Lagrangian reductions and integrable systems in condensed matter

François Gay-Balmaz, Michael Monastyrsky, Tudor Ratiu

To cite this version:

François Gay-Balmaz, Michael Monastyrsky, Tudor Ratiu. Lagrangian reductions and integrable systems in condensed matter. Communications in Mathematical Physics, 2015, 335 (2), pp.609-636. 10.1007/s00220-015-2317-9 . hal-01396227

HAL Id: hal-01396227

https://hal.science/hal-01396227

Submitted on 17 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Lagrangian reductions and integrable systems in condensed matter

François Gay-Balmaz ${ }^{1}$, Michael Monastyrsky ${ }^{2}$, Tudor S. Ratiu ${ }^{3}$

Abstract

We consider a general approach for the process of Lagrangian and Hamiltonian reduction by symmetries in chiral gauge models. This approach is used to show the complete integrability of several one dimensional texture equations arising in liquid Helium phases and neutron stars.

Contents

1 Introduction 2
2 Lagrange-Poincaré and Euler-Poincaré reduction on Lie groups 3
3 Hamilton-Poincaré and Lie-Poisson reduction on Lie groups 6
4 Applications to condensed matter 9
4.1 Setup of the problem . 9
4.2 One-dimensional textures in the A-phase of liquid Helium ${ }^{3} \mathrm{He} \ldots . \operatorname{~.~.~} 11$
4.2.1 The A-phase - first regime . 13
4.2.2 The A-phase - second regime . 18
4.2.3 The B-phase . 21
4.3 Neutron stars . 23

[^0]4.3.1 Ω_{1}-phase 23
4.3.2 Ω_{4}-phase 25
4.3.3 Ω_{6}-phase 26
4.3.4 Ω_{8}-phase 27
5 Acknowledgments 28
References 28

1 Introduction

There is a well established relation between quantum field theory and condensed matter physics. For example, physical phenomena such a superfluidity and superconductivity are the manifestation of quantum effects at microscopic level. On the other hand, there are classical systems, such as liquid crystals, where many phenomena, such as phase transitions between different mesophases, are described in the framework of the Landaude Gennes theory. These systems include superfluid ${ }^{3} \mathrm{He}$, the superfluid core of neutron stars, biaxial and uniaxial nematics.

The common feature of these different systems is that in some interval of the transition temperature, their behavior is determined by the Ginzburg-Landau equation with multidimensional order parameters. Another interesting feature of these systems is the existence of different thermodynamic phases. The description of phase transitions between different phases is a difficult and important problem in condensed matter physics. The approach, based on the identification of thermodynamic phases with orbits of the group of symmetry of the potential in the free energy, as developed in Golo, Monastyrsky, and Novikov [1979], Golo and Monastyrsky [1978a,b], and Bogomolov and Monastyrsk [1987], is a useful tool for a complete classification of phases and gives a global description of these phases. From many points of view, it is possible to study these systems like a chiral field model. Viewed this way, it is known that these systems can be obtained by a general reduction procedure developed in Gay-Balmaz and Tronci [2010], based on Cendra, Marsden, and Ratiu [2001], Holm, Marsden and Ratiu [1998], Cendra, Marsden, Pekarsky, and Ratiu [2003]. The goal of this paper is to unify these two approaches and techniques, to formulate a theory that contains them both, and especially to show its effectiveness by studying in detail the complete integrability of several concrete physical systems in different phases.

We begin with a short review of the relevant facts of the Lagrange-Poincaré and EulerPoincaré variational principles in Section 2. Its Hamiltonian counterpart, HamiltonPoincaré and Lie-Poisson reduction, are treated in Section 3. We shall limit ourselves with the classical, as opposed to the field theoretical, description of these theories, because all examples analyzed in this paper necessitate only this classical theory. The field theoretical approach, which we have also developed, will be the subject of another paper. The main result of these sections is an equivalence of the two descriptions. These results are used in Section 4, forming the mani body of the paper, to study in detail the behavior of superfluid ${ }^{3} \mathrm{He}$ and neutron star cores in different phases. The versatility of passing from one description to another, as well as between the Lagrangian and Hamiltonian for-
mulations, is crucial in the proof of the complete integrability of the equations associated to different phases. The key to the success of our geometric method is the fact that all physical systems under study have a natural Lagrangian and Hamiltonian formulation within the Lagrange-Poincaré and Hamilton-Poincaré theories, with the Lagrangian and Hamiltonian independent on a very special group of variables. This implies that these systems have an equivalent Euler-Poincaré and Lie-Poisson description which turns out to be considerably simpler and more appropriate to the study of the dynamics of the equations associated to the relevant phases. The possibility of using at once the four descriptions of the systems under consideration leads directly to the proof of complete integrability of the equations describing the system's behavior in different phases.

2 Lagrange-Poincaré and Euler-Poincaré reduction on Lie groups

In this section we shall quickly review two Lagrangian reduction processes, namely Lagrange-Poincaré and Euler-Poincaré reduction, as they apply to a Lagrangian defined on a Lie group and invariant under right translation by a closed subgroup. We shall also emphasize the case of discrete symmetry groups.

Geometric setup. Let M be the parameter manifold of the theory and let $\Phi: G \times$ $M \rightarrow M$ be a left transitive Lie group action. Usually, M is a particular orbit of the action of G on a bigger manifold. Selecting one particular orbit corresponds to choosing a particular phase of the physical system. Given a Lie group G, we shall denote by the corresponding Fraktur letter \mathfrak{g} is Lie algebra.

Choose an element $m_{0} \in M$ and consider the isotropy subgroup $H:=G_{m_{0}}$. We have the diffeomorphism $G / H \ni[g]:=g H \stackrel{\sim}{\longmapsto} g m_{0} \in M$, where H acts on G by right multiplication $R_{h} g:=g h$ for all $h \in H$ and $g \in G$. We shall always identify M with G / H via this diffeomorphism and denote by $\pi: G \rightarrow G / H$ the orbit space projection.

We suppose that the theory is described by a Lagrangian $\mathfrak{L}=\mathfrak{L}(m, \dot{m}): T M \rightarrow \mathbb{R}$, whose associate Euler-Lagrange equations read

$$
\frac{d}{d t} \frac{\partial \mathfrak{L}}{\partial \dot{m}}-\frac{\partial \mathfrak{L}}{\partial m}=0
$$

Recall that these equations follow from applying Hamilton's principle

$$
\delta \int_{t_{0}}^{t_{1}} \mathfrak{L}(m(t), \dot{m}(t)) d t=0
$$

for arbitrary variations of the curve $m(t)$ whose corresponding infinitesimal variations $\delta m(t)$ satisfies $\delta m\left(t_{0}\right)=\delta m\left(t_{1}\right)=0$.

Since the G-action is transitive on $M=G / H$, any curve $m:\left[t_{0}, t_{1}\right] \rightarrow M$ can be written as $m(t)=\Phi_{g(t)}\left(m_{0}\right)=: g(t) m_{0}$, where $g:\left[t_{0}, t_{1}\right] \rightarrow G$. By using this relation we
can rewrite the action functional in terms of the curve $g(t)$ as

$$
\begin{aligned}
\int_{t_{0}}^{t_{1}} \mathfrak{L}(m(t), \dot{m}(t)) d t & =\int_{t_{0}}^{t_{1}} \mathfrak{L}\left(g(t) m_{0}, \frac{d}{d t} g(t) m_{0}\right) d t \\
& =\int_{t_{0}}^{t_{1}} \mathfrak{L}\left(g(t) m_{0},\left(\dot{g}(t) g(t)^{-1}\right)_{M}\left(g(t) m_{0}\right)\right) d t,
\end{aligned}
$$

where, for every $\xi \in \mathfrak{g}, M \ni m \mapsto \xi_{M}(m):=\left.\frac{d}{d t}\right|_{t=0} \Phi_{\exp t \xi}(m) \in T_{m} M$ denotes the infinitesimal generator vector field of the action. This suggests the definition of the Lagrangian $L_{m_{0}}$ for curves $g(t)$ in the Lie group as

$$
L_{m_{0}}: T G \rightarrow \mathbb{R}, \quad L_{m_{0}}(g, \dot{g}):=\mathfrak{L}\left(g m_{0},\left(\dot{g} g^{-1}\right)_{M}\left(g m_{0}\right)\right) .
$$

This Lagrangian is clearly H-invariant. Our goal is to find an explicit relation between the Euler-Lagrange equations for $L_{m_{0}}$ and \mathfrak{L} as well as to deduce another simpler equivalent formulation of these equations.

To do this, we shall start with a H-invariant Lagrangian $L: T G \rightarrow \mathbb{R}$ and, following Gay-Balmaz and Tronci [2010], we shall carry out two reductions processes for L. The first one follows the Lagrange-Poincaré reduction theory (see Cendra, Marsden, and Ratiu [2001]), the second one is a generalization of the Euler-Poincaré reduction with parameters (see Holm, Marsden and Ratiu [1998]). These two reductions correspond to two realizations of the quotient space $(T G) / H$.

Lagrange-Poincaré approach. The Lagrange-Poincaré reduction is implemented by using the vector bundle isomorphism

$$
\alpha_{\mathcal{A}}:(T G) / H \rightarrow T M \times_{M} \tilde{\mathfrak{h}}
$$

over $M=G / H$. Here $\tilde{\mathfrak{h}}:=G \times_{H} \mathfrak{h} \rightarrow M$ is the adjoint bundle, where the right H-action on $G \times \mathfrak{h}$ is given by $(g, \eta) \cdot h:=\left(g h, \operatorname{Ad}_{h^{-1}} \eta\right)$ for all $h \in H, g \in G$, and $\eta \in \mathfrak{h}$. The vector bundle isomorphism $\alpha_{\mathcal{A}}$ is constructed with the help of a principal connection $\mathcal{A} \in \Omega^{1}(G, \mathfrak{h})$ on the principal bundle $\pi: G \rightarrow G / H=M$ and reads

$$
\alpha_{\mathcal{A}}\left(\left[v_{g}\right]_{H}\right):=\left(T_{g} \pi\left(v_{g}\right),\left[g, \mathcal{A}\left(v_{g}\right)\right]_{H}\right)=\left(\left(v_{g} g^{-1}\right)_{M}(m),\left[g, \mathcal{A}\left(v_{g}\right)\right]_{H}\right)
$$

(we denote by $[x]_{H}$ a point in orbit space of the H-action on the manifold whose points are x).

From the given right H-invariant Lagrangian $L: T G \rightarrow \mathbb{R}$, we get the reduced Lagrangian $\mathcal{L}: T M \times{ }_{M} \widetilde{\mathfrak{h}} \rightarrow \mathbb{R}, \mathcal{L}=\mathcal{L}(m, \dot{m}, \sigma)$, defined by

$$
\begin{equation*}
L(g, \dot{g})=\mathcal{L}\left(g m_{0}, \dot{g} m_{0},[g, \mathcal{A}(g, \dot{g})]_{H}\right) \tag{2.1}
\end{equation*}
$$

The reduced Euler-Lagrange equations (or Lagrange-Poincaré equations) are obtained by computing the critical curve of the variational principle

$$
\begin{equation*}
\delta \int_{t_{0}}^{t_{1}} \mathcal{L}(m, \dot{m}, \sigma) d t \tag{2.2}
\end{equation*}
$$

for variations δm and $\delta^{\mathcal{A}} \sigma$ induced by variations $\delta g(t)$ of the curve $g(t)$, that vanish at $t=t_{0}, t_{1}$. While the variations $\delta m(t)$ are free and vanish at $t=t_{0}, t_{1}$, the variations of $\sigma(t)$ verify

$$
\begin{aligned}
\delta^{\mathcal{A}} \sigma(t) & :=\left.\frac{D^{\mathcal{A}}}{D \varepsilon}\right|_{\varepsilon=0}\left[g_{\varepsilon}(t), \mathcal{A}\left(g_{\varepsilon}(t), \dot{g}_{\varepsilon}(t)\right)\right]_{H} \\
& =\frac{D^{\mathcal{A}}}{D t} \eta(t)+[\eta(t), \sigma(t)]+\mathbf{i}_{\delta m(t)} \widetilde{\mathcal{B}} \in \widetilde{\mathfrak{h}}
\end{aligned}
$$

where $D^{\mathcal{A}} / \underset{\sim}{D} \varepsilon$ denotes the covariant derivative defined by the connection one-form \mathcal{A}, $\widetilde{\mathcal{B}} \in \Omega^{2}(M, \widetilde{\mathfrak{h}})$ is the reduced curvature on the base associated to the connection \mathcal{A}, and $\eta(t)=[g(t), \mathcal{A}(\delta g(t))]_{H} \in \tilde{\mathfrak{h}}$ is arbitrary with $\eta\left(t_{0}\right)=\eta\left(t_{1}\right)=0$. Using these variations in (2.2) yield the Lagrange-Poincaré equations

$$
\begin{equation*}
\frac{D^{\mathcal{A}}}{D t} \frac{\delta \mathcal{L}}{\delta \sigma}+\operatorname{ad}_{\sigma}^{*} \frac{\delta \mathcal{L}}{\delta \sigma}=0, \quad \frac{\partial \mathcal{L}}{\partial m}-\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{m}}=\left\langle\frac{\delta \mathcal{L}}{\delta \sigma}, \mathbf{i}_{\dot{m}} \tilde{\mathcal{B}}\right\rangle \tag{2.3}
\end{equation*}
$$

We refer to Cendra, Marsden, and Ratiu [2001] for the general theory and to Gay-Balmaz and Tronci [2010] for this special case.

Lagrange-Poincaré equations for H discrete. Assume now that H is a closed discrete subgroup of G. Then $\mathfrak{h}=\{0\}, \mathfrak{h}$ is the vector bundle with zero dimensional fiber and base $M, \mathcal{A}=0$, and hence the vector bundle isomorphism $\alpha_{\mathcal{A}}$ becomes canonical, $\alpha:(T G) / H \rightarrow T M$, the source and target spaces viewed as a vector bundles over M, and it is given by

$$
\alpha\left(\left[v_{g}\right]_{H}\right):=T_{g} \pi\left(v_{g}\right)=\left(v_{g} g^{-1}\right)_{M}(m) \in T_{m} M
$$

So, if $g:\left[t_{0}, t_{1}\right] \rightarrow G$ is a given curve, we get simply

$$
\alpha\left([g(t), \dot{g}(t)]_{H}\right)=\left(g(t) m_{0}, \frac{d}{d t} g(t) m_{0}\right)=(m(t), \dot{m}(t)) \in T M
$$

The reduced Lagrangian $\mathcal{L}: T M \rightarrow \mathbb{R}$ yields the Lagrange-Poincaré equations (2.3) which in this case become

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial m}-\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{m}}=0 \tag{2.4}
\end{equation*}
$$

It is instructive to consider in more detail the isomorphism α in the case of a closed discrete subgroup. In this case, the kernel of the tangent map is zero, so that at any $g \in G$ we have the isomorphism $T_{g} \pi: T_{g} G \rightarrow T_{[g]}(G / H)$ which implies that

$$
\alpha:(T G) / H \rightarrow T(G / H), \quad\left[v_{g}\right]_{H} \mapsto T \pi\left(v_{g}\right)
$$

is a vector bundle isomorphism covering the identity on G / H. Indeed, if $T_{g} \pi\left(v_{g}\right)=$ $T_{\bar{g}} \pi\left(w_{\bar{g}}\right)$, then necessarily $\bar{g}=g h$ for $h \in H$, and we can write $T_{g} \pi\left(v_{g}\right)=T_{\bar{g}} \pi\left(w_{\bar{g}}\right)=$ $T_{g} \pi\left(w_{\bar{g}} h^{-1}\right)$, so that $v_{g}=w_{\bar{g}} h^{-1}$, since ker $T_{g} \pi=\{0\}$. This proves that $\left[v_{g}\right]_{H}=\left[w_{\bar{g}}\right]_{H}$.

Euler-Poincaré approach. The Euler-Poincaré reduction is implemented by using the vector bundle isomorphism

$$
\bar{i}_{m_{0}}:(T G) / H \rightarrow \mathfrak{g} \times M, \quad \bar{i}_{m_{0}}\left(\left[v_{g}\right]_{H}\right)=\left(v_{g} g^{-1}, \Phi_{g}\left(m_{0}\right)\right),
$$

where an element $m_{0} \in M$ has been fixed, Gay-Balmaz and Tronci [2010]. We note that a connection is not needed to write this isomorphism. If $g:\left[t_{0}, t_{1}\right] \rightarrow G$ is a given curve, this formula implies

$$
\begin{equation*}
\bar{i}_{m_{0}}\left([g(t), \dot{g}(t)]_{H}\right)=\left(\dot{g}(t) g(t)^{-1}, \Phi_{g(t)}\left(m_{0}\right)\right)=:(\xi(t), m(t)) . \tag{2.5}
\end{equation*}
$$

Note that by composing the two vector bundle isomorphisms $\alpha_{\mathcal{A}}$ and $\bar{i}_{m_{0}}$ over M, we get the vector bundle isomorphism

$$
\begin{equation*}
\mathfrak{g} \times M \ni(\xi, m) \longmapsto\left(\xi_{M}(m),[g, \mathcal{A}(\xi g)]_{H}\right) \in T M \times \tilde{\mathfrak{h}}, \tag{2.6}
\end{equation*}
$$

over M, where $g \in G$ is arbitrary such that $\pi(g)=m$.
Given $v_{m} \in T_{m} M, \xi_{m} \in \tilde{\mathfrak{h}}_{m}$, the inverse of the above map is given by

$$
\begin{equation*}
T M \times \tilde{\mathfrak{h}} \ni\left(v_{m}, \xi_{m}\right) \longmapsto\left(\left(\operatorname{Hor}_{g}\left(v_{m}\right)\right) g^{-1}+\operatorname{Ad}_{g} \eta, m\right) \in \mathfrak{g} \times M \tag{2.7}
\end{equation*}
$$

where $g \in G$ is such that $\pi(g)=m, \operatorname{Hor}_{g}: T_{m} M \rightarrow T_{g} G$ is the horizontal lift of the connection \mathcal{A}, and $\eta \in \mathfrak{h}$ is such that $\xi_{m}=[g, \eta]_{H}$. A direct verification shows that this expression does not depend on g as long as $\pi(g)=m$.

Given a H-invariant Lagrangian $L: T G \rightarrow \mathbb{R}$, the associated reduced Lagrangian $l: \mathfrak{g} \times M \rightarrow \mathbb{R}$ obtained through the Euler-Poincaré process is

$$
\begin{equation*}
L(g, \dot{g})=l\left(\dot{g} g^{-1}, \Phi_{g}\left(m_{0}\right)\right)=l(\xi, m) \tag{2.8}
\end{equation*}
$$

The Euler-Poincaré equations for \mathfrak{L} follow from applying the variational principle with constrained variations

$$
\delta \int_{t_{0}}^{t_{1}} l(\xi, m) d t=0, \quad \delta \xi=\dot{\eta}+[\eta, \xi], \quad \delta m=\eta_{M}(m)
$$

where $\eta(t) \in \mathfrak{g}$ is arbitrary curve with $\eta\left(t_{0}\right)=\eta\left(t_{1}\right)=0$. We thus get the equations

$$
\begin{equation*}
\frac{d}{d t} \frac{\delta l}{\delta \xi}+\operatorname{ad}_{\xi}^{*} \frac{\delta l}{\delta \xi}=\mathbf{J}\left(\frac{\delta l}{\delta m}\right), \quad \dot{m}=\xi_{M}(m) \tag{2.9}
\end{equation*}
$$

where $\mathbf{J}: T^{*} M \rightarrow \mathfrak{g}^{*}$ is the standard equivariant momentum map of the cotangent lifted action given by $\left\langle\mathbf{J}\left(\alpha_{m}\right), \zeta\right\rangle=\left\langle\alpha_{m}, \zeta_{M}(m)\right\rangle$ for all $\alpha_{m} \in T_{m}^{*} M, \zeta \in \mathfrak{g}$.

Note that if H is closed and discrete, the Euler-Poincaré equations (2.9) for l : $\mathfrak{g} \times M \rightarrow \mathbb{R}$ do not simplify, contrary to what happens on the Lagrange-Poincaré side.

3 Hamilton-Poincaré and Lie-Poisson reduction on Lie groups

In this section we will summarize the necessary material that is relevant for the Hamiltonian description of condensed matter systems. This is the Hamiltonian version of the two Lagrangian reduction processes described in the preceding section.

Hamilton-Poincaré reduction. As in the preceding section, we consider a Lie group acting transitively on the left on a manifold M. Choosing $m_{0} \in M$, we have the diffeomorphism $G / H \ni g H \mapsto \Phi_{g}\left(m_{0}\right) \in M$. Given a Hamiltonian $H: T^{*} G \rightarrow \mathbb{R}$ that is right H-invariant, we obtain, by reduction, a Hamiltonian defined on the quotient space $\left(T^{*} G\right) / H$. Similarly as before, choosing a principal connection $\mathcal{A} \in \Omega^{1}(G, \mathfrak{h})$, we have a vector bundle isomorphism

$$
\left(T^{*} G\right) / H \rightarrow T^{*}(G / H) \oplus \widetilde{\mathfrak{h}}^{*}, \quad\left[\alpha_{g}\right]_{H} \mapsto\left(\operatorname{Hor}_{g}^{*} \alpha_{g},\left[g, \mathbf{J}\left(\alpha_{g}\right)\right]_{H}\right)=:\left(\alpha_{m}, \bar{\mu}\right)
$$

where $\operatorname{Hor}_{g}^{*}: T_{m} M \rightarrow T^{*} G$ is the dual map to the horizontal lift $\operatorname{Hor}_{g}: T_{m} M \rightarrow T_{g} G$ associated to the connection \mathcal{A}, and $\mathbf{J}: T^{*} G \rightarrow \mathfrak{h}^{*}$ is the momentum map associated to right translation by H. The reduced Hamilton equations obtained by Poisson reduction are called the Hamilton-Poincaré equations and read

$$
\begin{equation*}
\frac{D y}{D t}=-\frac{\partial \mathcal{H}}{\partial x}-\left\langle\bar{\mu}, \tilde{\mathcal{B}}\left(\dot{x},,_{-}\right)\right\rangle, \quad \dot{x}=\frac{\partial \mathcal{H}}{\partial y}, \quad \frac{D^{\mathcal{A}} \bar{\mu}}{D t}+\operatorname{ad}_{\frac{\delta \mathcal{H}}{\delta \bar{\mu}}}^{*} \bar{\mu}=0, \tag{3.1}
\end{equation*}
$$

where $(x, y) \in T^{*}(G / H), \bar{\mu} \in \tilde{\mathfrak{h}}^{*}, \tilde{\mathcal{B}} \in \Omega^{2}(G / H, \tilde{\mathfrak{h}})$ is the reduced curvature of \mathcal{A}, and $D / D t$ in the first equation denotes the covariant derivative on $T^{*}(G / H)$ associated to a given affine connection on G / H, and $D^{\mathcal{A}} / D t$ in the last equation denotes the covariant derivative on $\widetilde{\mathfrak{h}}^{*}$ associated to the principal connection \mathcal{A}; for details see Cendra, Marsden, Pekarsky, and Ratiu [2003].

The symplectic leaves in $T^{*}(G / H) \oplus \widetilde{\mathfrak{h}}^{*}$ have been described in Marsden and Perlmutter [2000]; they are of the form $T^{*}(G / H) \times_{G / H} \widetilde{\mathcal{O}}$, where \mathcal{O} is a coadjoint orbit of H, and $\widetilde{\mathcal{O}} \rightarrow G / H$ is the associated fiber bundle. The symplectic form is the sum of the canonical symplectic form on $T^{*}(G / H)$ and a two-form on $\widetilde{\mathcal{O}}$, see [Marsden et al, 2007, Theorem 2.3.12]. If the Lie group G is connected and \mathcal{O} has N elements (which is happening in subsequent applications), then the fiber bundle $T^{*}(G / H) \times_{G / H} \widetilde{\mathcal{O}} \rightarrow G / H$ has N connected components, each one of them symplectically diffeomorphic to the canonical phase space $T^{*}(G / H)$.

Lie-Poisson reduction. A second realization of $T^{*}(G / H)$ is given by the diffeomorphism

$$
\left(T^{*} G\right) / H \ni\left[\alpha_{g}\right]_{H} \longmapsto\left(\alpha_{g} g^{-1}, g m_{0}\right) \in \mathfrak{g}^{*} \times M
$$

The reduced Hamilton equations on this space read

$$
\begin{equation*}
\dot{\mu}+\operatorname{ad}_{\frac{\delta h}{\delta \mu}}^{*} \mu=\mathbf{J}\left(\frac{\delta h}{\delta m}\right), \quad \dot{m}=-\left(\frac{\delta h}{\delta \mu}\right)_{M}(m) \tag{3.2}
\end{equation*}
$$

where $\mathbf{J}: T^{*} M \rightarrow \mathfrak{g}^{*}$ is the momentum map of the cotangent lift of the left action of G on $M=G / H$ and $h: \mathfrak{g}^{*} \times M \rightarrow \mathbb{R}$ is the reduced Hamiltonian. These equations are Hamiltonian relative to the Poisson bracket

$$
\begin{equation*}
\{f, g\}(\mu, m)=\left\langle\mu,\left[\frac{\delta f}{\delta \mu}, \frac{\delta g}{\delta \mu}\right]\right\rangle+\left\langle\mathbf{J}\left(\frac{\delta f}{\delta m}\right), \frac{\delta g}{\delta \mu}\right\rangle-\left\langle\mathbf{J}\left(\frac{\delta g}{\delta m}\right), \frac{\delta f}{\delta \mu}\right\rangle, \tag{3.3}
\end{equation*}
$$

see Krishnaprasad and Marsden [1987] (in which a more general situation is considered).

We refer to Gay-Balmaz and Tronci [2010], for further details and examples of application of these two reduction processes.

We now suppose that V is a representation space of G and we take $M=\operatorname{Orb}\left(a_{0}\right) \subset$ V^{*}. The induced Lie algebra representation $\mathfrak{g} \times V \rightarrow V$ is given by the infinitesimal operator map and is denoted by $\xi v:=\xi_{V}(v)$, for any $\xi \in \mathfrak{g}$ and $v \in V$. We consider the semidirect product $S=G(S) V$ and its Lie algebra $\mathfrak{s}=\mathfrak{g}(S) V$. The symplectic leaves in \mathfrak{s}^{*} are given by the connected components of the coadjoint orbits $\mathcal{O}_{(\mu, a)}$ of S. From the formula of the coadjoint action

$$
\begin{equation*}
\operatorname{Ad}_{(g, v)^{-1}}^{*}(\mu, a)=\left(\operatorname{Ad}_{g^{-1}}^{*} \mu+v \diamond g a, g a\right), \tag{3.4}
\end{equation*}
$$

where $(g, v) \in S$ and $(\mu, a) \in \mathfrak{s}^{*}$, we see that the symplectic leaves in $\mathfrak{g}^{*} \times M$ are $\mathcal{O}_{\left(\mu, a_{0}\right)}$ endowed with the minus orbit symplectic form. The diamond operation $\diamond: V \times V^{*} \rightarrow \mathfrak{g}^{*}$ in this formula is defined by $\langle v \diamond a, \xi\rangle:=\langle a, \xi v\rangle$, for any $\xi \in \mathfrak{g}$, where the pairing in the left hand side is between \mathfrak{g}^{*} and \mathfrak{g}, whereas in the right hand side it is between V^{*} and V.

These considerations provide the proof of the following theorem.
Theorem 3.1 Given $\mu \in \mathfrak{g}^{*}$ and $a_{0} \in V^{*}$, we define $\mu_{a_{0}}:=\left.\mu\right|_{\mathfrak{g}_{a_{0}}} \in \mathfrak{g}_{a_{0}}^{*}$, where $\mathfrak{g}_{a_{0}}=\{\xi \in$ $\left.\mathfrak{g} \mid \xi a_{0}=0\right\}=: \mathfrak{h}$. Let $\mathcal{O}_{\mu_{a_{0}}} \subset \mathfrak{g}_{a_{0}}^{*}$ be the coadjoint orbit of $H:=G_{a_{0}}$ through $\mu_{a_{0}}$. The map

$$
\mathfrak{s}^{*} \supset \mathcal{O}_{\left(\mu, a_{0}\right)} \ni\left(\alpha_{g} g^{-1}, g a_{0}\right) \longmapsto\left(\operatorname{Hor}_{g}^{*} \alpha_{g},\left[g, \mathbf{J}\left(\alpha_{g}\right)\right]_{H}\right) \in T^{*}(G / H) \times_{G / H} \widetilde{\mathcal{O}}_{\mu_{a_{0}}}
$$

is a symplectic diffeomorphism.
Note that the Theorem states that if $\left.(\mu-\nu)\right|_{\mathfrak{g}_{a_{0}}}=0$, then $\mathcal{O}_{\left(\mu, a_{0}\right)}=\mathcal{O}_{\left(\nu, a_{0}\right)}$. This can be verified directly by observing that $\operatorname{Ad}_{(e, v)^{-1}}^{*}\left(\mu, a_{0}\right)=\left(\mu+v \diamond a_{0}, a_{0}\right)$ and the map $V \ni v \mapsto v \diamond a_{0} \in \mathfrak{g}_{a_{0}}^{\circ}$ (the annihilator of $\mathfrak{g}_{a_{0}}$ in \mathfrak{g}^{*}) is surjective (which is equivalent to $\left.\operatorname{ker}\left(v \mapsto v \diamond a_{0}\right)=\mathfrak{g}_{a_{0}}\right)$.

We now write explicitly the operator $\alpha_{g} \mapsto \operatorname{Hor}_{g}^{*} \alpha_{g}$ in the particular case when there is an Ad-invariant inner product γ on \mathfrak{g}. We extend γ by left invariance to a Riemannian metric on G. This Riemannian metric, also denoted γ, is right invariant. The principal connection on the right H-principal bundle $G \rightarrow G / H$ associated to γ has the expression $\mathcal{A}\left(v_{g}\right):=\mathbb{P}_{a_{0}}\left(g^{-1} v_{g}\right)$, where $\mathbb{P}_{a_{0}}: \mathfrak{g} \rightarrow \mathfrak{g}_{a_{0}}$ is the γ-orthogonal projection. The horizontal lift associated to \mathcal{A} reads

$$
\begin{equation*}
\operatorname{Hor}_{g}: T_{m} M \rightarrow T_{g} G, \quad \operatorname{Hor}_{g}\left(\xi_{M}(m)\right)=g \mathbb{P}_{a_{0}}^{\perp}\left(\operatorname{Ad}_{g^{-1}} \xi\right), \tag{3.5}
\end{equation*}
$$

where $\mathbb{P}_{a_{0}}^{\perp}: \mathfrak{g} \rightarrow \mathfrak{g}_{a_{0}}^{\perp}$ is the γ-orthogonal projection and $m=g a_{0}$. We endow $M=G / H$ with the natural induced Riemannian metric, i.e.,

$$
\begin{align*}
\gamma_{M}\left(\xi_{M}(m), \eta_{M}(m)\right): & =\gamma\left(\operatorname{Hor}_{g}\left(\xi_{M}(m)\right), \operatorname{Hor}_{g}\left(\eta_{M}(m)\right)\right) \\
& =\gamma\left(\mathbb{P}_{a_{0}}^{\perp}\left(\operatorname{Ad}_{g^{-1}} \xi\right), \mathbb{P}_{a_{0}}^{\perp}\left(\operatorname{Ad}_{g^{-1}} \eta\right)\right) . \tag{3.6}
\end{align*}
$$

Using the Riemannian metrics γ and γ_{M}, we identify $T G$ with $T^{*} G$ and $T M$ with $T^{*} M$, respectively. With these identifications, we have

$$
\begin{equation*}
\operatorname{Hor}_{g}^{*} \alpha_{g}=\left(\alpha_{g} g^{-1}\right)_{M}(m), \quad \alpha_{g} \in T_{g}^{*} G=T_{g} G \tag{3.7}
\end{equation*}
$$

We summarize the maps in this discussion in the following diagram

4 Applications to condensed matter

4.1 Setup of the problem

Lagrangian description. As discussed at the beginning of the previous section, for condensed matter theories the Lagrangian \mathfrak{L} is defined on the tangent bundle TM of the parameter manifold M. This manifold is assumed to be a homogeneous space, relative to the transitive action of a Lie group G, with isotropy group $H=G_{m_{0}}$ for some preferred element $m_{0} \in M$. From \mathfrak{L} one can construct a Lagrangian $L_{m_{0}}: T G \rightarrow \mathbb{R}$, $L_{m_{0}}(g, \dot{g}):=\mathfrak{L}\left(g m_{0},\left(\dot{g} g^{-1}\right)_{M}\left(g m_{0}\right)\right)$ as explained earlier.

Using the results of $\S 2$, we will show that the Euler-Lagrange equations for $L_{m_{0}}$ are equivalent to those for \mathfrak{L} by implementing Lagrange-Poincaré reduction. Then we use the equivalence with the Euler-Poincaré approach obtained above to write the equations in a simpler form.

Since $L_{m_{0}}$ is H-invariant, by fixing a connection $\mathcal{A} \in \Omega^{1}(G, \mathfrak{h})$, we get the LagrangePoincaré Lagrangian \mathcal{L}, that we now compute. We have

$$
\mathcal{L}\left(m, \dot{m},[g, \mathcal{A}(g, \dot{g})]_{H}\right)=L_{m_{0}}(g, \dot{g})=\mathfrak{L}\left(g m_{0},\left(\dot{g} g^{-1}\right)_{M}\left(g m_{0}\right)\right)=\mathfrak{L}(m, \dot{m}) .
$$

This means that $\mathcal{L}: T M \times_{M} \widetilde{\mathfrak{h}} \rightarrow \mathbb{R}$ does not depend on the second variable, so $\frac{\delta \mathcal{L}}{\delta \sigma}=0$, and $\mathcal{L}=\mathfrak{L}$. Thus, in the general system (2.3), the first equation disappears and the right hand side of the second vanishes. Therefore, the Lagrange-Poincaré equations in (2.3) reduce to the Euler-Lagrange equations for \mathfrak{L} on $T M$.

We now compute the Euler-Poincaré reduced Lagrangian. We have

$$
l(\xi, m)=l\left(\dot{g} g^{-1}, \Phi_{g}\left(m_{0}\right)\right)=L_{m_{0}}(g, \dot{g})=\mathfrak{L}\left(g m_{0},\left(\dot{g} g^{-1}\right)_{M}\left(g m_{0}\right)\right)=\mathfrak{L}\left(m, \xi_{M}(m)\right) .
$$

From the above results, we know that the Euler-Lagrange equations for $L_{m_{0}}$ are equivalent to the Euler-Poincaré equations

$$
\frac{d}{d t} \frac{\delta l}{\delta \xi}+\operatorname{ad}_{\xi}^{*} \frac{\delta l}{\delta \xi}=\mathbf{J}\left(\frac{\delta l}{\delta m}\right), \quad \dot{m}=\xi_{M}(m)
$$

From this discussion together with the facts recalled in $\S 2$, we obtain the following fundamental result, to be used in the rest of the paper.

Theorem 4.1 The following statements are equivalent.
(i) The curve $m:\left[t_{0}, t_{1}\right] \rightarrow M$ is a solution of the Euler-Lagrange equations for $\mathfrak{L}: T M \rightarrow \mathbb{R}$, i.e.,

$$
\frac{\partial \mathfrak{L}}{\delta m}-\frac{d}{d t} \frac{\partial \mathfrak{L}}{\delta \dot{m}}=0
$$

(ii) The curve $m:\left[t_{0}, t_{1}\right] \rightarrow M$ is a solution of the Euler-Poincaré equations for $l: \mathfrak{g} \times M \rightarrow \mathbb{R}$, i.e.,

$$
\begin{equation*}
\frac{d}{d t} \frac{\delta l}{\delta \xi}+\operatorname{ad}_{\xi}^{*} \frac{\delta l}{\delta \xi}=\mathbf{J}\left(\frac{\delta l}{\delta m}\right), \quad \dot{m}=\xi_{M}(m) \tag{4.1}
\end{equation*}
$$

Ginzburg-Landau theory of phase transitions. We briefly review the major steps in Landau's theory of phase transitions.

Phenomenological Ginzburg-Landau theory, initially formulated to describe the behavior of superconductivity and superfluidity of ${ }^{4} \mathrm{He}$ near points of phase transition, turned out to be also very convenient in the determination of of phase transitions of superfluid ${ }^{3} \mathrm{He}$. We recall here briefly the main statements of Landau's second order theory of phase transitions. For a detailed presentation, see [Landau and Lifshitz, 1980, §83, §141-153, §162].
1.) At a phase transition point, the symmetry of the system spontaneously changes.
2.) The system is characterized by some macroscopic quantity, an order parameter, e.g., the director field, the Q-tensor, or the wryness tensor in liquid crystals.
3.) Near the transition point, due to the smallness of the parameter $\alpha_{i}\left(T-T_{c}\right)$, the free energy (i.e., the thermodynamic potential) admits an expression of the following type

$$
F(p, T)=F_{0}(p)+\alpha_{1}\left(T-T_{c}\right) Q\left(\varphi^{2}\right)+\alpha_{2}\left(T-T_{c}\right) Q\left(\varphi^{2}\right) Q\left(\varphi^{4}\right)+\|\operatorname{grad} \varphi\|^{2}
$$

where $Q\left(\varphi^{2}\right), Q\left(\varphi^{4}\right)$ are invariant under the symmetry group of a system of second and fourth order, T is the temperature, T_{c} is the critical temperature at which the phase transition occurs, p is the pressure, and φ is an order parameter of the given physical system which is chosen by the concrete physical situation under study.
4.) The change of symmetry in the transition is determined only by the order parameter. 5.) It is possible to ignore fluctuations of the oder parameter beyond $\left(T_{c} / q_{c}\right)^{4}$. The Levanyuk-Ginzburg criterion ensures the validity of the expression of $F(p, T)$ given above, if the mean square fluctuation of the parameter φ, averaged over the correlation volume, is small compared with the characteristic value of $\langle\varphi\rangle$ (see Landau and Lifshitz [1980]).

The advantage of the Ginzburg-Landau approach is based on the fact that, with relatively few basic assumptions, it is possible to reduce the investigation (in many important cases) of an infinite dimensional quantum particle system to the study of a finite dimensional mechanical problem. Superfluid ${ }^{3} \mathrm{He}$ provides such an example. Of course, this is a more complicated system than superfluid ${ }^{4} \mathrm{He}$ since there are more thermodynamic phases.

We describe now the concrete method implementing this Ginzburg-Landau phase transition theory. One is given a free energy, the sum of a potential $U(A)$ depending
on some order parameter A, but not on its spatial derivatives, and a gradient term $F_{\text {grad }}(A, \nabla A)$ that depends on both the order parameter A and its derivatives ∇A.
(A) Expand the potential $U(A)$ up to fourth order and replace it with this expression.
(B) Find the largest possible Lie group that leaves this fourth degree polynomial $U(A)$ invariant and determine the Lie group action (very often a representation) on the space of all order parameters A.
(C) Find the formal minima of the potential $U(A)$, i.e., $\frac{\delta U}{\delta A}=0$ and $\frac{\delta^{2} U}{\delta A^{2}} \geqslant 0$ (positive Hessian).
(D) Take the Lie group orbit through each minimum and consider it as a configuration space of a Lagrangian system given by the free energy. Note that it is not necessary to add the potential $U(A)$ to the gradient term, since it is constant on each such orbit, by construction. The goal is the study of each Lagrangian system on such a Lie group orbit, because the Ginzburg-Landau equations turn out to be the Euler-Lagrange equations for $F_{g r a d}$. Often, $F_{g r a d}$ determines a metric on the orbit.

The point is that, very often, the Lie group orbits of interest are finite dimensional, whereas the original problem, whose total Lagrangian is the sum of the free energy F and the potential $U(A)$, is an infinite dimensional problem. Working on such orbits reduces hence the given infinite dimensional problem to a finite dimensional one.

Sometimes, steps (B) and (C) are hard to carry out. In practice one starts with a Lie group that is, on physical grounds, a symmetry of the system and then determines, using invariant theory, the most general polynomial of fourth degree, invariant under this group. This polynomial is then taken as the potential $U(A)$. Then one classifies all orbits of this Lie group on the space of all order parameters A (or, at least, determines enough orbits) and finds, in this way, orbits of physical interest that describe different thermodynamic phases of the system. This problem is solved using techniques developed in Golo and Monastyrsky [1978a,b], Bogomolov and Monastyrsky [1987], Monastyrsky [1993], where thermodynamic phases are identified with orbits containing a minimum of the potential $U(A)$ of the free energy.

It turns out that different types of textures for the system are given as solutions to the Ginzburg-Landau equations for a given phase and that, on each Lie group orbit, the Ginzburg-Landau equations are the Euler-Lagrange equations for $F_{\text {grad }}$.

We shall apply this method to the study of different phases in superfluid ${ }^{3} \mathrm{He}$ (Bogomolov and Monastyrs [1987]) and rotating neutron stars (Monastyrsky and Sasorov [2011]). Using the same techniques one can also study one-dimensional textures in liquid crystals and superfluids as well as phase transitions between biaxial and uniaxial nematics; we leave these latter topics for a future publication.

4.2 One-dimensional textures in the A-phase of liquid Helium ${ }^{3} \mathrm{He}$

The order parameter of superfluid ${ }^{3} \mathrm{He}$ is given by complex 3×3 matrices $A \in \mathfrak{g l}(3, \mathbb{C})^{1}$.

[^1]The free energy is given by

$$
\mathcal{F}(A, \nabla A)=F_{\text {grad }}(A, \nabla A)+U(A),
$$

where

$$
F_{\text {grad }}(A, \nabla A)=\gamma_{1} \sum_{i, p, k}\left(\partial_{k} \bar{A}_{p i}\right)\left(\partial_{k} A_{p i}\right)+\gamma_{2} \sum_{i, p, k}\left(\partial_{k} \bar{A}_{p i}\right)\left(\partial_{i} A_{p k}\right)+\gamma_{3} \sum_{i, p, k}\left(\partial_{k} \bar{A}_{p k}\right)\left(\partial_{i} A_{p i}\right),
$$

$\gamma_{1}, \gamma_{2}, \gamma_{3}>0$ are constants, and $U(A)$ is in the Ginzburg-Landau form, namely,

$$
\begin{aligned}
U(A)=\alpha & \operatorname{Tr}\left(A A^{*}\right)+\beta_{1}\left|\operatorname{Tr}\left(A A^{T}\right)\right|^{2}+\beta_{2}\left[\operatorname{Tr}\left(A A^{*}\right)\right]^{2}+\beta_{3} \operatorname{Tr}\left[\left(A^{*} A\right) \overline{\left(A^{*} A\right)}\right] \\
& +\beta_{4} \operatorname{Tr}\left[\left(A A^{*}\right)^{2}\right]+\beta_{5} \operatorname{Tr}\left[\left(A A^{*}\right) \overline{\left(A A^{*}\right)}\right]
\end{aligned}
$$

for $\alpha, \beta_{1}, \ldots, \beta_{5} \in \mathbb{R}$. Note that these expressions are real valued.
In one dimension, we compute

$$
\begin{align*}
F_{\text {grad }}\left(A, \partial_{z} A\right) & =\gamma_{1} \partial_{z} \bar{A}_{p i} \partial_{z} A_{p i}+\gamma_{2} \partial_{z} \bar{A}_{p 3} \partial_{z} A_{p 3}+\gamma_{3} \partial_{z} \bar{A}_{p 3} \partial_{z} A_{p 3} \tag{4.2}\\
& =\operatorname{Re} \operatorname{Tr}\left(\Gamma \partial_{z} A^{*} \partial_{z} A\right)=\left\langle\left\langle\partial_{z} A, \partial_{z} A\right\rangle\right\rangle,
\end{align*}
$$

where $\Gamma=\operatorname{diag}\left(\gamma_{1}, \gamma_{1}, \gamma_{1}+\gamma_{2}+\gamma_{3}\right)$ and we defined the inner product on $\mathfrak{g l}(3, \mathbb{C})$ by

$$
\begin{equation*}
\langle\langle A, B\rangle\rangle:=\operatorname{Re} \operatorname{Tr}\left(\Gamma A^{*} B\right), \quad \Gamma:=\operatorname{diag}\left(\gamma_{1}, \gamma_{1}, \gamma_{1}+\gamma_{2}+\gamma_{3}\right) . \tag{4.3}
\end{equation*}
$$

The following identities are useful in the computations:

$$
\langle\langle A, B\rangle\rangle=\langle\langle B, A\rangle\rangle, \quad\langle\langle u A, B\rangle\rangle=\langle\langle A, \bar{u} B\rangle\rangle,
$$

for any $A, B \in \mathfrak{g l}(3, \mathbb{C})$ and $u \in \mathbb{C}$. In addition $\langle\langle\rangle$,$\rangle is \mathbb{R}$-bilinear.

Group representation, orbits, and thermodynamic phases. The potential function $U(A)$ is invariant under the left representation of the compact Lie group $G=$ $U(1) \times S O(3)_{L} \times S O(3)_{R}$ on $\mathfrak{g l}(3, \mathbb{C})$ given by

$$
\begin{equation*}
\left(e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right) \cdot A:=e^{\mathrm{i} \varphi} R_{1} A R_{2}^{-1} \tag{4.4}
\end{equation*}
$$

where $A \in \mathfrak{g l}(3, \mathbb{C})$ and $\left(e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right) \in G$. As the formula above shows, the indices L and R on the two groups $S O(3)$ indicate the side of the multiplication on the matrix A.

Note that the term $F_{\text {grad }}$ is not G-invariant. However, to determine the thermodynamic phases, it suffices to study $U(A)$. The phases correspond to different orbits. A partial classification of the orbits is given in Bogomolov and Monastyrsky [1987]. Below we shall consider only some of these orbits that are physically relevant for the phases of superfluid ${ }^{3} \mathrm{He}$ (see [Monastyrsky, 1993, §5.2]).

The A-phase of superfluid ${ }^{3} \mathrm{He}$ has two regimes depending on whether $L \ll L_{\text {dip }}$ or $L \gg L_{d i p}$, where L and $L_{d i p}$ are the characteristic and dipole length, respectively. The first regime corresponds to minimal degeneracy and the dipole interaction can be neglected. The order parameter matrix $A \in \mathfrak{g l}(3, \mathbb{C})$ is representable as an element of the $U(1) \times S O(3)_{L} \times S O(3)_{R^{-o r b i t}}$ through the point A_{0} given in (4.5), i.e., $A=e^{\mathrm{i} \varphi} R_{1} A_{0} R_{2}^{-1}$. In the second regime, the energy of the dipole interaction should be taken into account. As a consequence, the order parameter matrix $A \in \mathfrak{g l}(3, \mathbb{C})$ is representable as an element of the $S O(3)$-orbit through the same matrix A_{0} under the different action $A=R A_{0} R^{-1}$. For details, see [Monastyrsky, 1993, §5.2.3].

4.2.1 The A-phase - first regime

We consider the orbit M of $U(1) \times S O(3)_{L} \times S O(3)_{R}$ through the point

$$
A_{0}=\left(\begin{array}{lll}
0 & 0 & 0 \tag{4.5}\\
0 & 0 & 0 \\
1 & \mathrm{i} & 0
\end{array}\right) \in \mathfrak{g l}(3, \mathbb{C})
$$

We note that $e^{\mathrm{i} \varphi} A_{0}=\rho(\varphi) A_{0} \rho(-\varphi)$, where $\rho(\varphi):=\exp \left(\varphi \widehat{\mathbf{e}}_{3}\right)$.
Proposition 4.2 (i) The isotropy subgroup of A_{0} is

$$
H=\left\{\left(e^{\mathrm{i} \varphi}, \rho(\alpha) J_{+}, \rho(\varphi) \tilde{J}_{+}\right),\left(e^{\mathrm{i} \varphi}, \rho(\alpha) J_{-}, \rho(\varphi) \tilde{J}_{-}\right)\right\} \subset G=U(1) \times S O(3)_{L} \times S O(3)_{R}
$$

where $\rho(\alpha)=\exp \left(\alpha \widehat{\mathbf{e}}_{3}\right)$ and

$$
J_{ \pm}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{4.6}\\
0 & \pm 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right), \quad \tilde{J}_{ \pm}=\left(\begin{array}{ccc}
\pm 1 & 0 & 0 \\
0 & \pm 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(ii) We have the diffeomorphism

$$
\begin{equation*}
G / H \ni\left[e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right]_{H} \longmapsto\left[R_{2} \rho(-\varphi), R_{1} \mathbf{e}_{3}\right]_{\mathbb{Z}_{2}} \in\left(S O(3) \times S^{2}\right) / \mathbb{Z}_{2} \tag{4.7}
\end{equation*}
$$

where $\mathbb{Z}_{2}=\{ \pm 1\}$ acts on $(A, \mathbf{x}) \in S O(3) \times S^{2}$ as $(-1) \cdot(A, \mathbf{x})=\left(A \tilde{J}_{-},-\mathbf{x}\right)$.
(iii) We have the diffeomorphism

$$
\begin{equation*}
\left(S O(3) \times S^{2}\right) / \mathbb{Z}_{2} \ni[A, \mathbf{x}]_{\mathbb{Z}_{2}} \longmapsto \mathbf{x} \otimes\left(A_{1}+\mathrm{i} A_{2}\right) \in \operatorname{Orb}\left(A_{0}\right), \tag{4.8}
\end{equation*}
$$

where A_{i} denotes the $i^{\text {th }}$ column of the matrix A.
Proof. (i) Writing $A_{0}=\Re\left(A_{0}\right)+\mathrm{i} \Im\left(A_{0}\right)$, where $\Re\left(A_{0}\right)$ and $\Im\left(A_{0}\right)$ are real and imaginary parts of A_{0}, the equality $e^{\mathrm{i} \varphi} R_{1} A_{0} R_{2}^{-1}=A_{0}$ is equivalent to the two equations

$$
\begin{aligned}
& (\cos \varphi) R_{1} \Re\left(A_{0}\right) R_{2}^{-1}-(\sin \theta) R_{1} \Im\left(A_{0}\right) R_{2}^{-1}=\Re\left(A_{0}\right) \\
& (\sin \varphi) R_{1} \Re\left(A_{0}\right) R_{2}^{-1}+(\cos \theta) R_{1} \Im\left(A_{0}\right) R_{2}^{-1}=\Im\left(A_{0}\right) .
\end{aligned}
$$

The proof then follows from a direct computation that is done by writing the matrices R_{i} in terms of their rows.
(ii) Let us first show that the map is well-defined. Given $\left(e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right) \in G$, any element in the equivalence class $\left[\left(e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right)\right]_{H}$ has the form

$$
\begin{equation*}
\left(e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right)\left(e^{\mathrm{i} \psi}, \rho(\alpha) J_{ \pm}, \rho(\psi) \tilde{J}_{ \pm}\right)=\left(e^{\mathrm{i}(\varphi+\psi)}, R_{1} \rho(\alpha) J_{ \pm}, R_{2} \rho(\psi) \tilde{J}_{ \pm}\right) \tag{4.9}
\end{equation*}
$$

where $\left(e^{\mathrm{i} \psi}, \rho(\alpha) J_{ \pm}, \rho(\psi) \tilde{J}_{ \pm}\right) \in H$. Applying formula (4.7) to the expression (4.9), yields $\left[R_{2} \rho(\psi) \tilde{J}_{ \pm} \rho(-\varphi) \rho(-\psi), R_{1} \rho(\alpha) J_{ \pm} \mathbf{e}_{3}\right]_{\mathbb{Z}_{2}}=\left[R_{2} \rho(-\varphi) \tilde{J}_{ \pm}, \pm R_{1} \mathbf{e}_{3}\right]_{\mathbb{Z}_{2}}=\left[R_{2} \rho(-\varphi), R_{1} \mathbf{e}_{3}\right]_{\mathbb{Z}_{2}}$, where we used the properties

$$
\begin{equation*}
\rho(\alpha) \tilde{J}_{ \pm}=\tilde{J}_{ \pm} \rho(\alpha) \quad \text { and } \quad \rho(\alpha) J_{ \pm}=J_{ \pm} \rho(\pm \alpha) \tag{4.10}
\end{equation*}
$$

The map is clearly surjective. To show the injectivity, we take ($e^{\mathrm{i} \varphi}, R_{1}, R_{2}$) , ($e^{\mathrm{i} \varphi^{\prime}}, R_{1}^{\prime}, R_{2}^{\prime}$) \in G such that $\left[R_{2} \rho(-\varphi), R_{1} \mathbf{e}_{3}\right]_{\mathbb{Z}_{2}}=\left[R_{2}^{\prime} \rho\left(-\varphi^{\prime}\right), R_{1}^{\prime} \mathbf{e}_{3}\right]_{\mathbb{Z}_{2}}$. We thus have the equalities $R_{2} \rho(-\varphi)=R_{2}^{\prime} \rho\left(-\varphi^{\prime}\right) \tilde{J}_{ \pm}$and $R_{1} \mathbf{e}_{3}= \pm R_{1}^{\prime} \mathbf{e}_{3}$. From the first equality, there exists $\rho(\psi) \in U(1)$ such that $R_{2}=R_{2}^{\prime} \rho(\psi) \tilde{J}_{ \pm}$, by using (4.10). Rewriting the second equality as $R_{1} \mathbf{e}_{3}=R_{1}^{\prime} J_{ \pm} \mathbf{e}_{3}$, we obtain the existence of $\rho(\alpha) \in U(1)$ such that $R_{1}=R_{1}^{\prime} \rho(\alpha) J_{ \pm}$. This proves that $\left[\left(e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right)\right]_{H}=\left[\left(e^{\mathrm{i} \varphi^{\prime}}, R_{1}^{\prime}, R_{2}^{\prime}\right)\right]_{H}$.
(iii) Given $[A, \mathbf{x}]_{\mathbb{Z}_{2}} \in\left(S O(3) \times S^{2}\right) / \mathbb{Z}_{2}$, let $\left(e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right) \in G$ be such that $\left[R_{2} \rho(-\varphi), R_{1} \mathbf{e}_{3}\right]_{\mathbb{Z}_{2}}=$ $[A, \mathbf{x}]_{\mathbb{Z}_{2}}$. A possible choice is $\left(e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right)=\left(1, R_{1}, A\right)$, where $R_{1} \in S O(3)$ is such that $R_{1} \mathbf{e}_{3}=\mathbf{x}$. With this choice, an easy computation shows that

$$
\left(1, R_{1}, A\right) \cdot A_{0}=\mathrm{x} \otimes\left(A_{1}+\mathrm{i} A_{2}\right)
$$

Remark 4.3 We observe that the subgroup $\tilde{G}:=S O(3)_{L} \times S O(3)_{R} \subset G$ acts transitively on the orbit $\operatorname{Orb}\left(A_{0}\right)$, see (4.7), (4.8). The isotropy subgroup of A_{0} is $\tilde{G}_{A_{0}}=$ $H \cap \tilde{G}=\{1, \rho(\alpha) J, \tilde{J}\}$, which is isomorphic to $O(2)$. Therefore the orbit can be equally well described as the homogeneous space $\left(S O(3)_{L} \times S O(3)_{R}\right) / \tilde{G}_{A_{0}}$.

Lagrangian formulation. We now apply Theorem 4.1 with this description of the orbit, so the Lie algebra is $\mathfrak{s o}(3)_{L} \times \mathfrak{s o}(3)_{R}$. On this orbit M, we consider the Lagrangian density given by the gradient part only, i.e.,

$$
\begin{equation*}
\mathcal{L}\left(A, \partial_{z} A\right)=F_{\text {grad }}\left(A, \partial_{z} A\right)=\left\langle\left(\partial_{z} A\right) \Gamma, \partial_{z} A\right\rangle=\left\langle\left\langle\partial_{z} A, \partial_{z} A\right\rangle\right\rangle, \tag{4.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle A, B\rangle:=\operatorname{Re} \operatorname{Tr}\left(A^{*} B\right) . \tag{4.12}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{\delta \mathcal{L}}{\delta \partial_{z} A}=2 \partial_{z} A \Gamma \tag{4.13}
\end{equation*}
$$

The texture equations are given by the Euler-Lagrange equations for \mathcal{L} on the orbit M.
The reduced velocity $\xi=\partial_{z} g g^{-1}$ of the general theory (see (2.5)) is given here by $\xi=(\mathbf{v}, \mathbf{w}): \mathbb{R} \rightarrow \mathfrak{s o}(3)_{L} \times \mathfrak{s o}(3)_{R}$, where \mathbf{v} and \mathbf{w} are the chiral velocities $\mathbf{v}=\left(\partial_{z} R_{1}\right) R_{1}^{-1}$ and $\mathbf{w}=R_{2}^{-1}\left(\partial_{z} R_{2}\right)$, see [Monastyrsky, 1993, formula (5.133)]. The second formula in (2.9) is given here by

$$
\partial_{z} A=\widehat{\mathbf{v}} A+A \widehat{\mathbf{w}}
$$

Using this expression and formula (4.2), the Euler-Poincaré Lagrangian

$$
l=l(\xi, m): \mathfrak{s o}(3)_{L} \times \mathfrak{s o}(3)_{R} \times M \rightarrow \mathbb{R}
$$

of the general theory given in (2.8), is computed in this case to be

$$
l(\mathbf{v}, \mathbf{w}, A)=\operatorname{Re} \operatorname{Tr}\left(\Gamma \partial_{z} A^{*} \partial_{z} A\right)=\langle\langle\widehat{\mathbf{v}} A+A \widehat{\mathbf{w}}, \widehat{\mathbf{v}} A+A \widehat{\mathbf{w}}\rangle\rangle,
$$

(see (4.3)). Defining

$$
I_{a b}(A)=\left\langle\left\langle A \widehat{\mathbf{e}}_{a}, A \widehat{\mathbf{e}}_{b}\right\rangle\right\rangle, \quad \chi_{a b}(A)=\left\langle\left\langle\widehat{\mathbf{e}}_{a} A, \widehat{\mathbf{e}}_{b} A\right\rangle\right\rangle, \quad \text { and } \quad \Sigma_{a b}(A)=\left\langle\left\langle\widehat{\mathbf{e}}_{a} A, A \widehat{\mathbf{e}}_{b}\right\rangle\right\rangle,
$$

the formula for the Lagrangian above becomes

$$
\begin{aligned}
l(\mathbf{v}, \mathbf{w}, A) & =\sum_{a, b=1}^{3}\left(I_{a b}(A) w_{a} w_{b}+\chi_{a b}(A) v_{a} v_{b}+2 \Sigma_{a b}(A) v_{a} w_{b}\right) \\
& =\mathbf{w}^{\top} \mathbf{I}(A) \mathbf{w}+\mathbf{v}^{\top} \boldsymbol{\chi}(A) \mathbf{v}+2 \mathbf{v}^{\top} \boldsymbol{\Sigma}(A) \mathbf{w}
\end{aligned}
$$

Thus, the Euler-Poincaré equations (2.9) read

$$
\partial_{z} \frac{\delta l}{\delta \mathbf{v}}+\operatorname{ad}_{\mathbf{v}}^{*} \frac{\delta l}{\delta \mathbf{v}}=\mathbf{J}_{1}\left(\frac{\delta l}{\delta A}\right), \quad \partial_{z} \frac{\delta l}{\delta \mathbf{w}}-\operatorname{ad}_{\mathbf{w}}^{*} \frac{\delta l}{\delta \mathbf{w}}=\mathbf{J}_{2}\left(\frac{\delta l}{\delta A}\right), \quad \partial_{z} A=\widehat{\mathbf{v}} A+A \widehat{\mathbf{w}}
$$

where $\mathbf{J}_{1}: T^{*} M \rightarrow \mathfrak{s o}^{*}(3)$ is the momentum map of the left action and $\mathbf{J}_{2}: T^{*} M \rightarrow$ $\mathfrak{s o}^{*}(3)$ is the momentum map of the right action of $S O(3)$ on the orbit M, respectively.

Using the duality pairing $\langle A, B\rangle=\operatorname{Re} \operatorname{Tr}\left(A^{*} B\right)$ on $\mathfrak{g l}(3, \mathbb{C})$, we get the Euler-Poincaré equations

$$
\frac{d}{d z} \frac{\delta l}{\delta \mathbf{v}}+\frac{\delta l}{\delta \mathbf{v}} \times \mathbf{v}=2 \overrightarrow{\operatorname{Re}\left(\frac{\delta l}{\delta A} A^{*}\right)}, \quad \frac{d}{d z} \frac{\delta l}{\delta \mathbf{w}}-\frac{\delta l}{\delta \mathbf{w}} \times \mathbf{w}=2 \overrightarrow{\operatorname{Re}\left(A^{*} \frac{\delta l}{\delta A}\right)}
$$

where $\vec{A} \in \mathbb{R}^{3}$ is defined by $\hat{\vec{A}}:=A^{\text {skew }}:=\frac{1}{2}\left(A-A^{\top}\right)$, and where we have $\frac{\delta l}{\delta \mathbf{v}}=2 \boldsymbol{\chi} \mathbf{v}+2 \boldsymbol{\Sigma} \mathbf{w}, \quad \frac{\delta l}{\delta \mathbf{w}}=2 \mathbf{I} \mathbf{w}+2 \boldsymbol{\Sigma}^{\top} \mathbf{w}, \quad \frac{\delta l}{\delta A}=-2(A \widehat{\mathbf{w}} \Gamma \hat{\mathbf{w}}+\widehat{\mathbf{v}} \widehat{\mathbf{v}} A \Gamma+\widehat{\mathbf{v}} A \widehat{\mathbf{w}} \Gamma+\widehat{\mathbf{v}} A \Gamma \widehat{\mathbf{w}})$.

Hamiltonian formulation. As expected from the general theory, the Euler-Poincaré Lagrangian $l(\mathbf{v}, \mathbf{w}, A)$ is degenerate, since for all $A \in M$, the quadratic form $(\mathbf{v}, \mathbf{w}) \mapsto$ $\langle\langle\widehat{\mathbf{v}} A+A \widehat{\mathbf{w}}, \widehat{\mathbf{v}} A+A \widehat{\mathbf{w}}\rangle$ has a one dimensional kernel given by the isotropy Lie algebra $\mathfrak{g}_{A}=\{(\mathbf{v}, \mathbf{w}) \in \mathfrak{g} \mid \widehat{\mathbf{v}} A+A \widehat{\mathbf{w}}=0\}$.

Since the Lagrangian (4.11) is nondegenerate, we consider the associated Hamiltonian on $T^{*} M$, given by

$$
\begin{equation*}
\mathcal{H}\left(\alpha_{A}\right)=\frac{1}{4} \operatorname{Re} \operatorname{Tr}\left(\Gamma^{-1} \alpha_{A}^{*} \alpha_{A}\right)=\frac{1}{4}\left\langle\alpha_{A} \Gamma^{-1}, \alpha_{A}\right\rangle . \tag{4.14}
\end{equation*}
$$

Now, we apply Theorem 3.1 in this particular case. The element a_{0} is given by A_{0} in (4.5). The groups are $G=S O(3)_{L} \times S O(3)_{R}, H=\widetilde{G}_{A_{0}}=\{\rho(\alpha) J, \tilde{J}\}$. Given $\mu=(\mathbf{m}, \mathbf{n}) \in \mathfrak{s o}(3)^{*} \times \mathfrak{s o}(3)^{*}=\mathbb{R}^{3} \times \mathbb{R}^{3}$, since $\mathfrak{g}_{A_{0}}=\left\{\left(\lambda \mathbf{e}_{3}, \mathbf{0}\right) \mid \lambda \in \mathbb{R}\right\}$, we have $\mu_{a_{0}}=\left(m_{3} \mathbf{e}_{3}, \mathbf{0}\right)$. We now compute the $G_{A_{0}-\text { coadjoint orbit }} \mathcal{O}_{\mu_{a_{0}}}$. We have the formulas

$$
\begin{aligned}
\operatorname{Ad}_{(\rho(\alpha) J, \tilde{J})}(\widehat{\mathbf{v}}, \widehat{\mathbf{w}}) & =(\rho(\alpha) J \widehat{\mathbf{v}} J \rho(-\alpha), \tilde{J} \widehat{\mathbf{w}} \tilde{J}) \\
\operatorname{Ad}_{(\rho(\alpha) J, \tilde{J})}^{*}\left(m_{3} \mathbf{e}_{3}, \mathbf{0}\right) & =\left((-1)^{|J|} m_{3} \mathbf{e}_{3}, \mathbf{0}\right),
\end{aligned}
$$

where $|J|=0$ if $J=I_{3}$ and $|J|=1$ otherwise. Thus, $\mathcal{O}_{\left(m_{3} \mathbf{e}_{3}, \mathbf{0}\right)}=\left\{\left(\pm m_{3} \mathbf{e}_{3}, \mathbf{0}\right)\right\}$ and hence the fibers of the associated fiber bundle $\widetilde{\mathcal{O}}_{\left(m_{3} \mathbf{e}_{3}, \mathbf{0}\right)} \rightarrow M$ are two points sets. In this special situation, the symplectic structure on $T^{*} M \times_{M} \widetilde{\mathcal{O}}_{\left(m_{3} \mathbf{e}_{3}, \mathbf{0}\right)}$ is given by the canonical symplectic form on $T^{*} M$ since the Lie algebra $\mathfrak{g}_{A_{0}}$ is one-dimensional and the fiber is
discrete, see [Marsden et al, 2007, Theorem 2.3.12]. We conclude that the coadjoint orbit $\mathcal{O}_{\left(\mathbf{m}, \mathbf{n}, A_{0}\right)}$ has two connected components each one symplectically diffeomorphic to $T^{*} M$ for any $\mathbf{m}, \mathbf{n} \in \mathbb{R}^{3}$. In particular, the dimension of the coadjoint orbit $\mathcal{O}_{\left(\mathbf{m}, \mathbf{n}, A_{0}\right)}$ is ten.

Now, we extend the Hamiltonian (4.14) to the symplectic manifold $T^{*} M \times{ }_{M} \widetilde{\mathcal{O}}_{\left(m_{3} \mathbf{e}_{3}, \mathbf{0}\right)}$. Hamilton's equations are unchanged. Using the symplectic diffeomorphism of Theorem 3.1 we get a Hamiltonian function on the coadjoint orbit $\mathcal{O}_{\left(\mathbf{m}, \mathbf{n}, A_{0}\right)}$ of the semidirect product $\left(S O(3)_{L} \times S O(3)_{R}\right)$ © $\mathfrak{g l}(3, \mathbb{C})$. It is a symplectic leaf of the Lie-Poisson manifold $\left[\left(\mathfrak{s o}(3)_{L} \times \mathfrak{s o}(3)_{R}\right) \subseteq \mathfrak{S l l}(3, \mathbb{C})\right]^{*}$ and hence of its Poisson submanifold $\left(\mathfrak{s o}(3)_{L} \times \mathfrak{s o}(3)_{R}\right)^{*} \times$ M, endowed with the Lie-Poisson bracket

$$
\begin{align*}
\{f, h\}(\mathbf{m}, \mathbf{n}, A) & =\mathbf{m} \cdot \frac{\delta f}{\delta \mathbf{m}} \times \frac{\delta h}{\delta \mathbf{m}}-\mathbf{n} \cdot \frac{\delta f}{\delta \mathbf{n}} \times \frac{\delta h}{\delta \mathbf{n}} \\
& +\left\langle\frac{\delta f}{\delta A}, \frac{\widehat{\delta h}}{\delta \mathbf{m}} A+A \frac{\widehat{\delta h}}{\delta \mathbf{n}}\right\rangle-\left\langle\frac{\delta h}{\delta A}, \frac{\widehat{\delta f}}{\delta \mathbf{m}} A+A \frac{\widehat{\delta f}}{\delta \mathbf{n}}\right\rangle . \tag{4.15}
\end{align*}
$$

A direct computation shows that the kernel of the Poisson tensor is one dimensional at all points ($\mathbf{m}, \mathbf{n}, A_{0}$). This means that the dimension of the symplectic leaves through $\left(\mathbf{m}, \mathbf{n}, A_{0}\right)$ is ten. We have recovered the previous result stating that the dimension of the coadjoint orbit $\mathcal{O}_{\left(\mathbf{m}, \mathbf{n}, A_{0}\right)}$ is ten. We note that the function $C(\mathbf{m}, \mathbf{n}, A)=\frac{1}{2} \operatorname{Re} \operatorname{Tr}\left(A^{*} A\right)$ is a Casimir function of this bracket. Indeed, since $\frac{\delta C}{\delta A}=A$, a direct computation that involves only the third term in the expression above shows that $\{C, f\}=0$ for all functions f.

Lemma 4.4 The Riemannian metric on M induced by the Ad-invariant inner product $\gamma((\mathbf{a}, \mathbf{b}),(\mathbf{v}, \mathbf{w}))=\mathbf{a} \cdot \mathbf{v}+\mathbf{b} \cdot \mathbf{w}$ on $\mathfrak{s o}(3)_{L} \times \mathfrak{s o}(3)_{R}(M$ is viewed here as the orbit $\left(S O(3)_{L} \times S O(3)_{R}\right) / \tilde{G}_{A_{0}}$ as in Remark 4.3) coincides with the metric induced by the inner product (4.12) (here, $M \subset \mathfrak{g l}(3, \mathbb{C})$), that is,

$$
\gamma_{M}(\widehat{\mathbf{a}} A+A \widehat{\mathbf{b}}, \widehat{\mathbf{v}} A+A \widehat{\mathbf{w}})=\operatorname{Re} \operatorname{Tr}\left((\widehat{\mathbf{a}} A+A \widehat{\mathbf{b}})^{*}(\widehat{\mathbf{v}} A+A \widehat{\mathbf{w}})\right)
$$

Proof. We need to verify identity (3.6). It is readily checked that at A_{0}, we have $\operatorname{Re} \operatorname{Tr}\left(\left(\widehat{\mathbf{a}} A_{0}+A_{0} \widehat{\mathbf{b}}\right)^{*}\left(\hat{\mathbf{v}} A_{0}+A_{0} \widehat{\mathbf{w}}\right)\right)=a_{1} v_{1}+a_{2} v_{2}+\mathbf{b} \cdot \mathbf{w}=\mathbb{P}_{A_{0}}^{\perp}(\mathbf{a}, \mathbf{b}) \cdot \mathbb{P}_{A_{0}}^{\perp}(\mathbf{v}, \mathbf{w})$, where $\mathbb{P}_{A_{0}}^{\perp}(\mathbf{a}, \mathbf{b})=\left(\left(a_{1}, a_{2}, 0\right), \mathbf{b}\right)$. Since $(\mathbf{a}, \mathbf{b})_{M}(A)=\widehat{\mathbf{a}} A+A \widehat{\mathbf{b}}$, inserting the expression $A=$ $R_{1} A_{0} R_{2}^{-1}$, we get

$$
\begin{aligned}
\operatorname{Re} \operatorname{Tr}\left((\hat{\mathbf{a}} A+A \widehat{\mathbf{b}})^{*}(\hat{\mathbf{v}} A+A \widehat{\mathbf{w}})\right) & =\left(R_{1}^{-1} \mathbf{a}\right)_{1}\left(R_{1}^{-1} \mathbf{v}\right)_{1}+\left(R_{1}^{-1} \mathbf{a}\right)_{2}\left(R_{1}^{-1} \mathbf{a}\right)_{2}+R_{2}^{-1} \mathbf{b} \cdot R_{2}^{-1} \mathbf{w} \\
& =\mathbb{P}_{A_{0}}^{\perp}\left(R_{1}^{-1} \mathbf{a}, R_{2}^{-1} \mathbf{b}\right) \cdot \mathbb{P}_{A_{0}}^{\perp}\left(R_{1}^{-1} \mathbf{b}, R_{2}^{-1} \mathbf{w}\right)
\end{aligned}
$$

which proves the formula.
It follows that formula (3.7) can be applied. Therefore, we get

$$
\operatorname{Hor}_{\left(R_{1}, R_{2}\right)}^{*}\left(\widehat{\mathbf{m}} R_{1}, R_{2} \widehat{\mathbf{n}}\right)=\widehat{\mathbf{m}} A+A \widehat{\mathbf{n}} \in T_{A}^{*} M
$$

Fixing $\mu=\left(\mathbf{m}_{0}, \mathbf{n}_{0}\right)$ and applying Theorem 3.1 we get the Hamiltonian function on the coadjoint orbit $\mathcal{O}_{\left(\mathbf{m}_{0}, \mathbf{n}_{0}, A_{0}\right)}$ by pulling back the Hamiltonian \mathcal{H} in (4.14). We obtain

$$
\begin{equation*}
h(\mathbf{m}, \mathbf{n}, A)=\mathcal{H}(\widehat{\mathbf{m}} A+A \widehat{\mathbf{n}})=\frac{1}{4}\left\langle(\widehat{\mathbf{m}} A+A \widehat{\mathbf{n}}) \Gamma^{-1}, \widehat{\mathbf{m}} A+A \widehat{\mathbf{n}}\right\rangle, \tag{4.16}
\end{equation*}
$$

where $(\mathbf{m}, \mathbf{n}, A) \in \mathcal{O}_{\left(\mathbf{m}_{0}, \mathbf{n}_{0}, A_{0}\right)}$.
The general formula for the coadjoint action on a semidirect product (3.4) (see, e.g., Marsden, Ratiu and Weinstein [1984]) yields in this case

$$
\operatorname{Ad}_{\left(R_{1}, R_{2}, V\right)^{-1}}^{*}(\mathbf{m}, \mathbf{n}, A)=\left(R_{1} \mathbf{m}+2 \overrightarrow{\operatorname{Re}\left(R_{1} A R_{2}^{-1} V\right)}, R_{2} \mathbf{n}+2 \overrightarrow{\operatorname{Re}\left(V R_{1} A R_{2}^{-1}\right)}, R_{1} A R_{2}^{-1}\right)
$$

where $\left(R_{1}, R_{2}, V\right) \in\left(S O(3)_{L} \times S O(3)_{R}\right)(S) \mathfrak{g l}(3, \mathbb{C})$.
We will now consider subgroup actions of the coadjoint action that are symmetries of the Hamiltonian (4.16) and compute the associated momentum maps.

The first one is given by the $U(1)$-action $\operatorname{Ad}_{\left(I_{3}, \rho(\varphi), 0\right)}^{*}(\mathbf{m}, \mathbf{n}, A)=(\mathbf{m}, \rho(\varphi) \mathbf{n}, A \rho(-\varphi))$. This action is automatically Poisson and leaves the Hamiltonian (4.16) invariant because $\rho(\varphi) \Gamma^{-1}=\Gamma^{-1} \rho(\varphi)$. The infinitesimal generator of this action is $(\mathbf{m}, \mathbf{n}, A) \mapsto\left(\mathbf{0}, \mathbf{e}_{3} \times\right.$ $\left.\mathbf{n},-A \widehat{\mathbf{e}}_{3}\right)$ and the momentum map is found to be $\mathbf{J}_{3}^{\mathrm{orb}}(\mathbf{m}, \mathbf{n}, A)=-\mathbf{e}_{3} \cdot \mathbf{n}$. Therefore, $\left\{\mathbf{J}_{3}^{\text {orb }}, h\right\}=0$.

The second symmetry is given by the $S O(3)-\operatorname{action} \operatorname{Ad}_{\left(R, I_{3}, 0\right)}^{*}(\mathbf{m}, \mathbf{n}, A)=(R \mathbf{m}, \mathbf{n}, R A)$ whose infinitesimal generator associated to $\widehat{\mathbf{v}} \in \mathfrak{s o}(3)$ is $(\mathbf{m}, \mathbf{n}, A) \mapsto(\mathbf{v} \times \mathbf{m}, \mathbf{0}, \widehat{\mathbf{v}} A)$. This action leaves the Hamiltonian (4.16) invariant. The momentum map is $\mathbf{J}^{\operatorname{spin}}(\mathbf{m}, \mathbf{n}, A)=$ \mathbf{m}. Therefore $\left\{\mathbf{J}_{\mathbf{v}}^{\text {spin }}, h\right\}=0$, for all $\mathbf{v} \in \mathbb{R}^{3}$. In particular, $\left\{\mathbf{J}_{3}^{\text {spin }}, h\right\}=0$ and $\left\{\left\|\mathbf{J}^{\text {spin }}\right\|^{2}, h\right\}=$ 0 . In addition, formula (4.15) implies that $\left\{\mathbf{J}_{3}^{\text {spin }}, \mathbf{J}_{3}^{\text {orb }}\right\}=0$ and $\left\{\left\|\mathbf{J}^{\text {spin }}\right\|^{2}, \mathbf{J}_{3}^{\text {orb }}\right\}=0$.

To find the next conserved quantity is considerably more involved. We start with the Euler-Lagrange equations for the Lagrangian $\mathcal{L}\left(A, \partial_{z} A\right)$ in (4.11) on $T M$. This Lagrangian is $U(1)$-invariant under the tangent lift of the action $A \mapsto e^{i \varphi} A$. The infinitesimal generator associated to $\theta \in \mathbb{R}$ is $\theta_{M}(A)=\mathrm{i} \theta A$. Using (4.13), we compute the associated momentum map as follows

$$
\begin{equation*}
j_{m}\left(A, \partial_{z} A\right)=\left\langle\frac{\delta \mathcal{L}}{\delta\left(\partial_{z} A\right)}, \mathrm{i} A\right\rangle=2\left\langle\partial_{z} A \Gamma, \mathrm{i} A\right\rangle \tag{4.17}
\end{equation*}
$$

Taking into account that $\partial_{z} A=\widehat{\mathbf{v}} A+A \widehat{\mathbf{w}}$, for some $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$, this formula becomes

$$
j_{m}(A, \widehat{\mathbf{v}} A+A \widehat{\mathbf{w}})=-2 \operatorname{Re} \operatorname{Tr}\left(A \Gamma A^{*} \widehat{\mathbf{v}} \mathrm{i}\right)-2 \operatorname{Re} \operatorname{Tr}\left(\Gamma \widehat{\mathbf{w}} A^{*} A \mathrm{i}\right)=2\langle\langle\widehat{\mathbf{v}} A+A \widehat{\mathbf{w}}, \mathrm{i} A\rangle\rangle .
$$

Since j_{m} is conserved on the solutions of the Euler-Lagrange equations associated to \mathcal{L}, its pull-back to $\mathcal{O}_{\left(\mathbf{m}_{0}, \mathbf{n}_{0}, A_{0}\right)}$ commutes with the Hamiltonian h.

In order to see that j_{m} commutes with $\mathbf{J}_{3}^{\text {orb }}$ and $\mathbf{J}^{\text {spin }}$, we will consider the induced $U(1)$ and $S O(3)$-actions on $T M$ and $T^{*} M$ and observe that they are the tangent and cotangent lift of commuting actions. Therefore, viewed as momentum maps on $T^{*} M$ and $T M$, via the change of variables $\mathcal{O}_{\left(\mathbf{m}_{0}, \mathbf{n}_{0}, A_{0}\right)} \rightarrow T^{*} M \rightarrow T M$ (see Theorem 3.1 and (4.13)), these momentum maps commute. Concerning $\mathbf{J}_{3}^{\text {orb }}$, the $U(1)$-action induced on $T M$ is the tangent lift of the action $A \mapsto A \rho(-\varphi)$. For $\mathbf{J}^{\text {spin }}$, the $S O(3)$-action induced on $T M$ is the tangent lift of the action $A \mapsto R A, R \in S O(3)$. They evidently commute with the action $A \mapsto e^{i \varphi} A$ yielding j_{m}.

One can also check directly that the expressions of the momentum maps $j_{3}^{\text {orb }}\left(A, \partial_{z} A\right)$ and $j^{\text {spin }}\left(A, \partial_{z} A\right)$ on $T M$ associated to the tangent lifted actions of $A \mapsto A \rho(-\varphi)$ and $A \mapsto R A$ are consistent with those of $\mathbf{J}_{3}^{\text {orb }}(\mathbf{m}, \mathbf{n}, A)$ and $\mathbf{J}^{\text {spin }}(\mathbf{m}, \mathbf{n}, A)$, respectively.

Theorem 4.5 The five functions $h, j_{m}, \mathbf{J}_{3}^{\text {orb }}, \mathbf{J}_{3}^{\text {spin }},\left\|\mathbf{J}^{\text {spin }}\right\|^{2}$ form a completely integrable system on the ten dimensional coadjoint orbit $\mathcal{O}_{\left(\mathbf{m}_{0}, \mathbf{n}_{0}, A_{0}\right)}$.

Proof. The five functions commute in view of the discussion above. We need to show that their differentials are linearly independent except on a set of measure zero in $\mathcal{O}_{\left(\mathbf{m}_{0}, \mathbf{n}_{0}, A_{0}\right)}$. It turns out that showing their independence on M is considerably simpler computationally. The functional derivatives on $T M$ are

$$
\begin{aligned}
& \frac{\delta j_{m}}{\delta A}=-2 \mathrm{i} \partial_{z} A \Gamma, \quad \frac{\delta j_{m}}{\delta \partial_{z} A}=2 \mathrm{i} A \Gamma, \quad \frac{\delta j_{3}^{\text {orb }}}{\delta A}=2 \partial_{z} A \Gamma \widehat{\mathbf{e}}_{3}, \quad \frac{\delta j_{3}^{\text {orb }}}{\delta \partial_{z} A}=-2 A \widehat{\mathbf{e}}_{3} \Gamma \\
& \frac{\delta j_{k}^{\text {spin }}}{\delta A}=-2 \widehat{\mathbf{e}}_{k} \partial_{z} A \Gamma, \quad \frac{\delta j_{k}^{\text {spin }}}{\delta \partial_{z} A}=2 \widehat{\mathbf{e}}_{k} A \Gamma, \quad \frac{\delta \mathcal{L}}{\delta A}=0, \quad \frac{\delta \mathcal{L}}{\delta \partial_{z} A}=2 \partial_{z} A \Gamma, \\
& \frac{\delta\left\|\mathbf{J}^{\text {spin }}\right\|^{2}}{\delta A}=-4 j_{1}^{\text {spin }} \widehat{\mathbf{e}}_{1} \partial_{z} A \Gamma-4 j_{2}^{\text {spin }} \widehat{\mathbf{e}}_{2} \partial_{z} A \Gamma, \quad \frac{\delta\left\|\mathbf{J}^{\text {spin }}\right\|^{2}}{\delta \partial_{z} A}=4 j_{1}^{\text {spin }} \widehat{\mathbf{e}}_{1} A \Gamma+4 j_{2}^{\text {spin }} \widehat{\mathbf{e}}_{2} A \Gamma .
\end{aligned}
$$

In order to show the independence, we have to show that the equations

$$
\begin{align*}
& \alpha_{1} \frac{\delta j_{m}}{\delta A}+\alpha_{2} \frac{\delta j_{3}^{\text {orb }}}{\delta A}+\alpha_{3} \frac{\delta j_{3}^{\text {spin }}}{\delta A}+\alpha_{4} \frac{\delta\left\|\mathbf{J}^{\text {spin }}\right\|^{2}}{\delta A}+\alpha_{5} \frac{\delta \mathcal{L}}{\delta A}=0 \tag{4.18}\\
& \alpha_{1} \frac{\delta j_{m}}{\delta \partial_{z} A}+\alpha_{2} \frac{\delta j_{3}^{\text {orb }}}{\delta \partial_{z} A}+\alpha_{3} \frac{\delta j_{3}^{\text {spin }}}{\delta \partial_{z} A}+\alpha_{4} \frac{\delta\left\|\mathbf{J}^{\text {spin }}\right\|^{2}}{\delta \partial_{z} A}+\alpha_{5} \frac{\delta \mathcal{L}}{\delta \partial_{z} A}=0 \tag{4.19}
\end{align*}
$$

imply $\alpha_{i}=0$, for all $i=1, \ldots, 5$ and for all $A \in M$ except on a set of measure zero in M.
Writing $A=\mathbf{x}\left(\mathbf{A}_{1}+\mathrm{i} \mathbf{A}_{2}\right)^{\top}$, where $\|\mathbf{x}\|=1,\left\|\mathbf{A}_{i}\right\|=1, \mathbf{A}_{1} \cdot \mathbf{A}_{2}=0$, and using the formula $\partial_{z} A=\left(\partial_{z} \mathbf{x}\right)\left(\mathbf{A}_{1}+\mathrm{i} \mathbf{A}_{2}\right)^{\top}+\mathbf{x}\left(\partial_{z} \mathbf{A}_{1}+\mathrm{i} \partial_{z} \mathbf{A}_{2}\right)^{\top}$, where $\partial_{z} \mathbf{x} \cdot \mathbf{x}=0, \partial_{z} \mathbf{A}_{i} \cdot \mathbf{A}_{i}=0$, $\partial_{z} \mathbf{A}_{1} \cdot \mathbf{A}_{2}+\mathbf{A}_{1} \cdot \partial_{z} \mathbf{A}_{2}=0$, and evaluating equation (4.18) on the vector $\left(\mathbf{A}_{1}+\mathrm{i} \mathbf{A}_{2}\right) \times$ $\left(\partial_{z} \mathbf{A}_{1}+\mathrm{i} \partial_{z} \mathbf{A}_{2}\right)$, we get $\alpha_{2}\left(\partial_{z} \mathbf{A}_{1}+\mathrm{i} \partial_{z} \mathbf{A}_{2}\right)^{\top}\left(\partial_{z} \mathbf{A}_{1}+\mathrm{i} \partial_{z} \mathbf{A}_{2}\right)\left(\mathbf{e}_{3} \cdot\left(\mathbf{A}_{1}+\mathrm{i} \mathbf{A}_{2}\right)\right)=0$. This implies $\alpha_{2}=0$ except on a set of measure zero in M.

Using this and evaluating equation (4.19) on $\mathbf{A}_{1} \times \mathbf{A}_{2}$, we get $\alpha_{5}\left(\partial_{z} \mathbf{A}_{1}+\mathrm{i} \partial_{z} \mathbf{A}_{2}\right)^{\top}\left(\mathbf{A}_{1} \times\right.$ $\left.\mathbf{A}_{2}\right)=0$ which again implies $\alpha_{5}=0$ except on a set of measure zero in M. Then multiplying (4.19) on the right by $A^{*} \mathbf{x}$, taking the dot product with \mathbf{x}, and using the formula $A A^{*} \mathbf{x}=2 \mathbf{x}$, we get $\alpha_{1}=0$. Multiplying the remaining equation on the left by \mathbf{e}_{3}^{\top}, we get $\alpha_{4}\left(j_{1}^{\text {spin }}\left(A, \partial_{z} A\right) \mathbf{e}_{2}^{\top}-j_{2}^{\text {spin }}\left(A, \partial_{z} A\right) \mathbf{e}_{1}^{\top}\right) \partial_{z} A=0$, which again, except on a set of measure zero in M, implies $\alpha_{4}=0$. From this it follows that $\alpha_{3}=0$ except on a set of measure zero in M.

4.2.2 The A-phase - second regime

In this situation, we consider the orbit $M=\left\{R A_{0} R^{-1} \mid R \in S O(3)\right\}$ of $S O(3)$ through A_{0} given by (4.5). A direct verification proves the following result.

Proposition 4.6 (i) The isotropy subgroup $S O(3)_{A_{0}}$ equals

$$
S O(3)_{A_{0}}=\left\{I_{3},\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right),\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\right\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

the group isomorphism being given by

$$
\begin{aligned}
I_{3} & \longleftrightarrow(1,1), \quad\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \longleftrightarrow(1,-1), \\
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) & \longleftrightarrow(-1,1), \quad\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \longleftrightarrow(-1,-1) .
\end{aligned}
$$

(ii) We have the diffeomorphism

$$
S O(3) / S O(3)_{A_{0}} \ni[R]_{S O(3)_{0}} \longmapsto R A_{0} R^{-1} \in \operatorname{Orb}\left(A_{0}\right) .
$$

Lagrangian formulation. We apply Theorem 4.1 with this description of the orbit. The reduced velocity (see (2.5)) is given here by $\mathbf{w}=\left(\partial_{z} R\right) R^{-1}$. The second formula in (2.9) becomes

$$
\partial_{z} A=\widehat{\mathbf{w}} A-A \widehat{\mathbf{w}}=[\widehat{\mathbf{w}}, A] .
$$

Using this expression and formula (4.2), the Euler-Poincaré Lagrangian (2.8) reads

$$
l(\mathbf{w}, A)=\operatorname{Re} \operatorname{Tr}\left(\Gamma \partial_{z} A^{*} \partial_{z} A\right)=\langle\langle[A, \widehat{\mathbf{w}}],[A, \widehat{\mathbf{w}}]\rangle\rangle,
$$

(see (4.3)). Defining

$$
\begin{equation*}
J_{a b}(A)=\left\langle\left\langle\left[A, \hat{\mathbf{e}}_{a}\right],\left[A, \widehat{\mathbf{e}}_{b}\right]\right\rangle\right\rangle, \tag{4.20}
\end{equation*}
$$

the Lagrangian (4.11) reads

$$
l(\mathbf{w}, A)=\sum_{a, b=1}^{3} J_{a b}(A) w_{a} w_{b}=\mathbf{w}^{\top} \mathbf{J}(A) \mathbf{w}
$$

The Euler-Poincaré equations (2.9) are

$$
\partial_{z} \frac{\delta l}{\delta \mathbf{w}}+\mathrm{ad}_{\mathbf{w}}^{*} \frac{\delta l}{\delta \mathbf{w}}=-\mathbf{J}\left(\frac{\delta l}{\delta A}\right),
$$

where $\mathbf{J}: T^{*} \operatorname{Orb}\left(A_{0}\right) \rightarrow \mathfrak{s o}(3)^{*}$ is the momentum map of the right action of $S O(3)$ on $T^{*} \operatorname{Orb}\left(A_{0}\right)$. Using the duality pairing $\langle A, B\rangle=\operatorname{Re} \operatorname{Tr}\left(A^{*} B\right)$ on $\mathfrak{g l}(3, \mathbb{C})$, we get

$$
\begin{equation*}
\frac{d}{d z} \frac{\delta l}{\delta \mathbf{w}}+\frac{\delta l}{\delta \mathbf{w}} \times \mathbf{w}=2 \operatorname{Re} \overrightarrow{\left[\frac{\delta l^{*}}{\delta A}, A\right]} \tag{4.21}
\end{equation*}
$$

where we have

$$
\frac{\delta l}{\delta \mathbf{w}}=2 \mathbf{J}(A) \mathbf{w}, \quad \frac{\delta l}{\delta A}=2[[\widehat{\mathbf{w}}, A] \Gamma, \widehat{\mathbf{w}}] .
$$

Hamiltonian formulation. Using the general formula (3.4) for the coadjoint action of the semidirect product $S O(3) \subseteq \mathfrak{S l}(3, \mathbb{C})$, it is it easily seen that the coadjoint orbit through $\left(0, A_{0}\right)$ is $\mathfrak{s o}(3)^{*} \times \operatorname{Orb}\left(A_{0}\right)$. This is consistent with the general theory in Theorem 3.1: since $\mathfrak{g}_{a_{0}}=0$, the dimension of the orbit is six.

Define $\mathbf{m}:=\frac{\delta l}{\delta \mathbf{w}}=2 \mathbf{J}(A) \mathbf{w}$. Thus the Hamiltonian associated to the Lagrangian l has the expression

$$
\begin{equation*}
h(\mathbf{m}, A)=\mathbf{m}^{\top} \mathbf{w}-l(\mathbf{w}, A)=\frac{1}{4} \mathbf{m}^{\top} \mathbf{J}(A)^{-1} \mathbf{m} . \tag{4.22}
\end{equation*}
$$

The non-degenerate Lie-Poisson bracket on the coadjoint orbit $\mathfrak{s o}(3)^{*} \times \operatorname{Orb}\left(A_{0}\right)$ is

$$
\begin{equation*}
\{f, h\}(\mathbf{m}, A)=\mathbf{m} \cdot\left(\frac{\delta f}{\delta \mathbf{m}} \times \frac{\delta h}{\delta \mathbf{m}}\right)+\left\langle\frac{\delta h}{\delta A},\left[A, \frac{\widehat{\delta f}}{\delta \mathbf{m}}\right]\right\rangle-\left\langle\frac{\delta f}{\delta A},\left[A, \frac{\widehat{\delta h}}{\delta \mathbf{m}}\right]\right\rangle \tag{4.23}
\end{equation*}
$$

and hence the equations $\partial_{z} f=\{f, h\}$, for any f, are

$$
\begin{equation*}
\partial_{z} \mathbf{m}+\mathbf{m} \times \frac{\delta h}{\delta \mathbf{m}}=-2 \operatorname{Re}\left[\overrightarrow{\left[\frac{\delta h^{*}}{\delta A}, A\right]} \quad \partial_{z} A=\left[\frac{\widehat{\delta h}}{\delta \mathbf{m}}, A\right] .\right. \tag{4.24}
\end{equation*}
$$

We prove that the Hamiltonian system given by (4.22) relative to the Poisson bracket (4.23) on the six dimensional coadjoint obit $\mathfrak{s o}(3)^{*} \times \operatorname{Orb}\left(A_{0}\right)$ is completely integrable. The three integrals of motion are the Hamiltonian (4.22), the momentum map j_{m} given in (4.17), i.e., $j_{m}(\mathbf{m}, A)=\left\langle\left\langle\left[\frac{1}{2} \mathbf{J} \widehat{(A)^{-1}} \mathbf{m}, A\right]\right.\right.$, i $\left.\left.A\right\rangle\right\rangle$ after transforming to the variables (\mathbf{m}, A), and $\mathbf{J}_{3}(\mathbf{m}, A):=\mathbf{e}_{3} \cdot \mathbf{m}$. As in the discussion of the A-phase, the previous regime, we note that j_{m} is the momentum map associated to the circle action on configuration space given by $A \mapsto e^{i \varphi} A$. Puling back j_{m} to the Hamiltonian side, i.e., expressing it in the variables (\mathbf{m}, A), it follows that $\left\{h, j_{m}\right\}=0$. It is important to note that this $U(1)$-action with momentum map j_{m} is expressed in the variables (\mathbf{m}, A) as: $(\mathbf{m}, A) \mapsto$ ($\mathbf{m}, e^{\mathrm{i} \varphi} A$).

Now, consider a second circle action on $\mathfrak{s o}(3)^{*} \times \operatorname{Orb}\left(A_{0}\right)$ given by

$$
(\mathbf{m}, A) \mapsto\left(\rho(\varphi) \mathbf{m}, \rho(\varphi) A \rho(\varphi)^{-1}\right), \quad \text { where } \quad \rho(\varphi):=\exp \left(\varphi \widehat{\mathbf{e}}_{3}\right) .
$$

This is the coadjoint action of a subgroup of $S O(3) \mathbb{S} \mathfrak{g l}(3, \mathbb{C})$ and hence it is Poisson. It admits a momentum map which is \mathbf{J}_{3}. The Hamiltonian h given by (4.22) is invariant under this action and so we conclude that $\left\{h, \mathbf{J}_{3}\right\}=0$. The action $(\mathbf{m}, A) \mapsto$ $\left(\rho(\varphi) \mathbf{m}, \rho(\varphi) A \rho(\varphi)^{-1}\right)$ is induced via the cotangent bundle version of Theorem 4.1 by the cotangent lift of the action $A \mapsto \rho(\varphi) A \rho(\varphi)^{-1}$. This action on configuration space commutes with the previously considered circle action $A \mapsto e^{\mathrm{i} \varphi} A$. Therefore, the associate momentum maps commute, i.e., $\left\{j_{m}, \mathbf{J}_{3}\right\}=0$. Concluding, we have $\left\{h, j_{m}\right\}=0$, $\left\{h, \mathbf{J}_{3}\right\}=0,\left\{j_{m}, \mathbf{J}_{3}\right\}=0$.

Finally, we prove the functional independence of the three integrals h, j_{m}, \mathbf{J}_{3}. Instead of showing that their differentials are linearly independent away from a subset of measure zero in $\mathfrak{s o}(3)^{*} \times \operatorname{Orb}\left(A_{0}\right)$, we will show that the Hamiltonian vector fields generated by these integrals are independent on such a set. Since j_{m} and \mathbf{J}_{3} are momentum maps,
their Hamiltonian vector fields relative to the Lie-Poisson bracket (4.23) coincide with the infinitesimal generator vector fields of the corresponding $U(1)$-actions. These vector fields are hence $(\mathbf{m}, A) \mapsto(\mathbf{m}, A ; \mathbf{0}, \mathrm{i} A)$ and $(\mathbf{m}, A) \mapsto\left(\mathbf{m}, A ; \mathbf{e}_{3} \times \mathbf{m},\left[\widehat{\mathbf{e}}_{3}, A\right]\right)$.

Now we compute the Hamiltonian vector field for h given by (4.22). We have $\delta h / \delta \mathbf{m}=\frac{1}{2} \mathbf{J}(A)^{-1} \mathbf{m}$. A direct computation shows that

$$
\frac{\delta h}{\delta A}=2[\widehat{\mathbf{w}},[\widehat{\mathbf{w}}, A] \Gamma], \quad \text { where } \quad \mathbf{w}:=\frac{1}{2} \mathbf{J}(A)^{-1} \mathbf{m} .
$$

Therefore, from (4.24), we obtain the expression of the Hamiltonian vector field defined by h, namely,

$$
(\mathbf{m}, A) \longmapsto X_{h}(\mathbf{m}, A)=(\mathbf{m}, A ; \mathbf{w} \times \mathbf{m}-4 \operatorname{Re} \overrightarrow{[[\Gamma[A, \widehat{\mathbf{w}}], \widehat{\mathbf{w}}], A]},[\widehat{\mathbf{w}}, A])
$$

We need to show that

$$
\left\{\begin{array}{l}
\alpha_{1}(\mathbf{w} \times \mathbf{m}-4 \operatorname{Re} \vec{X})+\alpha_{3} \mathbf{e}_{3} \times \mathbf{m}=0 \\
\alpha_{1}[\widehat{\mathbf{w}}, A]+\alpha_{2} \mathrm{i} A+\alpha_{3}\left[\hat{\mathbf{e}}_{3}, A\right]=0
\end{array}\right.
$$

where $X:=[[\Gamma[A, \widehat{\mathbf{w}}], \widehat{\mathbf{w}}], A]$, implies that $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$ for generic (\mathbf{m}, A). Taking the dot product of the first equation with \mathbf{m} yields $\alpha_{1} \operatorname{Re} \vec{X} \cdot \mathbf{m}=0$. It is easy to find points (\mathbf{m}, A) for which $\operatorname{Re} \vec{X} \cdot \mathbf{m} \neq 0$. Since this expression is polynomial in \mathbf{w} and A and since it does not vanish identically, its set of zeros is of measure zero in $\mathfrak{s o}(3)^{*} \times \operatorname{Orb}\left(A_{0}\right)$. This shows that for a set of measure zero on this phase space, $\alpha_{1}=0$. Choosing \mathbf{m} not collinear with \mathbf{e}_{3}, implies that $\alpha_{3}=0$. Now, for any $A \in \operatorname{Orb}\left(A_{0}\right) \neq 0$, we get $\alpha_{2}=0$. We have proved the following result.

Theorem 4.7 The three functions h, j_{m}, \mathbf{J}_{3} form a completely integrable system on the six dimensional coadjoint orbit $\mathfrak{s o}(3)^{*} \times \operatorname{Orb}\left(A_{0}\right)$.

4.2.3 The B-phase

We consider the element

$$
I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in \mathfrak{g l}(3, \mathbb{C})
$$

Proposition 4.8 (i) The isotropy subgroup of I_{3} is

$$
H=\{(1, R, R) \mid R \in S O(3)\} \subset G=U(1) \times S O(3)_{L} \times S O(3)_{R}
$$

(ii) We have the diffeomorphism

$$
\begin{equation*}
G / H \ni\left[e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right]_{H} \longmapsto\left(e^{\mathrm{i} \varphi}, R_{1} R_{2}^{-1}\right) \in U(1) \times S O(3) . \tag{4.25}
\end{equation*}
$$

(iii) We have the diffeomorphism

$$
\begin{equation*}
U(1) \times S O(3) \ni\left(e^{\mathrm{i} \varphi}, R\right) \longmapsto e^{\mathrm{i} \varphi} R \in \operatorname{Orb}\left(I_{3}\right) . \tag{4.26}
\end{equation*}
$$

Proof. (i) By taking the imaginary part of the equality $e^{\mathrm{i} \varphi} R_{1} R_{2}^{-1}=I_{3}$, we obtain that $\varphi \in\{0, \pi\}$. So we get $\pm R_{1} R_{2}=I_{3}$. Taking the determinant shows that the minus sign is impossible, therefore the result follows.
(ii) The result follows from a direct verification.
(iii) From (i), it follows that we have the diffeomorphism $\left[e^{\mathrm{i} \varphi}, R_{1}, R_{2}\right]_{H} \in G / H \mapsto$ $e^{\mathrm{i} \varphi} R_{1} R_{2}^{-1} \in \operatorname{Orb}\left(I_{3}\right)$. The result then follows by composing with the diffeomorphism obtained in (ii).

We observe that the subgroup $\widetilde{G}:=U(1) \times S O(3)_{L} \subset G$ acts transitively on the orbit $\operatorname{Orb}\left(I_{3}\right)$, see (4.25), (4.26). The isotropy subgroup of I_{3} is $\widetilde{G}_{I_{3}}=H \cap \widetilde{G}=\left\{1, I_{3}, I_{3}\right\}$. We recover the fact that the orbit $\operatorname{Orb}\left(I_{3}\right) \subset \mathfrak{g l}(3, \mathbb{C})$ is diffeomorphic to $U(1) \times S O(3)$.

As a consequence, we apply Theorem 4.1 with this description of the orbit and hence the Lie algebra one has to consider is $\mathbb{R} \times \mathfrak{s o}(3)_{L}$. On this orbit M we consider the Lagrangian density given by the gradient part only, i.e. $\mathcal{L}(A, \nabla A)=F_{\text {grad }}(A, \nabla A)$.

The reduced velocity $\xi(z)=\partial_{z} g g^{-1}$ of the general theory (see (2.5)) is given here by $\xi=(v, \mathbf{w}): X \rightarrow \mathbb{R} \times \mathfrak{s o}(3)_{L}$, where $v=\partial_{z} \varphi$, and $\mathbf{w}=R^{-1}\left(\partial_{z} R\right)$. The Euler-Poincaré Lagrangian

$$
l=l(\xi, m): \mathbb{R} \times \mathfrak{s o}(3)_{L} \times M \rightarrow \mathbb{R}
$$

of the general theory given in (2.8), is computed in this case to be

$$
\begin{aligned}
l(v, \mathbf{w}, A) & =F_{\text {grad }}\left(A, \partial_{z} A\right)=\langle\langle\mathrm{i} v A+A \widehat{\mathbf{w}}, \mathrm{i} v A+A \widehat{\mathbf{w}}\rangle\rangle \\
& =v^{2}\langle\langle A, A\rangle\rangle+\mathbf{w}^{\top} I(A) \mathbf{w}+2 v\langle\langle A \mathrm{i}, A \widehat{\mathbf{w}}\rangle\rangle \\
& =2 \gamma_{1}\|\mathbf{w}\|^{2}+\left(\gamma_{2}+\gamma_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right)+\left(3 \gamma_{1}+\gamma_{2}+\gamma_{3}\right) v^{2},
\end{aligned}
$$

where $I_{a b}(A)=\left\langle\left\langle A \widehat{\mathbf{e}}_{a}, A \widehat{\mathbf{e}}_{b}\right\rangle\right\rangle$ and we used $A=e^{\mathrm{i} \varphi} R$ so that $A^{*} A=I_{3}$.
The Euler-Poincaré equations (2.9) are

$$
\begin{equation*}
\partial_{z} \frac{\delta l}{\delta v}=\mathbf{J}_{1}\left(\frac{\delta l}{\delta A}\right), \quad \partial_{z} \frac{\delta l}{\delta \mathbf{w}}-\operatorname{ad}_{\mathbf{w}}^{*} \frac{\delta l}{\delta \mathbf{w}}=\mathbf{J}_{2}\left(\frac{\delta l}{\delta A}\right) \tag{4.27}
\end{equation*}
$$

where $\mathbf{J}_{1}: T^{*} M \rightarrow \mathbb{R}$ is the momentum map of the $U(1)$ action $A \mapsto e^{\mathrm{i} \psi} A$, and $\mathbf{J}_{2}: T^{*} M \rightarrow \mathfrak{s o}(3)_{L}^{*}$ is the momentum map of the $S O(3)$ action $A \rightarrow Q A$. They have the expressions

$$
\begin{equation*}
\mathbf{J}_{1}\left(\alpha_{A}\right)=\operatorname{Re} \operatorname{Tr}\left(\alpha_{A}^{*} \mathrm{i} A\right) \quad \text { and } \quad \mathbf{J}_{2}\left(\alpha_{A}\right)=2 \overrightarrow{\operatorname{Re}\left(\alpha_{A}^{*} A\right)} \tag{4.28}
\end{equation*}
$$

The second equation in (2.9) is given, in this case, by

$$
\partial_{z} A=\mathrm{i} v A+A \widehat{\mathbf{w}}
$$

Since

$$
\frac{\delta l}{\delta v}=2\left(3 \gamma_{1}+\gamma_{2}+\gamma_{3}\right) v, \quad \frac{\delta l}{\delta \mathbf{w}}=4 \gamma_{1} \mathbf{w}+2\left(\gamma_{2}+\gamma_{3}\right)\left(w_{1}, w_{2}, 0\right)^{\top}=\mathbf{J} \mathbf{w}, \quad \frac{\delta l}{\delta A}=0
$$

where $\mathbf{J}=\operatorname{diag}\left(4 \gamma_{1}+2 \gamma_{2}+2 \gamma_{3}, 4 \gamma_{1}+2 \gamma_{2}+2 \gamma_{3}, 4 \gamma_{1}\right)$, we get

$$
\begin{equation*}
\partial_{z} v=0, \quad \partial_{z} \mathbf{J w}+\mathbf{w} \times \mathbf{J w}=0, \quad \partial_{z} A=i v A+A \widehat{\mathbf{w}} \tag{4.29}
\end{equation*}
$$

The equation for \mathbf{w} is the Euler equation for a free symmetric rigid body with moment of inertia J whose solutions are well-known (see e.g., [Lawden, 1989, §5.7]). In this special case, all equations decouple and (4.29) can be solved explicitly.

Remark 4.9 An interesting question is the transition from one phase to another. In the case of liquid crystals, this means the transition from biaxial nematics to uniaxial nematics which leads to the deformation of the orbit $S O(3) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ to $S O(3) / \mathbb{Z}_{2}$. We do not consider this problem in the present paper.

4.3 Neutron stars

The classification of the phases in neutron stars parallels the procedure used in the classification of the phases for superfluid liquid Helium ${ }^{3} \mathrm{He}$, taking into account the differences associated to the order parameter of these two problems. For details, see Monastyrsky and Sasorov [2011]. We shall use the notations of this paper below and consider several examples of orbits.

Define $S^{2}\left(\mathbb{C}^{3}\right)_{0}:=\left\{A \in \mathfrak{g l}(3, \mathbb{C}) \mid A^{\top}=A, \operatorname{Tr}(A)=0\right\}$. The direct product Lie group $U(1) \times S O(3)$ acts on $S^{2}\left(\mathbb{C}^{3}\right)_{0}$ by

$$
\begin{equation*}
A \longmapsto e^{\mathrm{i} \varphi} R A R^{-1} \tag{4.30}
\end{equation*}
$$

where $e^{\mathrm{i} \varphi} \in U(1)$ and $R \in S O(3)$. The possible non-trivial orbits of this group action are given in Monastyrsky and Sasorov [2011] and denoted by Ω_{i}, where $i=1, \ldots, 10$. We shall consider below only the most interesting examples $i=1,4,6,8$.

4.3.1 $\quad \Omega_{1}$-phase

Consider the orbit of the group $U(1) \times S O(3)$ through

$$
A_{0}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) \in S^{2}\left(\mathbb{C}^{3}\right)_{0}
$$

A direct verification shows that the isotropy subgroup of A_{0} for the action (4.30) is the one-dimensional subgroup $\left\{\left(1, \rho(\varphi) J_{ \pm}\right) \mid \varphi \in \mathbb{R}\right\} \subset U(1) \times S O(3)$, where $\rho(\varphi)=$ $\exp \left(\varphi \widehat{\mathbf{e}}_{3}\right), J_{ \pm}$is defined in (4.6), and $\rho(\varphi) J_{ \pm}=J_{ \pm} \rho(\varphi)$. So, the $(U(1) \times S O(3))$-orbit though A_{0} is diffeomorphic to $U(1) \times\left[S O(3) /\left(\mathbb{Z}_{2} \times S O(2)\right)\right]$ which is the Ω_{1}-orbit in the classification Monastyrsky and Sasorov [2011]. Explicitly, this $U(1) \times S O(3)$-orbit is

$$
M=\operatorname{Orb}\left(A_{0}\right)=\left\{e^{\mathrm{i} \varphi}\left(\mathbf{u} \mathbf{u}^{\top}+\mathbf{v} \mathbf{v}^{\top}-2 \mathbf{w} \mathbf{w}^{\top}\right) \mid \mathbf{u}, \mathbf{v} \in S^{2}, \mathbf{u} \cdot \mathbf{v}=0, \mathbf{w}=\mathbf{u} \times \mathbf{v}\right\}
$$

Note that, in accordance with the isotropy subgroup described above, the identities characterizing $M=\operatorname{Orb}\left(A_{0}\right)$ are unchanged if we replace

- \mathbf{u} by $\mathbf{u} \cos \theta+\mathbf{v} \sin \theta$ and \mathbf{v} by $-\mathbf{u} \sin \theta+\mathbf{v} \cos \theta$ (this is the $S O(2)$-action)
- \mathbf{v} by $-\mathbf{v}$ and hence \mathbf{w} by $-\mathbf{w}$ (this is the J_{-}-action).

Note that since the isotropy subgroup is Abelian, its coadjoint orbits are points. Therefore, by Theorem 3.1, the canonical cotangent bundle $T^{*} M$ is symplectically diffeomorphic to the coadjoint orbit $\mathcal{O}_{\left(p, \mathbf{m}, A_{0}\right)}$ endowed, as usual, with the minus orbit symplectic structure, $(p, \mathbf{m}) \in(\mathbb{R} \times \mathfrak{s o}(3))^{*}$.

To find the Lagrangian associated to this phase, we note that the reduced velocity $\xi=\partial_{z} g g^{-1}$ of the general theory (see (2.5)) is given here by $\xi=(v, \mathbf{w}): \mathbb{R} \rightarrow \mathbb{R} \times \mathfrak{s o}(3)$,
where $v=\partial_{z} \varphi$ and $\mathbf{w}=\left(\partial_{z} R\right) R^{-1}$. The infinitesimal generator of the group action, i.e., the second formula in (2.9), has in this case the expression

$$
\partial_{z} A=\mathrm{i} v A+[\widehat{\mathbf{w}}, A] .
$$

This formula and (4.2) show that the Euler-Poincaré Lagrangian (2.8) of the general theory becomes in this case the function $l=l(\xi, m): \mathbb{R} \times \mathfrak{s o}(3) \times M \rightarrow \mathbb{R}$ given by

$$
\begin{align*}
l(v, \mathbf{w}, A) & =\langle\langle\mathrm{i} v A+[\widehat{\mathbf{w}}, A], \mathrm{i} v A+[\widehat{\mathbf{w}}, A]\rangle\rangle \\
& =v^{2}\langle\langle A, A\rangle\rangle+2 v\left\langle\langle\mathrm{i} A,[\widehat{\mathbf{w}}, A]\rangle+\mathbf{w}^{\top} \mathbf{J}(A) \mathbf{w}\right. \tag{4.31}
\end{align*}
$$

(see (4.3) and (4.20)). Thus, the Euler-Poincaré equations (2.9) read

$$
\begin{align*}
& \partial_{z} \frac{\delta l}{\delta v}=\operatorname{Re} \operatorname{Tr}\left(\frac{\delta l}{\delta A}^{*} A \mathrm{i}\right), \quad \partial_{z} \frac{\delta l}{\delta \mathbf{w}}+\frac{\delta l}{\delta \mathbf{w}} \times \mathbf{w}=2 \overrightarrow{\operatorname{Re}\left[\frac{\delta l}{\delta A}^{*}, A\right]} \tag{4.32}\\
& \partial_{z} A=\mathrm{i} v A+[\widehat{\mathbf{w}}, A]
\end{align*}
$$

and where we have

$$
\begin{aligned}
\frac{\delta l}{\delta v} & =2 v\langle\langle A, A\rangle\rangle+2\langle\langle\mathrm{i} A,[\widehat{\mathbf{w}}, A]\rangle\rangle, \quad \frac{\delta l}{\delta \mathbf{w}}=2 \mathbf{J}(A) \mathbf{w}-4 v \overrightarrow{\operatorname{Re}\left[\mathrm{i} \Gamma A^{*}, A\right]} \\
\frac{\delta l}{\delta A} & =[[\widehat{\mathbf{w}}, A] \Gamma, \widehat{\mathbf{w}}]+[[\widehat{\mathbf{w}}, A] \Gamma, \widehat{\mathbf{w}}]^{\top}+X
\end{aligned}
$$

where X is the traceless symmetric part of $v^{2} A \Gamma-2 v \mathrm{i}[\widehat{\mathbf{w}}, A] \Gamma-2 v \mathrm{i}[\widehat{\mathbf{w}}, A \Gamma]$.
The Hamiltonian associated to l on the six dimensional coadjoint orbit $\mathcal{O}_{\left(p, \mathbf{m}, A_{0}\right)}$ generates an integrable system. The integrals in involution are h, j_{m}, \mathbf{J}_{3} (see the text after (4.24) for the expressions of j_{m} and \mathbf{J}_{3}). To show independence on a dense open subset of phase space, we shall work on the Hamiltonian side. As in Subsection 4.2.2, the two circle actions

$$
(p, \mathbf{m}, A) \mapsto\left(p, \mathbf{m}, e^{\mathrm{i} \varphi} A\right), \quad(p, \mathbf{m}, A) \mapsto\left(p, \rho(\varphi) \mathbf{m}, \rho(\varphi) A \rho(\varphi)^{-1}\right)
$$

where $\rho(\varphi):=\exp \left(\varphi \widehat{\mathbf{e}}_{3}\right)$, generate the momentum maps j_{m} and \mathbf{J}_{3}, respectively. The infinitesimal generator vector fields of these actions coincide with the Hamiltonian vector fields of j_{m} and \mathbf{J}_{3}, respectively, i.e., they are

$$
X_{j_{m}}(p, \mathbf{m}, A)=(0, \mathbf{0}, \mathrm{i} A), \quad X_{\mathbf{J}_{3}}(p, \mathbf{m}, A)=\left(0, \mathbf{e}_{3} \times \mathbf{m},\left[\widehat{\mathbf{e}}_{3}, A\right]\right)
$$

Finally the Hamiltonian vector field is obtained by using (4.32) and the relations $\frac{\delta h}{\delta A}=$ $-\frac{\delta l}{\delta A}, \mathbf{w}=\frac{\delta h}{\delta \mathbf{m}}, v=\frac{\delta h}{\delta v}$. A direct computation yields

$$
X_{h}(p, \mathbf{m}, A)=\left(-\operatorname{Re} \operatorname{Tr}\left({\frac{\delta h^{*}}{\delta A}}^{\mathrm{i}} A\right), \frac{\delta h}{\delta \mathbf{m}} \times \mathbf{m}-2 \operatorname{Re}\left[\frac{\delta h^{*}}{\delta A}, A\right], \mathrm{i} \frac{\delta h}{\delta p} A+\left[\frac{\widehat{\delta h}}{\delta \mathbf{m}}, A\right]\right)
$$

Writing $\alpha_{1} X_{h}(p, \mathbf{m}, A)+\alpha_{2} X_{\mathbf{J}_{3}}(p, \mathbf{m}, A)+\alpha_{3} X_{j_{m}}(p, \mathbf{m}, A)=0$, implies that $\alpha_{1}=\alpha_{2}=$ $\alpha_{3}=0$ on an open dense set of points (p, \mathbf{m}, A) in the coadjoint orbit.

Theorem 4.10 The three functions h, j_{m}, \mathbf{J}_{3} form a completely integrable system on all six dimensional coadjoint orbits $\mathcal{O}_{\left(p, \mathbf{m}, A_{0}\right)}$.

4.3.2 $\quad \Omega_{4}$-phase

The Ω_{4}-phase corresponds to

$$
A_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \in S^{2}\left(\mathbb{C}^{3}\right)_{0}
$$

where $\omega^{3}=1$. The isotropy subgroup is

$$
\begin{gathered}
(U(1) \times S O(3))_{A_{0}}=\left\{\left(1,\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{3}
\end{array}\right)\right),\left(\omega,\left(\begin{array}{ccc}
0 & 0 & \epsilon_{1} \\
\epsilon_{2} & 0 & 0 \\
0 & \epsilon_{3} & 0
\end{array}\right)\right), \left.\left(\omega^{2},\left(\begin{array}{ccc}
0 & \epsilon_{1} & 0 \\
0 & 0 & \epsilon_{2} \\
\epsilon_{3} & 0 & 0
\end{array}\right)\right) \right\rvert\,\right. \\
\left.\epsilon_{i}= \pm 1, i=1,2,3, \epsilon_{1} \epsilon_{2} \epsilon_{3}=1\right\}
\end{gathered}
$$

and it is isomorphic to the tetrahedral group (the 12 elements alternating group \mathfrak{A}_{4} on 4 letters). The $(U(1) \times S O(3))$-orbit $\operatorname{Orb}\left(A_{0}\right)=M$ is hence diffeomorphic to $[U(1) \times S O(3)] / \mathfrak{A}_{4}$, which is the Ω_{4}-coadjoint orbit in the classification Monastyrsky and Sasorov [2011].

To compute the texture equations associated to this phase, we note that the reduced velocity $\xi=\partial_{z} g g^{-1}$ of the general theory (see (2.5)) is given here by $\xi=(v, \mathbf{w})$: $\mathbb{R} \rightarrow \mathbb{R} \times \mathfrak{s o}(3)$, where $v=\partial_{z} \varphi$ and $\mathbf{w}=\left(\partial_{z} R\right) R^{-1}$. The second formula in (2.9) (the infinitesimal generator of the action) is given here by

$$
\partial_{z} A=\mathrm{i} v A+[\widehat{\mathbf{w}}, A] .
$$

Using this expression and formula (4.2), the Euler-Poincaré Lagrangian

$$
l=l(\xi, m): \mathbb{R} \times \mathfrak{s o}(3) \times M \rightarrow \mathbb{R}
$$

of the general theory given in (2.8), is computed in this case to be

$$
\begin{align*}
l(v, \mathbf{w}, A) & =\operatorname{Re} \operatorname{Tr}\left(\Gamma \partial_{z} A^{*} \partial_{z} A\right) \\
& =\mathbf{w}^{\top} \mathbf{J}(A) \mathbf{w}+2 v\langle\langle\mathrm{i} A,[\widehat{\mathbf{w}}, A]\rangle\rangle+\left(3 \gamma_{1}+\gamma_{2}+\gamma_{3}\right) v^{2}, \tag{4.33}
\end{align*}
$$

(see (4.3) and (4.20)). Thus, the Euler-Poincaré equations (2.9) read

$$
\partial_{z} \frac{\delta l}{\delta v}=\operatorname{Re} \operatorname{Tr}\left(\frac{\delta l}{\delta A}^{*} A \mathrm{i}\right), \quad \partial_{z} \frac{\delta l}{\delta \mathbf{w}}+\frac{\delta l}{\delta \mathbf{w}} \times \mathbf{w}=2 \overrightarrow{\operatorname{Re}\left[\frac{\delta l}{\delta A}^{*}, A\right]}, \quad \partial_{z} A=\mathrm{i} v A+[\widehat{\mathbf{w}}, A],
$$

where we have

$$
\begin{array}{ll}
\frac{\delta l}{\delta v} & =2\left(3 \gamma_{1}+\gamma_{2}+\gamma_{3}\right) v+\langle\langle\mathrm{i} A,[\widehat{\mathbf{w}}, A]\rangle\rangle, \\
\frac{\delta l}{\delta A} & =[[\widehat{\mathbf{w}}, A] \Gamma, \widehat{\mathbf{w}}]+[[\widehat{\mathbf{w}}, A] \Gamma, \widehat{\mathbf{w}}]^{\top}+X,
\end{array}
$$

where X is the traceless symmetric part of $v^{2} A \Gamma-2 v i[\widehat{\mathbf{w}}, A] \Gamma-2 v \mathrm{i}[\widehat{\mathbf{w}}, A \Gamma]$.
Passing to the Hamiltonian formulation, a direct computation using (3.3) gives the Lie-Poisson bracket

$$
\begin{align*}
\{f, h\}(p, \mathbf{m}, A)=\mathbf{m} \cdot & \left(\frac{\delta f}{\delta \mathbf{m}} \times \frac{\delta h}{\delta \mathbf{m}}\right)+\left\langle\frac{\delta h}{\delta A},\left[A, \frac{\widehat{\delta f}}{\delta \mathbf{m}}\right]-\mathrm{i} \frac{\delta f}{\delta p} A\right\rangle \\
& -\left\langle\frac{\delta f}{\delta A},\left[A, \frac{\widehat{\delta h}}{\delta \mathbf{m}}\right]-\mathrm{i} \frac{\delta h}{\delta p} A\right\rangle \tag{4.34}
\end{align*}
$$

where $p:=\frac{\delta l}{\delta v}=2\left(3 \gamma_{1}+\gamma_{2}+\gamma_{3}\right) v$ and $\mathbf{m}:=\frac{\delta l}{\delta \mathbf{w}}=2 \mathbf{J}(A) \mathbf{w}$. Thus, the equations $\partial_{z} f=\{f, h\}$ for any f are

$$
\begin{align*}
& \partial_{z} p=-\operatorname{Re} \operatorname{Tr}\left(\frac{\delta h^{*}}{\delta A} A \mathrm{i}\right), \quad \partial_{z} \mathbf{m}+\mathbf{m} \times \frac{\delta h}{\delta \mathbf{m}}=-2 \operatorname{Re} \overrightarrow{\left[\frac{\delta h^{*}}{\delta A}, A\right]} \\
& \partial_{z} A=\mathrm{i} \frac{\delta h}{\delta p} A+\left[\frac{\delta h}{\delta \mathbf{m}}, A\right] . \tag{4.35}
\end{align*}
$$

The Hamiltonian system generated by h has three integrals of motion in involution: $h, \mathbf{J}_{3}, j_{m}=p$. The integrals \mathbf{J}_{3} and j_{m} commute with h because on the Lagrangian side they are momentum maps and hence constant on the solutions of the Euler-Lagrange equations. The maps \mathbf{J}_{3} and j_{m} commute because they are momentum maps of two commuting circle actions (this is the same argument as given in $\S 4.2 .2$). The fact that $p=j_{m}$ is a direct computation replacing $\partial_{z} A=\mathrm{i} v A+[\widehat{\mathbf{w}}, A]$ in the defining formula (4.17) for j_{m} and using $A=e^{\mathrm{i} \varphi} R A_{0} R^{-1}, A_{0} A_{0}^{*}=I_{3}$. For the complete integrability of this system, one more integral is needed.

4.3.3 $\quad \Omega_{6}$-phase

Consider the orbit of this group through

$$
A_{0}=\left(\begin{array}{rrr}
1 & \mathrm{i} & 0 \\
\mathrm{i} & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \in S^{2}\left(\mathbb{C}^{3}\right)_{0}
$$

We note that

$$
\begin{equation*}
e^{\mathrm{i} \varphi} A_{0}=\rho\left(-\frac{\varphi}{2}\right) A_{0} \rho\left(\frac{\varphi}{2}\right) \tag{4.36}
\end{equation*}
$$

where $\rho(\varphi)=\exp \left(\varphi \widehat{\mathbf{e}}_{3}\right)$. A direct verification shows that the isotropy subgroup of $S O(3)$ for the action (4.30) is $\left\{\tilde{J}_{ \pm}\right\} \cong \mathbb{Z}_{2}$ (see (4.6)). As a consequence, using (4.36), it follows that the isotropy subgroup of the action (4.30) equals

$$
(U(1) \times S O(3))_{A_{0}}=\left\{\left.\left(e^{\mathrm{i} \varphi}, \tilde{J}_{ \pm} \rho\left(\frac{\varphi}{2}\right)\right) \right\rvert\, e^{\mathrm{i} \varphi} \in U(1)\right\} \cong U(1) \times \mathbb{Z}_{2}
$$

The group $\left\{\tilde{J}_{ \pm}\right\} \cong \mathbb{Z}_{2}=\{ \pm 1\}$ acts on $S O(3)$ by $R \mapsto R \tilde{J}_{ \pm}$and $(U(1) \times S O(3))_{A_{0}}$ on $U(1) \times S O(3)$ by $\left(e^{\mathrm{i} \psi}, R\right) \mapsto\left(e^{\mathrm{i} \psi}, R\right)\left(e^{\mathrm{i} \varphi}, \tilde{J}_{ \pm} \rho\left(\frac{\varphi}{2}\right)\right)$. Thus

$$
(U(1) \times S O(3)) /(U(1) \times S O(3))_{A_{0}} \ni\left[e^{\mathrm{i} \psi}, R\right] \longmapsto\left[R \rho\left(-\frac{\varphi}{2}\right)\right] \in S O(3) / \mathbb{Z}_{2}
$$

is a diffeomorphism which shows that the orbit $(U(1) \times S O(3)) \cdot A_{0}$ is diffeomorphic to $S O(3) / \mathbb{Z}_{2}$. We have found the orbit of type Ω_{6} in the classification given in Monastyrsky and Sasorov [2011].

It is easy to see that

$$
R^{\top} A_{0} R=\left(R_{1}+\mathrm{i} R_{2}\right)\left(R_{1}+\mathrm{i} R_{2}\right)^{\top}
$$

where R_{j} is the $j^{\text {th }}$ column of $R \in S O(3), j=1,2$. In view of the previous considerations this shows that

$$
\begin{equation*}
\operatorname{Orb}\left(A_{0}\right)=\left\{(\mathbf{x}+\mathrm{i} \mathbf{y})(\mathbf{x}+\mathrm{i} \mathbf{y})^{\top} \mid \mathbf{x}, \mathbf{y} \in S^{2}, \mathbf{x} \cdot \mathbf{y}=0\right\} \cong S O(3) / \mathbb{Z}_{2} \tag{4.37}
\end{equation*}
$$

Lagrangian formulation. Note that the setting is very similar to the setup for superfluid liquid Helium ${ }^{3} \mathrm{He}$ in the second regime of phase A, since the action turns out the be the same, namely, $A \mapsto R A R^{-1}$. The orbit is, however, different because the matrices A_{0} in these two cases do not lie on the same $S O(3)$-orbit.

The Lagrangian used in this case (see Monastyrsky and Sasorov [2011]) is given by (4.2). Therefore, the Euler-Poincaré Lagrangian takes the same form as in the second regime of the A-phase for superfluid liquid Helium ${ }^{3} \mathrm{He}$, namely,

$$
l(\mathbf{w}, A)=\sum_{a, b=1}^{3} J_{a b}(A) w_{a} w_{b}=\mathbf{w}^{\top} \mathbf{J}(A) \mathbf{w}
$$

where $\mathbf{J}(A)$ is given in (4.20). The Euler-Poincaré equations are thus (4.21). The functional derivatives are in this case

$$
\frac{\delta l}{\delta \mathbf{w}}=2 \mathbf{J}(A) \mathbf{w}, \quad \frac{\delta l}{\delta A}=[[\widehat{\mathbf{w}}, A] \Gamma, \widehat{\mathbf{w}}]+[[\widehat{\mathbf{w}}, A] \Gamma, \widehat{\mathbf{w}}]^{\top} \in S^{2}\left(\mathbb{C}^{3}\right)_{0}
$$

Hamiltonian formulation. All formulas, with the changes noted above, are identical to the ones in the second regime of phase A for superfluid liquid Helium ${ }^{3} \mathrm{He}$, i.e., (4.22) and (4.23) hold. The same considerations about the complete integrability of the equations given at the end of $\S 4.2 .2$ hold because the action given by multiplication with $e^{\mathrm{i} \varphi}$ preserves the orbit $\operatorname{Orb}\left(A_{0}\right)$ given by (4.37) in view of (4.36). We get the following result.

Theorem 4.11 The three functions h, j_{m}, \mathbf{J}_{3} form a completely integrable system on the six dimensional coadjoint orbit Ω_{6}.

4.3.4 $\quad \Omega_{8}$-phase

The Ω_{8}-phase corresponds to

$$
A_{0}^{ \pm}=\left(\begin{array}{rrr}
0 & 1 & \pm \mathrm{i} \\
1 & 0 & 0 \\
\pm \mathrm{i} & 0 & 0
\end{array}\right) \in S^{2}\left(\mathbb{C}^{3}\right)_{0}
$$

Note that $e^{\mp \mathrm{i} \varphi} A_{0}^{ \pm}=\rho(\varphi) A_{0}^{ \pm} \rho(-\varphi)$, where $\rho(\varphi):=\exp \left(\varphi \widehat{\mathbf{e}}_{1}\right)$. Hence $S O(3)$ acts transitively on the orbit through A_{0}, i.e., $\operatorname{Orb}\left(A_{0}\right)=\left\{R A_{0} R^{-1} \mid R \in S O(3)\right\}$. A direct computation shows that the isotropy group $S O(3)_{A_{0}}=\left\{I_{3}\right\}$ and hence $\operatorname{Orb}\left(A_{0}\right)$ is diffeomorphic to $S O(3)$.

It is easy to verify that the isotropy subgroup of the original action equals

$$
(U(1) \times S O(3))_{A_{0}^{ \pm}}=\left\{\left(e^{\mathrm{i} \varphi}, \rho(\pm \varphi)\right) \mid e^{\mathrm{i} \varphi} \in U(1)\right\} \cong U(1)
$$

Following the same method as for the other phases, we conclude that

$$
\ell(\mathbf{w}, A)=\langle\langle[\widehat{\mathbf{w}}, A],[\widehat{\mathbf{w}}, A]\rangle\rangle=\mathbf{w}^{\top} \mathbf{J}(A) \mathbf{w}
$$

where $\widehat{\mathbf{w}}=\left(\partial_{z} R\right) R^{-1}$ and $\mathbf{J}(A)$ is given in (4.20). Thus, the Euler-Poincaré equations (2.9) become in this case

$$
\partial_{z} \frac{\delta l}{\delta \mathbf{w}}+\frac{\delta l}{\delta \mathbf{w}} \times \mathbf{w}=2 \overrightarrow{\operatorname{Re}\left[\frac{\delta l}{}^{* A}, A\right]}, \quad \partial_{z} A=[\widehat{\mathbf{w}}, A]
$$

and we have

$$
\frac{\delta l}{\delta \mathbf{w}}=2 \mathbf{J}(A) \mathbf{w}, \quad \frac{\delta l}{\delta A}=[[\widehat{\mathbf{w}}, A] \Gamma, \widehat{\mathbf{w}}]+[[\widehat{\mathbf{w}}, A] \Gamma, \widehat{\mathbf{w}}]^{\top}
$$

As in the case of the Ω_{6}-phase we obtain the following result.
Theorem 4.12 The three functions h, j_{m}, \mathbf{J}_{3} form a completely integrable system on the six dimensional coadjoint orbit Ω_{8}.

5 Acknowledgments

This paper was finished when the authors were members of the programs "Mathematics of Liquid Crystals" and "Mathematical Modelling and Analysis of Complex Fluids and Active Media in Evolving Domains" at the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, January 7 - August 23, 2013. We express our thanks to the Institute and the organizers of the program for the invitation and a very fruitful atmosphere conducive to work and collaboration.

References

Bogomolov, F. A. and M. I. Monastyrsky [1987], Geometry of the orbit space and phases of ${ }^{3} \mathrm{He}$ and neutron star in p-state, Theoret. and Math. Phys., 73, 1165-1175.

Cendra, H., J. E. Marsden, and T. S. Ratiu, [2001], Lagrangian reduction by stages, Memoirs Amer. Math. Soc. 152(722).

Cendra, H., J. E. Marsden, S. Pekarsky, and T. S. Ratiu [2003], Variational principles for Lie-Poisson and Hamilton-Poincaré equations. Mosc. Math. J. 3(3), 833-867.

Gay-Balmaz, F. and C. Tronci [2010], Reduction theory for symmetry breaking, Phys. D, 239 (20-22), 1929-1947.

Holm D. D., J. E. Marsden and T. S. Ratiu [1998], The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137, 1-81.

Golo, V. I. and M. I. Monastyrsky [1978], Gauge group and phases of superfluid ${ }^{3} \mathrm{He}$, Lett. Math. Phys., 2, 373-378.

Golo, V. I. and M. I. Monastyrsky [1978], Currents in superfluid ${ }^{3}$ He, Lett. Math. Phys., 2, 379-383.
Golo, V. I., M. I. Monastyrsky, and S. P. Novikov [1979], Solutions to the Ginzburg-Landau equations for planar textures in superfluid ${ }^{3} \mathrm{He}$, Comm. Math. Phys., 69,237-246.

Krishnaprasad, P. S. and J. E. Marsden [1987], Hamiltonian structure and stability for rigid bodies with flexible attachments, Arch. Rational Mech. Anal., 98, 71-93.

Landau, L. D. and E. M. Lifshitz [1968], Course of Theoretical Physics, Vol. 5: Statistical Physics. Third revised and enlarged edition Pergamon Press, Oxford-Edinburgh-New York, 1980.

Lawden, D. [1989], Elliptic functions and applications, Applied Mathematical Sciences, 80, SpringerVerlag, New York.

Marsden, J. E., G. Misiołek, J.-P. Ortega, M. Perlmutter, and T. S. Ratiu [2007], Hamiltonian Reduction by Stages, Springer Lecture Notes in Mathematics, 1913, Springer-Verlag 2007.

Marsden, J. E. and M. Perlmutter [2000], The orbit bundle picture of cotangent bundle reduction, C. R. Math. Acad. Sci. Soc. R. Can., 22(2), 35-54.

Marsden, J. E., T. S. Ratiu and A. Weinstein [1984], Semidirect product and reduction in mechanics, Trans. Amer. Math. Soc., 281, 147-177.

Marsden, J. E. and, T. S. Ratiu [1999] Introduction to Mecanics and Symmetry, Springer-Verlag, Texts in Applied Mathematics, vol. 17; 1994, Second Edition, 1999.

Monastyrsky, M. I. [1993], Topology of Gauge Fields and Condensed Mater, Plenum Press.
Monastyrsky M. I. and P. V. Sasorov [2011], Topology of the lattice of vortices in neutron stars, Modern Phys. Lett. A, 26(4), 267-277.

[^0]: ${ }^{1}$ Laboratoire de Météorologie Dynamique, École Normale Supérieure/CNRS, Paris, France. Partially supported by "Projet incitatif de recherch de l'ENS", by the government grant of the Russian Federation for support of research projects implemented by leading scientists, Lomonosov Moscow State University under the agreement No. 11.G34.31.0054, and the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK. gaybalma@lmd.ens.fr
 ${ }^{2}$ Institute of Theoretical and Experimental Physics, Moscow, Russia. Partially supported by the government grant of the Russian Federation for support of research projects implemented by leading scientists, Lomonosov Moscow State University under the agreement No. 11.G34.31.0054, RFBR grant 13-01-00314, and the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK. monastyrsky@itep.ru
 ${ }^{3}$ Section de Mathématiques and Bernoulli Center, École Polytechnique Fédérale de Lausanne. CH1015 Lausanne. Switzerland. Partially supported by Swiss NSF grant 200020-126630, by the government grant of the Russian Federation for support of research projects implemented by leading scientists, Lomonosov Moscow State University under the agreement No. 11.G34.31.0054, and the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK. tudor.ratiu@epf1.ch

[^1]: ${ }^{1}$ The matrices A are related to $\Delta_{\sigma \sigma^{\prime}}^{\prime}$, the "energetic gap" of the triplet pairing of interacting quasiparticles of ${ }^{3} \mathrm{He}$, and so this gap can be expressed in terms of A. Thus A can be regarded as the order parameter of superfluid ${ }^{3} \mathrm{He}$; see [Monastyrsky, 1993, §5.2.1].

