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Lagrangian reductions and integrable systems in condensed matter

We consider a general approach for the process of Lagrangian and Hamiltonian reduction by symmetries in chiral gauge models. This approach is used to show the complete integrability of several one dimensional texture equations arising in liquid Helium phases and neutron stars.

Introduction

There is a well established relation between quantum field theory and condensed matter physics. For example, physical phenomena such a superfluidity and superconductivity are the manifestation of quantum effects at microscopic level. On the other hand, there are classical systems, such as liquid crystals, where many phenomena, such as phase transitions between different mesophases, are described in the framework of the Landaude Gennes theory. These systems include superfluid 3 He, the superfluid core of neutron stars, biaxial and uniaxial nematics.

The common feature of these different systems is that in some interval of the transition temperature, their behavior is determined by the Ginzburg-Landau equation with multidimensional order parameters. Another interesting feature of these systems is the existence of different thermodynamic phases. The description of phase transitions between different phases is a difficult and important problem in condensed matter physics. The approach, based on the identification of thermodynamic phases with orbits of the group of symmetry of the potential in the free energy, as developed in [START_REF] Golo | Solutions to the Ginzburg-Landau equations for planar textures in superfluid 3 He[END_REF], Golo and Monastyrsky [1978a,b], and [START_REF] Bogomolov | Geometry of the orbit space and phases of 3 He and neutron star in p-state[END_REF], is a useful tool for a complete classification of phases and gives a global description of these phases. From many points of view, it is possible to study these systems like a chiral field model. Viewed this way, it is known that these systems can be obtained by a general reduction procedure developed in [START_REF] Gay-Balmaz | Reduction theory for symmetry breaking[END_REF], based on [START_REF] Cendra | Lagrangian reduction by stages[END_REF], [START_REF] Holm | The Euler-Poincaré equations and semidirect products with applications to continuum theories[END_REF], [START_REF] Cendra | Variational principles for Lie-Poisson and Hamilton-Poincaré equations[END_REF]. The goal of this paper is to unify these two approaches and techniques, to formulate a theory that contains them both, and especially to show its effectiveness by studying in detail the complete integrability of several concrete physical systems in different phases.

We begin with a short review of the relevant facts of the Lagrange-Poincaré and Euler-Poincaré variational principles in Section 2. Its Hamiltonian counterpart, Hamilton-Poincaré and Lie-Poisson reduction, are treated in Section 3. We shall limit ourselves with the classical, as opposed to the field theoretical, description of these theories, because all examples analyzed in this paper necessitate only this classical theory. The field theoretical approach, which we have also developed, will be the subject of another paper. The main result of these sections is an equivalence of the two descriptions. These results are used in Section 4, forming the mani body of the paper, to study in detail the behavior of superfluid 3 He and neutron star cores in different phases. The versatility of passing from one description to another, as well as between the Lagrangian and Hamiltonian for-mulations, is crucial in the proof of the complete integrability of the equations associated to different phases. The key to the success of our geometric method is the fact that all physical systems under study have a natural Lagrangian and Hamiltonian formulation within the Lagrange-Poincaré and Hamilton-Poincaré theories, with the Lagrangian and Hamiltonian independent on a very special group of variables. This implies that these systems have an equivalent Euler-Poincaré and Lie-Poisson description which turns out to be considerably simpler and more appropriate to the study of the dynamics of the equations associated to the relevant phases. The possibility of using at once the four descriptions of the systems under consideration leads directly to the proof of complete integrability of the equations describing the system's behavior in different phases.

Lagrange-Poincaré and Euler-Poincaré reduction on Lie groups

In this section we shall quickly review two Lagrangian reduction processes, namely Lagrange-Poincaré and Euler-Poincaré reduction, as they apply to a Lagrangian defined on a Lie group and invariant under right translation by a closed subgroup. We shall also emphasize the case of discrete symmetry groups.

Geometric setup. Let M be the parameter manifold of the theory and let Φ : G M Ñ M be a left transitive Lie group action. Usually, M is a particular orbit of the action of G on a bigger manifold. Selecting one particular orbit corresponds to choosing a particular phase of the physical system. Given a Lie group G, we shall denote by the corresponding Fraktur letter g is Lie algebra.

Choose an element m 0 P M and consider the isotropy subgroup H :" G m 0 . We have the diffeomorphism G{H Q rgs :" gH " Þ ÝÑ gm 0 P M, where H acts on G by right multiplication R h g :" gh for all h P H and g P G. We shall always identify M with G{H via this diffeomorphism and denote by π : G Ñ G{H the orbit space projection.

We suppose that the theory is described by a Lagrangian L " Lpm, 9 mq : T M Ñ R, whose associate Euler-Lagrange equations read

d dt BL B 9 m ´BL Bm " 0.
Recall that these equations follow from applying Hamilton's principle

δ ż t 1 t 0
Lpmptq, 9 mptqqdt " 0, for arbitrary variations of the curve mptq whose corresponding infinitesimal variations δmptq satisfies δmpt 0 q " δmpt 1 q " 0. Since the G-action is transitive on M " G{H, any curve m : rt 0 , t 1 s Ñ M can be written as mptq " Φ gptq pm 0 q ": gptqm 0 , where g : rt 0 , t 1 s Ñ G. By using this relation we can rewrite the action functional in terms of the curve gptq as

ż t 1 t 0 Lpmptq, 9 mptqqdt " ż t 1 t 0 L ˆgptqm 0 , d dt gptqm 0 ˙dt " ż t 1 t 0 L `gptqm 0 , p 9 gptqgptq ´1q M pgptqm 0 q ˘dt,
where, for every ξ P g, M Q m Þ Ñ ξ M pmq :" d dt ˇˇt"0 Φ exp tξ pmq P T m M denotes the infinitesimal generator vector field of the action. This suggests the definition of the Lagrangian L m 0 for curves gptq in the Lie group as

L m 0 : T G Ñ R, L m 0 pg, 9 gq :" L `gm 0 , p 9 gg ´1q M pgm 0 q ˘.
This Lagrangian is clearly H-invariant. Our goal is to find an explicit relation between the Euler-Lagrange equations for L m 0 and L as well as to deduce another simpler equivalent formulation of these equations.

To do this, we shall start with a H-invariant Lagrangian L : T G Ñ R and, following [START_REF] Gay-Balmaz | Reduction theory for symmetry breaking[END_REF], we shall carry out two reductions processes for L. The first one follows the Lagrange-Poincaré reduction theory (see [START_REF] Cendra | Lagrangian reduction by stages[END_REF]), the second one is a generalization of the Euler-Poincaré reduction with parameters (see [START_REF] Holm | The Euler-Poincaré equations and semidirect products with applications to continuum theories[END_REF]). These two reductions correspond to two realizations of the quotient space pT Gq{H.

Lagrange-Poincaré approach. The Lagrange-Poincaré reduction is implemented by using the vector bundle isomorphism α A : pT Gq{H Ñ T M ˆM r h over M " G{H. Here r h :" G ˆH h Ñ M is the adjoint bundle, where the right H-action on G ˆh is given by pg, ηq ¨h :" pgh, Ad h ´1 ηq for all h P H, g P G, and η P h. The vector bundle isomorphism α A is constructed with the help of a principal connection A P Ω 1 pG, hq on the principal bundle π : G Ñ G{H " M and reads α A prv g s H q :" `Tg πpv g q, rg, Apv g qs H ˘" `pv g g ´1q M pmq, rg, Apv g qs H (we denote by rxs H a point in orbit space of the H-action on the manifold whose points are x).

From the given right H-invariant Lagrangian L : T G Ñ R, we get the reduced Lagrangian L : T M ˆM r h Ñ R, L " Lpm, 9 m, σq, defined by Lpg, 9 gq " L pgm 0 , 9 gm 0 , rg, Apg, 9 gqs H q .

(2.1)

The reduced Euler-Lagrange equations (or Lagrange-Poincaré equations) are obtained by computing the critical curve of the variational principle

δ ż t 1 t 0 Lpm, 9 m, σqdt, (2.2) 
for variations δm and δ A σ induced by variations δgptq of the curve gptq, that vanish at t " t 0 , t 1 . While the variations δmptq are free and vanish at t " t 0 , t 1 , the variations of σptq verify

δ A σptq :" D A Dε ˇˇˇε "0 rg ε ptq, Apg ε ptq, 9 g ε ptqqs H " D A Dt ηptq `rηptq, σptqs `iδmptq r B P r h,
where D A {Dε denotes the covariant derivative defined by the connection one-form A, r B P Ω 2 pM, r hq is the reduced curvature on the base associated to the connection A, and ηptq " rgptq, Apδgptqqs H P r h is arbitrary with ηpt 0 q " ηpt 1 q " 0. Using these variations in (2.2) yield the Lagrange-Poincaré equations

D A Dt δL δσ `ad σ δL δσ " 0, BL Bm ´d dt BL B 9 m " B δL δσ , i 9 m r B F . (2.3)
We refer to [START_REF] Cendra | Lagrangian reduction by stages[END_REF] for the general theory and to [START_REF] Gay-Balmaz | Reduction theory for symmetry breaking[END_REF] for this special case.

Lagrange-Poincaré equations for H discrete. Assume now that H is a closed discrete subgroup of G. Then h " t0u, r h is the vector bundle with zero dimensional fiber and base M, A " 0, and hence the vector bundle isomorphism α A becomes canonical, α : pT Gq{H Ñ T M, the source and target spaces viewed as a vector bundles over M, and it is given by αprv g s H q :" T g πpv g q " pv g g ´1q M pmq P T m M.

So, if g : rt 0 , t 1 s Ñ G is a given curve, we get simply α prgptq, 9 gptqs H q " ˆgptqm 0 , d dt gptqm 0 ˙" pmptq, 9 mptqq P T M.

The reduced Lagrangian

L : T M Ñ R yields the Lagrange-Poincaré equations (2.3) which in this case become BL Bm ´d dt BL B 9 m " 0. (2.4)
It is instructive to consider in more detail the isomorphism α in the case of a closed discrete subgroup. In this case, the kernel of the tangent map is zero, so that at any g P G we have the isomorphism T g π : T g G Ñ T rgs pG{Hq which implies that α : pT Gq{H Ñ T pG{Hq, rv g s H Þ Ñ T πpv g q is a vector bundle isomorphism covering the identity on G{H. Indeed, if T g πpv g q " T ḡπpw ḡq, then necessarily ḡ " gh for h P H, and we can write T g πpv g q " T ḡ πpw ḡq " T g πpw ḡh ´1q, so that v g " w ḡh ´1, since ker T g π " t0u. This proves that rv g s H " rw ḡs H .

Euler-Poincaré approach. The Euler-Poincaré reduction is implemented by using the vector bundle isomorphism īm 0 : pT Gq{H Ñ g ˆM, īm 0 prv g s H q " `vg g ´1, Φ g pm 0 q ˘, where an element m 0 P M has been fixed, [START_REF] Gay-Balmaz | Reduction theory for symmetry breaking[END_REF]. We note that a connection is not needed to write this isomorphism. If g : rt 0 , t 1 s Ñ G is a given curve, this formula implies īm 0 prgptq, 9 gptqs H q " `9 gptqgptq ´1, Φ gptq pm 0 q ˘": pξptq, mptqq.

(2.5)

Note that by composing the two vector bundle isomorphisms α A and īm 0 over M, we get the vector bundle isomorphism

g ˆM Q pξ, mq Þ ÝÑ pξ M pmq, rg, Apξgqs H q P T M ˆr h, (2.6)
over M, where g P G is arbitrary such that πpgq " m.

Given v m P T m M, ξ m P hm , the inverse of the above map is given by

T M ˆr h Q pv m , ξ m q Þ ÝÑ ´pHor g pv m qq g ´1 `Ad g η, m ¯P g ˆM, (2.7)
where g P G is such that πpgq " m, Hor g : T m M Ñ T g G is the horizontal lift of the connection A, and η P h is such that ξ m " rg, ηs H . A direct verification shows that this expression does not depend on g as long as πpgq " m.

Given a H-invariant Lagrangian L : T G Ñ R, the associated reduced Lagrangian l : g ˆM Ñ R obtained through the Euler-Poincaré process is Lpg, 9

gq " l `9 gg ´1, Φ g pm 0 q ˘" lpξ, mq.

(2.8)

The Euler-Poincaré equations for L follow from applying the variational principle with constrained variations

δ ż t 1 t 0 lpξ, mqdt " 0, δξ " 9 η `rη, ξs, δm " η M pmq,
where ηptq P g is arbitrary curve with ηpt 0 q " ηpt 1 q " 0. We thus get the equations

d dt δl δξ `ad ξ δl δξ " J ˆδl δm ˙, 9 m " ξ M pmq, (2.9) 
where J : T ˚M Ñ g ˚is the standard equivariant momentum map of the cotangent lifted action given by xJpα m q, ζy " xα m , ζ M pmqy for all α m P T mM , ζ P g. Note that if H is closed and discrete, the Euler-Poincaré equations (2.9) for l : g ˆM Ñ R do not simplify, contrary to what happens on the Lagrange-Poincaré side.

Hamilton-Poincaré reduction. As in the preceding section, we consider a Lie group acting transitively on the left on a manifold M. Choosing m 0 P M, we have the diffeomorphism G{H Q gH Þ Ñ Φ g pm 0 q P M. Given a Hamiltonian H : T ˚G Ñ R that is right H-invariant, we obtain, by reduction, a Hamiltonian defined on the quotient space pT ˚Gq{H . Similarly as before, choosing a principal connection A P Ω 1 pG, hq, we have a vector bundle isomorphism pT ˚Gq{H Ñ T ˚pG{H q ' r h ˚, rα g s H Þ Ñ `Hor g α g , rg, Jpα g qs H ˘": pα m , μq, where Hor g : T m M Ñ T ˚G is the dual map to the horizontal lift Hor g : T m M Ñ T g G associated to the connection A, and J : T ˚G Ñ h ˚is the momentum map associated to right translation by H. The reduced Hamilton equations obtained by Poisson reduction are called the Hamilton-Poincaré equations and read

Dy Dt " ´BH Bx ´Aμ, Bp 9 x, q E , 9 x " BH By , D A μ Dt `ad δH δ μ μ " 0, (3.1)
where px, yq P T ˚pG{H q, μ P r h ˚, B P Ω 2 pG{H, r hq is the reduced curvature of A, and D{Dt in the first equation denotes the covariant derivative on T ˚pG{H q associated to a given affine connection on G{H, and D A {Dt in the last equation denotes the covariant derivative on r h ˚associated to the principal connection A; for details see [START_REF] Cendra | Variational principles for Lie-Poisson and Hamilton-Poincaré equations[END_REF].

The symplectic leaves in T ˚pG{H q' r h ˚have been described in [START_REF] Marsden | The orbit bundle picture of cotangent bundle reduction[END_REF]; they are of the form T ˚pG{H q ˆG{H r O, where O is a coadjoint orbit of H, and r O Ñ G{H is the associated fiber bundle. The symplectic form is the sum of the canonical symplectic form on T ˚pG{H q and a two-form on r O, see [Marsden et al, 2007, Theorem 2.3.12]. If the Lie group G is connected and O has N elements (which is happening in subsequent applications), then the fiber bundle T ˚pG{H q ˆG{H r O Ñ G{H has N connected components, each one of them symplectically diffeomorphic to the canonical phase space T ˚pG{H q.

Lie-Poisson reduction. A second realization of T ˚pG{H q is given by the diffeomorphism pT ˚Gq{H Q rα g s H Þ ÝÑ pα g g ´1, gm 0 q P g ˚ˆM. see [START_REF] Krishnaprasad | Hamiltonian structure and stability for rigid bodies with flexible attachments[END_REF] (in which a more general situation is considered).

We refer to [START_REF] Gay-Balmaz | Reduction theory for symmetry breaking[END_REF], for further details and examples of application of these two reduction processes.

We now suppose that V is a representation space of G and we take M " Orbpa 0 q Ă V ˚. The induced Lie algebra representation g ˆV Ñ V is given by the infinitesimal operator map and is denoted by ξv :" ξ V pvq, for any ξ P g and v P V . We consider the semidirect product S " G V and its Lie algebra s " g V . The symplectic leaves in s ˚are given by the connected components of the coadjoint orbits O pµ,aq of S. From the formula of the coadjoint action Ad pg,vq ´1 pµ, aq " pAd g´1 µ `v ˛ga, gaq, (3.4)

where pg, vq P S and pµ, aq P s ˚, we see that the symplectic leaves in g ˚ˆM are O pµ,a 0 q endowed with the minus orbit symplectic form. The diamond operation ˛: V ˆV ˚Ñ g in this formula is defined by xv ˛a, ξy :" xa, ξvy, for any ξ P g, where the pairing in the left hand side is between g ˚and g, whereas in the right hand side it is between V ˚and V .

These considerations provide the proof of the following theorem.

Theorem 3.1 Given µ P g ˚and a 0 P V ˚, we define µ a 0 :" µ| ga 0 P g å0 , where g a 0 " tξ P g | ξa 0 " 0u ": h. Let O µa 0 Ă g å0 be the coadjoint orbit of H :" G a 0 through µ a 0 . The map

s ˚Ą O pµ,a 0 q Q pα g g ´1, ga 0 q Þ ÝÑ pHor g α g , rg, Jpα g qs H q P T ˚pG{H q ˆG{H r O µa 0 is a symplectic diffeomorphism.
Note that the Theorem states that if pµ ´νq| ga 0 " 0, then O pµ,a 0 q " O pν,a 0 q . This can be verified directly by observing that Ad pe,vq ´1 pµ, a 0 q " pµ `v ˛a0 , a 0 q and the map

V Q v Þ Ñ v ˛a0 P g a0 (the annihilator of g a 0 in g ˚) is surjective (which is equivalent to kerpv Þ Ñ v ˛a0 q " g a 0 ).
We now write explicitly the operator α g Þ Ñ Hor g α g in the particular case when there is an Ad-invariant inner product γ on g. We extend γ by left invariance to a Riemannian metric on G. This Riemannian metric, also denoted γ, is right invariant. The principal connection on the right H-principal bundle G Ñ G{H associated to γ has the expression Apv g q :" P a 0 pg ´1v g q, where P a 0 : g Ñ g a 0 is the γ-orthogonal projection. The horizontal lift associated to A reads

Hor g : T m M Ñ T g G, Hor g pξ M pmqq " g P K a 0 pAd g ´1 ξq, (3.5) 
where P K a 0 : g Ñ g K a 0 is the γ-orthogonal projection and m " ga 0 . We endow M " G{H with the natural induced Riemannian metric, i.e.,

γ M pξ M pmq, η M pmqq : " γ pHor g pξ M pmqq, Hor g pη M pmqqq " γ `PK a 0 pAd g ´1 ξq, P K a 0 pAd g ´1 ηq ˘. (3.6)
Using the Riemannian metrics γ and γ M , we identify T G with T ˚G and T M with T ˚M , respectively. With these identifications, we have Hor g α g " pα g g ´1q M pmq, α g P T g G " T g G.

(3.7)

We summarize the maps in this discussion in the following diagram

T ˚G g ˚ˆM Č ✲ ✛ pT ˚Gq{H " T ˚pG{H q ' r h ✲ O pµ 0 ,a 0 q ✻ Č ✲ T ˚pG{H q ˆG{H r O µa 0 .
✻ 4 Applications to condensed matter 4.1 Setup of the problem Lagrangian description. As discussed at the beginning of the previous section, for condensed matter theories the Lagrangian L is defined on the tangent bundle T M of the parameter manifold M. This manifold is assumed to be a homogeneous space, relative to the transitive action of a Lie group G, with isotropy group H " G m 0 for some preferred element m 0 P M. From L one can construct a Lagrangian L m 0 : T G Ñ R, L m 0 pg, 9 gq :" Lpgm 0 , p 9 gg ´1q M pgm 0 qq as explained earlier. Using the results of §2, we will show that the Euler-Lagrange equations for L m 0 are equivalent to those for L by implementing Lagrange-Poincaré reduction. Then we use the equivalence with the Euler-Poincaré approach obtained above to write the equations in a simpler form.

Since L m 0 is H-invariant, by fixing a connection A P Ω 1 pG, hq, we get the Lagrange-Poincaré Lagrangian L, that we now compute. We have L pm, 9 m, rg, Apg, 9 gqs H q " L m 0 pg, 9 gq " Lpgm 0 , p 9 gg ´1q M pgm 0 qq " Lpm, 9 mq.

This means that L : T M ˆM r h Ñ R does not depend on the second variable, so δL δσ " 0, and L " L. Thus, in the general system (2.3), the first equation disappears and the right hand side of the second vanishes. Therefore, the Lagrange-Poincaré equations in (2.3) reduce to the Euler-Lagrange equations for L on T M.

We now compute the Euler-Poincaré reduced Lagrangian. We have lpξ, mq " l `9 gg ´1, Φ g pm 0 q ˘" L m 0 pg, 9 gq " Lpgm 0 , p 9 gg ´1q M pgm 0 qq " Lpm, ξ M pmqq.

From the above results, we know that the Euler-Lagrange equations for L m 0 are equivalent to the Euler-Poincaré equations

d dt δl δξ `ad ξ δl δξ " J ˆδl δm ˙, 9 m " ξ M pmq.
From this discussion together with the facts recalled in §2, we obtain the following fundamental result, to be used in the rest of the paper. (i) The curve m : rt 0 , t 1 s Ñ M is a solution of the Euler-Lagrange equations for

L : T M Ñ R, i.e., BL δm ´d dt BL δ 9 m " 0.
(ii) The curve m : rt 0 , t 1 s Ñ M is a solution of the Euler-Poincaré equations for l : g ˆM Ñ R, i.e.,

d dt δl δξ `ad ξ δl δξ " J ˆδl δm ˙, 9 m " ξ M pmq. (4.1)
Ginzburg-Landau theory of phase transitions. We briefly review the major steps in Landau's theory of phase transitions. Phenomenological Ginzburg-Landau theory, initially formulated to describe the behavior of superconductivity and superfluidity of 4 He near points of phase transition, turned out to be also very convenient in the determination of of phase transitions of superfluid 3 He. We recall here briefly the main statements of Landau's second order theory of phase transitions. For a detailed presentation, see [Landau and Lifshitz, 1980, §83, §141-153, §162]. 1.) At a phase transition point, the symmetry of the system spontaneously changes.

2.)

The system is characterized by some macroscopic quantity, an order parameter, e.g., the director field, the Q-tensor, or the wryness tensor in liquid crystals. 3.) Near the transition point, due to the smallness of the parameter α i pT ´Tc q, the free energy (i.e., the thermodynamic potential) admits an expression of the following type F pp, T q " F 0 ppq `α1 pT ´Tc qQpϕ 2 q `α2 pT ´Tc qQpϕ 2 qQpϕ 4 q `} grad ϕ} 2 , where Qpϕ 2 q, Qpϕ 4 q are invariant under the symmetry group of a system of second and fourth order, T is the temperature, T c is the critical temperature at which the phase transition occurs, p is the pressure, and ϕ is an order parameter of the given physical system which is chosen by the concrete physical situation under study. 4.) The change of symmetry in the transition is determined only by the order parameter. 5.) It is possible to ignore fluctuations of the oder parameter beyond pT c {q c q 4 . The Levanyuk-Ginzburg criterion ensures the validity of the expression of F pp, T q given above, if the mean square fluctuation of the parameter ϕ, averaged over the correlation volume, is small compared with the characteristic value of xϕy (see [START_REF] Landau | Course of Theoretical Physics[END_REF]).

The advantage of the Ginzburg-Landau approach is based on the fact that, with relatively few basic assumptions, it is possible to reduce the investigation (in many important cases) of an infinite dimensional quantum particle system to the study of a finite dimensional mechanical problem. Superfluid 3 He provides such an example. Of course, this is a more complicated system than superfluid 4 He since there are more thermodynamic phases.

We describe now the concrete method implementing this Ginzburg-Landau phase transition theory. One is given a free energy, the sum of a potential UpAq depending on some order parameter A, but not on its spatial derivatives, and a gradient term F grad pA, ∇Aq that depends on both the order parameter A and its derivatives ∇A.

(A) Expand the potential UpAq up to fourth order and replace it with this expression.

(B) Find the largest possible Lie group that leaves this fourth degree polynomial UpAq invariant and determine the Lie group action (very often a representation) on the space of all order parameters A.

(C) Find the formal minima of the potential UpAq, i.e., δU δA " 0 and δ 2 U δA 2 ě 0 (positive Hessian).

(D) Take the Lie group orbit through each minimum and consider it as a configuration space of a Lagrangian system given by the free energy. Note that it is not necessary to add the potential UpAq to the gradient term, since it is constant on each such orbit, by construction. The goal is the study of each Lagrangian system on such a Lie group orbit, because the Ginzburg-Landau equations turn out to be the Euler-Lagrange equations for F grad . Often, F grad determines a metric on the orbit.

The point is that, very often, the Lie group orbits of interest are finite dimensional, whereas the original problem, whose total Lagrangian is the sum of the free energy F and the potential UpAq, is an infinite dimensional problem. Working on such orbits reduces hence the given infinite dimensional problem to a finite dimensional one.

Sometimes, steps (B) and (C) are hard to carry out. In practice one starts with a Lie group that is, on physical grounds, a symmetry of the system and then determines, using invariant theory, the most general polynomial of fourth degree, invariant under this group. This polynomial is then taken as the potential UpAq. Then one classifies all orbits of this Lie group on the space of all order parameters A (or, at least, determines enough orbits) and finds, in this way, orbits of physical interest that describe different thermodynamic phases of the system. This problem is solved using techniques developed in Golo and Monastyrsky [1978a,b], [START_REF] Bogomolov | Geometry of the orbit space and phases of 3 He and neutron star in p-state[END_REF], [START_REF] Monastyrsky | Topology of Gauge Fields and Condensed Mater[END_REF], where thermodynamic phases are identified with orbits containing a minimum of the potential UpAq of the free energy.

It turns out that different types of textures for the system are given as solutions to the Ginzburg-Landau equations for a given phase and that, on each Lie group orbit, the Ginzburg-Landau equations are the Euler-Lagrange equations for F grad .

We shall apply this method to the study of different phases in superfluid 3 He (Bogomolov and Monastyrsk [1987]) and rotating neutron stars [START_REF] Monastyrsky | Topology of the lattice of vortices in neutron stars[END_REF]). Using the same techniques one can also study one-dimensional textures in liquid crystals and superfluids as well as phase transitions between biaxial and uniaxial nematics; we leave these latter topics for a future publication.

One-dimensional textures in the A-phase of liquid Helium

3 He

The order parameter of superfluid 3 He is given by complex 3 ˆ3 matrices A P glp3, Cq1 .

The free energy is given by FpA, ∇Aq " F grad pA, ∇Aq `UpAq, where

F grad pA, ∇Aq " γ 1 ÿ i,p,k `Bk Āpi ˘pB k A pi q `γ2 ÿ i,p,k `Bk Āpi ˘pB i A pk q `γ3 ÿ i,p,k `Bk Āpk ˘pB i A pi q ,
γ 1 , γ 2 , γ 3 ą 0 are constants, and UpAq is in the Ginzburg-Landau form, namely,

UpAq " α TrpAA ˚q `β1 | TrpAA T q| 2 `β2 rTrpAA ˚qs 2 `β3 Tr " pA ˚AqpA ˚Aq ı `β4 Tr " pAA ˚q2 ‰ `β5 Tr " pAA ˚qpAA ˚qı ,
for α, β 1 , ..., β 5 P R. Note that these expressions are real valued.

In one dimension, we compute

F grad pA, B z Aq " γ 1 B z Āpi B z A pi `γ2 B z Āp3 B z A p3 `γ3 B z Āp3 B z A p3 " Re TrpΓB z A ˚Bz Aq " xxB z A, B z Ayy , (4.2)
where Γ " diagpγ 1 , γ 1 , γ 1 `γ2 `γ3 q and we defined the inner product on glp3, Cq by xxA, Byy :" Re TrpΓA ˚Bq, Γ :" diagpγ 1 , γ 1 , γ 1 `γ2 `γ3 q.

(4.3)

The following identities are useful in the computations:

xxA, Byy " xxB, Ayy , xxuA, Byy " xxA, uByy , for any A, B P glp3, Cq and u P C. In addition xx , yy is R-bilinear.

Group representation, orbits, and thermodynamic phases. The potential function UpAq is invariant under the left representation of the compact Lie group G " Up1q ˆSOp3q L ˆSOp3q R on glp3, Cq given by

`eiϕ , R 1 , R 2 ˘¨A :" e iϕ R 1 AR ´1 2 , (4.4) 
where A P glp3, Cq and `eiϕ , R 1 , R 2 ˘P G. As the formula above shows, the indices L and R on the two groups SOp3q indicate the side of the multiplication on the matrix A.

Note that the term F grad is not G-invariant. However, to determine the thermodynamic phases, it suffices to study UpAq. The phases correspond to different orbits. A partial classification of the orbits is given in [START_REF] Bogomolov | Geometry of the orbit space and phases of 3 He and neutron star in p-state[END_REF]. Below we shall consider only some of these orbits that are physically relevant for the phases of superfluid 3 He (see [Monastyrsky, 1993, §5.2]).

The A-phase of superfluid 3 He has two regimes depending on whether L ! L dip or L " L dip , where L and L dip are the characteristic and dipole length, respectively. The first regime corresponds to minimal degeneracy and the dipole interaction can be neglected. The order parameter matrix A P glp3, Cq is representable as an element of the Up1qˆSOp3q L ˆSOp3q R -orbit through the point A 0 given in (4.5), i.e., A " e iϕ R 1 A 0 R ´1 2 . In the second regime, the energy of the dipole interaction should be taken into account. As a consequence, the order parameter matrix A P glp3, Cq is representable as an element of the SOp3q-orbit through the same matrix A 0 under the different action A " RA 0 R ´1. For details, see [Monastyrsky, 1993, §5.2.3].

The A-phase -first regime

We consider the orbit M of Up1q ˆSOp3q L ˆSOp3q R through the point

A 0 " ¨0 0 0 0 0 0 1 i 0 'P glp3, Cq. (4.5)
We note that e iϕ A 0 " ρpϕqA 0 ρp´ϕq, where ρpϕq :" exppϕp e 3 q. Proposition 4.2 (i) The isotropy subgroup of A 0 is

H " tpe iϕ , ρpαqJ `, ρpϕq J`q , pe iϕ , ρpαqJ ´, ρpϕq J´q u Ă G " Up1q ˆSOp3q L ˆSOp3q R ,
where ρpαq " exppαp e 3 q and

J ˘" ¨1 0 0 0 ˘1 0 0 0 ˘1 ', J˘" ¨˘1 0 0 0 ˘1 0 0 0 1 '. (4.6) (ii) We have the diffeomorphism G{H Q re iϕ , R 1 , R 2 s H Þ ÝÑ rR 2 ρp´ϕq, R 1 e 3 s Z 2 P pSOp3q ˆS2 q{Z 2 , (4.7) 
where Z 2 " t˘1u acts on pA, xq P SOp3q ˆS2 as p´1q ¨pA, xq " pA J´, ´xq.

(iii) We have the diffeomorphism

pSOp3q ˆS2 q{Z 2 Q rA, xs Z 2 Þ ÝÑ x b pA 1 `iA 2 q P OrbpA 0 q, (4.8)
where A i denotes the i th column of the matrix A.

Proof. (i) Writing A 0 " ℜpA 0 q`iℑpA 0 q, where ℜpA 0 q and ℑpA 0 q are real and imaginary parts of A 0 , the equality e iϕ R 1 A 0 R ´1 2 " A 0 is equivalent to the two equations

pcos ϕqR 1 ℜpA 0 qR ´1 2 ´psin θqR 1 ℑpA 0 qR ´1 2 " ℜpA 0 q psin ϕqR 1 ℜpA 0 qR ´1 2 `pcos θqR 1 ℑpA 0 qR ´1 2 " ℑpA 0 q.
The proof then follows from a direct computation that is done by writing the matrices R i in terms of their rows.

(ii) Let us first show that the map is well-defined. Given pe iϕ , R 1 , R 2 q P G, any element in the equivalence class rpe iϕ , R 1 , R 2 qs H has the form

pe iϕ , R 1 , R 2 qpe iψ , ρpαqJ ˘, ρpψq J˘q " pe ipϕ`ψq , R 1 ρpαqJ ˘, R 2 ρpψq J˘q , (4.9)
where pe iψ , ρpαqJ ˘, ρpψq J˘q P H. Applying formula (4.7) to the expression (4.9), yields

rR 2 ρpψq J˘ρ p´ϕqρp´ψq, R 1 ρpαqJ ˘e3 s Z 2 " rR 2 ρp´ϕq J˘, ˘R1 e 3 s Z 2 " rR 2 ρp´ϕq, R 1 e 3 s Z 2 ,
where we used the properties ρpαq J˘" J˘ρ pαq and ρpαqJ ˘" J ˘ρp˘αq.

(4.10)

The map is clearly surjective. To show the injectivity, we take pe iϕ , R 1 , R 2 q, pe iϕ 1 , R 1 1 , R 1 2 q P G such that rR 2 ρp´ϕq, R 1 e 3 s Z 2 " rR 1 2 ρp´ϕ 1 q, R 1 1 e 3 s Z 2 . We thus have the equalities R 2 ρp´ϕq " R 1 2 ρp´ϕ 1 q J˘a nd R 1 e 3 " ˘R1 1 e 3 . From the first equality, there exists ρpψq P Up1q such that R 2 " R 1 2 ρpψq J˘, by using (4.10). Rewriting the second equality as R 1 e 3 " R 1 1 J ˘e3 , we obtain the existence of ρpαq P Up1q such that R

1 " R 1 1 ρpαqJ ˘. This proves that rpe iϕ , R 1 , R 2 qs H " rpe iϕ 1 , R 1 1 , R 1 2 qs H . (iii) Given rA, xs Z 2 P pSOp3qˆS 2 q{Z 2 , let pe iϕ , R 1 , R 2 q P G be such that rR 2 ρp´ϕq, R 1 e 3 s Z 2 " rA, xs Z 2 . A possible choice is pe iϕ , R 1 , R 2 q " p1, R 1 , Aq, where R 1 P SOp3q is such that R 1 e 3 "
x. With this choice, an easy computation shows that p1, R 1 , Aq ¨A0 " x b pA 1 `iA 2 q.

Remark 4.3 We observe that the subgroup G :" SOp3q L ˆSOp3q R Ă G acts transitively on the orbit OrbpA 0 q, see (4.7), (4.8). The isotropy subgroup of A 0 is GA 0 " H X G " t1, ρpαqJ, Ju, which is isomorphic to Op2q. Therefore the orbit can be equally well described as the homogeneous space pSOp3q L ˆSOp3q R q{ GA 0 .

Lagrangian formulation. We now apply Theorem 4.1 with this description of the orbit, so the Lie algebra is sop3q L ˆsop3q R . On this orbit M, we consider the Lagrangian density given by the gradient part only, i.e.,

LpA, B z Aq " F grad pA, B z Aq " xpB z AqΓ, B z Ay " xxB z A, B z Ayy , (4.11) 
where xA, By :" Re TrpA ˚Bq.

(4.12)

Note that δL δB z A " 2B z AΓ.

(4.13)

The texture equations are given by the Euler-Lagrange equations for L on the orbit M.

The reduced velocity ξ " B z gg ´1 of the general theory (see (2.5)) is given here by ξ " pv, wq : R Ñ sop3q L ˆsop3q R , where v and w are the chiral velocities v " pB z R 1 qR ´1 1 and w " R ´1 2 pB z R 2 q, see [Monastyrsky, 1993, formula (5.133)]. The second formula in (2.9) is given here by

B z A " p vA `A p w.
Using this expression and formula (4. 

Hpα A q " 1 4 Re TrpΓ ´1α Åα A q " 1 4 @ α A Γ ´1, α A D . (4.14)
Now, we apply Theorem 3.1 in this particular case. The element a 0 is given by A 0 in (4.5). The groups are G " SOp3q L ˆSOp3q R , H " r G A 0 " tρpαqJ, Ju. Given µ " pm, nq P sop3q ˚ˆsop3q ˚" R 3 ˆR3 , since g A 0 " tpλe 3 , 0q | λ P Ru, we have µ a 0 " pm 3 e 3 , 0q. We now compute the G A 0 -coadjoint orbit O µa 0 . We have the formulas Ad pρpαqJ, J q pp v, p wq " pρpαqJ p vJρp´αq, J p w J q Ad pρpαqJ, J q pm 3 e 3 , 0q " pp´1q |J| m 3 e 3 , 0q,

where |J| " 0 if J " I 3 and |J| " 1 otherwise. Thus, O pm 3 e 3 ,0q " tp˘m 3 e 3 , 0qu and hence the fibers of the associated fiber bundle r O pm 3 e 3 ,0q Ñ M are two points sets. In this special situation, the symplectic structure on T ˚M ˆM r O pm 3 e 3 ,0q is given by the canonical symplectic form on T ˚M since the Lie algebra g A 0 is one-dimensional and the fiber is discrete, see [Marsden et al, 2007, Theorem 2.3.12]. We conclude that the coadjoint orbit O pm,n,A 0 q has two connected components each one symplectically diffeomorphic to T ˚M for any m, n P R 3 . In particular, the dimension of the coadjoint orbit O pm,n,A 0 q is ten. Now, we extend the Hamiltonian (4.14) to the symplectic manifold T ˚M ˆM r O pm 3 e 3 ,0q . Hamilton's equations are unchanged. Using the symplectic diffeomorphism of Theorem 3.1 we get a Hamiltonian function on the coadjoint orbit O pm,n,A 0 q of the semidirect product pSOp3q L ˆSOp3q R q glp3, Cq. It is a symplectic leaf of the Lie-Poisson manifold rpsop3q L ˆsop3q R q glp3, Cqs ˚and hence of its Poisson submanifold psop3q L ˆsop3q R q ˚M , endowed with the Lie- A direct computation shows that the kernel of the Poisson tensor is one dimensional at all points pm, n, A 0 q. This means that the dimension of the symplectic leaves through pm, n, A 0 q is ten. We have recovered the previous result stating that the dimension of the coadjoint orbit O pm,n,A 0 q is ten. We note that the function Cpm, n, Aq " 1 2 Re TrpA ˚Aq is a Casimir function of this bracket. Indeed, since δC δA " A, a direct computation that involves only the third term in the expression above shows that tC, f u " 0 for all functions f . Lemma 4.4 The Riemannian metric on M induced by the Ad-invariant inner product γppa, bq, pv, wqq " a ¨v `b ¨w on sop3q L ˆsop3q R (M is viewed here as the orbit pSOp3q L ˆSOp3q R q{ GA 0 as in Remark 4.3) coincides with the metric induced by the inner product (4.12) (here, M Ă glp3, Cq), that is, γ M pp aA `Ap b, p vA `A p wq " Re Tr ´pp aA `Ap bq ˚pp vA `A p wq ¯.

Proof. We need to verify identity (3.6). It is readily checked that at A 0 , we have Re Tr ´pp aA 0 `A0 p bq ˚pp vA 0 `A0 p wq ¯" a 1 v 1 `a2 v 2 `b ¨w " P K A 0 pa, bq ¨PK A 0 pv, wq, where P K A 0 pa, bq " ppa 1 , a 2 , 0q, bq. Since pa, bq M pAq " p aA `Ap b, inserting the expression A "

R 1 A 0 R ´1 2 , we get Re Tr ´pp aA `Ap bq ˚pp vA `A p wq ¯" pR ´1 1 aq 1 pR ´1 1 vq 1 `pR ´1 1 aq 2 pR ´1 1 aq 2 `R´1 2 b ¨R´1 2 w " P K A 0 pR ´1 1 a, R ´1 2 bq ¨PK A 0 pR ´1 1 b, R ´1 2 wq,
which proves the formula.

It follows that formula (3.7) can be applied. Therefore, we get

Hor pR 1 ,R 2 q p p mR 1 , R 2 p nq " p mA `Ap n P T ÅM.

Fixing µ " pm 0 , n 0 q and applying Theorem 3.1 we get the Hamiltonian function on the coadjoint orbit O pm 0 ,n 0 ,A 0 q by pulling back the Hamiltonian H in (4.14). We obtain hpm, n, Aq " Hp p mA `Ap nq " 1 4

@ p p mA `Ap nqΓ ´1, p mA `Ap n D , (4.16)
where pm, n, Aq P O pm 0 ,n 0 ,A 0 q . The general formula for the coadjoint action on a semidirect product (3.4) (see, e.g., [START_REF] Marsden | Semidirect product and reduction in mechanics[END_REF]) yields in this case

Ad pR 1 ,R 2 ,V q ´1 pm, n, Aq " ´R1 m `2ÝÝÝÝÝÝÝÝÝÝÑ RepR 1 AR ´1 2 V q, R 2 n `2ÝÝÝÝÝÝÝÝÝÝÑ RepV R 1 AR ´1 2 q, R 1 AR ´1 2 ¯,
where pR 1 , R 2 , V q P pSOp3q L ˆSOp3q R q glp3, Cq.

We will now consider subgroup actions of the coadjoint action that are symmetries of the Hamiltonian (4.16) and compute the associated momentum maps.

The first one is given by the Up1q-action Ad pI 3 ,ρpϕq,0q pm, n, Aq " pm, ρpϕqn, Aρp´ϕqq. This action is automatically Poisson and leaves the Hamiltonian (4.16) invariant because ρpϕqΓ ´1 " Γ ´1ρpϕq. The infinitesimal generator of this action is pm, n, Aq Þ Ñ p0, e 3 n, ´Ap e 3 q and the momentum map is found to be J orb 3 pm, n, Aq " ´e3 ¨n. Therefore, tJ orb 3 , hu " 0.

The second symmetry is given by the SOp3q-action Ad pR,I 3 ,0q pm, n, Aq " pRm, n, RAq whose infinitesimal generator associated to p v P sop3q is pm, n, Aq Þ Ñ pvˆm, 0, p vAq. This action leaves the Hamiltonian (4.16) invariant. The momentum map is J spin pm, n, Aq " m. Therefore tJ spin v , hu " 0, for all v P R 3 . In particular, tJ spin 3 , hu " 0 and t}J spin } 2 , hu " 0. In addition, formula (4.15) implies that tJ spin 3 , J orb 3 u " 0 and t}J spin } 2 , J orb 3 u " 0. To find the next conserved quantity is considerably more involved. We start with the Euler-Lagrange equations for the Lagrangian LpA, B z Aq in (4.11) on T M. This Lagrangian is Up1q-invariant under the tangent lift of the action A Þ Ñ e iϕ A. The infinitesimal generator associated to θ P R is θ M pAq " iθA. Using (4.13), we compute the associated momentum map as follows

j m pA, B z Aq " B δL δpB z Aq , iA F " 2 xB z A Γ, iAy . (4.17)
Taking into account that B z A " p vA `A p w, for some v, w P R 3 , this formula becomes

j m pA, p vA `A p wq " ´2 Re TrpAΓA ˚p viq ´2 Re TrpΓ p wA ˚Aiq " 2 xxp vA `A p w, iAyy .
Since j m is conserved on the solutions of the Euler-Lagrange equations associated to L, its pull-back to O pm 0 ,n 0 ,A 0 q commutes with the Hamiltonian h.

In order to see that j m commutes with J orb 3 and J spin , we will consider the induced Up1q and SOp3q-actions on T M and T ˚M and observe that they are the tangent and cotangent lift of commuting actions. Therefore, viewed as momentum maps on T ˚M and T M, via the change of variables O pm 0 ,n 0 ,A 0 q Ñ T ˚M Ñ T M (see Theorem 3.1 and (4.13)), these momentum maps commute. Concerning J orb 3 , the Up1q-action induced on T M is the tangent lift of the action A Þ Ñ Aρp´ϕq. For J spin , the SOp3q-action induced on T M is the tangent lift of the action A Þ Ñ RA, R P SOp3q. They evidently commute with the action A Þ Ñ e iϕ A yielding j m .

One can also check directly that the expressions of the momentum maps j orb 3 pA, B z Aq and j spin pA, B z Aq on T M associated to the tangent lifted actions of A Þ Ñ Aρp´ϕq and A Þ Ñ RA are consistent with those of J orb 3 pm, n, Aq and J spin pm, n, Aq, respectively.

Theorem 4.5 The five functions h, j m , J orb 3 , J spin 3 , }J spin } 2 form a completely integrable system on the ten dimensional coadjoint orbit O pm 0 ,n 0 ,A 0 q .

Proof. The five functions commute in view of the discussion above. We need to show that their differentials are linearly independent except on a set of measure zero in O pm 0 ,n 0 ,A 0 q . It turns out that showing their independence on M is considerably simpler computationally. The functional derivatives on T M are

δj m δA " ´2iB z A Γ, δj m δB z A " 2iAΓ, δj orb 3 δA " 2B z AΓp e 3 , δj orb 3 δB z A " ´2Ap e 3 Γ,
δj spin k δA " ´2p e k B z A Γ, δj spin k δB z A " 2p e k AΓ, δL δA " 0, δL δB z A " 2B z A Γ, δ}J spin } 2 δA " ´4j spin 1 p e 1 B z A Γ ´4j spin 2 p e 2 B z A Γ, δ}J spin } 2 δB z A " 4j spin 1 p e 1 AΓ `4j spin 2 p e 2 AΓ.
In order to show the independence, we have to show that the equations

α 1 δj m δA `α2 δj orb 3 δA `α3 δj spin 3 δA `α4 δ}J spin } 2 δA `α5 δL δA " 0 (4.18) α 1 δj m δB z A `α2 δj orb 3 δB z A `α3 δj spin 3 δB z A `α4 δ}J spin } 2 δB z A `α5 δL δB z A " 0 (4.19)
imply α i " 0, for all i " 1, ..., 5 and for all A P M except on a set of measure zero in M.

Writing A " xpA 1 `iA 2 q T , where }x} " 1, }A i } " 1, A 1 ¨A2 " 0, and using the formula B z A " pB z xqpA 1 `iA 2 q T `xpB z A 1 `iB z A 2 q T , where B z x ¨x " 0, B z A i ¨Ai " 0, B z A 1 ¨A2 `A1 ¨Bz A 2 " 0, and evaluating equation (4.18) on the vector pA 1 `iA 2 q pB z A 1 `iB z A 2 q, we get α 2 pB z A 1 `iB z A 2 q T pB z A 1 `iB z A 2 qpe 3 ¨pA 1 `iA 2 qq " 0. This implies α 2 " 0 except on a set of measure zero in M.

Using this and evaluating equation (4.19) on A 1 ˆA2 , we get α 5 pB z A 1 `iB z A 2 q T pA 1 Â2 q " 0 which again implies α 5 " 0 except on a set of measure zero in M. Then multiplying (4.19) on the right by A ˚x, taking the dot product with x, and using the formula AA ˚x " 2x, we get α 1 " 0. Multiplying the remaining equation on the left by e T 3 , we get α 4 pj spin 1 pA, B z Aqe T 2 ´jspin 2 pA, B z Aqe T 1 qB z A " 0, which again, except on a set of measure zero in M, implies α 4 " 0. From this it follows that α 3 " 0 except on a set of measure zero in M.

The A-phase -second regime

In this situation, we consider the orbit M " tRA 0 R ´1 | R P SOp3qu of SOp3q through A 0 given by (4.5). A direct verification proves the following result.

Proposition 4.6 piq The isotropy subgroup SOp3q A 0 equals

SOp3q A 0 " $ & % I 3 , ¨1 0 0 0 ´1 0 0 0 ´1' , ¨´1 0 0 0 ´1 0 0 0 1 ', ¨´1 0 0 0 1 0 0 0 ´1', . - -Z 2 ˆZ2
the group isomorphism being given by

I 3 ÐÑ p1, 1q, ¨1 0 0 0 ´1 0 0 0 ´1' ÐÑ p1, ´1q, ¨´1 0 0 0 ´1 0 0 0 1 'ÐÑ p´1, 1q, ¨´1 0 0 0 1 0 0 0 ´1' ÐÑ p´1, ´1q.
piiq We have the diffeomorphism

SOp3q{SOp3q A 0 Q rRs SOp3q A 0 Þ ÝÑ RA 0 R ´1 P OrbpA 0 q.
Lagrangian formulation. We apply Theorem 4.1 with this description of the orbit. The reduced velocity (see (2.5)) is given here by w " pB z RqR ´1. The second formula in (2.9) becomes B z A " p wA ´A p w " r p w, As.

Using this expression and formula (4. 

J ab pAqw a w b " w T JpAqw.
The Euler-Poincaré equations (2.9) are

B z δl δw `ad ẘ δl δw " ´J ˆδl δA ˙,
where J : T ˚OrbpA 0 q Ñ sop3q ˚is the momentum map of the right action of SOp3q on T ˚OrbpA 0 q. Using the duality pairing xA, By " Re TrpA ˚Bq on glp3, Cq, we get

d dz δl δw `δl δw ˆw " 2 Re ÝÝÝÝÝÝÑ " δl δA ˚, A  , (4.21) 
where we have δl δw " 2JpAqw, δl δA " 2rr p w, AsΓ, p ws.

Hamiltonian formulation. Using the general formula (3.4) for the coadjoint action of the semidirect product SOp3q glp3, Cq, it is it easily seen that the coadjoint orbit through p0, A 0 q is sop3q ˚ˆOrbpA 0 q. This is consistent with the general theory in Theorem 3.1: since g a 0 " 0, the dimension of the orbit is six. Define m :" δl δw " 2JpAqw. Thus the Hamiltonian associated to the Lagrangian l has the expression hpm, Aq " m T w ´lpw, Aq " 1 4 m T JpAq ´1m.

(4.22)

The non-degenerate Lie-Poisson bracket on the coadjoint orbit

sop3q ˚ˆOrbpA 0 q is tf, hupm, Aq " m ¨ˆδf δm ˆδh δm ˙`C δh δA , « A, y δf δm ffG ´C δf δA , « A, y δh δm ffG (4.23)
and hence the equations B z f " tf, hu, for any f , are

B z m `m ˆδh δm " ´2 Re ÝÝÝÝÝÝÑ " δh δA ˚, A  B z A " « y δh δm , A ff . (4.24)
We prove that the Hamiltonian system given by (4.22) relative to the Poisson bracket (4.23) on the six dimensional coadjoint obit sop3q ˚ˆOrbpA 0 q is completely integrable. The three integrals of motion are the Hamiltonian (4.22), the momentum map j m given in (4.17), i.e., j m pm, Aq " AA"

1 2 { JpAq ´1m, A ı , iA
EE after transforming to the variables pm, Aq, and J 3 pm, Aq :" e 3 ¨m. As in the discussion of the A-phase, the previous regime, we note that j m is the momentum map associated to the circle action on configuration space given by A Þ Ñ e iϕ A. Puling back j m to the Hamiltonian side, i.e., expressing it in the variables pm, Aq, it follows that th, j m u " 0. It is important to note that this Up1q-action with momentum map j m is expressed in the variables pm, Aq as: pm, Aq Þ Ñ `m, e iϕ A ˘.

Now, consider a second circle action on sop3q ˚ˆOrbpA 0 q given by pm, Aq Þ Ñ pρpϕqm, ρpϕqAρpϕq ´1q, where ρpϕq :" exppϕp e 3 q. This is the coadjoint action of a subgroup of SOp3q glp3, Cq and hence it is Poisson. It admits a momentum map which is J 3 . The Hamiltonian h given by (4.22) is invariant under this action and so we conclude that th, J 3 u " 0. The action pm, Aq Þ Ñ pρpϕqm, ρpϕqAρpϕq ´1q is induced via the cotangent bundle version of Theorem 4.1 by the cotangent lift of the action A Þ Ñ ρpϕqAρpϕq ´1. This action on configuration space commutes with the previously considered circle action A Þ Ñ e iϕ A. Therefore, the associate momentum maps commute, i.e., tj m , J 3 u " 0. Concluding, we have th, j m u " 0, th, J 3 u " 0, tj m , J 3 u " 0. Finally, we prove the functional independence of the three integrals h, j m , J 3 . Instead of showing that their differentials are linearly independent away from a subset of measure zero in sop3q ˚ˆOrbpA 0 q, we will show that the Hamiltonian vector fields generated by these integrals are independent on such a set. Since j m and J 3 are momentum maps, their Hamiltonian vector fields relative to the Lie-Poisson bracket (4.23) coincide with the infinitesimal generator vector fields of the corresponding Up1q-actions. These vector fields are hence pm, Aq Þ Ñ pm, A; 0, iAq and pm, Aq Þ Ñ pm, A; e 3 ˆm, rp e 3 , Asq.

Now we compute the Hamiltonian vector field for h given by (4.22). We have δh{δm " 1 2 JpAq ´1m. A direct computation shows that δh δA " 2 r p w, r p w, As Γs , where w :" 1 2 JpAq ´1m.

Therefore, from (4.24), we obtain the expression of the Hamiltonian vector field defined by h, namely,

pm, Aq Þ ÝÑ X h pm, Aq " ˆm, A; w ˆm ´4 Re Ý ÝÝÝÝÝÝÝÝÝÝÝÝÝ Ñ " rΓ rA, p ws , p ws , A ‰ , r p w, As ˙.
We need to show that $ & % α 1 ´w ˆm ´4 Re Ý Ñ X ¯`α 3 e 3 ˆm " 0, α 1 r p w, As `α2 iA `α3 rp e 3 , As " 0, where X :" " rΓ rA, p ws , p ws , A ‰ , implies that α 1 " α 2 " α 3 " 0 for generic pm, Aq.

Taking the dot product of the first equation with m yields α 1 Re Ý Ñ X ¨m " 0. It is easy to find points pm, Aq for which Re Ý Ñ X ¨m ‰ 0. Since this expression is polynomial in w and A and since it does not vanish identically, its set of zeros is of measure zero in sop3q ˚ˆOrbpA 0 q. This shows that for a set of measure zero on this phase space, α 1 " 0. Choosing m not collinear with e 3 , implies that α 3 " 0. Now, for any A P OrbpA 0 q ‰ 0, we get α 2 " 0. We have proved the following result.

Theorem 4.7 The three functions h, j m , J 3 form a completely integrable system on the six dimensional coadjoint orbit sop3q ˚ˆOrbpA 0 q.

The B-phase

We consider the element

I 3 " ¨1 0 0 0 1 0 0 0 1 'P glp3, Cq. Proposition 4.8 (i) The isotropy subgroup of I 3 is H " tp1, R, Rq | R P SOp3qu Ă G " Up1q ˆSOp3q L ˆSOp3q R .
(ii) We have the diffeomorphism

G{H Q re iϕ , R 1 , R 2 s H Þ ÝÑ pe iϕ , R 1 R ´1 2 q P Up1q ˆSOp3q. (4.25) (iii)
We have the diffeomorphism Up1q ˆSOp3q Q pe iϕ , Rq Þ ÝÑ e iϕ R P OrbpI 3 q. (4.26)

Proof. (i) By taking the imaginary part of the equality e iϕ R 1 R ´1 2 " I 3 , we obtain that ϕ P t0, πu. So we get ˘R1 R 2 " I 3 . Taking the determinant shows that the minus sign is impossible, therefore the result follows.

(ii) The result follows from a direct verification. (iii) From (i), it follows that we have the diffeomorphism re iϕ , R 1 , R 2 s H P G{H Þ Ñ e iϕ R 1 R ´1 2 P OrbpI 3 q. The result then follows by composing with the diffeomorphism obtained in (ii).

We observe that the subgroup r G :" Up1q ˆSOp3q L Ă G acts transitively on the orbit OrbpI 3 q, see (4.25), (4.26). The isotropy subgroup of I 3 is r G I 3 " H X r G " t1, I 3 , I 3 u. We recover the fact that the orbit OrbpI 3 q Ă glp3, Cq is diffeomorphic to Up1q ˆSOp3q.

As a consequence, we apply Theorem 4.1 with this description of the orbit and hence the Lie algebra one has to consider is R ˆsop3q L . On this orbit M we consider the Lagrangian density given by the gradient part only, i.e. LpA, ∇Aq " F grad pA, ∇Aq.

The reduced velocity ξpzq " B z gg ´1 of the general theory (see (2.5)) is given here by ξ " pv, wq : X Ñ R ˆsop3q L , where v " B z ϕ, and w " R ´1pB z Rq. where J 1 : T ˚M Ñ R is the momentum map of the Up1q action A Þ Ñ e iψ A, and J 2 : T ˚M Ñ sop3q L is the momentum map of the SOp3q action A Ñ QA. They have the expressions J 1 pα A q " Re Trpα ÅiAq and J 2 pα A q " 2 ÝÝÝÝÝÝÑ Re pα ÅAq.

(4.28)

The second equation in (2.9) is given, in this case, by

B z A " ivA `A p w.
Since δl δv " 2p3γ 1 `γ2 `γ3 qv, δl δw " 4γ 1 w `2pγ 2 `γ3 qpw 1 , w 2 , 0q T " Jw, δl δA " 0, where J " diagp4γ 1 `2γ 2 `2γ 3 , 4γ 1 `2γ 2 `2γ 3 , 4γ 1 q, we get

B z v " 0, B z Jw `w ˆJw " 0, B z A " ivA `A p w. (4.29)
The equation for w is the Euler equation for a free symmetric rigid body with moment of inertia J whose solutions are well-known (see e.g., [Lawden, 1989, §5.7]). In this special case, all equations decouple and (4.29) can be solved explicitly.

Remark 4.9 An interesting question is the transition from one phase to another. In the case of liquid crystals, this means the transition from biaxial nematics to uniaxial nematics which leads to the deformation of the orbit SOp3q{pZ 2 ˆZ2 q to SOp3q{Z 2 . We do not consider this problem in the present paper.

Neutron stars

The classification of the phases in neutron stars parallels the procedure used in the classification of the phases for superfluid liquid Helium 3 He, taking into account the differences associated to the order parameter of these two problems. For details, see [START_REF] Monastyrsky | Topology of the lattice of vortices in neutron stars[END_REF]. We shall use the notations of this paper below and consider several examples of orbits.

Define S 2 pC 3 q 0 :" A P glp3, Cq | A T " A, TrpAq " 0 ( . The direct product Lie group Up1q ˆSOp3q acts on S 2 pC 3 q 0 by A Þ ÝÑ e iϕ RAR ´1, (4.30)

where e iϕ P Up1q and R P SOp3q. The possible non-trivial orbits of this group action are given in [START_REF] Monastyrsky | Topology of the lattice of vortices in neutron stars[END_REF] and denoted by Ω i , where i " 1, . . . , 10. We shall consider below only the most interesting examples i " 1, 4, 6, 8.

Ω 1 -phase

Consider the orbit of the group Up1q ˆSOp3q through A 0 "

¨1 0 0 0 1 0 0 0 ´2' P S 2 pC 3 q 0 .

A direct verification shows that the isotropy subgroup of A 0 for the action (4.30) is the one-dimensional subgroup tp1, ρpϕqJ ˘q | ϕ P Ru Ă Up1q ˆSOp3q, where ρpϕq " exppϕp e 3 q, J ˘is defined in (4.6), and ρpϕqJ ˘" J ˘ρpϕq. So, the pUp1q ˆSOp3qq-orbit though A 0 is diffeomorphic to Up1q ˆrSOp3q{pZ 2 ˆSOp2qqs which is the Ω 1 -orbit in the classification [START_REF] Monastyrsky | Topology of the lattice of vortices in neutron stars[END_REF]. Explicitly, this Up1q ˆSOp3q-orbit is M " OrbpA 0 q " e iϕ `uu T `vv T ´2ww T ˘| u, v P S 2 , u ¨v " 0, w " u ˆv( .

Note that, in accordance with the isotropy subgroup described above, the identities characterizing M " OrbpA 0 q are unchanged if we replace ' u by u cos θ `v sin θ and v by ´u sin θ `v cos θ (this is the SOp2q-action) ' v by ´v and hence w by ´w (this is the J ´-action).

Note that since the isotropy subgroup is Abelian, its coadjoint orbits are points. Therefore, by Theorem 3.1, the canonical cotangent bundle T ˚M is symplectically diffeomorphic to the coadjoint orbit O pp,m,A 0 q endowed, as usual, with the minus orbit symplectic structure, pp, mq P pR ˆsop3qq ˚.

To find the Lagrangian associated to this phase, we note that the reduced velocity ξ " B z gg ´1 of the general theory (see (2.5)) is given here by ξ " pv, wq : R Ñ R ˆsop3q, where v " B z ϕ and w " pB z RqR ´1. The infinitesimal generator of the group action, i.e., the second formula in (2.9), has in this case the expression B z A " ivA `r p w, As . where X is the traceless symmetric part of v 2 AΓ ´2vi r p w, As Γ ´2vi r p w, AΓs. The Hamiltonian associated to l on the six dimensional coadjoint orbit O pp,m,A 0 q generates an integrable system. The integrals in involution are h, j m , J 3 (see the text after (4.24) for the expressions of j m and J 3 ). To show independence on a dense open subset of phase space, we shall work on the Hamiltonian side. As in Subsection 4.2.2, the two circle actions

pp, m, Aq Þ Ñ `p, m, e iϕ A ˘, pp, m, Aq Þ Ñ pp, ρpϕqm, ρpϕqAρpϕq ´1q,
where ρpϕq :" exppϕp e 3 q, generate the momentum maps j m and J 3 , respectively. The infinitesimal generator vector fields of these actions coincide with the Hamiltonian vector fields of j m and J 3 , respectively, i.e., they are X jm pp, m, Aq " p0, 0, iAq, X J 3 pp, m, Aq " p0, e 3 ˆm, rp e 3 , Asq .

Finally the Hamiltonian vector field is obtained by using (4.32) and the relations δh δA " ´δl δA , w " δh δm , v " δh δv . A direct computation yields

X h pp, m, Aq " ˜´ReTr ˆδh δA ˚iA ˙, δh δm ˆm ´2Ý ÝÝÝÝÝÝÝÝ Ñ Re " δh δA ˚, A  , i δh δp A `«y δh δm , A ff¸.
Writing α 1 X h pp, m, Aq `α2 X J 3 pp, m, Aq `α3 X jm pp, m, Aq " 0, implies that α 1 " α 2 " α 3 " 0 on an open dense set of points pp, m, Aq in the coadjoint orbit.

Theorem 4.10 The three functions h, j m , J 3 form a completely integrable system on all six dimensional coadjoint orbits O pp,m,A 0 q .

Ω 4 -phase

The Ω 4 -phase corresponds to

A 0 " ¨1 0 0 1 ω 0 0 0 ω 2 'P S 2 pC 3 q 0 ,
where ω 3 " 1. The isotropy subgroup is

`Up1q ˆSOp3q ˘A0 " $ & % ¨1, ¨ǫ1 0 0 0 ǫ 2 0 0 0 ǫ 3 '' , ¨ω, ¨0 0 ǫ 1 ǫ 2 0 0 0 ǫ 3 0 '' , ¨ω2 , ¨0 ǫ 1 0 0 0 ǫ 2 ǫ 3 0 0 ''ˇˇˇˇˇǫ i " ˘1, i " 1, 2, 3, ǫ 1 ǫ 2 ǫ 3 " 1 , .
and it is isomorphic to the tetrahedral group (the 12 elements alternating group A 4 on 4 letters). The pUp1q ˆSOp3qq-orbit OrbpA 0 q " M is hence diffeomorphic to rUp1q ˆSOp3qs {A 4 , which is the Ω 4 -coadjoint orbit in the classification [START_REF] Monastyrsky | Topology of the lattice of vortices in neutron stars[END_REF].

To compute the texture equations associated to this phase, we note that the reduced velocity ξ " B z gg ´1 of the general theory (see (2.5)) is given here by ξ " pv, wq : R Ñ R ˆsop3q, where v " B z ϕ and w " pB z RqR ´1. The second formula in (2.9) (the infinitesimal generator of the action) is given here by B z A " ivA `r p w, As .

Using this expression and formula (4. The Hamiltonian system generated by h has three integrals of motion in involution: h, J 3 , j m " p. The integrals J 3 and j m commute with h because on the Lagrangian side they are momentum maps and hence constant on the solutions of the Euler-Lagrange equations. The maps J 3 and j m commute because they are momentum maps of two commuting circle actions (this is the same argument as given in §4.2.2). The fact that p " j m is a direct computation replacing B z A " ivA `r p w, As in the defining formula (4.17) for j m and using A " e iϕ RA 0 R ´1, A 0 A 0 " I 3 . For the complete integrability of this system, one more integral is needed.

Ω 6 -phase

Consider the orbit of this group through A 0 " ¨1 i 0 i ´1 0 0 0 0 'P S 2 pC 3 q 0 . We note that e iϕ A 0 " ρ ´´ϕ 2 ¯A0 ρ ´ϕ 2 ¯, (4.36)

where ρpϕq " exppϕp e 3 q. A direct verification shows that the isotropy subgroup of SOp3q for the action (4. is a diffeomorphism which shows that the orbit pUp1q ˆSOp3qq ¨A0 is diffeomorphic to SOp3q{Z 2 . We have found the orbit of type Ω 6 in the classification given in [START_REF] Monastyrsky | Topology of the lattice of vortices in neutron stars[END_REF].

It is easy to see that R T A 0 R " pR 1 `iR 2 qpR 1 `iR 2 q T , where R j is the j th column of R P SOp3q, j " 1, 2. In view of the previous considerations this shows that OrbpA 0 q " px `iyqpx `iyq T | x, y P S 2 , x ¨y " 0 ( -SOp3q{Z 2 .

(4.37)

Lagrangian formulation. Note that the setting is very similar to the setup for superfluid liquid Helium 3 He in the second regime of phase A, since the action turns out the be the same, namely, A Þ Ñ RAR ´1. The orbit is, however, different because the matrices A 0 in these two cases do not lie on the same SOp3q-orbit.

The Lagrangian used in this case (see [START_REF] Monastyrsky | Topology of the lattice of vortices in neutron stars[END_REF]) is given by (4.2). Therefore, the Euler-Poincaré Lagrangian takes the same form as in the second regime of the A-phase for superfluid liquid Helium 3 He, namely, lpw, Aq " Hamiltonian formulation. All formulas, with the changes noted above, are identical to the ones in the second regime of phase A for superfluid liquid Helium 3 He, i.e., (4.22) and (4.23) hold. The same considerations about the complete integrability of the equations given at the end of §4.2.2 hold because the action given by multiplication with e iϕ preserves the orbit OrbpA 0 q given by (4.37) in view of (4.36). We get the following result.

Theorem 4.11 The three functions h, j m , J 3 form a completely integrable system on the six dimensional coadjoint orbit Ω 6 .

Ω 8 -phase

The Ω 8 -phase corresponds to A 0 " ¨0 1 ˘i 1 0 0 ˘i 0 0 'P S 2 pC 3 q 0 .

Note that e ¯iϕ A 0 " ρpϕqA 0 ρp´ϕq, where ρpϕq :" exppϕp e 1 q. Hence SOp3q acts transitively on the orbit through A 0 , i.e., OrbpA 0 q " tRA 0 R ´1 | R P SOp3qu. A direct computation shows that the isotropy group SOp3q A 0 " tI 3 u and hence OrbpA 0 q is diffeomorphic to SOp3q.

It is easy to verify that the isotropy subgroup of the original action equals pUp1q ˆSOp3qq A 0 " `eiϕ , ρp˘ϕq ˘| e iϕ P Up1q ( -Up1q.

Following the same method as for the other phases, we conclude that As in the case of the Ω 6 -phase we obtain the following result.

Theorem 4.12 The three functions h, j m , J 3 form a completely integrable system on the six dimensional coadjoint orbit Ω 8 .
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Theorem 4. 1

 1 The following statements are equivalent.

J

  ab pAqw a w b " w T JpAqw, where JpAq is given in (4.20). The Euler-Poincaré equations are thus (4.21). The functional derivatives are in this case δl δw " 2JpAqw, δl δA " rr p w, AsΓ, p ws `rr p w, AsΓ, p ws T P S 2 pC 3 q 0 .

  2), the Euler-Poincaré Lagrangian l " lpξ, mq : sop3q L ˆsop3q R ˆM Ñ R pI ab pAqw a w b `χab pAqv a v b `2Σ ab pAqv a w b q " w T IpAqw `vT χpAqv `2v T ΣpAqw. ˚M Ñ so ˚p3q is the momentum map of the left action and J 2 : T ˚M Ñ so ˚p3q is the momentum map of the right action of SOp3q on the orbit M, respectively.Using the duality pairing xA, By " Re TrpA ˚Bq on glp3, Cq, we get the Euler-Poincaré equations Since the Lagrangian (4.11) is nondegenerate, we consider the associated Hamiltonian on T ˚M , given by

	of the general theory given in (2.8), is computed in this case to be lpv, w, Aq " Re TrpΓB z A ˚Bz Aq " xxp vA `A p w, p vA `A p wyy , (see (4.3)). Defining ÿ a,b"1 Thus, the Euler-Poincaré equations (2.9) read B z δl δv `ad v δl δv " J 1 ˆδl δA ˙, B z δl δw ´ad ẘ δl δw " J 2 ˆδl δA ˙, B z A " p vA `A p w, where J 1 : T d dz δl δv `δl δv ˆv " 2 Ý ÝÝÝÝÝÝÝÝ Ñ Re ˆδl δA A ˚˙, d dz δl δw ´δl δw ˆw " 2 Ý ÝÝÝÝÝÝÝÝ Ñ Re ˆA˚δ l δA ˙, where Ý Ñ A P R 3 is defined by p Ý Ñ A :" A skew :" 1 2 pA ´AT q, and where we have I 3 δl δv " 2χv`2Σw, δl δw " 2Iw`2Σ T w, δl δA " ´2 pA p wΓ p

ab pAq " xxAp e a , Ap e b yy , χ ab pAq " xxp e a A, p e b Ayy , and Σ ab pAq " xxp e a A, Ap e b yy , the formula for the Lagrangian above becomes lpv, w, Aq " w `p vp vAΓ `p vA p wΓ `p vAΓ p wq .

Hamiltonian formulation. As expected from the general theory, the Euler-Poincaré Lagrangian lpv, w, Aq is degenerate, since for all A P M, the quadratic form pv, wq Þ Ñ xxp vA `A p w, p vA `A p wyy has a one dimensional kernel given by the isotropy Lie algebra g A " tpv, wq P g | p vA `A p w " 0u.

  The Euler-Poincaré Lagrangian l " lpξ, mq : R ˆsop3q L ˆM Ñ R of the general theory given in (2.8), is computed in this case to be lpv, w, Aq " F grad pA, B z Aq " xxivA `A p w, ivA `A p wyy " v 2 xxA, Ayy `wT IpAqw `2v xxAi, A p wyy " 2γ 1 }w} 2 `pγ 2 `γ3 qpw 2 `γ2 `γ3 qv 2 , where I ab pAq " xxAp e a , Ap e b yy and we used A " e iϕ R so that A ˚A " I 3 .

	1 2 q `p3γ 1 The Euler-Poincaré equations (2.9) are `w2 B z δl δv " J 1 ˆδl δA ˙, B z δl δw ´ad ẘ δl δw " J 2	ˆδl δA	˙,	(4.27)

  This formula and (4.2) show that the Euler-Poincaré Lagrangian (2.8) of the general theory becomes in this case the function l " lpξ, mq : R ˆsop3q ˆM Ñ R given by

			lpv, w, Aq " xxivA `r p w, As , ivA `r p w, Asyy		
				" v 2 xxA, Ayy `2v xxiA, r p w, Asyy `wT JpAqw	(4.31)
	(see (4.3) and (4.20)). Thus, the Euler-Poincaré equations (2.9) read
	B z	δl δv	" Re Tr	ˆδl δA	˚Ai ˙,	B z	δl δw	`δl δw	ˆw " 2	Ý ÝÝÝÝÝÝÝÝ Ñ Re " δl δA  ˚, A ,	(4.32)
	B z A " ivA `r p w, As ,						
	and where we have								
	δl δv	" 2v xxA, Ayy `2 xxiA, r p w, Asyy ,	δl δw	" 2JpAqw ´4v	Ý ÝÝÝÝÝÝÝÝ Ñ Re riΓA ˚, As,
	δl δA	" rr p w, As Γ, p ws `rr p w, As Γ, p ws T `X,			

  Re TrpΓB z A ˚Bz Aq δl δv " 2p3γ 1 `γ2 `γ3 qv and m :" δl δw " 2JpAqw. Thus, the equations B z f " tf, hu for any f are B z p " ´ReTr

	where X is the traceless symmetric part of v 2 AΓ ´2vi r p w, As Γ ´2vi r p w, AΓs.
		Passing to the Hamiltonian formulation, a direct computation using (3.3) gives the
	Lie-Poisson bracket tf, hupp, m, Aq "m	¨ˆδf δm ´C δf ˆδh δm δA , « A, ˙`C ff δh δA y δh δm ´i δh , « A, δp A G y δf δm , ff	´i δf δp	G A	(4.34)
	where p :" ˆδh δA B z A " i δh δp δm ˚Ai ˙, , A . `«y δh ff	B z m `m	ˆδh δm	" ´2 Re	ÝÝÝÝÝÝÑ " δh  ˚, A δA	(4.35)
						" w T JpAqw `2v xxiA, r p w, Asyy `p3γ 1 `γ2 `γ3 qv 2 ,	(4.33)
	(see (4.3) and (4.20)). Thus, the Euler-Poincaré equations (2.9) read
	B z	δl δv	" Re Tr	ˆδl δA	˚Ai ˙, B z	δl δw	`δl δw	ˆw " 2	Ý ÝÝÝÝÝÝÝÝ Ñ Re " δl δA  ˚, A	, B z A " ivA `r p w, As ,
	where we have						
		δl δv	" 2p3γ 1 `γ2 `γ3 qv `xxiA, r p w, Asyy ,	δl δw	" 2JpAqw ´4v	Ý ÝÝÝÝÝÝÝÝ Ñ Re riΓA ˚, As,
		δl δA	" rr p w, As Γ, p ws `rr p w, As Γ, p ws T `X,

2), the Euler-Poincaré Lagrangian l " lpξ, mq : R ˆsop3q ˆM Ñ R of the general theory given in (2.8), is computed in this case to be lpv, w, Aq "

  30) is t J˘u -Z 2 (see (4.6)). As a consequence, using (4.36), it follows that the isotropy subgroup of the action (4.30) equals

	pUp1q ˆSOp3qq A 0 "	!´e iϕ , J˘ρ	´ϕ 2	¯¯ˇˇˇe iϕ P Up1q	)	-Up1q ˆZ2 .
	pUp1q ˆSOp3qq { pUp1q ˆSOp3qq A 0 Q	"	e iψ , R	‰	Þ ÝÑ	" Rρ	´´ϕ 2	¯ı P SOp3q{Z 2

The group t J˘u -Z 2 " t˘1u acts on SOp3q by R Þ Ñ R J˘a nd pUp1q ˆSOp3qq A 0 on Up1q ˆSOp3q by `eiψ , R ˘Þ Ñ `eiψ , R ˘´e iϕ , J˘ρ `ϕ 2 ˘¯. Thus

  ℓpw, Aq " xxr p w, As , r p w, Asyy " w T JpAqw, where p w " pB z RqR ´1 and JpAq is given in (4.20). Thus, the Euler-Poincaré equations (2.9) become in this case

	B z	δl δw	`δl δw	ˆw " 2	Ý ÝÝÝÝÝÝÝÝ Ñ Re " δl δA  ˚, A	, B z A " r p w, As ,
	and we have					
	δl δw	" 2JpAqw,	δl δA	" rr p

w, As Γ, p ws `rr p w, As Γ, p ws T .

Hamilton-Poincaré and Lie-Poisson reduction on Lie groupsIn this section we will summarize the necessary material that is relevant for the Hamiltonian description of condensed matter systems. This is the Hamiltonian version of the two Lagrangian reduction processes described in the preceding section.

The matrices A are related to ∆ 1 σσ 1 , the "energetic gap" of the triplet pairing of interacting quasiparticles of 3 He, and so this gap can be expressed in terms of A. Thus A can be regarded as the order parameter of superfluid 3 He; see[Monastyrsky, 1993, §5.2.1].
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