
Possible and necessary labels in K-nn procedures to
query partially labelled data

Vu-Linh Nguyen and Sébastien Destercke and Marie-Hélène Masson1

Abstract. When learning from partially labelled data (i.e., given as
a subset of possible labels containing the true one), an issue that nat-
urally arise is to determine which data should be queried to improve
the accuracy of predictions, or in other word to determine an order
between the partial labels to be queried. An answer to that question
is to query the data that would induce the highest number of ambigu-
ous predictions. In the K-nn case, studied in this paper, this question
is similar to determining possible and necessary winners in plurality
voting. In this paper, we discuss this connection as well as its use in
partial label querying.

1 Introduction

The problem of learning from partial labels is known under various
names: “learning with partial labels” [2], “learning with ambiguous
labels” [3] or “superset label learning” [5]. In these works, authors
have either proposed general schemes to learn from partial labels, for
instance by adapting the loss function to partial labels [2], or to adapt
specific algorithms (e.g.K-nn or decision trees) to the case of partial
labels [3].

In general, the less partial are the labels, the better these techniques
will perform. In the spirit of active learning techniques, this work
addresses the problem of finding which partial labels should be dis-
ambiguated by an oracle (expert) in order to achieve better perfor-
mances. In this work, we adopt a robust view consisting in consider-
ing all possible replacements of the partial labels instead of making
any posterior probability of true labels.

In order to find which instance to query, we propose in Section 2
a general scheme based on measuring the potential impact of know-
ing the true label of a given instance. We then propose a specific
measure to assess this impact which considers whether a partial la-
bel introduces some ambiguity in the decision, using some notions
issued from social choice theory [6] in Section 3.

2 General scheme

In our setting, we assume that we have one training set D =
{(xn,yn)|n = 1, . . . , N} used to make predictions, with xn ∈ RP
the features and yn ⊆ Ω = {λ1, . . . , λM} potentially imprecise
labels. As usual when working with partial labels [2], we assume
that yn contains the true label. We also assume that we have one
unlabelled target set T = {tj |j = 1, . . . , T} that will be used to
determine the partial labels to query and can be defined differently
based on the usage purposes as point out latter in Section 4.

1 UMR CNRS 7253 Heudiasyc, University of Technology of Compiegne,
email:{linh.nguyen, sebastien.destercke, mylene.masson}@hds.utc.fr

When data yn are precise, the decision h(t) taken by the K-nn
procedure is given by

h(t) = arg max
λ∈Ω

∑
xt
k
∈Nt

wtk1λ=yt
k

(1)

where Nt = {xt1, . . . ,xtK} and wt = {wt1, . . . , wtK} are the K
nearest neighbours of t and their associated weights, respectively.
Equation (1) directly extends to the partial label case [3] by replacing
λ = ytk by λ ∈ ytk, however this comes down to consider a particular
replacement of partial labels.

This is useful when the goal is to determine a single prediction
from partial labels, however if the aim is to identify those partial
labels that would be the most useful to query, it seems preferable to
identify which data in D makes predictions in T ambiguous, with
the idea that the more ambiguity they induce, the more interesting it
is to know their label.

In the next section, we discuss the problem of determining whether
D induces some ambiguity on a particular instance t, and also a way
to quantify whether querying a particular instance xn would have an
effect on this ambiguity. We will see that this is strongly connected
to issues from social choice theory [6].

3 Indecision-based querying criteria

In this section, we present an effect score that is based on whether
a partial labelled instance xn introduces some ambiguity in the de-
cision about an instance t. We will first define what we mean by
ambiguity.

3.1 Ambiguous instance: definition

In the K-nn algorithm, each neighbour can be seen as a (weighted)
voter in favor of his preferred class. Partial labels can then be assim-
ilated to voters providing incomplete preferences. For this reason,
we will define ambiguity by using ideas issued from majority voting
procedure with incomplete preferences [4]. More precisely, we will
use the notions of necessary and possible winners of such a voting
procedure to determine when a decision is ambiguous.

For an instance t with Nt = {xt1, . . . ,xtK}, we will denote by
Lt = {(lt1, . . . , ltK)|ltk ∈ ytk} the set of possible selections of Nt

with cardinality |Lt | =
∏K
k=1 |y

t
k|. For a given selection lt ∈ Lt ,

the corresponding winner(s) of the voting procedure is (are)

λ̂l = arg max
λ∈Ω

K∑
k=1

wtk1lt
k

=λ

with wtk the weight corresponding to the kth neighbor. Let us note
that the arg max can return multiple labels (we do not break ties).

We can now define the possible (PLt) and necessary label sets
(NLt) of t as follows:

PLt = {λ ∈ Ω|∃lt ∈ Lt s.t λ ∈ λ̂lt} (2)

and

NLt = {λ ∈ Ω|∀lt ∈ Lt , λ ∈ λ̂lt}, (3)

which are nothing else but the set of possible and necessary winners
in social choice theory. By definition, we have NLt ⊆ PLt . Given
a target instance, we adopt the following definition of ambiguity.

Definition 1. A target instance t is called ambiguous if NLt 6=
PLt .

The ideal situation is to have PLt = NLt and |PLt | = 1, since
in this case the decision is uniquely defined.

3.2 Ambiguous instance: computational issues
Let us first provide some definitions. For each λ ∈ Ω, we define the
minimum and maximum scores as

Smin(λ) =
K∑
k=1

wtk1λ=yt
k

and Smax(λ) =
K∑
k=1

wtk1λ∈yt
k
,

whose computation can be done in linear time.

Computing NLt The problem of determining NLt is actually
very easy, as it is known [4] that

NLt =
{
λ| Smin(λ) ≥ Smax(λ

′
), ∀λ

′
6= λ, λ

′
∈ Ω

}
Computing PLt Determining PLt is in practice much more dif-
ficult. In the unweighted case (all weights in wt equals), known re-
sults indicate [1, 7] that PLt can be determined in cubic (hence poly-
nomial) time, solving a maximum flow problem and using the fact
that when votes are (made) unitary, the solution of this flow problem
is integer-valued (due to the submodularity of the constraint matrix).

However, when votes are non-unitary, or when weights are differ-
ent, this result does not hold anymore, and the problem appears to be
NP-hard. In addition to that, in our setting we can have to evaluate
PLt a high number of times (in contrast with what happens in so-
cial choice, where PLt and NLt have to be evaluated at most a few
times), hence even a cubic algorithm may have a prohibitive com-
putational time. A computationally cheap approximation is then to
consider the set

APLt =
{
λ|Smax(λ) ≥ max

λ
′∈Ωt

Smin(λ
′
),∀λ

′
6= λ, λ

′
∈ Ω

}
3.3 Effect of a query on ambiguous instances
Once we know which predictions are ambiguous, it remains to deter-
mine which instances in D we should query in order to reduce the
most this ambiguity. We adopt a simple scheme to do that: for an in-
stance xn, we determine a local score fxn(t) determining whether
querying xn can reduce our ambiguity on t, and then aggregate this
local score into a global score

fxn(T) =
∑
t∈T

fxn(t), (4)

over the whole set T which is simply the sum of local scores over
each instance t. Let us denote by NLqn=λ

t , APLqn=λ
t and PLqn=λ

t

the sets obtained if we learn yn = λ. Then we can define the local
scores

fAPLxn
(t) =

{
1 if ∃λ s.t. NLqn=λ

t 6= NLt or APLqn=λ
t 6= APLt ,

0 else.

and

fPLxn
(t) =

{
1 if ∃λ s.t. NLqn=λ

t 6= NLt or PLqn=λ
t 6= PLt ,

0 else.

with fPLxn
(t) being more complex to estimate than fAPLxn

(t), for
similar reasons as the one mentioned in Section 3.2. In particular,
we can show that there are easy ways to estimate fAPLxn

(t).
We can then use any of these functions to determine the global

score fxn(T), and which instance xn to query.

4 Ongoing works
Our current work concerns the investigation of computational issues
as well as experimental comparisons of different approaches:

- we are currently comparing different querying schemes to the use
of fPLxn

(t) and fAPLxn
(t), such as classical active learning, random

querying, querying the most partial instances first, . . . in order to
know whether identifying ambiguous situations, which are com-
putationally more difficult to identify, is beneficial to the learning
procedure. Current results show that, indeed, there is an advantage
in identifying those instances that induce a lot of ambiguity;

- we are also currently investigating the computational problem
of determining PLt in the weighted case. First results indicate
that the problem is NP-hard (it seems to be reducible to a 3-
dimensional matching problem), yet a refined complexity analysis
is necessary to identify whether it is an important issue for our
case.

REFERENCES
[1] Nadja Betzler and Britta Dorn, ‘Towards a dichotomy for the possible

winner problem in elections based on scoring rules’, Journal of Com-
puter and System Sciences, 76(8), 812–836, (2010).

[2] Timothee Cour, Ben Sapp, and Ben Taskar, ‘Learning from partial
labels’, The Journal of Machine Learning Research, 12, 1501–1536,
(2011).

[3] Eyke Hüllermeier and Jürgen Beringer, ‘Learning from ambiguously la-
beled examples’, Intelligent Data Analysis, 10(5), 419–439, (2006).

[4] Kathrin Konczak and Jérôme Lang, ‘Voting procedures with incom-
plete preferences’, in Proc. IJCAI-05 Multidisciplinary Workshop on Ad-
vances in Preference Handling, volume 20. Citeseer, (2005).

[5] Liping Liu and Thomas Dietterich, ‘Learnability of the superset label
learning problem’, in Proceedings of the 31st International Conference
on Machine Learning (ICML-14), pp. 1629–1637, (2014).

[6] Hervé Moulin, Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme
Lang, and Ariel D Procaccia, Handbook of Computational Social
Choice, Cambridge University Press, 2016.

[7] Lirong Xia and Vincent Conitzer, ‘Determining possible and necessary
winners given partial orders’, Journal of Artificial Intelligence Research,
25–67, (2011).

