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Abstract. In passive network measurement, the quality of an observed
traffic stream is obviously crucial to the quality of the results. Some
sources of error (e.g., packet loss at a capture device) are well understood,
others less so. In this work, we describe the inline data integrity mea-
surement provided by the QoF TCP-aware flow meter. By instrumenting
the data structures QoF uses for detecting lost and retransmitted TCP
segments, we can provide an in-band, per-flow estimate of observation
loss: segments which were received by the recipient but not observed by
the flow meter. We evaluate this mechanism against controlled, induced
error, and apply it to two data sets used in previous work.

1 Introduction and Related Work

Network measurement is the practice of examining traffic data in order to de-
duce or derive information about the properties of the measured network. This
traffic can either be generated for the purposes of measurement (in active mea-
surement), or can be generated by the network’s users (in passive measurement).
In all cases, the measurement infrastructure itself injects some error or bias into
the measurement, such that interpretation of the results must take care to ac-
count for this error. This fact is too often ignored in the network measurement
literature.

Measurement studies can use control traffic with known parameters to pro-
vide ground truth, whether part of the protocol for active measurements, or
injected alongside the measured traffic for passive measurements. In all cases,
the data produced are a function of the actual traffic measured, the mismatch be-
tween the assumed and actual behavior of the network, and inaccuracies injected
by design or implementation flaws in measurement tools.

Even the simplest of active measurement approaches, the venerable ping

utility, is not immune from this conflict between the ideal and the real. For
example, Pelsser et al [1] recently found that two-way delay measured across a
link by ping can have significant dependencies on the flow identifier, an artifact
of in-path load balancing.

It is harder to control for these errors in passive measurement than active
measurement, and the mismatch between real and assumed behavior of the mea-
surement tools plays a greater role. For example, Hofstede et al [2] characterized



inaccuracy in timing and TCP flags in NetFlow data in three commercial flow
meters. Cunha et al [3] detailed timing errors in publicly available Abilene and
GEANT flow traces injected by Juniper’s J-Flow. An author of the present
work [4] even found timing error inherent in the design of Cisco’s Netflow Ver-
sion 9 protocol. Error injected by passive measurement design, implementation,
and deployment issues was treated systematically by Kögel [5], who advocated
exporter profiling to correct for these errors post-measurement.

In this paper, we consider the QoF (pronounced “quaff”) TCP-aware flow
meter, which leverages the flexibility of the IPFIX [6] protocol to export per-
flow statistics relevant to TCP performance. QoF was developed to allow per-flow
observation of TCP flows, for operational troubleshooting as well as for research
purposes. As such, it requires precise timing for the estimation of TCP round-
trip time (RTT) as well as very low or no observation loss – packets which were
delivered, but not observed. Because QoF is a purely passive flow meter, a self-
validation approach using injected traffic is not an option. Therefore, we sought
to observe signals present in the data in order to increase our confidence about
the suitability of the data for the measurement techniques employed by QoF.

We instrumented QoF’s data structures for signaling detected gaps in the
input data in order to report on observation loss. The literature on the effects
of packet sampling treats the problem of known random observation loss on the
fidelity of flow data [7, 8]; a key contribution of the present work, in essence, is
the export of information about the unknown, not necessarily random sampling
attributable to a measurement infrastructure, and export of this information
along with measured data, so that it can be used in subsequent analysis. While
this information is often available in the logs of flow meters and analysis tools,
QoF’s approach of providing information on loss in-band greatly increases its
usefulness.

In this paper, we briefly introduce QoF and the techniques it uses for passive
TCP performance measurement, as background for understanding the data in-
tegrity checking approach it uses, in section 2. We then detail the methodology
for observation loss and timestamp frequency variance measurement in section
3, and apply it to several data sets and network observation points in 5. We note
that the tool is particularly applicable to the verification of packet and flow data
quality in research applications.

2 Background

QoF is a fork of the CERT Network Situational Awareness Group’s YAF (Yet
Another Flowmeter) [9]. Our fork of the code removes all payload inspection
and export facilities from YAF to increase performance and reduce end-user pri-
vacy risk, and replaces the packet capture code with WAND’s libtrace [10] to
add flexibility and accelerate capture with general-purpose network interfaces.
The overall goal is to produce a flow meter operating on unsampled packet
header observations which is useful for both performance research and opera-
tional purposes. Performance is an explicit design goal, so we avoid techniques
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which marginally improve accuracy at the cost of significant analysis or state
requirements at the metering process.

Additional functionality in QoF includes passive RTT and transport loss
event estimation. As round-trip time (RTT) is a basic parameter of all TCP
connections, passive measurement of RTT is a fairly well studied area. QoF uses
an approach based on previous work in the area [11, 12].

As in figure 1(a), RTT is estimated by adding the interval between seeing a
sequence number and the corresponding ACK RTTfwd to the interval between
seeing the sequence number in the reverse direction and the corresponding ACK
RTTrev. Since many flows are mainly unidirectional, QoF also uses intervals be-
tween a TCP timestamp value on a pure ACK and its corresponding echo as
well. In contrast to the method described in [13], timestamp echoes are consid-
ered only if they would decrease or keep equal the estimate for the component
on which they were measured; this simple heuristic serves to minimize delay,
especially that due to an application not having data to send.

QoF estimates transport loss – packets that did not arrive at the receiver
– by observing the sequence of TCP sequence numbers. QoF tracks the initial
sequence number as well as the next-expected sequence number in each direction
of a flow. Since gaps in the sequence number space should be relatively rare –
occurring transiently and refilled within an RTT in most cases – the module
tracks gaps in a gap stack per flow direction.

Each unseen range in sequence number space is kept in descending order
of sequence number. When a segment is observed that begins beyond the next
expected sequence number, an out-of-order segment is signaled and the resulting
gap is pushed onto the gap stack. Conversely, when a segment is observed that
does not advance the sequence number, it is compared with the gaps in the gap
stack, most recent gap first. If covering a gap, the gap is filled; otherwise, a
retransmission is signaled.

If a loss occurs in the path after the observation point (Observer A in figure
1(b)), the observer will see the retransmitted segment(s) up to one RTT after the
loss occurred. If the loss occurs in the path before the observation point (Observer
B), the observer will see a gap in sequence number space immediately after the



loss, but not observe a retransmission; the size of the gap in the sequence number
space is an indication of how many segments were lost. QoF handles spurious
retransmissions in part by grouping transport loss indications into RTT-sized
windows.

These two features complement each other, and assume the observation of
every packet in each flow in order to work properly: transport loss requires the
whole sequence of sequence numbers, and RTT estimates on missing ACKs and
timestamp echos would be erroneously long. We therefore sought indications in
the measured data that this assumption holds.

3 Observation Loss Methodology

In contrast to transport loss, observation loss occurs when a packet arrives at
the receiver but is not seen by the observation point. We use the gap stack to
measure observation loss as well as transport loss. Gaps which are not filled
before they are pushed off the stack by newer gaps, or that are still in the gap
stack when a flow completes, represent portions of the sequence number space
that we presume the TCP receiver saw, since progress through sequence number
space continued, but which were not observed by QoF. QoF exports information
about observation loss for each direction of each TCP flow.

Packet capture devices and libraries often make available information about
how many packets were dropped – partially observed or inferred but not captured
– on a per-interface basis. However, this is not the only type of observation loss.
For example, packet capture based on packet replication at a switch will fail to
observe packets the switch fails to forward down the span port; our method will
count this as observation loss as well.

Though this measurement is admittedly rather obvious, the innovation of
counting observation loss on a per-flow basis as opposed to a per-interface basis
also allows certain analyses to proceed even in the face of unobserved packets, and
to investigate any dependencies on packet properties in observation loss. Though
we can only caluclate observation loss for TCP flows, we assume that most
observation loss processes are transport protocol independent, and can therefore
extrapolate observation loss at a given time on a given path for coincident non-
TCP traffic.

We note that observation loss measurement using a gap stack is subject to
overcounting in three specific conditions. First, the gap stack has a fixed size
per flow, so particularly “frothy” flows – those with many reorderings – may
have observation loss overcounted, if a gap falls off the end of the stack before
it would have been filled. QoF’s compiled-in default gapstack size is 8, chosen
empirically through analysis a set of test traces. Overcounting due to froth can
be reduced by increasing this, at the expense of memory efficiency.

Second, if a gap would be filled after the flow is expired by idle timeout or the
observation of a FIN or RST segment, that gap will be counted as observation
loss as well. We consider the performance of this structure to be worth the po-
tential overcounting; future work involves additional tweaks to the algorithm to



minimize overcounting while maintaining performance. We explore this further
in section 5.2.

Additionally, QoF’s decoder drops any packet it cannot succeessfully decode,
and is paranoid about what it accepts, a legacy of its heritage as a security
monitoring tool. This can lead to observation loss caused by QoF itself. QoF also
uses a fixed capture length per packet, allowing it to disregard octets it will never
use, thereby improving its performance. However, packets where the layer 2, IP,
and TCP headers together are longer than the compile-time default of 96 octets,
or read from capture files with a shorter snaplen, will lead to observation loss
due to such decode failures. This is possible especially in cases of excessive IPv6
encapsulation and/or extension headers. As with the gapstack size, observation
loss on long packets can be reduced by increasing the compile-time constant, at
the expense of I/O performance.

4 Evaluation

To evaluate the utility of per-flow loss counting to detect impaired measurement,
we added detuning functionality to QoF to model packet loss and packet delay
in the measurement path3. Loss and delay due to residence in a bottleneck
queue are modeled using a leaky bucket with a specified size and drain rate.
Additionally, we model non-queue-related loss with a test of a specified loss
probability against a linearly smoothed uniform random die, and non-queue-
related delay using a linearly smoothed uniform delay generator. Since QoF is
built under the assumption that packet timestamps are monotonic strictly not
decreasing, all delay imparted by the detune module is clamped to a minimum
value in order to avoid reordering packets.

We then tested against a publicly available trace from the WIDE MAWI
Working Group Traffic Archive4, taken from a 150Mb/s transpacific link over a
three hour period on 30 March 2012, containing 386.2 million packets. The peak
flow concurrency [14] is 307.6 thousand concurrent flows (with 63s idle and 300s
active timeouts). Reflecting the fact that the trace is taken from a backbone,
72.6% of observed flows are one-way due to asymmetric routing5. We assume,
but cannot confirm, that actual observation loss in the MAWI traces is negligble.

This evaluation shows, unsurprisingly, that there is a strong relationship
between the proportion of flows with reported observation loss and the induced
packet drop rate. The function of this relationship is determined by the type of
loss induced. For leaky bucket loss with induced packet loss rate varying from
0.00289 to 0.138 and a queue length of 100ms, this function is linear (slope =

3 As these features are only useful in the context of this evaluation, they are only
enabled in QoF when the --enable-detune flag is given to QoF’s build configuration
script.

4 http://mawi.wide.ad.jp/mawi/
5 While QoF is a biflow meter, integrity checking does not require observation of both

sides of the flow to work properly, so this evaluation treats each uniflow in a biflow
separately.
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Fig. 2. Daily seasonality of flow loss (solid line) and observed data rate (dashed) on a
typical day at Auckland

0.136, intercept = 3.44 × 10−4, corr = 0.996). This technique is sensitive even
to very low packet loss rates; dropping only 246 packets from 386.2 million led
to 70 flows being detected with observation loss.

The dominance of short flows in Internet traffic [14] means that packet loss
will lead to unobserved flows, as well. In this evaluation, for each flow with
measured observation loss, about four flows went unobserved.

The queue modeled by leaky bucket loss also induces error in packet timings,
which changes QoF’s estimation of round trip times: the median of the minimum
estimated RTT of flows in the MAWI data set is 101ms; this shifts to 110ms
using an induced drop rate of 0.302 (i.e., on the order of the loss seen in the
Auckland data set treated in section 5.1 below). Since loss due to queueing or
buffering (e.g., at a span port or on a capture device) is the dominant type of
loss we assume, we note that this indicates that observing loss in a data set also
indicates that the timings should not be trusted in further analysis.

5 Findings

Here we apply QoF’s per-flow loss reporting features to ongoing data collection
efforts on various research networks which have been used in recent publications.
The goal here is to verify that the data source used in these works has appropriate
observation loss characteristics for the analysis done.

5.1 Auckland and iatmon

We first applied this methodology to an observation point at the University of
Auckland, implemented using a span port on inbound and outbound traffic at the
campus border. During the daytime traffic peak at about 11:00 local time (12:00
UTC), we routinely found between 25% and 35% of observed flows reporting
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Fig. 3. Packets by mean data rate and duration of flow during a peak hour at Auckland:
note that observation loss affects long-duration, high-rate flows disproportionately

observation loss. On further investigation, we found that a span port originally
configured to forward approximately 100 Mb/s of traffic in each direction over
a Gigabit Ethernet interface was now being offered approximately 700 Mb/s of
traffic in each direction at peak. Since 1400 Mb/s of traffic will not fit on a 1000
Mb/s link, the span port did not forward about a third of the packets to the
observation point.

For the last two years the University’s network operations group has been
working towards upgrading its Internet-facing infrastructure, including the mon-
itoring and measurement infrastructure. Unfortunately, this requires forklift up-
grades to firewalls and boundary routers, and progress is slow. Taking a more
positive view, we regard this as a chance to investigate the effects of high obser-
vation loss on traffic analysis.

In figure 2, we show the evolution of the dropped flow rate over a typical
day (Tuesday, November 5, 2013). Flows experiencing observation loss during
the peak hour have a significantly different shape from those which escape the
span port lossless. Compare the subfigures in figure 3: while simply dropping the
lossy flows in an analysis would lead to retaining about two-thirds of the flows,
most of the long-duration, high-rate traffic, and therefore most of the packets,
would be missing.

In [15], we monitored one-way traffic using iatmon, which measures interar-
rival time for packets from unsolicited trafic, and classifies such flows into ten
groups based on their IAT distributions. That paper used data from the UCSD
Network Telescope, i.e. header-trace data for only one-way flows.

However, we also run iatmon at Auckland using the same observation point
as for our QoF work. At Auckland, iatmon filters out the one-way flows from the
total traffic – one-way traffic accounts for about 3.5% of the observed packets but
about 35% of the observed flows. iatmon’s ‘flow group’ classification is fairly
coarse-grained, relying only on the overall features of the IAT distributions. so
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Fig. 4. Average daily seasonality of flows with detected observation loss (solid line)
and total number of flows (dashed line) as observed by QoF.

it should not be affected by our high observation loss rate. However, one-way
flows with only a few packets – say 10 or fewer – may not be observed, thereby
distorting the distribution of flows between groups.

5.2 Horizon Extender

We then applied this methodology to HTTP traces captured at the border router
of an university network. Similar to the Auckland setup, packets from the 10
Gb/s inbound and 10 Gb/s outbound link of the main router are forwarded via
a single 10 Gb/s span port to the capturing device. A Myricom 10G network
adapter in combination with tcpdump is used for traffic capturing. Packets are
filtered before being written to disk. The network data analyzed in the following
cover IPv4 TCP port 80 traffic of clients in a selected subnetwork of the univer-
sity that have been recorded during 5 work days and one weekend in late 2012.
The total IP-level raw size of the analyzed traces is 1.2 TB of incoming and 43
GB of outgoing traffic, which correspond to 15M TCP streams accounting for
1.2 TB6 of incoming and 23 GB of outgoing TCP payload data.

The Myricom driver on the capturing device reported no packet loss due
to ring-buffer overflow, but since the 10 Gb/s up- and downstream traffic are
mirrored over a single 10 Gb/s span port, packets could have been lost at the
router. Here we use QoF to show that this was most likely not the case, and
compare results to logs from the Bro IDS [16].

The recorded traces have been used to evaluate Horizon Extender [17], an
approach to archive HTTP data for data leakage investigations. Because it is
impossible to fully reconstruct HTTP request and response streams from TCP

6 Since HTTP is highly asymmetric, incoming traffic is dominated by large flows, so
IP layer overhead is negligible.



streams with packet loss, it was important for the evaluation that packet traces
of high quality were available, that is, with as little observation loss as possible.

Figure 4 shows the average number of flows and flows with detected observa-
tion loss as observed by QoF. The rate of such flows is on the order of 2 × 10−4

overall.

Analyzing the number of distinct clients and servers for which observation
loss was observed in more detail, we found on a single weekday that while we
observe on average 5 ± 6 lossy flows per 15 minute time bin, only 3 ± 3 clients
and 4±4 servers are affected per time bin. In other words, certain paths between
clients and servers are more likely to be affected by observation loss.

We then compared this observation loss rate to the byte loss rate reported by
the TCP stream reconstruction engine in Bro, which analyzes complete packet
payloads, and assembles them into full streams, as opposed to analyzing just
headers as QoF does. We note that Bro reported missing bytes in on the order
10−5 of the flows it counted7. Upon further investigation, we found potential
faults in Bro that would lead to undercounting of observation loss, and reported
these to the Bro mailing list; a quantification of this undercounting and correc-
tion thereof are subjects for future work.

While QoF in this configuration required 29 s to analyze 31 GB of traffic8,
Bro required 730 s in its default configuration and 92 s in bare mode with
the connection analyzer only; i.e., QoF is 25 times faster than Bro’s default
configuration, and still more than three times faster than bare mode, respectively.

In summary, as even a lossy flow rate on the order to 2 per 10000 is acceptable
for our analysis of Horizon Extender, we consider our analysis validated by this
check. Further, the lack of any evidence of large groups of lossy flows, as with
the leaky bucket used in the evaluation, indicates that the span port from which
we captured traffic was never significantly overloaded.

6 Conclusions

In this work, we have shown the value of inline data integrity reporting for
passive measurement, in the context of the QoF TCP-aware flow metering tool.
Presently ongoing work includes the application of QoF to other data sets, and
further investigation of other signals available in passively observed TCP traffic,
e.g. timestamp frequencies from many TCP stacks, which provide an external
timing reference for isolating timing jitter at observation points.

7 For comparisons to Bro, we set QoF’s active timeout to 1 hour (as opposed to the
default, 5 minutes) to reduce timeout-based overcounting, based on our model of
potential loss overcounting in QoF (see section 3).

8 To provide the required data rate for this experiment, the packets have been read
from a pcap file that was stored on a ramfs.



Future developments in QoF can be followed in source form: QoF is available
under the GNU General Public License, and is under active development. The
latest version is always available from http://github.com/britram/qof9.
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