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ABSTRACT

Automatic Modulation Classification (AMC) has received a major
attention last decades, as a required step between signal detection
and demodulation. In the fully-blind scenario, this task turns out to
be quite challenging, especially when the computational complex-
ity and the robustness to uncertainty matter. AMC commonly relies
on a preprocessor whose function is to estimate unknown parame-
ters, filter the received signal and sample it in a suitable way. Any
preprocessing error inherently leads to a performance loss. To im-
prove the robustness of the blind AMC, we propose to proceed al-
most directly on the received signal – with neither matched-filtering
step nor synchronization step. In this paper, AnalyticalM th-Power
nonlinear Transformation (AMPT) is considered for its robustness
towards timing, phase and frequency uncertainty. The generated
feature-vector then feeds a Minimum Distance classifier. Numeri-
cal simulations show the effectiveness of the proposed method for a
7-class problem of low-order modulations.

Index Terms— Automatic Modulation Classification,M th-
Power nonlinear Transform, Blind Detection.

1. INTRODUCTION

The demand for reconfigurable radio technologies – such as Cog-
nitive Radio (CR) – has led to an increasing need for blind signal
processing, such as spectrum sensing [1], standard recognition [2]
and feature detection [3]. Since the early 90’, Automatic Modula-
tion Classification (AMC) has been extensively studied as itrepre-
sents a key challenge in Cognitive Radio. In recent years, several
techniques for AMC have been reported in the literature [4].Most
of these methods rely on a two-steps architecture: a signal prepro-
cessing task followed by a recognition algorithm (see e.g.,Fig. 1).

The first step generally consists of a demodulator which feeds
the recognition algorithm with a filtered, normalized and symbol-
spaced sampled signal. Therefore, numerous inherent parameters of
the received signal – such as the symbol rate, pulse shaping,carrier
frequency, signal and noise powers – are generally assumed to be
perfectly known at the receiver. This strong assumption is in contra-
diction with the blind property needed in a smart receiver.

The second step (the modulation recognition algorithm itself)
may rely on a Likelihood-Based (LB) or a Feature-Based (FB)
method [4]. While the former is optimal in the Correct Classification
Rate (CCR) sense, the latter is often favoured for its near-optimal
performance at a lower complexity. As a consequence, we propose
in the scope of this article a new Feature-Based classifier. Obvi-
ously, the quality of the whole blind algorithm depends on both the
performance of the preprocessor and of the recognition algorithm.
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Fig. 1. A common Feature-Based AMC architecture

FB classifiers rely on two sub-steps, namely a feature compu-
tation step and a decision making step. Signal statistics-based fea-
tures, for instance Higher Order Statistics (HOS), have been widely
studied for their ability to differentiate between digitalmodulations.
Cyclostationarity is also a good candidate in the blind scenario for its
robustness to frequency, phase and time offsets [5]. Numerous deci-
sion algorithms were proposed, as Artificial Neural Network(ANN),
Support Vector Machine (SVM) or Decision Tree (DT) [5][6].

Swami et al. proposed a classifier relying on Higher Order Cu-
mulants (HOCs) and DT to recognize PAM, QAM and PSK modu-
lations [7]: this method is indeed efficient but unsuited in the blind
scenario. As a step towards blindness, some improved HOS-based
methods were proposed to face unknown signal power [8] or carrier
frequency offset [9][10]. As expected, the CCR is improved with
these methods when the preprocessing task is assumed non-ideal.
Cyclostationarity was also proposed to detect spectrum holes [3] and
classify analog and digital modulations [11]. Its main drawback is
the complexity entailed by the computation of the cyclic function.

Recently, several fully blind AMC techniques based on the
M th-Power nonlinear Transformation (MPT) were suggested
[12, 13, 14].MPT was first studied as a tool for carrier and timing
synchronization [15] and then used for AMC in the 90’ [16].MPT
is of major interest since the produced features are insensitive to
time, frequency and phase offsets: thus, no elaborate preprocessing
step is needed. In most of the previous work, the recognitiononly
relies on the number of peaks generated by theMPT for different
M . Then, the classifier is unsuited for an efficient classification if
the test-set contains some constellations of the same order.

We propose a novel fully-blind method for AMC, based on the
theoretical power of the peaks generated by theMPTs. This tech-
nique – we called AnalyticalMPT (AMPT) – is suitable for PSK,
PAM, QAM and hybrid modulations. Moreover, the preprocessing
task is the simplest possible to improve the robustness of the whole
classifier to estimation uncertainty. A simple MD classifieris consid-
ered for a better fusion of the different powers in the feature-space.

The paper is organized as follows: In Section 2 the problem un-
der study is formulated, while in Section 3 the proposed blind AMC
method is described. In Section 4 the theoretical development of the
references is carried out. The performance is studied via extensive
simulations in Section 5.



2. PROBLEM FORMULATION

Let us assume that the signal-of-interest consists of a pseudo-
baseband pulse-shaped digital signal in AWGN channel. This
scenario is relevant, for instance, for fixed satellite communication
systems. The signal is then modelled as

x(n) = a · ei·(2πfr·n+φ) ·
∑

k

s(k) ·h(nTe − kT − τ )+ω(n) (1)

wherea is the amplitude of the signal,fr is the residual carrier fre-
quency offset,φ is the initial phase,s(k) is the unknown sequence
of i.i.d. symbols,h is the pulse shaping function,Te is the sampling
period,T is the symbol period,τ is the initial delay andω is the
sampled and unfiltered white Gaussian noise.

We consider thath is a root raised cosine (RRC) filter with un-
known roll-off β and that the oversampling factorρ = T

Te
respects

the Shannon’s theorem i.e.,ρ ≥ 1 + β. Remark that we do not as-
sume any time or frequency synchronization here. We denote by N

the number of considered symbols. Thus, we dispose ofNe = ρN

samples for the classification. We assume that all the parameters in
(1) are constant on[0;Ne − 1].

We consider the 7-class problem ofC = {BPSK, QPSK, 8PSK,
8AMPM, R8QAM, C8QAM, 16QAM} in order to show the effec-
tiveness of the proposed method on quite similar zero-mean and unit-
variance constellations (see Fig. 2).

Fig. 2. Representation of the considered zero-mean and unit-
variance constellations in the complex plan

3. DESCRIPTION OF THE PROPOSED AMC METHOD

3.1. Basic definitions

In the scope of the paper, we define theMPT of x(n) as theM th-
root of the Power Spectral Density (PSD) ofxM (n)

MPTx(f) = Ns
− 2

M ·

∣∣∣∣∣

Ne−1∑

n=0

x
M (n) · e−2iπnf

∣∣∣∣∣

2

M

(2)

This transform may show spectral lines around the null fre-
quency for some values ofM : their existence and power mainly
depend on the emitted constellation.

While otherMPT-based techniques in the literature only exploit
the existence property [12, 13, 14, 16] – and then fail to differentiate
between quite similar constellations such as QPSK and 16QAM, or
BPSK and R8QAM – we instead propose to exploit the power of
the spectral lines as strong features. We then dispose of more useful
information, which also further enables to derive a soft decision.

3.2. Proposed preprocessing unit

In the fully-blind scenario, some preprocessing tasks haveto be car-
ried out. First, a spectrum sensor (see e.g., [1]) followed by a stan-
dard recognizer (see e.g., [2]) respectively locate the bands where the
AMC have to be performed and provide information for furtherde-
tection stages. Thereby, these tasks are assumed correctlyperformed
without affecting the blind property of the proposed method. Then,
a simple normalizer and parameter estimator proceed as follows:

3.2.1. Normalization

Assume that no interferer is present in the−3dB bandwidth of the
received signal, it is clear thatP3dB = Pω · ρ−1 + Pu · PH,3dB ,
wherePω is the power of the noise,Pu is the power of the noiseless
signal-of-interestu(n) = x(n)−ω(n), andPH,3dB is the power of
the pulse-shaping filter in its−3dB bandwidth. With a root-raised
cosine filter, we havePH,3dB = 1− β

2
+ β

π
and we eventually get

P̂u =
P3dB − P̂ω · ρ̂−1

1− β̂

2
+ β̂

π

(3)

If not known, remark thatβ, ρ andPω can be easily estimated
using the formerly computed PSD ofx(n).

3.2.2. Residual Carrier Frequency Estimation

The residual carrier frequencyfr also has to be estimated in order to
locate the spectral lines – which occur at frequenciesfM = Mfr .

Such an estimation is generally performed by a maximum-to-
mean detector applied on the computedMPTs:

Mf̂r = argmax
f,M

(
MPTx(f)−MPTx(f)

)
(4)

whereMPTx(f) is the mean value ofMPTx(f) around the peak.

3.2.3. Output of the preprocessor

The preprocessor feeds the feature-computer with the normalized
version ofx(n) and with the set of estimated parameters (Fig. 1):

y(n) = x(n) · P̂u

− 1

2 andη̂ =
{
β̂, ρ̂, P̂ω

}
(5)

In realistic conditions, band-pass pre-filtering is considered as
well for a better rejection of out-of-band noise and adjacent signals.

3.3. Decision Making via Minimum Distance classification

We use a Minimum Distance (MD) classifier to fusion the features

of set
{
MiPTy(Mif̂r),Mi ∈ M

}
and compare them with the the-

oretical references. Denote byΠ the feature-vector

Π = [M1PTy(M1f̂r) · · · MmPTy(Mmf̂r)] (6)

and byΠC
th the theoretical feature-vector ifC is emitted (please refer

to the next Section for the derivation of the references)

ΠC
th = [M1PTC

th · · · MmPTC
th], (7)

the distance is simply computed with norm-2 as

∆C = ||Π− ΠC
th||2 (8)

We finally get the estimated constellation̂C as

Ĉ = argmin
C∈C

∆C (9)



3.4. Description of the proposed algorithm

The proposed fully-blind whole AMC algorithm is summed up in
Fig. 3, where the general structure of Fig. 1 is conserved.
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Fig. 3. The proposed fully-blind AMC algorithm

4. THEORETICAL REFERENCES

In this section, we derive the theoretical power of the spectral lines
occurring in theMPT function. Since the PSD of a cyclostationary
signal is insensitive to phase and time offsets [16], we assume that
φ = 0 andτ = 0 in (1). Moreover, without loss of generality and for
ease of notation, we assume that the residual frequencyfr is null.

We first work on a noise-free, continuous-time and infinite
length signal. The derivation of the references in realistic conditions
is carried out in future work. In this section, we then consider:

u(t) =
∑

k

s(k) · h(t− kT ) (10)

where the notations were formerly defined in Section II.
For the sake of a better understanding, we derive the theoretical

references whenM = 2 andM = 4. References for other values of
M follow the exact same principle.

4.1. Computation of2PTC
th

As developed in [15],u2 easily splits into two sums

u
2(t) = u20(t) + u11(t) (11)

where
u20(t) =

∑

k

s
2(k) · h2 (t− kT ) (12)

u11(t) =
∑

k 6=k′

s(k) · s(k′) · h (t− kT ) · h
(
t− k

′
T
)

(13)

The presence of a frequency peak in the PSD ofu2(t) at null
frequency is made obvious by applying the Poisson SummationFor-
mula on fictive signalu20(t). In fact, we have

E [u20(t)] =
E[s2]

T

∑

m

e
i·m·t ·H2 (m) (14)

wherem corresponds to the multiples of the symbol frequency and
H2(f) corresponds to the Fourier Transform ofh2(t). Note that
u11(t) doesn’t produce any spectral line fori.i.d. symbol sets since
E[s(k)s(k + n)] = 0 whatevern 6= 0. In the scope of the paper,
h2(t) corresponds to a raised cosine (RC) filter. ThenH2(0) = T
and the theoretical reference whenM = 2 is finally derived as:

2PTC
th =

∣∣E[s2]
∣∣ (15)

Theoretical values of2PTC
th are tabulated as follows:

C → BPSK QPSK 8PSK 8AMPM R8QAM C8QAM 16QAM

2PTC
th

1 0 0 0.2 2/3 0 0

Table 1. Tabulated values of2PTC
th for C ∈ C.

4.2. Computation of4PTC
th

The same development is carried out for the fourth power ofu(t),
which is plainly developed as

u
4(t) = u4000(t) + u3100(t) + u2200(t) + u2110(t) + u1111(t)

where the notation in the right-hand side terms is straightforward
when compared to (11) - (13).

Now, both termsu4000(t) andu2200(t) have an impact on the
power of the spectral lines while the remaining terms don’t (they
actually show null expectations). Then, following the method of IV.
A and after some simplifications in the indices, we may get:

4PTC
th =

∣∣∣∣∣
1

T

(
E[s4]H4(0) + 6

(
E[s2]

)2∑

k>0

H
(k)
22 (0)

)∣∣∣∣∣

1

2

(16)

whereH4(f) stands for the Fourier Transform ofh4(t) andH(k)
22 (f)

stands for the Fourier Transform ofh2(t) · h2(t− kT ).
Note that no simple analytical formula can be found neither for

H4(0) nor for H(k)
22 (0) and that they depend onβ. However, they

can be easily computed numerically. A few values of4PTC
th as a

function ofβ are gathered in Table 2.

β↓ C BPSK QPSK 8PSK 8AMPM R8QAM C8QAM 16QAM

0.15 1.233 0.856 0.000 0.734 0.770 0.929 0.713

0.25 1.200 0.881 0.000 0.754 0.743 0.961 0.737

0.35 1.173 0.907 0.000 0.774 0.719 0.991 0.760

Table 2. Tabulated values of4PTC
th for C ∈ C and for differentβ.

4.3. Representation in the feature-space

Fig. 4 shows the theoretical and simulated feature-vectorsin the
feature-space. Note that a proper noise-corrective term isadded to
the references so that they better match the simulated features.
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Fig. 4. Theoretical and simulated feature-vectors, for 100 realiza-
tions per constellation, SNR= 15 dB,β = 0.3, ρ = 2 andN = 1e4

Obviously, some sets of constellations will be easier to distin-
guish than other sets, as Fig. 4 and Table 3 show. Note that Table
3 gives the distance between constellationsC andC′ as∆C,C′

=

||ΠC
th − ΠC′

th ||2. In future work, it would be interesting to study the
probabilistic behaviour of the features. Then, we could derive the
theoretical Correct Classification Rate (CCR) of the proposed AMC
method. Herein, we present numerical results in the next section.



Constellation

BPSK QPSK 8PSK 8AMPM R8QAM C8QAM 16QAM

BPSK 0 1.004 1.419 0.905 0.564 0.988 1.055

C
on

st
e

lla
tio

n

QPSK 0 0.761 0.219 0.656 0.068 0.159

8PSK 0 0.639 0.861 0.829 0.602

8AMPM 0 0.468 0.268 0.161

R8QAM 0 0.677 0.629

C8QAM 0 0.227

16QAM 0

Table 3. Distance Matrix in the proposed feature-space

5. NUMERICAL RESULTS

Extensive simulations were carried out to show the effectiveness of
the proposed method. The performance of our algorithm is also com-
pared with the CCRs obtained with Swami’sC40-based classifier
([7], Ex. 1) in both the blind and the non-blind scenario. Theexper-
iments were performed on 10000 trials per constellation. Recall that
N is the number of symbols used for the classification.

5.1. Performance of the proposed classifier

Table 4 shows the Confusion Matrix (CM) for the proposed 7-class
problem in the blind scenario. For a better reading, “· ” means0%.
As expected, the worst CCR is obtained for QPSK/C8QAM since
these constellations are the closest in the2PT/4PT feature-space.

Considering other features – such as higher-order or conjugated
MPTs – would improve the distance between these constellations.
However, increasingM may also involve a degradation of the CCR
at low SNRs since the features would show a more stochastic be-
haviour asM grows and as the SNR weakens.

Transmitted Constellation

BPSK QPSK 8PSK 8AMPM R8QAM C8QAM 16QAM

BPSK 100% . . . . . .

C
la

ss
ifi

e
r

O
ut

pu
t QPSK . 84.1% . 0.8% . 17.7% 4.3%

8PSK . . 99.3% . . . .

8AMPM . <0.1% 0.2% 96.3% . . 0.9%

R8QAM . . . . 100% . .

C8QAM . 15.1% . . . 82.2% <0.1%

16QAM . 0.7% 0.5% 2.9% . <0.1% 94.7%

Table 4. Confusion Matrix withSNR = 10 dB andN = 1000 for
the proposed 7-class problem and in the blind scenario

Fig. 5 shows the CCR in the blind scenario for the proposed 7-
class problem as a function of the SNR. In this context, we have set
N = 1000 andρ = 2. As expected, set{BPSK, R8QAM, 8PSK} is
the easiest to classify, while the CCR for{QPSK, C8QAM} remains
slightly lower for medium-to-high SNR (see especially Table 4).

5.2. Performance comparison with theC40-based classifier

We compare the CCR obtained by Swami’sC40-based method in
[7] – commonly used as a benchmark in the literature – with the
proposed AMPT-based classifier, in the same conditions as Fig. 5.

Mean performances of the methods in both the blind and the
non-blind scenario are depicted in Fig. 6. The A2PT/A4PT-based
classifier shows a slight increase in the performance of the classi-
fication in the non-blind scenario. Besides, in the fully-blind sce-
nario, the A2PT/A4PT-based classifier clearly outperforms Swami’s
method. This is mainly due to a better robustness of the proposed
features to inherent estimation errors at the preprocessor.
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Fig. 5. Correct Classification Rate as a function of SNR
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Fig. 6. Mean CCR for both methods in the blind/non-blind scenario

5.3. Complexity comparison with theC40-based classifier

Last, we compare the 2PT/4PT-based method with theC40-based
classifier in terms of complexity. In both cases, the greediest opera-
tion is the computation of the features.

The computation ofMPT(Mf̂r) (2) asymptotically requires
MNe complex multiplications andNe complex additions if the
exponential was precomputed. Then, the 2PT/4PT-based classifier
requires6Ne complex multiplications and2Ne complex additions.
In comparison, the computation of̂C40 is slightly lower since it
requires4Ne complex multiplications and2Ne complex additions.

6. CONCLUSION

Throughout this article, a new efficient way to blindly classify dig-
ital modulations is described. The method is based on an Analyti-
cal study of theM th-Power nonlinear Transformation. The feature-
vector used for the classification is insensitive to time, phase and
frequency offsets, which makes the whole classifier more robust to
estimation uncertainty in the blind scenario.

The key features of the proposed method are the absence of com-
plex preprocessing and its low complexity. These properties make it
a great tool in smart receivers for wide-band monitoring andfor the
estimation of the features of the signal before the demodulation step.

Further work shall be carried out, for instance regarding the sta-
tistical distribution of the feature-vector in realistic conditions. The
effects of multi-path channels on the analytical development of the
references shall also be investigated.
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