatile for the current sFlow [5], NetFlow [6], and
SNMP [7] monitoring techniques. Hence the need for a faster and lighter load
sensing method able to ‘catch’ such ephemerally volatile correlated transients,
scale to large networks, and also drill-in, i.e., zoom into a region of interest of a
few 10s-100s queues.

We therefore propose a high-resolution (both) temporal and spatial monitor-
ing technique based on IEEE 802 Quantized Congestion Notification (QCN) [8],
Ethernet’s new congestion management protocol. Triggering, sampling, aggre-
gating, communicating and visualizing network events are based on the con-
cept of time-coherent snapshots of the queue occupancy levels. Coherency is
achieved by using a network time difference estimation protocol implemented
by the switches – a high accuracy alternative to current clock synchronization
protocols such as GPS, NTP [9], and IEEE 1588 [10]. We validate the above via
simulations using accurate Layer-2 CEE-compliant 10 Gbps fabric models. As a
first, our method detects and captures in real time the TCP Incast-like events in
lossless fabrics, revealing their inception, evolution and global dynamic behavior
at µs scale.

2 Selected Related Work

The area of network monitoring, telemetry and topography is exceedingly rich in
literature. However, practically only a few schemes have been widely adopted by
hardware and software vendors. Thus, despite much larger and faster DCNs, the
current state of the art in hardware network monitoring has remained limited
to sampling a few, possibly isolated, links with a granularity in the 0.01s to 1s
range: e.g., sFlow, NetFlow and SNMP. These methods we consider insufficient
for today’s 10/100 Gbps DCNs and large distributed workloads.

More recent proposals, such as [11], suggest new router extensions to perform
path sampling using hardware synchronization via IEEE 1588. By instrumenting
switches with a hash-based primitive, the authors measure latencies down to
10s of µs and 1 loss in a million. By contrast, our proposal (ab)uses the QCN
standard to sample queues (instead of paths) with a theoretical sub-µs sampling.

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5

0 1 2 3

L1

L2

L3

Fig. 1. Folded topology representation of XGFT(3;2,4,3;1,2,2). Links are bidirectional.
Node levels start at 0 from bottom to top (L0 to L3). Nodes within a level start at 0
from left to right. For simplicity reasons, only the switch levels (L1, L2, L3) are shown.
L0 is populated with 2 (nodes) · 12 (L1-switches) = 24 (nodes). We highlight one path
from switch 4 on L1 to switch 0 on L1. The red link represents the upstream queue of
port 0 at switch 2 on L2.

Batraneanu et al. [12] propose a tool-set developed to demonstrate aggre-
gate achievable cross-sectional bandwidth for specific traffic profiles, as well as
to analyze network hot spot behavior. Queues are being monitored at µs using
sFlow and an FPGA implementation. Though the achieved timescale is simi-
lar, their solution is fundamentally different in various perspectives: we use the
readily available QCN queue samplers, provide a coherent globally synchronized
trigger-driven method, developed a record-and-replay tool validated in PFC-
enabled 10 Gbps CEE networks, and show that our heatmaps scale with low
overhead.

Another related proposal [13] identifies the challenges of datacenter and cloud
monitoring and visualization: scale, rapidity, difficulties of detection, localization,
and diagnose of performance problems. The proposed tool, i.e., Visual-I, relates
directly to our targets. However, while we share goals with Visual-I, our method
differs on the use of coherent heatmaps and the novel Layer-2 capabilities of the
upcoming CEE-based datacenter networks.

3 Traffic Heatmap Method

We propose a matrix-based traffic visualization scheme as follows. Each packet
sent from a source to a destination follows a certain route in the network, as
depicted in Fig. 1, and travels through the corresponding set of queues in the
forwarding switches, contributing to their respective occupancies. A network
congestion/traffic heatmap is an instantaneous time-synchronous 2D snapshot
image of the occupancy of all the switch queues in the network. Each heatmap
cell represents a single queue providing a fine-grained spatial view of the network.

The occupancy is linearly color-coded on 16 bits using shades of red. The
color ranges from white, empty, to dark red, full. Since the heatmaps are time-
synchronous, they represent a snapshot of the network queues’ status. This al-
lows us to temporally concatenate such sequentially-acquired snapshots into an
animated ‘movie’. This movie not only provides insights into the network status

evolution – congestion levels and locations – but also into the volatile causes and
effects of network anomalies such as congestion trees.

The heatmaps are created by a controller which is the central element of the
monitoring framework. The forwarding switches sample their queue occupancies
– by reusing the commodity QCN hardware mechanism – and send them to the
controller (see Subsec. 3.2). The controller then performs two mappings: one in
time and one in space. In time, each sample is timestamped using the local clock
of the switch it originated from. Since each switch has its own clock, the controller
needs to map all the timestamps to a single common timeline (see Subsec. 3.4).
The converted timestamps are sorted chronologically. The configuration of the
heatmap at any given moment on the timeline is then given by the most recent
occupancy value received for every queue previous to that moment. In space,
the controller must know the network topology and location of each switch and
queue. We assume the existence of a topology discovery protocol that detects and
signals topology changes to the controller, for example, through the information
gathered by the spanning tree protocol. Each queue has a unique identifier, thus
each sample can be mapped to a precise cell using a topology-dependent bijective
function. Since we focus on datacenter networks, we only present the mapping for
fat trees (Subsec. 3.3). However, our method can be extended to other topologies
by changing the mapping bijection.

The final raw result is a time-series of complete space-time mappings of all
queue occupancy samples of all the switches. The heatmap thus created allows
the detection of even ephemeral network anomalies. Once a critical area has been
identified – e.g. due to particularly frequent congestion events – it is possible to
increase the sampling frequency of those switches/queues to further enhance the
detection accuracy. Also, once the culprits are identified, it is possible to take
online or offline corrective actions and solve the hotspots or the detected events.
An example is given in Sec. 5.1.

3.1 Datacenter Network Topology

Today, fat trees, i.e., multistage k-ary n-fly topologies, are typically the base
for large datacenters [14,15]. These topologies can be described by extended
generalized fat trees (XGFTs) [16]. An XGFT (h;m1, ...mh;w1, ...wh) has h+ 1
node levels divided into leaf and inner nodes. The

∏h
i=1mi leaf nodes reside

on level 0 and serve as end nodes/servers. Inner nodes occupy levels 1 to h
and serve as switches. Each inner node on level i has mi child nodes and each
non-root node on level j has wj+1 parent nodes. Fig. 1 shows an exemplary
XGFT(3;2,4,3;1,2,2).

3.2 Load Sensing: Queue Sampling

The queue sampling is performed in a distributed manner: each switch samples
its own local queues. Sampling can start either periodically or remotely triggered
upon a controller request. In the latter case, the controller sends a request to

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

0

1

2

3

0

1

2

3

4

5

L1
up

L2
up

L3
up & down

L2
down

L1
down

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

 a) b) c)

Fig. 2. Spatial mapping example. Intermediate Fig. a) and b) show how the XGFT
from Fig. 1 is mapped onto the heatmap in c). a) unfolds and rotates the topology by
90 degrees. Links are unidirectional: traffic flows from left to right. Each level corre-
sponds to the up-/down- stream direction. All figures highlight the same exemplary
path from switch 4 on L1 to switch 0 on L1. Similarly, red highlights the send queue(s)
of port 0 at switch 2 of level 2 (L2). Each link level in a) corresponds to a column in b)
and c). Whereas, each cell in a column represents top-down the output queues ordered
by: (1) the switch and (2) the port within that switch. E.g., C3 shows the downstream
output queues of the L3 switches: 4 switches · 3 ports · 1 queue = 12 queues. Typical
current switches have 1 to 4 hardware queues per port, but for increased clarity of re-
sults in paper format we will assume herein a single queue per port – the generalization
to several queues is nonetheless trivial.

the switch with the desired sampling duration, rate and start time translated to
the switch’s own clock. The novelty of our approach consists in extending the
use of the QCN load sensor to traffic monitoring. QCN is Ethernet’s new end-
to-end congestion management which, together with its new flow control, i.e.,
Priority Flow Control (PFC), is being adapted by a growing number of network
equipment to ease the network convergence commonly known as CEE.

To detect congestion, QCN uses load sensors monitoring all the queues. Its
main objective is to keep the queue occupancy at a target equilibrium Qeq. At
each frame arrival, QCN samples with probability π the queue occupancy. For
each sampled frame, the load sensor computes a feedback value based on the cur-
rent and past occupancy. Negative feedbacks are sent back to the frame’s source,
which reduces its injection rate, thus adjusting it to the available bandwidth.

Extending the use of the QCN load sensor to monitoring has the great ben-
efit of readily available hardware which can sample all the queues at fine, i.e.
subµs timescales, theoretically even per packet arrival – during limited zoom-in
sampling intervals.

This improves upon other state of the art monitoring tools both in terms of
temporal – 10s of ns – and spatial granularity – each output queue. However
two additional steps are needed to enhance the native behavior of QCN’s load

sampler: (1) to timestamp and locally store the QCN samples; and (2) to make
the samples available to the heatmap controller.

To avoid flooding the network with monitoring traffic, we use compressive
sampling and filtering based on the feedback values computed by QCN. The
informative samples are mainly related to a congestive event. Hence, all nega-
tive feedback samples, signaling a congestion, are sent to the controller. During
positive feedback sampling periods, only the first sample is sent back to the con-
troller. During normal network operation, this filter removes most of the samples.
To further reduce the monitoring overhead, it is possible to reduce the probabil-
ity π (see Subsec. 5.3), and compress and aggregate multiple samples into MTU
frames. Jumbo frames up to 10-20 KB could be used for high radix switches with
thousands of queues (per port and priority). Once the frame is full or upon a
timeout – to bound the reporting delay in case of sparse sample reporting – the
resulting local snapshot frame is sent to the controller for heatmap assembly.

3.3 XGFT Mapping: Heatmap Bijection

Each heatmap cell represents a specific queue. Fig. 2 shows in steps the heatmap
creation of the XGFT in Fig. 1. If level c has S switches, each switch P ports
in the upstream/downstream direction, and each port Q queues, then within
that level/column, row r = s · P · Q + p · Q + q represents queue q belonging
to port p of switch s, where 0 6 s < S, 0 6 p < P and 0 6 q < Q. Con-
versely, given a row r within column c, the reverse mapping is: q = r modulo Q
, p = r

Q modulo P , s = r
P ·Q and the unfolded network level is c. This mapping

is valid for homogeneous switches, i.e., same port and queue numbers, which
is typical in practice. However, the mapping can be extended to accommodate
non-homogeneous configurations. Moreover, although in this paper we only ad-
dress the mapping of fat tree topologies (which are the most commonly used in
datacenters), the mapping can be extended to multi-dimensional topologies by
using topological isomorphisms as proposed in [17].

3.4 Coherent Sampling: Clock Difference Estimation Protocol

A coherent network heatmap requires: (1) a snapshot of the queues at the same
time instant, i.e., 10s of ns timescale; and (2) a common time reference for the
occupancy samples. Since each switch has its own internal clock, this problem
is not trivial and goes beyond the scope of this paper. Nevertheless, we shortly
introduce a clock estimation method based on the following linear drift model:

ti = δi · t+ ωi (1)

where t is the controller reference time, ti the time at switch Si, and δi and
ωi the absolute clock drift and offset at switch Si. We also assume that all δi
and ωi are constant and that ωi > 0. This model entails that given two switches
Si and Sj , we have:

Probing Packet 1

Δq1

Δt1

Δp1Ti
r1

Tj
r1

Tj
e1

Ti
e1

Δq2

Δt2

Δp2Ti
r2

Tj
r2

Tj
e2

Ti
e2

Probing Packet 2

Si Sj

C

T

Si

Sk

Ti

Tk

Sp-2

Tp-2

Sp

Sp-1

Tp

Tp-1

a) b)

Fig. 3. a) Method to calculate the relative drifts and offsets of two neighboring switches
Si and Sj . b) Method to calculate the absolute drift and offset of a switch Sp to a
reference controller system C.

ti = δij · tj + ωij (2)

where δij = δi/δj and ωij = ωi − δij · ωj are the relative drift and offset
between Si and Sj .

We rely on an adhoc neighbor-to-neighbor protocol between the switches to
minimize estimation errors on the one-way latency due to queuing delays in
intermediate hops. Fig. 3a) shows the method to calculate the relative drifts and
offsets between two neighboring switches Si and Sj . Si sends a probe of size Ps to
Sj over a link with speed BW containing the local enqueuing time T i

e and local
queue size Qi

s. We assume the one-way latency ∆ to be the sum of three delays:
(i) queuing ∆q = Qs

BW , (ii) transmission ∆t = Ps

BW , and (iii) propagation ∆p

which depends only on the type and cable length, hence assumed to be constant.
Using Eq. 1, the arrival time tjr at Sj can be expressed as T j

r = δji · T + ωji and
T i

r = T i
e +∆. Thus, we have:

T j
r = δji · (T i

e +∆q +∆t +∆p) + ωji (3)

containing only three unknowns: δij , ωij and ∆p. For each probe, the receiv-
ing switch adds one equation to an equation system. Solving this system allows
to obtain δji and ωji , which are sent to the controller. From all the relative
drifts and offsets, the controller then computes the absolute drifts and offsets as
shown in Fig. 3b). It computes the absolute δi and ωi for each switch by itera-
tively applying Eq. 1 on all consecutive switch pairs along the path. The general
equation given a switch Sp reachable via the path Sp ⇒ Sp−1 ⇒ ... ⇒ S1 ⇒ C
is shown in Eq. 4.

tp =
p∏

i=2

δi,i−1 · t+
p−1∑
i=1

p−1∏
j=i

δj+1,j

 · ω + ωp,p−1 = δp · t+ ωp (4)

This approach allows for a non-intrusive clock compensation without alter-
ation of the internal switch clocks. The temporal correlation among queue sam-
ples, as well as among the start/stop sampling commands, is achieved without
explicit synchronization of the switch clocks.

4 Network and Simulation Environment

To show the benefits of such monitoring tool, we identify congestion trees in a
lossless datacenter network. More in detail, we consider the same XGFT topology
as presented in Sec. 3, comprising 24 end nodes and 22 switches interconnected
by 10 Gbps CEE-compliant links. CEE aims at providing a reliable Layer-2 in
contrast to the conventional Ethernet which drops frames as soon as a buffer
reaches its maximum capacity. CEE achieves this by relying on two distinct
protocols: PFC and QCN.

Similar to IEEE 802.3x PAUSE, PFC avoids packet losses during conges-
tion by pausing the sender using explicit control frames. However PFC uses the
concept of service classes: a paused priority does not affect the others. QCN
counteracts the congestion entity by limiting the injection rates of the culprit
sources. Even if mitigated by QCN, PFC can be affected by Head-of-Line block-
ing building up into congestion trees in the network: a blocked sender may fill
up its buffer and recursively other devices will possibly get paused spreading
the congestion backwards. Congestion trees can significantly degrade network
performance [4], and hence it is useful to detect them to act quickly on their
removal.

The occupancy samples are generated using high-accuracy Layer-2 simula-
tions from an event-driven simulator based on OMNeT++ [18]. The simulator
is a two-level architecture network modeling platform. The higher level is the
topological or system level where we gain a generic overview of the whole simu-
lated infrastructure as an interconnection of modules. The lower level is that of
the internal structure of each network module: e.g., hosts, and switches. We used
our own network simulator due to its enhanced support for the CEE standards
and detailed models of the Layer-2 switch and adapter micro-architectures. We
extended our simulator to include: (1) the modified QCN load sensor addition-
ally timestamping, storing and aggregating the queue samples as described in
Subsec. 3.2 and (2) the clock difference estimation protocol described in Sec. 3.4.
The drifts and offsets values are derived from empirical distributions obtained
by instrumenting an Intel e1000 network driver and by analyzing the speed at
which clocks of neighboring systems drift. A JAVA-based application collects the
queue occupancy samples from the simulator and generates the heatmaps.

w
/
o

A
d
a
p
ti

v
e

R
o
u
ti
n
g

O
p
e
n

L
o
o
p

X X X X X
a1) T+0.07 ms a2) T+0.17 ms a3) T+0.65 ms a4) T+14.12 ms a5) T+17.10 ms

C
lo

se
d

L
o
o
p

X X X X X
b1) T+0.05 ms b2) T+0.28 ms b3) T+0.75 ms b4) T+1.71 ms b5) T+6.96 ms

w
/

A
d
a
p
ti

v
e

R
o
u
ti

n
g

O
p
e
n

L
o
o
p

X X X X X
c1) T+0.07 ms c2) T+0.18 ms c3) T+1.74 ms c4) T+15.36 ms c5) T+39.85 ms

C
lo

se
d

L
o
o
p

X X X X X
d1) T+0.07 ms d2) T+0.33 ms d3) T+1.30 ms d4) T+5.15 ms d5) T+13.62 ms

Fig. 4. XGFT(3;2,4,3;1,2,2) under many-to-one traffic (nodes 0-15 send to node 23
at full link speed, i.e. 10 Gbps, for 10 ms starting at T). Each row corresponds to a
different network configuration and shows 5 time steps of the congestion evolution. The
first 3 steps show the congestion tree onset, while the last 2 steps show the network
recovery. The congestion tree root is marked by X.

5 Results and Discussion

5.1 Congestion Tree Detection Heatmap Movie

As use case we propose a TCP Incast-like scenario, typical of Partition/Aggregate
workloads. This bursty and correlated congestive pattern is also typical for
barrier-based HPC applications, commonly using lossless fabrics. The surge in
correlated packet arrivals overflows the aggregation buffer. In TCP over legacy
Ethernet frames will be dropped, and subsequently recovered via TCP timeouts
– thus leading to significantly increased delays. In modern CEE fabrics, PFC pre-
vents such drops and improves performance [19]. However, transient congestion
trees may still degrade the performance – under certain conditions: flow sizes,
buffer settings, hotspot/incast degree. Such congestion trees and their evolution
can be observed in Fig. 4, which shows selected frames of the heatmap movie
under different network configurations: (a) open/closed QCN congestion control

loop; (b) without or with adaptive routing. In open loop, the QCN rate limiters
are disabled, i.e., congestion notifications are ignored; while in closed loop, the
QCN rate limiters react by adjusting the injection rate. The adaptive routing
scheme [20] balances the load over the multiple paths available in fat trees. In
contrast to Fig. 2c), each heatmap in Fig. 4 includes one additional column (C5)
representing the downstream queues of the L1 switches.

Row (a), i.e., open loop without adaptive routing, shows that the congestion
tree fully builds up within 700 µs. Its root, i.e., designated hotspot, is located
on the first downstream output queue, the flows convergence point. After 17
ms the congestion tree is drained, no longer affecting the flow delays. Closing
the QCN loop (row b) mitigates the congestion as seen both from the lighter
shades of red and the ∼ 2.4× shorter draining time (7 ms). As expected, when
enabling adaptive routing many more queues share the load - since the traffic
is spread across multiple paths (row c and d); now all the ‘incast’ flows meet
only at the destination, relocating the previous tree root. Again closing the QCN
loop (row d) reduces the congestion duration, draining faster by a factor ∼ 3×.
While these results meet the initial expectations, now they are also revealed
to external observers without the benefit of apriori knowledge. The events of
potential interest are automatically detected based on the programmable QCN
threshold setpoint, recorded, and visualized for offline analysis.

The fine-grained timescale achievable with our coherent ‘snapshooting’ method
naturally lends itself to movie-like playbacks, with variable temporal resolutions
in frames/s. This not only enhances the user experience, but also enables tem-
poral zooming (fast/slow motion, fast forward). Thus we can monitor longer
time intervals without loosing track of the – potentially ephemeral – events of
interest.

5.2 Time Estimation Accuracy

To test the accuracy of our clock estimation protocol, we use the same network
as above, with uniform all-to-all background (i.i.d.) traffic at 60% load. Results
show a mean error among all 10 Gbps switches of 380 ns with a standard de-
viation of 465 ns. The achieved accuracy is comparable to the hardware-aided
implementation of IEEE 1588 [21] and 2x-3x better than the software-only IEEE
1588 version [22].

5.3 Monitoring Overhead

The overhead of our QCN-based sampling technique depends on several parame-
ters: average network diameter, injected traffic, average congestion level/severity
and its duration. Here we show only the influence of the QCN parameters. In
particular we consider the queue sampling probability π ∈ [1%, 2%, 4%, 10%] and
the queue equilibrium setpoint Qeq ∈ [2KB, 4KB, 8KB, 16KB]. We assume a
sample size of 8B including a queue identifier (16 bit), queue occupancy (16 bit),
queue occupancy variation (16 bit), timestamp offset (16 bit); plus a standard
Ethernet-IP-TCP header (54B) extended with a switch identifier 6B and a base

timestamp 8B (Timestamp = Base + Offset, for space saving). We compute
the sampling overhead as the ratio between the sampling traffic reported to the
controller and the total traffic sent by all hosts during the sampling period. The
results show that π directly affects the overhead, but even for aggressive sam-
pling probabilities, i.e. 10% (e.g., one in 10 packet arrivals in a 128-port switch
fully N-to-1 congested can lead to sub-µs periods at 10 Gbps), the obtained
overhead is less than 0.2%. For π of less than 5%, the overhead is below 0.1%.
This overhead is approximately constant with respect to Qeq.

5.4 Switch Code Complexity

The additional switch code complexity is low. On the data plane, the switch only
needs to locally save and timestamp the occupancy samples already collected by
the QCN sampler. On the control plane, the switch needs to perform two sets of
operations: (1) aggregate, compress, and send the QCN samples to a centralized
controller; (2) collect probes for the clock difference estimation protocol through
a heartbeat protocol. The actual derivation of the relative offsets and drifts
can be performed either locally or, if too complex for the local switch control
processor, offloaded to the controller.

6 Conclusions

We presented a high resolution monitoring method with: (1) µs queue sampling
period, (2) based on the newly available IEEE 802 QCN hardware load sensing ;
(3) fabric-level coherence, i.e., global synchronous trigger-driven method; (4)
multi-queue heatmap ‘snapshooting’ that scales up with low traffic overheads; (5)
an intuitive matrix representation of the datacenter system based on a bijective
mapping of the common XGFT networks; (6) a record and replay visualization
tool, validated in lossless link-level flow-controlled 10 Gbps accurate Layer-2
simulations.

As proof of concept, we have designed and implemented a method that dis-
plays the time-coherent heatmap snapshots and movies showing the simultaneous
occupancy of – some or all – the queues in a simulated network. For the first
time now, the detection and visualization – in quasi-real time – of congestion
trees and Incast events, correlated across the entire fabric, have been shown to
operate in a lossless 10 Gbps commodity Ethernet. Thus, this method enables
finer resolution insights into workload-specific traffic patterns and detects per-
sistent and transient anomalies. This fast and efficient monitoring approach can
benefit researchers, architects, network administrators, Big Data application de-
velopers, etc., to better understand the interaction between complex workloads
and the underlying networks in large multitenant datacenters.

References

1. Prisacari, B., et al.: Fast pattern-specific routing for fat tree networks. In: ACM
TACO 10(4) (December 2013) 36:1–36:25

2. Zhang, J., et al.: Modeling and understanding TCP incast in data center networks.
IEEE INFOCOM. (2011) 1377–1385

3. Jurczyk, M., et al.: Phenomenon of higher order head-of-line blocking in multistage
interconnection networks under nonuniform traffic patterns. IEICE Transactions
on Information and Systems (special issue on architectures, algorithms and net-
works for massively parallel computing) 79(8) (1996) 1124–1129

4. Pfister, G.F., et al.: Hot spot contention and combining in multistage interconnec-
tion networks. IEEE Transactions on Computers 100(10) (1985) 943–948

5. Phaal, P., et al.: InMon corporation’s sFlow: A method for monitoring traffic in
switched and routed networks. Technical report, RFC 3176 (2001)

6. Claise, B.: Cisco systems NetFlow services export version 9. (2004)
7. Case, J., et al.: A simple network management protocol (SNMP). Network Infor-

mation Center, SRI International (1989)
8. IEEE: P802.1Qbb/D1.3 Virtual bridged local area networks - Amendment:

Priority-based flow control. Technical report, IEEE (2010)
9. Mills, D., et al.: Network time protocol version 4: Protocol and algorithms speci-

fication. (2010)
10. IEEE/ANSI: 1588 Standard for a precision clock synchronization protocol for

networked measurement and control systems. Technical report, IEEE/ANSI (2008)
11. Kompella, R.R., et al.: Every microsecond counts: tracking fine-grain latencies

with a lossy difference aggregator. In: ACM SIGCOMM CCR. Volume 39., ACM
(2009) 255–266

12. Batraneanu, S., et al.: Operational model of the ATLAS TDAQ network. IEEE
Transactions on Nuclear Science 55(2) (2008) 687–694

13. Fisher, D., et al.: Using visualization to support network and application manage-
ment in a data center. In: IEEE INM 2008. (2008) 1–6

14. Leiserson, C.E.: Fat-trees: universal networks for hardware-efficient supercomput-
ing. IEEE Transactions on Computers 100(10) (1985) 892–901

15. Petrini, F., et al.: Performance evaluation of the Quadrics interconnection network.
Cluster Computing 6(2) (2003) 125–142

16. Ohring, S.R., et al.: On generalized fat trees. In: Parallel Processing Symposium
1995, IEEE 37–44

17. Dally, W., et al.: Principles and practices of interconnection networks. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2003)

18. Minkenberg, C., et al.: Trace-driven co-simulation of high-performance computing
systems using OMNeT++. In: SIMUTools 2009. 65

19. Crisan, D., et al.: Short and Fat: TCP performance in CEE datacenter networks.
In: HOTI 2011. 43–50

20. Gusat, M., et al.: R3C2: Reactive route and rate control for CEE. In: HOTI 2010.
50–57

21. Ferrari, P., et al.: Synchronization of the probes of a distributed instrument for
real-time Ethernet networks. In: ISPCS 2007. 33–40

22. Correll, K., et al.: Design considerations for software only implementations of
the IEEE 1588 precision time protocol. In: Conference on IEEE 1588 Standard.
Volume 1588. (2005) 11–15

