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Abstract

The chromatic polynomial is characterized as the unique polynomial invariant of graphs,
compatible with two interacting bialgebras structures: the first coproduct is given by parti-
tions of vertices into two parts, the second one by a contraction-extraction process. This gives
Hopf-algebraic proofs of Rota’s result on the signs of coefficients of chromatic polynomials
and of Stanley’s interpretation of the values at negative integers of chromatic polynomials.
We also consider chromatic symmetric functions and their noncommutative versions.
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Introduction

In graph theory, the chromatic polynomial, introduced by Birkhoff and Lewis [5] in order to treat
the four color theorem, is a polynomial invariant attached to a graph; its values at X = k gives
the number of valid colorings of the graph with k colors, for any integer k£ > 1. Numerous results
are known on this object, as for example the alternation of signs of its coefficients, a result due
to Rota [23], proved with the help of the M6bius inversion in certain lattices.

Our aim here is to insert chromatic polynomials into the theory of combinatorial Hopf alge-
bras, and to recover new proofs of these classical results. Our main tools, presented in the first
section, will be a Hopf algebra (Hg, m,A) and a bialgebra (Hg, m,d), both based on graphs.
They share the same product, given by disjoint union; the first (cocommutative) coproduct,
denoted by A, is given by partitions of vertices into two parts; the second (not cocommutative)
one, denoted by ¢, is given by a contraction-extraction process. For example:

AV =Ve1+10V +3l®.+3.®1,
S(VMY=.V +3le.l+ V...,

or, in a decorated version, where a, b, ¢ are positive integers:

b ¢ b ¢ b ¢ c c c c
A(\_/E):\_/?z®1+1®\_/?z+IZ®.c+Ia@.b+Ib®.a+.c®13+.b®1a+.a®lb,
5(1'7\72)= eatbtc @E)vz—i—IZ+b®.CIZ—|—IZ+C®.beCL—|—Ii+c®.a12—|—bvz®.a.b.6.

We obtain a Hopf algebra (Hg, m,A), graded by the cardinality of graphs, and connected, that
is to say its connected component of degree 0 is reduced to the base field Q: this is what is
usually called a combinatorial Hopf algebra. On the other side, (Hg,m,d) is a bialgebra, graded
by the degree defined by:

deg(G) = t{vertices of G} — g{connected components of G}.

These two bialgebras are in cointeraction, a notion described in [7, 10, 19 20]: (Hg,m,A) is a
bialgebra-comodule over (Hg,m, ), see Theorem Another example of interacting bialgebras
is the pair (Q[X],m,A) and (Q[X], m, ), where m is the usual product of Q[X] and the two
coproducts A and ¢ are defined by:

AX)=X®1+1®X, 5(X) =X ®X.

This has interesting consequences, proved and used on quasi-posets in [10], listed here in
Theorem [2.1] In particular:

1. There exists a unique morphism ¢; : Hg — Q[ X, which is a Hopf algebra morphism from
(Hg, m,A) to (Q[X], m, A) and also a bialgebra morphism from (Hg,m, d) to (Q[X],m,d).

2. We denote by (Mg, *) the monoid of characters of (Hg, m,d). This monoid acts on the set
By ,—qpx] of Hopf algebra morphisms from (Hg,m,A) to (Q[X],m,A), via the map:

(_:{ Engoorx) x Mg — Eygqlx]
(6,0) — A= (p®N) od.

Moreover, the action of Mg over Ey, ,q[x] is free of rank 1, with ¢; as a generator.

The morphism ¢; is described in the second section: for any graph G, ¢1(G) is the chromatic
polynomial Py, (G) (Theorem [2.4]). This characterizes the chromatic polynomial as the unique
polynomial invariant on graphs compatible with both bialgebraic structures. To this morphim



is attached a character denoted by A, which allows to reconstruct P.p, trough the action of
Mg: for any graph G,

chr Z )‘chr G| XCZ

where the sum is over a family of equivalences ~ on the set of vertices of G, ¢l(~) is the number
of equivalence classes of ~, and G| ~ is a graph obtained by restricting G to the classes of ~
(Corollary . Moreover, the inverse of A, for the convolution associated to the coproduct §
is the character A\g which sends any graph to 1, whereas the inverse of A, for the convolution
associated to the coproduct ¢ is related to acyclic orientations of graphs and allows to describe
the antipode of (Hg, m,A), see Corollary Therefore, the knowledge of the chromatic char-
acter implies the knowledge of the chromatic polynomial; we give a formula for computing this
chromatic character on any graph with the notion (used in Quantum Field Theory) of forests,
through the antipode of a quotient of (Hg, m,d), see Proposition We give a Hopf-algebraic
proof of the classical way to compute the chromatic polynomial by induction on the number of
edges by an extraction-contraction of an edge in Proposition 2.8} and deduce a similar way to
compute the chromatic character. As consequences, we obtain proofs of Rota’s result on the sign
of the coefficients of a chromatic polynomial (Corollary and of Stanley’s interpretation of
values at negative integers of a chromatic polynomial in Corollary 2.17] The link with Rota’s
proof is made via the lattice attached to a graph, defined in Proposition

We then study morphisms from this double bialgebra of graphs to the function of quasisym-
metric functions QSym |2}, [12] [14] (I8, 27]. For this, we need to generalize the construction on
graphs to graphs decorated by elements of an abelian semigroup (D, +), obtaining a Hopf algebra
(Hg(p),m,A) and a bialgebra (Hg(py,m,d) on the same algebra, which we give a graduation
with the help of a map wt : (D,+) — N (Proposition [1.10). Using Aguiar, Bergeron and
Sottile’s theory of combinatorial Hopf algebras [2], we introduce a homogeneous Hopf algebra

(D)

morphism F, "7 from Hgpy to QSym. This morphism F, (D ) sends any graph G to its chro-

(D)

matic symmetric function, as defined by Stanley [26]. Moreover, F,_, "’ is the unique potential
homogeneous morphism compatible with both bialgebraic structure and we prove that it indeed
satisfies this property if, and only if the map wt giving the graduation is a semigroup morphism
(Theorems and [3.6). Note that this condition excludes the nondecorated case, identified
with D = {«}, giving its unique semigroup structure * + * = * and the graduation defined by
wt(x) = 1. As a consequence, we obtain a diagram of Hopf algebra morphisms:

(D)

where H is given with the help of Hilbert polynomials (Proposition . The last section
deals with a non-commutative version of the chromatic symmetric function: the Hopf algebra
of graphs is replaced by a non-commutative Hopf algebra of indexed graphs, and QSym is
replaced by the Hopf algebra of packed words WQSym. For any indexed graph G, its non-
commutative chromatic symmetric function F.p,.(G) can also be seen as a symmetric formal
series in non-commutative indeterminates (Theorem {4.5): we recover in this way Gebhard and
Sagan’s chromatic symmetric function introduced in [II] and related in [22] to MacMahon sym-
metric functions.

Acknowledgment. The research leading these results was partially supported by the French
National Research Agency under the reference ANR-12-BS01-0017.



Thanks. I am grateful to Mercedes Rosas, who pointed the link with Gebhard and Sagan’s
chromatic symmetric function in noncommuting variables, and to Viviane Pons, who noticed an
important mistake in the preceding version of the paper.

Notations 0.1. 1. All the vector spaces in the text are taken over Q.
2. We denote by Nog = {1,2,3,...} the set of positive integers.
3. For any integer n > 0, we denote by [n] the set {1,...,n}. In particular, [0] = &.

4. The usual product of the polynomial algebra Q[X] is denoted by m. This algebra is given
two bialgebra structures, defined by:

AX)=X®1+1®X, 5(X) =X ®X.
Identifying Q[X,Y] and Q[X]® Q[Y]:
VP e Q[X], A(P)(X,Y) = P(X +Y), 5(P)(X,Y) = P(XY).

The counit of A is given by:

VP e Q[X], (P) = P(0).
The counit of § is given by:

VP e Q[X], € (P) = P(1).
Moreover, (Q[X],m,A) is a Hopf algebra, of antipode S sending any P(X) € Q[X] to
P(—X).

1 Hopf algebraic structures on graphs

We refer to [13] for classical results and vocabulary on graphs. Recall that a graph is a pair
G = (V(G), E(G)), where V(G) is a finite set, and E(G) is a subset of the set of parts of V(G)
of cardinality 2. In sections[I]and [2] we shall work with isoclasses of graphs, which we will simply
call graphs. For any graph G, we denote by |G| the cardinality of V(G) and by cc(G) the number
of its connected components. By convention, the empty graph 1 is considered as non connected.
The set of graphs is denoted by G. For example, here are graphs G with |G| < 4:

e L YoVlee. REAUOV LY.V
A graph is totally disconnected if it has no edge.

We denote by Hg the vector space generated by the set of graphs. The disjoint union of
graphs gives it a commutative, associative product m. As an algebra, Hg is (isomorphic to) the
free commutative algebra generated by connected graphs.

1.1 The first coproduct

Definition 1.1. Let G be a graph and I < V(G). The graph G|; is defined by:
e V(G| =1.
o B(G)) = {{z.y} € B(G) | v,y e I},

We refer to [1I, [I'7, 28] for classical results and notations on bialgebras and Hopf algebras.
The following Hopf algebra is introduced in [24]:



Proposition 1.2. We define a coproduct A on Hg by:

VGeg, AG) = ) GG,
V(G)=IuJ

Then (Hg,m,A) is a graded, connected, cocommutative Hopf algebra. Its counit is given by:
VG eg, e(G) = éa.1.
Proof. 1If G, H are two graphs, then V(GH) = V(G) u V(H), so:

AGH)= > GH|[IuK®GH;

V(G)=ILJ,
V(H)=KuL

>, GuHg®G Hy
V(G)=ILJ,
V(H)=KuL

— A(G)A(H).

If G is a graph, and I = J < V(G), then (G|1)|; = G);. Hence:

(A®ID)oAG) = > (G Gk ®G)

V(G)=IuL,
I=JuK

= ), Gu®GKk®eG
V(G)=JuKuL

Z Gy ® (G ® (Gr)L
V(G)=Jul,
I=KUL

— (Id®A) o A(G).

So A is coassociative. It is obviously cocommutative.

Ezxample 1.1.
A)=e®1+1®.,
Ah=Ig1+10l+2.®.,
AV=Ve1+19V +3l®.+3.01,
AV )=VeI+iogV 2. +..0. +2.0 + . ®...

1.2 The second coproduct

Notations 1.1. Let V be a finite set ~ be an equivalence on V.
e We denote by 7. : V.— V/ ~ the canonical surjection.
e We denote by cl(~) the cardinality of V/ ~.

Definition 1.3. Let G a graph, and ~ be an equivalence relation on V(G).
1. (Contraction). The graph V(G)/ ~ is defined by:

V(G/ ~) =VI(G)/ ~,
E(G/ ~) = {{r-(z), 7~ ()} [ {2,y} € E(G), m<(x) # 7~ (y)}-



2. (Eztraction). The graph V(G)| ~ is defined by:
V(G| ~) =V(G),
E(G|~) ={{z,y} € E(G) | v ~ y}.

3. We shall write ~ <G if, for any ce V(G)/ ~, G|, is connected.

Roughly speaking, G/ ~ is obtained by contracting each equivalence class of ~ to a single
vertex, and by deleting the loops and multiple edges created in the process; G |~ is obtained by
deleting the edges which extremities are not equivalent, so is the product of the restrictions of
G to the equivalence classes of ~.

We now define a coproduct on Hg. This coproduct, which can also be found in [24], can
also be deduced from a general operadic construction [29], see also [3]. A similar construction is
defined on various families of oriented graphs in [19].

Proposition 1.4. We define a coproduct § on Hg by:

vGed, 0(G) = 3, (G/~)® (G| ~).
~<G

Then (Hg,m,d) is a bialgebra. Its counit is given by:

VG eg, (@) = {1 if G is totally disconnected,

0 otherwise.
It is graded, putting:
VG e g, deg(G) = |G| — cc(G).

In particular, a basis of its homogeneous component of degree 0 is given by totally disconnected
graphs, including 1.

Proof. Let G, H be graphs and ~ be an equivalence on V(GH) = V(G) u V(H). We put

~'=~y (@ and ~, ;- The connected components of GH are the ones of G and H, so ~ <GH
if, and only if, the two following conditions are satisfied:

e ~' <G and ~" <H.
o If v ~y, then (z,y) e V(G)? u V(H)? .

Note that the second point implies that ~ is entirely determined by ~' and ~”. Moreover, if this
holds, (GH)/ ~= (G/ ~')(H/ ~") and (GH)| ~= (G| ~')(H| ~"), so:

S(GH)= > (G/~)H/~") & (G| ~)H|~") = 5(G)5(H).

~<G, ~M<H

Let G be a graph. If ~ <G, the connected components of G/ ~ are the image by the
canonical surjection of the connected components of G; the connected components of G| ~ are
the equivalence classes of ~. If ~ and ~’ are two equivalences on GG, we shall denote ~'<~ if for



all z,y € V(G), © ~' y implies x ~ y. Then:

BRI oG = > (G/~)/~®G/~)|~ QG| ~
~<G,~'<G/~

D, (G ~))~' @G ~)| ~ &G ~

~,~’<|G’

~<~

Y, (@~ (G~ ~ (G| ~)| ~

~,~'<@G,

> (G ~)® (G~ ~ (G )] ~
~<G,~'<G|~

(1d®3) 0 6(G).

So ¢ is coassociative.

We define two special equivalence relations ~¢ and ~; on G: for all z,y € V(G),
e © ~qgy if, and only if, x = y.
e 1 ~1 y if, and only if, x and y are in the same connected component of G.

Note that ~g, ~1 <<G. Moreover, if ~ <G, G/ ~ is not totally disconnected, except if ~=~1;
G| ~ is not totally disconnected, except if ~=~(. Hence:

e If GG is totally disconnected, then §(G) = G R G.
e Otherwise, putting n = |G| and k = cc(G):

5(G)="®GC+G® " + ker(¢)) @ ker(¢').
So ¢’ is indeed the counit of §.

Let G be a graph, with n vertices and k connected components (so of degree n — k). Let
~ <. Then:

1. G/ ~ has cardinality cl(~) and k connected components, so is of degree cl(~) — k.

2. G| ~ has cardinality n and cl(~) connected components, so is of degree n — cl(~).
Hence, deg(G/ ~) +deg(G| ~) = cl(~) —k+n—cl(~) = n—k = deg(G): J is homogeneous. [J
Example 1.2.

6(e)=-®., Hh=.0l+1®..,
s(VM)Y=.9V+3le.l+ V..., s(V)=.9V +2l@.l+ V...

Remark 1.1. Let G € G. The following conditions are equivalent:
o &/(G) =1.
e &/(G) #0.
o deg(G) = 0.

e (G is totally disconnected.



1.3 Antipode for the second coproduct

(Hg,m,d) is not a Hopf algebra: the group-like element « has no inverse. However, the gradu-
ation of (Hg, m,d) induced a graduation of H; = (Hg, m,d)/{« — 1), which becomes a graded,
connected bialgebra, hence a Hopf algebra; we denote its antipode by S’. Note that, as a com-
mutative algebra, ”H'g is freely generated by connected graphs different from .

The notations and ideas of the following definition and theorem come from Quantum Field
Theory, where they are applied to Renormalization with the help of Hopf algebras of Feynman
graphs; see for example [8, [9] for an introduction.

Definition 1.5. Let G be a connected graph, G # ..
1. A forest of G is a set F of subsets of V(QG), such that:
(a) V(G) e F.
(b) IfI,Je F,thenl < J,orJ<I, orInJ=.
(¢) For all I € F, G|1 is connected and not reduced to the graph ..

The set of forests of G is denoted by F(G).

2. Let F € F(G); it is partially ordered by the inclusion. For any I € F(G), the relation
~1 1is the equivalence on I which classes are the mazximal elements (for the inclusion) of
{Je F|J< I} (if this is non-empty), and singletons. We put:

Gr=]]@Gn/~1.

IeF

Ezample 1.3. The graph | has only one forest, 7 = {I}; I 7 = |. The graph ¥V has four forests:
o F={\};in this case, V= V.
e Three forests F = { V', 1}; for each of them, V 7 = [I.

Theorem 1.6. For any connected graph G, G # «, in H’g

S(G) = > (-1)¥Gr
FeF(G)

Proof. By induction on the number n of vertices of G. If n = 2, then G = 1. As §(l) =
le1+1®1!, 5(1) = =1 = —1 £, where F = {1} is the unique forest of I. Let us assume the
result at all ranks < n. Then:

s'(@)=—-G- ) (G/~)S'Gl~)

~<G, ~#~1
--G- )] Y, (OGN (G)E - (G A
~<aG, ~#~q .7-'¢EF(G‘IZ,)
G/~={I1,... I}

Note that each forest of G different from {G} consists of {G} with the union of of forests

Fi,...,Fi on nonintersecting, connected subsets Iy, ..., I of V(G). Therefore:
S(G) = -G — Yoo )GE= D ()Y Gr O
FeF(G), F#{G} FeF(G)

Ezample 1.4. Tn H:

S'(1) = -1, S'(V)=-YV +3ll, S'(V)=-V +2ll



1.4 Cointeraction

Theorem 1.7. With the coaction 6, (Hg,m,A) and (Hg,m,d) are in cointeraction, that is
to say that (Hg,m,A) is a (Hg, m,d)-comodule bialgebra, or a Hopf algebra in the category of
(Hg,m,0)-comodules. In other words:

51) =1®1.
mi13240(0®J) oA =(A®IA)od, with:

e | Ho®Hg®Hg®Hg — Hg ®Hg ® Hg
b2 a1 @b R®az®by — a1 ®ax @ biby.

For all a,b e Hg, 6(ab) = §(a)d(b).
For allae Hg, (e®I1d) o d(a) = e(a)l.

Proof. The first and third points are already proved, and the fourth one is immediate for any
a € G. Let us prove the second point. For any graph G € G:

(A®Id) 0 §(G) = > (G~ ®(G/ ~) s ®G| ~
~<G, V(G)/~=I00]

Y (G~ G~ (G~ (G|~
V(G)=I'LJ,
~/<G|], ~/,<IG‘J

=m13240 (6 ®6) 0o A(G).

For the second equality, I" = 721 (I), I" = w21 (J), ~'=~p and ~"=~ ;. O

1.5 Decorated versions

We fix a nonempty set D.

Definition 1.8. A D-decorated graph is a pair (G, dg), where G is a graph and dg : V(G) — D
is a map. We denote by G(D) the set of isoclasses of D-decorated graphs, and by Hgpy the vector
space generated by G(D).

Ezample 1.5. For any k € N, let us denote by G (D) the set of D-decorated graphs with k vertices.
Then:

gl({(l,b, C}) = {.a’ .b, .9}7
Ga({a,b,c}) = {vtua, vt saue, abab, wbuc, weue, Ja 10 10 10 1, 16,

00 00 00, 00 ¢0 b, 06060 eC, 00 obeb, 60 ebeC, 60 eCeC, abobob, eboebeC, ebeCeC, eCaCoC, )

wala,wala,wala, walb, walb, wale, wle, o le, wle, ol o lb, wlc
Ga({a.b, c}) = 4 S GRS NS P IS IS (I VAR VAR VARV ALV ARV 2 g
NAAVAVIV VY VYAV VAV

aa abdp a

AR vAR VA VAL VAR VAR v AR v AR v A v

If G and H are two D-decorated graphs, their disjoint union is naturally also a D-decorated
graph: hence, the disjoint union makes Hgpy an associative, commutative algebra, which unit
is the empty graph 1. Moreover, if G is a D-decorated graph and I = V(G), then G|; is also
a D-decorated graph, with dGu = (dg)jr- Then Hgpy is a Hopf algebra, with the coproduct
defined by:

\

VG e G(D), AG) = ) GG,
V(Q)=IuJ



Example 1.6. If a,b,c € D:
Af(ea) = e ®1 + 1R o0,
Al =li@1+1®1i+w® o + o @ oo,
b ¢ b ¢ b ¢ c c c c
AV =Vi@l+1@ Vet i@+ li@u+lh@w+c@litu@litw@l,

b oc b ¢ b ¢ c c
A(%):%®1+1®Vz+IZ®.C+Ia®.b+.b.c®.a+.b®1a+.C®IZ+.a®.b.c.

In order to define the second coproduct, we need more structure on D: let us assume that
(D, +) is an abelian semigroup (that is to say, + is a commutative, associative binary operation
on D). If G is a D-decorated graph and ~ is an equivalence on V(G). As V(G |~) = V(G),
G |~ is a D-decorated graph, with dgj~ = dg. W define dg,. by:

Yee V(G/~) = V(G)/ ~, dgy~() = Y da(w).
TEC
As (D, +) is an abelian semigroup, this is well-defined, and in this way G/ ~ becomes a D-
decorated graph. The proof of Proposition [1.4] can be extended to the D-decorated case; with
the notations of the proof of this theorem, if ~, ~' <G and ~'<~, then, as decorated graphs:

G/ ~))~'=(G/~), (G/~) [~ = (G| ~)/ ~, Gl~=(G[~) |~
Hence, Hg(p) is a bialgebra, with the coproduct defined by:
VG e G(D), 5(G) = Y (G/~) (G| ~).
~<G

Example 1.7. If a,b,c € D:

0(ea) = 00 ® oa,

5(16) = varr @ la + 16® waus,
b

&

bC c c a (& bC
5(%) = sa+b+ec ®Vz+ lavs @.CIZ + I?z+c ®.bIa + lo+e ®.aIb + Vz@.a.b.c,

b ¢ b ¢ c c b c
S(Va) = vatvie @ Vot lore@ala+ loso @ocle + Vi@ aunac.

Theorem 1.9. With the coaction §, (Hg(p), m,A) and (Hgp), m, ) are in cointeraction. More-
over, let us consider the forgetful map:

}“(D);{ Hom)y — Mg
(G,dg)eG(D) — Geg,

then FP) is a surjective Hopf algebra morphism from (Hg(p), m, A) to (Hg, m,A) and a bialgebra
morphism from compatible (Hgpy, m,d) to (Hg,m,0).
Remark 1.2. When D is a singleton, F(P) is an isomorphism. Through this isomorphism, we

identify Hg with Hgp), when D = {+} is a singleton, given its unique semigroup structure
* + % = %,

Let us now give Hg(p) a graduation. A graded set is a pair (D, wt), where wt : D — N5
is a map. Given such a map, we put, for any D-decorated graph G:

wt(G) = > wt(x).
zeV(QG)

For any n = 0, let (Hg('D))n be the subspace of Hgp) generated by the D-decorated graphs G
with wt(G) = n. Then:

Proposition 1.10. If (D, wt) is a graded set, the map wt induces a connected graduation of the
Hopf algebra (Hg(p), m, A).

Remark 1.3. The nondecorated case Hg is obtained with the weight defined by wt(x) = 1.

10



2 Chromatic polynomials

In all this section, we fix an abelian semigroup (D, +) and work in Hg(py- This situation includes
the nondecorated case, when D = {x}.

2.1 Consequence of the cointeraction
We can apply the results of [10]:

Theorem 2.1. We denote by Mgy the monoid of characters of Hgpy. In the nondecorated
case, we shall simply write Mg.

1. Let A € Mg(py. It is an invertible element if, and only if, for any d € D, A(+a) # 0.

2. Let B be a Hopf algebra, and By py—B be the set of Hopf algebra morphisms from (’Hg(p), m, A)
to B. Then Mgy acts on Ergipy—B by:

— { Ergwy—B x Mg) — Egp)—B
(#,A) — d=A=(¢®A) 00

3. Let A€ Mgpy. There exists a unique element ¢ € EHg<D>—>Q[X] such that:
Vx € Hgpy, o(z)(1) = M(z).
4. There exists a unique morphism ¢§D) : Hgp) — Q[X], such that:
. ¢>§D) is a Hopf algebra morphism from (Hgpy, m,A) to (Q[X],m,A).
° ¢§D) is a bialgebra morphism from (Hgpy,m,d) to (Q[X],m,0).
This morphism is the unique element ¢ € EHQ(D)—N@[X] such that:
Vo € Hgp), d(x)(1) = &' (x).
In the nondecorated case, we shall simply write ¢1.

5. The following map is a bijection:

D)

Mgy — Eugp—0lx]

We shall determine ¢5D) in the next section.
2.2 A first morphism
Proposition 2.2. We define ¢\ : Hgp) — Q[X] by:
VG e G(D), #Ph@) = xIV@l,

Then qﬁép) is a Hopf algebra morphism from (Hgpy, m,A) to (Q[X],m,A). In the nondecorated
case, we shall simply write ¢g.

Proof. This map is obviously an algebra morphism. For any graph G, of degree n:

@ @sMoa =Y xlexV =3\ (?)Xi@)X”_i = A(X™) = Ao s{PN(@).
V(G)=IuJ i=0

So qb((]D) is a Hopf algebra morphism. O
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Remark 2.1. This morphism <Z>(()D) is not compatible with 4. For example, in the nondecorated
case:

5o go(l) =d(X)?
= X’® X2,
(Po®¢0) 0d(}) = (o ® o)1 ® ee + . @ 1)
=X2X%2+X®X>2

2.3 Determination of ¢§D)

Let us recall the definition of the chromatic polynomial, due to Birkhoff and Lewis [5]:
Definition 2.3. Let G be a graph and X a set.
1. A X-coloring of G is a map f:V(G) — X.

2. A N-coloring of G is packed if f(V(G)) = [k], with k = 0. The set of packed colorings of
G is denoted by PC(QG).

3. A valid X -coloring of G by X is a X-coloring f such that if {i,j} € E(Q), then f(i) # f(j).
The set of valid X -colorings of G is denoted by VC(G, X); the set of packed valid colorings
of G is denoted by PVC(G).

4. An independent subset of G is a subset I of V(G) such that G|; is totally disconnected.
We denote by IP(G) the set of partitions {I1,...,Iy} of V(G) such that for all p € [k], I,
is an independent subset of G.

5. For any k > 1, the number of valid [k]-colorings of G is denoted by Pep,(G)(k). This
defines a unique polynomial P.p,.(G) € Q[X], called the chromatic polynomial of G.

Note that if f is a X-coloring of a graph G, it is valid if, and only if, the partition of V(G)
{f =) | v € f(V(G))} belongs to IP(G).

Theorem 2.4. 1. The morphism P, : Hg —> Q[X] is the morphism ¢1 of Theorem .
2. The unique morphism ¢§D) of Theorem is Pc(g) = P, 0o FD).

Proof. 1. It is immediate that, for any graphs G and H, P, (GH)(k) = P.p(G)(k)Penr (H) (k)
for any k, so Pop(GH) = Popy(G)Pepy(H): Ppp, is an algebra morphism. Let G be a graph, and
k,l = 1. We consider the two sets:

C = VC(G, [k +1]),
D ={(I,d,) | IS V(G), ¢ e VC(Gp, [K]), ¢ € VC(Gy oy [}

We define a map 6 : C — D by 6(c) = (I,, "), with:
o [ ={zeV(G)|c(z) € [k]}.
e Forall ze I, d(z) = ¢(x).
e Forallz ¢ I, "(z) = c¢(x) — k.

We define a map 6’ : D — C by 6(I,, ") = ¢, with:
e Forall z € I, ¢(z) = d(x).

e Forall z ¢ I, ¢(x) = " (x) + k.

12



Both € and 0" are well-defined; moreover, 6 o ¢/ = Idp and 6’ 0 6 = Id¢, so 6 is a bijection. Via
the identification of Q[X]® Q[X] and Q[X,Y]:

A0 Py (G) (K, 1) = Popr(G)(k + 1)
= ij
= ij

= Z Pchr(GU)(k)Pchr(G|V(G)\I)(Z)
IcV(G)

(Pchr ® Pch?") Z G|I ® G|J (ka l)
V(@)=IuJ

= (Pchr ® Pchr) © A(G)(k, l)

As this is true for all k,1 > 1, Ao P, (G) = (Peopr ® Pepr) © A(G). Moreover:

1if G is empty,

£(G) = € 0 Py (G) = Pepr (G)(0) = .
0 otherwise.
So Pepr € Eg,qx]- For any graph G € G:

1 if G is totally disconnected,

Pchr(G)(l) = {
=& (G).

0 otherwise;

So (bl = Pchr~

2. By composition, P, o F (D) satisfies the two required conditions. ]

2.4 The chromatic character

Corollary 2.5. For any connected graph G € G, we put:

APy (G)

Achr(G) dx (0)

We extend \ as an element of Mg: for any graph G, if Gy, ..., Gy are the connected components
of G,
)\chr(G) = )\chr(Gl) v )\chr(Gk)'

Then Acpy is an invertible element of Mg, and we denote its inverse by Aog. Then, for any graph
G, M(G) =1, or, equivalently:

¥G e g, 2 Aan(G/ ~) = D Aawr(G [~) = €(G).

~<a@G ~<G

Moreover, Py, = ¢g < Achr, 01 equivalently:

VG e G, Py (G) = D Aenr(G] ~) X,
~<G

Proof. By Theorem there exists a unique A € Mg, such that ¢g = ¢1 < A. Then:

gopg=e0(p1@N)od=(0p1)@N)od=(@N)od=c"x\=\
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Therefore, for any graph G, A\(G) = ¢/(X!V(@)) = 1. AsA(+) = 1, by Theorem A is invertible,
and then ¢y = ¢9 < A*~L. For any graph G, by definition of §:

01(G) = X, N HG| ~) X,
~<aG

If G is connected, there exists a unique ~; <G such that cl(~1) = 1: this is the equivalence
relation such that for any z,y € V(G), x ~1 y. Moreover, G |~1= G. Hence, the coefficient of
X in P (X) is A*7HG |~1) + 0 = M*7H(G), so:

_ dPu(G)

*—1
AFTHGE) e

(0) = Aenr (G).

Consequently, )\c_th =\ O
The character Ay, will be called the chromatic character. Its inverse is denoted by Ag. We

extend it to any Hgp) by AP A © FP). Then its inverse is )\SD) == )\gpo FP). Then, as

chr

F®) is compatible with both bialgebraic structures on Hg(py:

(D) _ 40\

chr”

Proposition 2.6. \o;-(+) = 1; if G is a connected graph, G # «, then:

Aenr (G) = 3, (=1

FeF(G)

Proof. We have Acpr(+) = Xo(+) = 1, so both Acr and Ag can be seen as characters on Hg.
Hence, for any connected graph G, different from .

Aer(G) = X005 (G) = Y, (=D)¥X(Gr) = ), (=¥,
FeR(G) FeF(G)

as \o(H) =1 for any graph H € G. O
Ezxample 2.1. 1. By direct computations, we obtain:

¢ |.J1|v|Vv|rR|B|U|O|¥|U
Aewe(G) [ 1] -1] 2 | 1 |-6]-4]-2][-3]-1]-1

2. If G is a complete graph with n vertices, P, (G)(X) = X(X —1)...(X —n + 1), so
Aenr(G) = (=1)" " H(n — 1)L

3. If G is a tree with n vertices, Pu,,.(G)(X) = X(X — 1)1 s0 Aenr(G) = (1)1,

2.5 Extraction and contraction of edges

Definition 2.7. Let G be a graph and e € E(G).

1. (Contraction of e). The graph G/e is G/ ~., where ~. is the equivalence which classes are
e and singletons.

2. (Subtraction of ). The graph G\e is the graph (V(G), E(G)\{e}).
3. We shall say that e is a bridge (or an isthmus) of G if cc(G\e) > cc(G).

We now give an algebraic proof of the following well-known result [13], which allows to
compute the chromatic polynomial by induction on the number of edges:
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Proposition 2.8. For any graph G, for any edge e of G:

—Aenr (GJe) if e is a bridge,

Penr(G) = Pepr(G\e) — Penr(G/e);  Aenr(G) = {)\ 1 (G\e) — Aenr(G/€) otherwise.

Proof. Let G be a graph, and e € E(G). Let us prove that for all k& > 1, P, (G)(k)
P (G\e)(k) — Ppr(G/e)(k). We proceed by induction on k. If k = 1, P (G)(1) = £/(GQ) =
If G has only one edge, then G'\e and G/e are totally disconnected, and:

0.
Pepr(G\e)(1) = Pepr(G/e)(1) =1 -1 = 0.

Otherwise, G\e and G/e have edges, and:
P (G\e)(1) = Pepr(G/e)(1) =0—0 = 0.

Let us assume the result at rank k. Putting e = {x, y}:

Pchr(G\e)(k + 1) - PchT(G/e)(k + 1)
= D Pa((G\))(K)Perr((G\e) 1) (1)

V(G)=IuJ
= X ParlGlONWPar(Gleyy ) = 3 Panl(GlOn) ) Ponr (G ()
V(G)=IuJ, VIG)=1uJ,

wyel xz,yeJ
= Y PG NEPa (@)D + D Par((G\)) (k) P (G\e)) (1)
V(G)=IuJ, VI(G)=Tuid,

z,yel zyet
B Z Pchr((G/G)\[)(k)Pchr((G/e)\J)(l)_ Y Pan((G/e) ;1) (k) Penr ((G/e)1) (1)
+ Z Pchr((G\e)u)(k)Pchr((G\e)U)(l)

V(G)=IuJ,
(zyy)e(IxJ)u(JxI)

= Z Pchr((Gu)\e)(/f)Pchr(Gu)(l)+ Y. PG (k) Penr ((G1)\O)(1)
y: V(?;e{]uj’

- Z Perr ((G)1)/€) (k) Penr (G)5)(1) = Z Perr (G1) (k) Penr ((G)7)/€)(1)

V(G@)=IuJ, V(G)=IuJ,
x,yel Z‘yEJ
+ Z Pchr(GH)(k)Pchr(GU)(l)
V(G)=IuJ,

(z,y)e(IxJT)u(JxI)

= Z Pchr(G\I)(k)Pchr(G\J)(l) + 2 Pchr(GU)(k)Pchr(G\J)(l)

V(G@)=IuJ, V(G)=IuJ,
T yeI xz,yeJ
+ Z Pchr(GU)(k)Pchr(GU)(l)
V(G)=IuJ,

(z,y)e(IxJ)u(JxI)

= Z Pchr(G‘[)(k)Pchr(GU)(l)
V(@)=IuJ
= chr(G)(k + 1)

So the result holds for all k£ > 1. Hence, P.p,.(G) = Pupr(G\e) — Pepr(GJe).
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Let us assume that G is connected. Note that G/e is connected. If e is a bridge, then
G\e is not connected; each of its connected components belongs to the augmentation ideal of
Hg, so their images belong to the augmentation ideal of Q[X], that is to say XQ[X]; hence,
Pupr(G\e) € X2Q[X], so:

Ao (G) = (O gy _ e (G) ) ATAGIE) () _ g n o).
Otherwise, G\e is connected, and:
Aoy (@) = el ) _ APl ) ATt GE) ) (e — Aann ().

If G is not connected, we can write G = (G1G5, where (77 is connected and e is an edge of

G1. Then:

)‘chr (G) = >\ch7" (Gl ) )\chr (GZ)

) = Aenr(G1/e)Aenr (Ga) if € is a bridge,
)\chr(Gl\e))‘chr(GQ) - Achr(Gl/e))‘chr(GQ) OtherWise;

) = Aenr((G1/e)G2) if e is a bridge,
Achr ((G1\€)G2) = Achr ((G1/€)Ga) otherwise;

) = Aenr(Gle) if e is a bridge,
Aehr (G\€) — Acnr(G/e) otherwise.
So the result holds for any graph G. O

Example 2.2. For any n > 3, let us denote by C), the cyclic graph with n vertices. Then
Aehr(C3) = 2. Choosing any edge e of C,, with n > 4, C},/Je = Cp,—1 and C),\e is a chain on n
vertices, so is a tree. Hence:

Achr(Cn) = (*1)71_1 - Achr(Cnfl)'

A direct induction proves that for any n = 3, Aepr(Cr) = (=1)""L(n — 1).

2.6 Lattices attached to graphs

We here make the link with Rota’s methods for proving the alternation of signs in the coefficients
of chromatic polynomials.

The following order is used to prove Proposition

Proposition 2.9. Let G be a graph. We denote by R(G) the set of equivalences ~ on V(G),
such that ~ <G. Then R(G) is partially ordered by refinement:

Vo~ ~eR(G), ~<~" if Vo,ye V(Q), z ~y =z~ y).

In other words, ~<~' if the equivalence classes of ~' are disjoint unions of equivalence classes
of ~. Then (R(G),<) is a bounded graded lattice. Its minimal element ~q is the equality; its
mazimal element ~1 is the relation which equivalence classes are the connected components of

R(G).

Proof. Let ~,~'e R(G). We define ~ A ~' as the equivalence which classes are the connected
components of the subsets Cl.(z) n Cl(y), z,y € V(G). By its very definition, ~ A ~' <G,
and ~ A ~'<~, ~If A<~ ~'<in R(G), then the equivalence classes of ~ and ~' are disjoint
union of equivalence classes of ~”, so their intersections also are; as the equivalence classes of
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~" are connected, the connected components of these intersections are also disjoint union of

equivalence classes of ~”. This means that ~"<~ A ~'.
We define ~ v ~/ as the relation defined on V(G) in the following way: for all z,y € V(G),

x ~ v ~'y if there exists z1, 2], ...,z ¢}, € V(G) such that:
r=x1~2) ~ 19~ ~ap~ a2l =y

It is not difficult to prove that ~ v ~’ is an equivalence. Moreover, if x ~ y, then z ~ v ~" y
(x1 =z, 2y =y);ifx ~ y, then x ~ v ~ y (21 = 2] = x, 29 = 24, = y). Let C be an
equivalence class of ~ v ~/, and let x,y € C. With the preceding notations, as the equivalence
classes of ~ and ~' are connected, for all p € [k], there exists a path from xz, to x;,, formed of
elements ~-equivalent, hence ~ v ~’-equivalent; for all p € [k — 1], there exists a path from z,
to x; +1, formed of elements ~’-equivalent, hence ~ v ~’-equivalent. Concatening these paths,
we obtain a path from z to y in C, which is connected. So ~ v ~'e R(G), and ~, ~'<~ v ~/.

Moreover, if ~, ~'<~" then obviously ~ v ~'<~”. We proved that R(G) is a lattice.

For any ~€ R(G), we put deg(G) = |G| — cl(~). Note that deg(~p) = 0. Let us assume that
~ is covered by ~' in R(G). We denote by C1,...,Cy the classes of ~. As ~<~/  the classes
of ~" are disjoint unions of Cj; as ~#~', one of them, denoted by C’, contains at least two C,,.
As (' is connected, there is an edge in C’ connecting two different Cp; up to a reindexation,
we assume that there exists an edge from C7 to Co in C’. Then C; u Cs is connected, and the
equivalence ~” which classes are C; L1 Cy, Cs, . .. C), satisfies ~<~"<~'. As ~/ covers ~, ~'=~",

so deg(~') = |G| — k + 1 = deg(~) + 1. O
Remark 2.2. This lattice is isomorphic to the one of [23]. The isomorphism between them sends
a element ~e R(G) to the partition formed by its equivalence classes.

Ezxample 2.3. We represent ~€ R(G) by G| ~. Here are examples of R(G), represented by their
Hasse graphs. We index the vertices of the graphs by letters for a better understanding.

1 \V/ 7
.. low 1w Lo Lo

Proposition 2.10. Let G be a graph. We denote by ug the Mobius function of R(G).
1. If ~<~" in R(QG), then the poset [~,~'] is isomorphic to R((G| ~')/ ~).
2. For any ~<~" in R(G), pa(~,~") = A (G| ~')/ ~). In particular:

LG (~0,~1) = Aenr (G).

Proof. Let ~<~'e R(G). If ~" is an equivalence on V(G), then ~<~"<~ if, and only if, the
following conditions are satisfied:

e ~" goes to the quotient G/ ~, as an equivalence denoted by ~”.

« TTeR((G|~)/ ~).
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Hence, we obtain a map from [~, ~] to R((G| ~')/ ~), sending ~” to ~”. It is immediate that
this is a lattice isomorphism.
Let ~<~'e R(G). As [~,~'] is isomorphic to the lattice R((G| ~')/ ~):

Y Aawl(GI 1)) ~) = >, Aetr (G ~1)) ~)|~7)

NS ~TER((G|~)/~)
= Penr ((G] ~)/ ~)(1)
B {1 if (G| ~")/ ~ is totally disconnected,

0 otherwise;
_Jrif ~=n~
0 otherwise.
Hence, pa(~,~") = Aenr ((G] ~)/ ~). =

Remark 2.3. We now use the notion of incidence algebra of a family of posets exposed in [24].
We consider the family of posets:

{[~.~11Geg,~<~ inR(G)}.

It is obviously interval-closed. We define an equivalence relation on this family as the one
generated by [~,~'] = R((G| ~')/ ~). The incidence bialgebra associated to this family is
(Hg, m,9).

Proposition 2.11. Let G a graph.
1. Let Gy,...,Gy be the connected components of G. Then R(G) ~ R(G1) x ... x R(Gy).
2. Let e be a bridge of G. Then R(G) ~ R(G/e) x R(1).
3. We consider the following map:

o ®G) — PEQG))
“ ~ — E(G|~).

This map is injective; for any ~, ~'€¢ R(G), ~<~' if, and only if, (a(~) S (a(~).
Moreover, (g is bijective if, and only if, G is a forest — that is to say a graph such that any
edge is a bridge.
Proof. 1. If G, H are graphs and ~ is an equivalence on V(GH), then ~ <GH if, and only if:
* ~ve) <G
° ~|V(H) <H.
e For any z,y e V(G) uV(H), (z ~y) = ((z,y) e V(G)?> u V(H)2.

Hence, the map sending ~ to (~y(q), ~|v(#)) from R(GH) to R(G) x R(H) is an isomorphism;
the first point follows.

2. Note that R(l) = {..,1}, with .. < l. By the first point, it is enough to prove it if G
is connected. Let us put e = {2/, 2"}, G, respectively G”, the connected components of G\e
containing ', respectively x”. We define a map v : R(G/e) x R(}) to R(G) in the following
way: if ~<aR(G/e),
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e ¢(=,1) =~, defined by = ~ y if Z=7. This is clearly an equivalence; moreover, ' ~ z”. if
x ~ y, there exists a path from T to 7 in G/e, formed by vertices =~-equivalent to T and
7. Adding edges e if needed in this path, we obtain a path from z to y in G, formed by
vertices ~-equivalent to xz and y; hence, ~ <G.

e (=, ..) =~, defined by z ~ y if T~y and (z,y) € V(G')? U V(G")2. This is clearly an
equivalence; moreover, we do not have 2’ ~ z”. If z ~ y, let us assume for example that
both of them belong to G’. There is a path in G\e from T to ¥, formed by vertices formed
by vertices ~-equivalent to T and y. We choose such a path of minimal length. If this path
contains vertices belonging to G”, as e is a bridge of G, it has the form:

Hence, we can obtain a shorter path from T to ¥: this is a contradiction. So all the vertices
of this path belong to G’; hence, they are all ~-equivalent. Finally, ~ <G.

Let us assume that (=,1) = ¢(=',1) =~. If T=7, then = ~ y, so T~F; by symmetry,

—/

~ = ~'. Let us assume that (=, ..) = (=, ..) =~. If T=7:

¢

o Ifx,ye V(G') or z,y € V(G"), then x ~ y, so T~7.

o If (z,y) e V(G') x V(G") or (z,y) € V(G") x V(G'), up to a permutation we can assume
that x € V(G’) and y € V(G"). As =< G/e, there exists a path from Z to § formed by
~-equivalent vertices. This path necessarily goes via 2/ = 2”. Hence, z ~ 2’ and y ~ 2",
so T~z' and y~z”, and finally T~7.

By symmetry, ~ = =’. We proved that 1) is injective.

Let ~ <@G. If 2/ ~ 2”, then ~ goes through the quotient G/e and gives an equivalence ~<G//e.
Moreover, 1h(=, ) =~. Otherwise, ~ <G\e = G'G"; let us denote the equivalence classes of ~
by C1,...,Ckyy, with 2’ € Cq, 2" € Cgy1, C1,...,Cr € V(G"), Cky1,.-.,Crry € V(G"). Let =
the equivalence on V(G /e) which equivalence classes are C1 U Cyy1,C2, ..., Ck, Crio,- .., Cril.
Then =< G/e and ¥(=, «s) =~. We proved that 1) is surjective.

It is immediate that (=1, ~2) < (=], ~4) if, and only if, =1 < =] and ~o<~4. So ¢ is a
lattice isomorphism.

3. Let ~, ~' be elements of R(G). If ~<~', then the connected components of G| ~" are

disjoint unions of connected components of G| ~, so E(G| ~) € E(G| ~').

If E(G] ~) € E(G|] ~), then the connected components of G| ~' are disjoint unions of
connected components of G| ~, so ~<~/.

Consequently, if (g(~) = (g(~), then ~<~" and ~'<~, so ~=~": (5 is injective.

Let us assume that (g is surjective. Let e € E(G); we consider ~¢ R(G), such that
Ca(~) = E(G)\e. In other words, G| ~= G\e. Hence, ~#~1, so cl(~) < cl(~1): G| ~
has strictly more connected components than G. This proves that e is a bridge, so G is a forest.

Let us assume that G is a forest. We denote by k the number of its edges. As any edge of

G is a bridge, by the second point, R(G) is isomorphic to R(1)F x R(+)*%) so is of cardinal
2k x 1¢¢(G) — 9k Hence, (¢ is surjective. O

Remark 2.4. As a consequence, isomorphic posets may be associated to non-isomorphic graphs:
for example, R(IL) ~ R(LD) ~ R(1)3.
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2.7 Applications

Corollary 2.12. Let G be a graph.
1. Aenr(G) is non-zero, of sign (—1)de(@),
2. We put Pop(G) = ap + ... + ap X™.

e For any i, a; # 0 if, and only if, cc(G) <1i < |G|.
o If cc(G) < i < |G|, the sign of a; is (—1)IC1=2.

8. —ag|-1 is the number of edges of |G|.

Proof. 1. For any graph G, we put Aenr(G) = (—=1)38E) )\, (G). This defines a character
A€ Mg. Let us prove that for any edge e of G:

N Aenr(G/e) if e is a bridge,
S\Chr(G\e) + Xchr(G/e) otherwise.

We proceed by induction on the number k of edges of G. If k = 0, there is nothing to prove.
Let us assume the result at all ranks < k, with £ > 1. Let e be an edge of G. We shall apply
the induction hypothesis to G/e and G\e. Note that cc(G/e) = cc(G) and |G/e| = |G| — 1, so
deg(G/e) = deg(G) — 1.

e If e is a bridge, then:
Aehr (G) = _<_1)deg(G/e)5‘chr(G/e) = (_1)deg(G)5‘chr(G/e)-
e If e is not a bridge, then cc(G\e) = cc(G), and |G\e| = |G|, so deg(G\e) = deg(G). Hence:

Aenr (G/e) = (1) (Ge) — (—1)4B(E N, (G e)
= (_1)deg(G)5‘chr(G\e) + (_1)deg(G)5\chr(G/e)
= (_1)deg(G)(5‘chr(G\e) + :\chr(G/e>)-

So the result holds for any graph G.

If G has no edge, then deg(G) = 0 and Ay, (G) = Aenr(G) = 1. An easy induction on the
number of edges proves that for any graph G, A\ep-(G) = 1.

2. By Corollary for any i:

si= Y (Gl ~)

~<G, cl(~)=t
= Z (_1)‘G|_i/~\chr(G| N)
~<G, cl(~)=i
= (_1)|Glii Z 5‘chT(G| ~).
~<G, cl(~)=t

As for any graph H, S\Chr(H ) = 1, this is non-zero if, and only if, there exists a relation ~ <G,
such that cl(~) = 4. If this holds, the sign of a; is (—1)/¢I=%. It remains to prove that there
exists a relation ~ <G, such that cl(~) = i if, and only if, cc(G) < i < |G].

= If ~ <G, with cl(~) = i, as the equivalence classes of ~ are connected, each connected
component of G is a union of classes of ~, so i = cc(G). Obviously, i < |G|.
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<. We proceed by decreasing induction on i. If i = |G|, then the equality of V(G) answers
the question. Let us assume that cc(G) < i < |G| and that the result holds at rank 7 + 1.
Let ~' <G, with cl(~") = i + 1. We denote by I,...,I;;1 the equivalence classes of ~'. As
I, ..., 111 are connected, the connected components of G' are union of I;; as i + 1 > cc(G), one
of the connected components of G, which we call G’, contains at least two equivalence classes of
~’. As G' is connected, there exists an edge in G’, relation two vertices into different equivalence
classes of ~; up to a reindexation, we assume that they are I; and I. Hence, I L1 15 is connected.
We consider the relation ~ which equivalence classes are I 1 I, I3, ..., [;11: then ~ <G and
c(~) =1i.

3. For i = |G| — 1, we have to consider relations ~ <G such that cl(~) = |G| — 1. These
equivalences are in bijection with edges, via the map (g of Proposition [2.11] For such an
equivalence, G| ~= 116171 50 Ay, (G| ~) = —1. Finally, a; = —|E(V)]. O

Remark 2.5. The result on the signs of the coefficients of P, (G) is due to Rota 23|, who proved
it using the Mobius function of the poset of Proposition [2.11]

Corollary 2.13. Let G be a graph; |Ach(G)| = 1 if, and only if, G is a forest.

Proof. <=. Then each component of G is a tree. The result then comes from Example last
point.

=. If (G is not a forest, there exists an edge e of G which is not a bridge. Then:
[Achr (G)] = [Achr (G\E)| + [Acnr(G/e)| = 1+ 1 = 2.
So [Aenr(G)| # 1. O
Lemma 2.14. If G is a graph and e is a bridge of G, then:
A (G) = =Aenr (G\€) = =Acnr(G/e).

Proof. We already proved in Proposition that Aepr(G) = —Aenr(G/e). Let us prove that
Aehr(G) = —Aepr(G\e) by induction on the number & of edges of G which are not bridges. If
k =0, then G and G\e are forests with n vertices, cc(G\e) = cc(G) + 1 and:

Aehr (G) = =Acnr (G\e) = (—1)deg(6’)‘
Let us assume the result at rank k —1, £ > 1. Let f be an edge of G which is not a bridge of G.

Achr(G) = Achr (G\f) = Acnr (G/ f)

= —Aenr ((G\)\€) + Acnr ((G/f)\e)
—Achr ((G\\S) + Acnr ((G\e)/ f)
= _)\chr(G\e)'

So the result holds for any bridge of any graph. O

Proposition 2.15. 1. Let G and H be two graphs, with V(G) = V(H) and E(G) < E(H).
Then:

Achr (G)| < Aenr (H)| + cc(G) = ce(H) = 4(E(H) — E(G)) < [Acwr (H)|.
Moreover, if cc(G) = cc(H), then |Ach(G)| = [Aenr (H)| if, and only if, G = H.

2. For any graph G, |Aepr(G)| < (|G| — 1)), with equality if, and only if, G is complete.
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Proof. 1. We put k = §(E(H)\E(G)). There exists a sequence ey, ...,e; of edges of H such
that:

G() = G, Gk = H, Vi e [k‘], Gz;l = Gl\ez

For all i, cc(G;) = cc(Gi—1) + 1 if ¢; is a bridge of G, and cc(G;) = cc(G,—1) otherwise. Hence,
cc(G) — cc(H) < k. We denote by I the set of indices i such that cc(G;) = cc(Gi—1); then
81 = k — cc(G) + cc(H). Moreover:

Aerr (Giz1)| + [ Aenr ((Gi)/€i)| > [Acnr (Giz1)| if i € 1,

)\chi =
| h( )| {|)‘chr(Gi1)|ifi¢I~

As a conclusion, [Aepr (G)| < [Aenr(H)| — 81 = [Achr (H)| + cc(G) — cc(H) — k < |Acnr (H)|.
If ce(G) = cc(H) and |Aepr(G)| = [Aenr(H)|, then k =0, so G = H.

2. We put n = |G|. We apply the first point with H the complete graph such that V(H) =
V(G). We already observed that |A.-(H)| = (n — 1)}, so:

|>‘chr(G)| < (Tl — 1)!.

If G is not connected, there exist graphs G1, G2 such that G = G1Ga, n1 = |G1] < n, ny =
|G2| < n. Hence:

’)‘chr(G” = |)‘chr(Gl)||)\chr(G2) < (nl - 1)!(77,2 - 1)' < (TLl + ng — 2) < (n — 1)'

If G is connected, then cc(G) = cc(H): if |Achr(G)| = |Aehr(H)|, then G = H. O

2.8 Values of the chromatic polynomial at negative integers

Theorem 2.16. Let k > 1 and G a graph. Then (1) Py, (G)(—k) is the number of families
((I,...,1),01,...,0x) such that:

o [ u...ul =V(G) (note that one may have empty I,’s).
e Forall1 <i<k, O; is an acyclic orientation of G|r,.
In particular, (—1)1C1Pu,,.(G)(=1) is the number of acyclic orientations of G.
Proof. By the extraction-contraction process:
e If G is totally disconnected, (—1)I¢P.,,.(G)(~1) = 1.
e If Ghasanedge e, (—1)1% P, (G)(—1) = (=1)! DI Py (G\e) (= 1) +(=1) !¢ Py, (G /) (<1).

For any graph H, let us denote by 2A(H) the set of acyclic orientations of H. Let G be a graph
and e = {x,y} be an edge of G. If 0 € A(G/e), we deduce an orientation & of G\e by lifting the
orientations of the edges of G/e to the edges of G\e. Obviously, this defines an injective map ¢
from A(G/e) to A(G\e).

If o € A(G/e), let us denote by ¢4 (o), respectively ¢ (G), the orientation of G obtained from
(o) by orientating e from x to y, respectively from y to z. Let us assume that one of them is
not acyclic. We obtain for example a cycle

Ty —>T ... > T =T,

which induces a cycle in the orientation o of G/e: this is a contradiction. We obtain two maps
Ly, t— : A(G/e) — A(G), both injective, with disjoint images.
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Let o € A(G\e)\t(A(G/e)). We denote by o, respectively o_, the orientation of G obtained
from o by orientating e from x to y, respectively from y to z. As o ¢ ((UA(G/e)), there exists a
vertex z € V(G), with edges {z, z} and {y, z}, such that, {x, z} is oriented from z to z and {y, z}
from z to y, up to a permutation of z and y. Then y >  — 2z — y is a cycle in o_ : at most
one of o and o_ is acyclic. Let us assume that none of them is acyclic. We obtain two cycles
in oy and o_:

rT—>Y Y ... > Y =T, Y—o>xr—>Ty ... > T =Y.
We obtain then a cycle y - y1... > yp — 1 — ... = x; = y in o, which is not acyclic. Hence,
exactly one of o_ and o is acyclic: we obtain an injective map « : 2A(G\e)\t(2A(G/e)) — A(G).
Clearly, the images of three maps are disjoint and cover the whole 2(G). Hence:

UG = 22A(G/e)| + [AG\)\AUG/e)| = [A(G/e)| + [A(G\e)].

An easy induction on the number of edges of G then proves that (—1)I%P.,,.(G)(—1) is indeed

[2A(G)].
Ifk>2

(=D Py (G) (k)

DI Py (G)((-1) + ... + (-1))

(1)
= (-DICIAED o P, (G)(-1,...,—1)
= (=) PSR o A=D (@) (~1,...,-1)
= (—1)l“l > Perr (G5, )(=1) ... Ponr (G, ) (1)

V(G)=Lu..ul

N ()P (G (1) - (D) Py (G ) (- 1),
V(G)=Lu..uly

The case k = 1 implies the result. O
We recover the interpretation of Stanley [25]:

Corollary 2.17. Let k > 1 and G a graph. Then (—1)\¢1P.,,.(G)(—k) is the number of pairs
(f,O) where

e fis a map from V(G) to [k].
e O is an acyclic orientation of G.
o If there is an oriented edge from x to y in V(G) for the orientation O, then f(z) < f(y).

Proof. Let A be the set of families defined in Theorem and B be the set of pairs defined in
Corollary[2.17, We define a bijection 6 : A — B in the following way: if ((I1,...,I;),01,...,0k) €
A, we put 6((I1,...,Ix),01,...,0,) = (f,0), such that:

1. f~Yp) = I, for any p € [k].

2. If e = {z,y} € E(G), we put f(x) =i and f(z) = j. If i = j, then e is oriented as in O;.

Otherwise, if 7 < 7, e is oriented from 7 to j if i < j and from j to ¢ if ¢ > j.

Note that O is indeed acyclic: if there is an oriented path from z to y in G of length > 1
then f increases along this path. If f remains constant, as Oy, is acyclic, z # y. Otherwise,
f(x) < f(y), so x # y. It is then not difficult to see that 6 is bijective. O

This gives us a formula for the antipode of (Hgpy, m,A), proved in [I6] in another way in
the nondecorated case:

23



Corollary 2.18. Let us denote by S the antipode of (Hgpy, m,A). For any graph G € G(D):

S(G) = Z (=) t{acyclic orientations of G/ ~}G |~ .
~<G

Proof. Let us denote by * the convolution product associated to A in Mgpy, and by pu = g'of
the inverse of &’ for x. Let us put 7' = (u®1Id)0d. Then, in the convolution algebra End(Hg(p)),
with the product » associated to the Hopf algebra (Hg(py, m, A):

TxIld=mo(p®Id)o(0®Id)o A
=mo(u®1d®€/®1d)o(5®5)oA
=(p®e®Id)omizauo(d®F) oA
=(u®e®Id)o(A®Id)o§
=(u*xe'®Id)oé
=(e®Id)od

=noe,
where 7 : Q — Hg(p) send 1 € Q on the empty graph (unit map). Consequently:
T=TxId«S = (noe)xS=2_5.
Let us now prove that for any graph G € G(D):

n(G) = P(G)(-1).

chr

D) _

As PP i a Hopf algebra morphism from (Hgpy, m,A) to (Q[X],m,A) and &’ o Pc(hr g

chr

PP(G)(=1) = So PPN G)(1) = 0 S0 PPN (G) =& o PP 6 S(G) = ' 0 S(G) = pu(G).

chr chr chr chr

By Theorem [2.16}
w(G) = (=1)I¢4{acyclic orientations of G}. O

3 Chromatic symmetric functions

3.1 Reminders on QSym
The Hopf algebra QSym [2, 12], [14] 18], 27] has a basis (M,,) indexed by compositions, that is
to say finite sequences of positive integers. Its product is given by quasi-shuffles. For example,
if a,b,¢,d € Nyg:
MoMpeq = Maped + Mpacd + Mocad + Mpeda + M(a+b)cd + Mb(a+c)d + Mab(c+d)7
Machd = Mabcd + Macbd + Macdb + Mcabd + Mcadb + Mcdab
+ Maveypd + Mareyds + Mearap + Mapreyd + Macord) + Meaora) + Miavv)(ctd)-
Its coproduct is given by deconcatenation: for any composition w,
A(My) = >, M, ® M,.
uv=w
For example, if a,b,c € N5g:
A(M,) =M, ®1+1® M,,
A(]\411,b) = Ma,b &1+ Ma ® Mb +1® Ma,b>
A(]\4a,b,c) = Ma,b,c ®1+ Ma,b ® Mc + Ma ® Mb,c +1® Ma,b,c-
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For any composition w, we denote by |w| the sum of its letters; this induces a connected gradu-
ation of QSym. There exists a second coproduct §, such that for any composition w of length
n:

(M) =D D My ju ® Mu, ... My,

k=1 w=wi...wg
For example, if a,b, c € N5 g:

6(Ma) = Ma ® Mm
5(Ma,b) = Ma,b ® MaMb + Ma+b ® Ma,ba
5(Ma,b,c) = Ma,b,c ® MaMch + Maer,c ® Ma,ch + Ma,b+c ® MaMb,c + Ma+b+c ® Ma,b,o

The counit of this coproduct is denoted by &’; for any composition w,

&(My) — lifw hasi only one letter,
0 otherwise.

Moreover, QSym admits a polynomial representation. Let X be a totally ordered alphabet
— that is to say a set with a total order. For any u; ...u, € N5y, we consider the element:

repx (Mo, ..uy) = > 2t e Q[[X]].

r1<...<Tp in X

We define in this way an algebra morphism repx : QSym — Q[[X]]. Moreover, for any k € N,
the restriction of repx to the k-th homogeneous component QSym,;, of QSym is injective if,
and only if, |X]| > k.

If X and Y are two totally ordered alphabets, X 1Y is also totally ordered: for all z € X
yeY, z <y. Weidentify Q[[X u Y]] with Q[[X]] ® Q[[Y]], via the continous morphism
sendingz e Xtor®1land yeY to 1 ®y. Then:

repx .y = (repx ®repy) o A.

The cartesian product X x Y is totally ordered by the lexicographic order: for any x,z’ € X,
v,y €Y, zy <2’y if, and only if, (z < 2’) or (x = 2’ and y < y'). We identify Q[[X x Y]] with
a subring of Q[[X]] ® Q[[Y]] through the continous morphism sending (z,y) € X x Y to z ®y.
Then:

repx y = (repx ® repy) o 0.

Let us prove the associativity of A and of § and the cointeraction with the help of these polynomial
representations. We choose X, Y and Z three infinite totally alphabets. Firstly, observe that,
as totally ordered alphabets:

XuY)uZ=Xu(Yuz).
Therefore:

(repx @repy ®repy) o (A®Id) o A = rep(x y)Lz

=IePx(Yuz)
= (repy ®repy ®repy) o (Id® A) o A.

As repy, repy and rep, are injective, (A ®Id) o A = (Id ® A) o A. Secondly, observe that, as
totally ordered alphabets:
(X xY)x Z=Xx(Y x Z).
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Therefore:

(repx @repy ®repy) o (6 ®Id) 0§ =rep xyy)xz
=TICPxx(YxZ)
= (repy ®repy ®repy) o (Id® ) o 4.
Hence, (6 ®Id) 06 = (Id® ) o §. Finally, as totally ordered alphabetsﬂ
(XuY)xZ=(Xx2Z)u(Y xZ).
Therefore:
(repx ®repy ®repy) 0omiz 240 (6®0) 0 A = (repy ®repy @repy @repz) o (§®J) o A
= TIeP(XxZ)u(Y x2)
=TIePxuy)xz
= (repy ®repy ®repy) o (A®Id) o d.
Hence, mi 3240 (6 ®0) o A = (A®]Id) o d. We obtain:
Proposition 3.1. With the coaction §, (QSym,m,A) and (QSym,m,d) are in cointeraction.

The Hopf algebra QSym contains the cocommutative Hopf subalgebra Sym of symmetric
functions; this subalgebra is linearly generated by the elements:

M{Ulz--~7“k} = Z Muau)»---%(mv

OEGk
where k > 1 and uq,...,u; € Nog. Let us apply the results of [10] to QSym.
Proposition 3.2. For any k > 0, we denote by Hy, the k-th Hilbert polynomaial:

X(X—1)...(X —k+1)
k!

Hi(X) =

Let us consider the map:
MU1...uk - Hk‘

Then H is the unique morphism from QSym to Q[X]| compatible with m, A and ¢.

Proof. By [10], such a morphism exists and is unique. Let us prove that H is indeed compatible
with m, A and §. For any finite totally ordered alphabet X, of cardinality &, for any a € QSym,
by definition of the polynomial representation of QSym:

H(a)(k) = Tepx(a)wxex, z=1-
If a,b € QSym, for any k > 1, if X is a totally ordered alphabet of cardinality k:
H(ab)(k) = repx(ab)\\mex,x:l = repx(a)wxex, x=1repx(b)\vgcex,x=1 = H(a)(k)H (b)(k).

Hence, H(ab) = H(a)H(b). If a € QSym, for any k,l > 1, choosing totally ordered alphabets
X and Y of respective cardinality k£ and I:

Ao H(a)(k,1) 5o H(a)(k,1)
= H(a)(k+1) = H(a)(kl)
= I‘GPXuY(G)\vzequ,x:1 = rerxY(a)NxeXuY, z=1
= (repx ®@repy) © A(@)jvzex Y, 2=1 = (repx ®@1epy) © 6(a)vzexuy, 2=1
— (H® H) o Ala)(k, ); — (H® H) 0 8(a)(k, ).
Hence, AcH =(H®H)oA and o H=(H®H) 0. O

Phut X x (YU Z) # (X xY)u (X x Z) in general.
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3.2 Cointeraction and quasi-symmetric functions

The following result is proved by Aguiar and Bergeron in [2]. It states that QSym is a terminal
object in a suitable category of combinatorial Hopf algebras:

Theorem 3.3. Let (A, m,A) be a graded, connected Hopf algebra, and o be a character on A.
There exists a unique homogeneous Hopf algebra morphism ®, : (A,m,A) — (QSym,m,A),
such that o« = € o ®,. For any a € A:

o0
(poz(a) = E(a)l + Z Z a® o (Tu; ® ... ® 71'uk) o Alk=D) (a)Mu1,...,uk7
k=1u1,...,up>0

where, for any j = 1, m; is the canonical projection on the j-th homogeneous component A; of

A.

Theorem 3.4. Let (A, m,A) and (A, m,d) be cointeracting bialgebras, such that (A,m,A) is a
graded connected Hopf algebra. We denote by €' the counit of the coalgebra (A,9).

1. There exists a morphism ®1 : A — QSym such that:
(a) ®1: (A, m,A) — (QSym,m,A) is a homogeneous morphism of Hopf algebras,
(b) ®1:(A,m,d) — (QSym,m,d) is a morphism of bialgebras,
if, and only if:
Vn e N, 3(A,) €A, ®A+ker(P) ® A+ AR ker(P./).

Moreover, if this holds, then ®; = ®., and the unique morphism ¢; : A — K[X] given
by Theorem[2.1] is ®1 0 H.

2. If:
Vn e N, 0(An) €A, @A+ ker(d)® A,
then for any character o on A, ®, = ®o — .

Proof. 1. Unicity. If ®, is such a morphism, then ¢’ o ®; = ¢/. By Theorem 3.3, ®; = ®.,. From
now, we put ¢; = ¢..

Ezistence, =>. Let us assume that § o ®; = (&1 ® 1) 0J. Let z € A,,. Let us put

0

o(x) = Z wa ® Yij

i=0 j

where z; ; € A; for any (i,j). As ®; is homogeneous, ®1(z) € QSym,,. By definition of the
coproduct 0 of QSym, § o ®1(z) € QSym,, ® QSym,,. Hence:

(B1®@P1)06(z) = Y > P1(w,;) ®P1(yi;) € QSym,, ® QSym,,.
——

=0 €eQSym;

Hence:
1 £ N — 2 q)l(xi,j) X @1(%,]‘) =0.
J
So:
i#An =) ;; @y € ker(d1 ® B1) = ker(P1) ® A + A @ ker(d1),
J
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and finally z € 4, ® A + ker(®1) ® A + A Q@ ker(Py).

Existence, <=. We shall use the polynomial representation of QSym. If XY are totally
ordered alphabets, as ®1 is compatible with A:

repx,y © 1 = (repx ® repy) 0o Ao &1 = (repx ®repy) o (P1 ® $1) o A.

Let us prove that for any finite totally ordered alphabet X, for any totally ordered alphabet
Y:
repx xy © 1 = (repx ®repy) o (P1 ® 1) o 4.

We proceed by induction on n = |X|. If n =1, we put X = {x}. Let a € A, with k € N. By the
hypothesis on A:

(21 ®P1) 0d(a) € QSym,, ® QSym.

Therefore:

¥ (&' @ repy) 0 (1 @ B1) 0 4(a)
= 2% (e’ @ repy 0 ®1) 0 d(a)
= 2" (Idg ® repy 0 ®1) o (¢ ®1d) 0 §(a)

-~

=repyoP1 =Idy

(repx ® repy ) (®1 ® ®1) 0 §(a)

= zFrepy 0 ®1(a)

= repx vy © ®1(a).

Let us assume that the results holds for any totally ordered alphabet X’ such that |X'| < |X],
with |X]| > 2. Let z,, be the maximal element of X. We put X’ = X\{z,} and X" = {z,}, such
that X = X’ 1 X”. Then:

XxY=XuX)'xY=XxY)uX"xY),
so:
repxy © 1 = repxy)Lxrxy) © 1
= (repx/xy ®repxryy) o (P1 @ P1) 0 A
= (repxs @ repy @repxs ®@repy) o (1@ L1 @ L1 ® P1) o (6@0) 0 A
= (repx’ @ repxs @Tepy) 0m1 3240 (L1 @ P1 @ P @ P1) 0 (§®F) 0 A
= (repx: @ repxr @repy) 0 (P1 @ P1 @ P1)omizuo(0®0) 0 A
= (repxs @ repxs @repy) o (P1 @ P1 @ P1) o (A®Id) 04
= (
=

repxs ,x» ®repy) o (P71 ® ®1) 0
repx ® repy ) o (P1 ® ®1) o 4.

Let a € A. Let us choose a totally ordered alphabet X of cardinality n such that:

(S(CL) € @ Ak®Al

k,l<n

Then:
repx xx © ®1(a) = (repx ® repx) 0 6 o ®1(a) = (repx ®repx) o (P71 ® 1) 0 d(a).

By injectivity of repx till degree n, as | X| = n, 6 o ®1(a) = (P1 ® ®1) 0 6(a).
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The morphism ®; o H : A — QSym is compatible with both bialgebraic structures by
composition. By unicity in Theorem it is equal to ¢1.

2. Let a € A,,. Then by hypothesis, ®; <« a(a) = (?1 ® a) 0 §(a) € QSym,,, so ¢; — « is a
homogeneous Hopf algebra morphism. Moreover:

go(®«—a)=(EoP;®a)od=(®a)od=ao(®Id)od = a,

so (P — a) = P, O

3.3 Double morphisms from graphs to quasisymmetric functions

Notations 3.1. For any graph G € G(D), for any f € PC(G) and for any i € [max(f)], we put:

wt(f (i) = D wt | Y d@));

G connected component of G|;-1(;) zeV(G)

My = M(r-1(1))..wt (/1 max(f)) € QSym.
In other words, f~!(i) is the sum of the weights of the connected components of the subgraph
of G which vertices are the vertices of G colored by 1.

Remark 3.1. If wt : (D, +) — (N, +) is a semigroup morphism, this simplify:

wt(f71(i)) = wt > d)

zeV(Q), f(x)=i
Proposition 3.5. Let D be a nonempty set. We define FC(,Z) : Hgp) —> QSym by:

Hgpy —> QSym

(D) .
Fopl iy GeG(D) — Myi(5=1(1))..wt(f~1 (max(f)))-
FEPVC(G)

Then F(D)

e 18 a Hopf algebra morphism, equal to ¢or.

Proof. Let us apply Theorem in order to describe ®./: for any nonempty G € G(D),

8

0. (G) = Z e'®F o (Tuy ® .. ®@Ty,) © A(k_l)(G)Mm,m,uk

1ut,...,up>0

/ /
Z Z g Oﬂ'ul(Gul)...S Oﬂ-uk(Guk)Mul,m;uk
1ut,...,up>0 V(G):Ill_l...l_l]k

k

[
R

x>
Il

[
18

> €(Gn) ® .. @' (Gn) Myy(Gyy ), (G, )-
1V(G)=Lu..uly

>
Il

Moreover, for any graph H, &/(H) = 1 if H is totally disconnected and 0 otherwise. Hence:

o0
O (G) = ) > Mt (7)), wt(G1,)

k=1 V(G)=Lu..uly,
Vie[k], G|1,totally disconected

= D My @)t (max())
FEPVC(G)

e 0

chr
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Ezxample 3.1. Let a,b,ce D.
D
Fip (+0) = Mt(a)

D b
Fc(hr)(I“) = Myt(a),wt(6) T Miwt(b),wt(a) >

D
FO(V) = M yt(a),wi@),wi(e) T Mwt(a),wi(e),wi(d) + Mwt(v),wt(a),wt(c)
+ th(b),wt(c),wt(a) + th(c),wt(a),wt(b) + th(c),wt(b),wt(a)v
D) f
Fc(hr)(vl) = th(a),wt(b),wt(c) + th(a),wt(c),wt(b) + th(b),wt(a),wt(c)

+ th(b),wt(c),wt(a) + th(c),wt(a),wt(b) + th(c),wt(b),wt(a)
+ Myt (a),wi(d)+wi(c) T Mwt(d)+wi(c),wt(a)-

In the nondecorated case, this simplifies:

Fonr(s) = My, For (V) = 6My 11,
Fur(1) = 2M; 4, Fur(N) =6My 11+ Mo+ Maj.

For any graph G, F;,-(G) is the chromatic symmetric function of [26], when realized with the
totally ordered alphabet X = {21 < z2 < ...}. For example:

o0
rep x OFchr(') = inv
=1

3

repy oFchT(I) = Z %,
2,5=1
i#]

repy © Fchr(\_/') = Z TiTTh,
i7j7k>17
i#7,
2k,
j#k

repy o F (V) = Z TiTjTl = Z Tix Ty + Z xlﬂsi
i,5,k=1, ,5,k=1, 1,5=1,
1#], i#], i#]
itk itk
Jj#k
We now fix an abelian semigroup (D, +) and a map wt : D — N, inducing a graduation
on Hg(p).
Theorem 3.6. There exists a morphism ®1 : Hgpy —> QSym such that:
1. @1 : (Hgpy,m,A) — (QSym, m, A) is a homogeneous morphism of Hopf algebras,
2. @1 : (Hg(p),m,0) — (QSym,m,d) is a morphism of bialgebras,

if, and only if, wt : (D,+) — (Nxo,+) is a semigroup morphism. If so, ®; = FC(}Z) (and
therefore @1 is unique).

Proof. =. By Theorem g’ o ®y = €, so necessarily &1 = &, = Fc(,z). Let a,b € D. Then:

b
50 ®1(le) = (My(a)wi(v) T Mt (d)wi(a)) © Mut(a) Mt (n)
+ Myt(a)+wi(b) @ (Myg(ay,wis) + Muwt(s),wi(a))s
— (D1 ®@D1)0d(1a) = (B @ D1)(1o @ vat + vats @ l2)
= (Myt(a),wi(d) + Muwt(v),wt(a)) © Myvt(a) Mt (v)
+ th(a+b) ® (th(a),wt(b) + th(b),wt(a))'
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Comparing, we obtain wt(a) + wt(b) = wt(a + b), so wt is a semigroup morphism.

<. Let us assume that wt is a semigroup morphism. Let G € G(D) and ~ <G. Then,
obviously, wt(G |~) = wt(G) and:

wi(G/~) = Y, wi(d(c))
eV (G/~)
= Z wt <Zd(x))
ceV(G/~)  \wec
=Y S wid()
eV (G/~) ec
= >, wild(2))
zeV(Q)
= wt(G).

Hence, for any n € N, §((Hg(p))n) S (Hgp))n ® (Hg(p))n- By Theorem 2, ®_/ is a morphism
for both bialgebraic structures. O

Example 3.2. As a consequence, in the nondecorated case, Fp, is not compatible with §. Indeed,
for example:

(SOFC}W(I) (Fchr®FchT)06(I)
:26(M1,1) :(FchT®Fchr)(I®°'+'®I)
=2(M11 @ MiMy + My ® My 1), =2(M1y ® MMy + My ® My ).

On the other side, if (D, +) = (N>o, +) and wt = Idy_,, then Fii is compatible with §:

5OFChT(Ii) (Fchr®Fchr)06(Ii)
=2(5(M171) = (Fchr®Fchr)(Ii®-1-1 + .2@11)
=2(Mi1 ® Mi My + My ® My 1), =2(Mi1 ® Mi My + My ® My 7).

Proposition 3.7. The image of Fc(,?,) 1s included in Sym. It is equal to Sym, if and only if,
there exists a € D, such that wt(a) = 1.

Proof. As Hg(p) is cocommutative, F| c(,? (Hg('D)) is a cocommutative Hopf subalgebra of QSym,
so is included in Sym, greatest cocommutative subalgebra of QSym.
If 1 ¢ wt(D), then there is no element of Hg(py homogeneous of degree 1. As FP) is homo-

chr
geneous, there is no element x € Hg(py such that ®q(x) = M;.

If wt(a) = 1, let us consider the complete graph G,, with n vertices, all decorated by a. By

definition of FC(}?), Fc(}?(Gn) = n!Mjin, so for any n, Min € ®1(Hg(p)). As these elements (which
are the elementary symmetric functions) generate Sym, ®1(Hg(p)) = Sym. O

3.4 Extension of ¢

Proposition 3.8. Let G be a graph and f € PC(G). We define the equivalence ~¢ in V(G) as
the unique one which classes are the connected components of the subsets f~1(x), x € [max(f)].
Then, the coloring f induces a packed valid coloring f of G/ ~fr

Yz e V(G), (@) = f().
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Proof. We have to prove that f is a valid coloring of G/ ~¢. Let Z, § be two vertices of G/ ~,
related by an edge (this implies that they are different); we assume that f(Z) = f(y). There
exist 2/,y’ € V(G), such that 2’ ~y x and v/ ~f y, and 2/, 3/ are related by an edge in G. By
definition of ~, there exist vertices 2/ = z1,...,2 = @, y = y1,...,y = ¥’ in G such that
flz1) = ... = f(zx), 9(y1) = ... = g(w1), and for all p, ¢, z,, and zp41, yq and y,41 are related
by an edge in G. Hence, there is a path in G from x to y, such that for any vertex z on this
path, f(z) = f(z) = f(y): this implies that z ~¢ y, so T = 3. This is a contradiction, so f is
valid. O

Proposition 3.9. Let us consider the following map:
Hgpy — QSym

P @ — N Mf
fePC(G

This is a Hopf algebra morphism, and FéD) oH = qﬁép). It is homogeneous if, and only if,
wt : (D, +) —> (Nxq, +) is a semigroup morphism. Moreover, in Ergipy—QSym:

F® _ g @)

chr chr®

Proof. Let G be graph. By Proposition [3.8] we have a map:

PC(G) — | | PVC(G/ ~)
0 : :<G
f — FePVC(G/ ~)).
6 is injective: if 0(f) = 0(g), then ~y=~,4 and for any z € V(G),

fz) = f(@) =9(@) = g(=).
Let us show that 6 is surjective. Let f € PVC(G/ ~), with ~ <G. We define f € PC(G) by

flx) = 7(7) for any vertex x. By definition of f, the equivalence classes of ~ are included in
sets f~1(i), and are connected, as ~ <@, so are included in equivalence classes of ~y: if x ~ y,
then z ~y y. Let us assume that x ~; y. There exists a path x = x1,..., 2, = y in G, such
that f(z1) = ... = f(zx). So f(@1) = ... = f(Tx). As f is a valid coloring of G/ ~, there
is no edge between =, and 7,7 in G/ ~ for any p; this implies that 7, = T,;1 for any p, so
T =x1 ~ 1z =y. Finally, ~=~¢, s0 0(f) = f.

Using the bijection 6, we obtain:

D
FPG) = Y My
fePC(G)

-2 X M

~<G FePVC(G/~)

e

~<G

=y Fé,?é(G/ ~NPN(G 1)
~<a@G

- (K2 ) @)

Therefore, FéD) = FC(Z;) — Aép), or equivalently FC(}Z) = FO(D)

a Hopf algebra morphism, taking its values in Sym. Hence:

(D) is

D) A .
< Aepr- As a consequence, I

HoF” =Ho(FE) — APy = (HoFP) « AP = Py < AP = ¢iP)

chr
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Let us assume that FO(D) is homogeneous. For any a,b € D, FO(D)(IZ) is homogeneous of

degree wt(a) + wt(b), 50 Myy(q+p) is homogeneous of degree wt(a) + wt(b). Hence, wt(a + b) =
wt(a) + wt(b), and wt is a semigroup morphism. Conversely, if G € G(D), any term appearing
in F(D)(G) is of de
o gree
T wi(d() = wi(G),

zeV(QG)
SO FO(D) is homogeneous. O
Example 3.3. Let a,b,ce D.
D
Fé )('a) = th(a)7
b
FyP(la) = Myt(a),wiv) + Mytv),wi(a) + Mwt(a+b)s

FéD)(\/Z) = Myt(a),wt(b),wi(c) T Muwt(a),wt(e)wid) T Muwt(b),wi(a),wi(e)
+ Mv),wi(e),wi(a) T Mawt(e),wi(a),wt(d) T Mwt(c),wt(b),wt(a)
+ Myt(arb),wi(e) T Mut(are),wt(d) T Muwt(b)+wi(c),wi(a)
+ Myt(c),wt(a+b) T Mutv),wi(are) T Mwt(a),wt(o)+wi(e) + Muwt(atbre)s

FéD)(C\_/i) = Myt(a)wi(b)wi(e) T Mut(a),wi(e)wi(b) T Mut(b),wi(a),wt(c)
+ M), wi(c),wi(a) T Mwt(e),wi(a),wt(d) T Mwt(c),wt(b),wt(a)
+ Myt(atb),wi(c) T Muwt(ate),wid) T Mwt(b+c),wt(a)
+ Mt(e),wi(a+b) T Muwt(v),wi(atre) T Mwt(a),wt(b+e) T Mut(atbic)-

In the nondecorated case, this simplifies:

FO(-):Ml, Fo(v)=6M111+4M11+M12+M21+M1,
Fo(l) = 2Myy + My, Fy(V') = 6M11 + 6Miq + M.

4 Non-commutative versions

4.1 Non-commutative Hopf algebra of graphs

Definition 4.1. 1. An indezed graph is a graph G such that V(G) = [n], with n = 0. The
set of indexed graphs is denoted by 4.

2. Let G = ([n], E(GQ)) be an indexed graph and let I < [n]. There exists a unique increasing
bijection f : I — [k], where k = §I. We denote by G|; the indeved graph defined by:

G = ([k], {F (@), f()} [ {z,y} € E(G), z,y € I}).

8. Let G be an indexed graph and ~ <G.

(a) The graph G| ~ is an indexed graph.

(b) We order the elements of V(G)/ ~ by their minimal elements; using the unique in-
creasing bijection from V(G)/ ~ to [k], G/ ~ becomes an indezxed graph.

4. Let G = ([k], E(G)) and H = ([l], E(H)) be indexed graphs. The indexed graph GH is
defined by:

V(GH) = [k + 1],
E(GH)=FEG)u{{zr+ky+1}]|{x,y} € E(H)}.
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The Hopf algebra (Hy, m, A) is, as its commutative version, introduced in [24]:

Theorem 4.2. 1. We denote by Hy the vector space generated by indexed graphs. We define
a product m and two coproducts A and § on Hey in the following way:

VG,He %, m(G® H) = GH,

VG = ([n], E(G)) e ¥, AG) = D G ®Gp,
Ic(n]

VG e 4, 5(G)= D, G/ ~®G |~ .
~<G

Then (Hg,m,A) is a graded cocommutative Hopf algebra, and (Hey,m,d) is a bialgebra.
2. Let w: Hy —> Hg be the surjection sending an indexed graph to its isoclass.

(a) w: (Hg,m,A) —> (Hg,m,A) is a surjective Hopf algebra morphism.
(b) w: (Hy,m,0) — (Hg,m,d) is a surjective bialgebra morphism.

(c) We put p=(Id®w)o0d: Hy — Hy @ Hg. This defines a coaction of (Hg, m,d) on
Hy ; moreover, (Hg, m,A) is a Hopf algebra in the category of (Hg, m,d)-comodules.

Proof. 1. Similar to the proofs of Propositions [I.2] and [1.4]
2. Points (a) and (b) are immediate; point (c) is proved in the same way as Theorem [1.7 [J

Ezxample 4.1.

A

-

)

)
2 3 2 3 2 2

AV)=Vil+1eVi+3a@ i +3Li®.,

d®1I+1Q® .1,

!

=N

(
A( If®1+1®13+.1®.1,

w

2 3

2 3 2 3
AM =Vi@1+1@Vi+2lil@a+a0@a+20010 + @ ..

0(e1) = o1 ® o1,
5(13) =aQ I? + Ii ® o1e2,
5(2\7'?) = .1@2:\7§+ I%@(.lIg + .21? + .3Ii)+ 2’\7‘?@.1.2.3,

(5(2\/31) = .1®2\/31+ If@(.ﬂ?—i— .31?)—1—2\2@.1.2.3.

Remark 4.1. (Hy,m,A) is not a bialgebra in the category of (He, m,d)-comodules, as shown in
the following example:

2 3

(A1) os(V) = A Vi+ (Ul ol+101)@(wll + 1)
+ .1®.1®(.2I? + I?.3)—i—A(Q\/?)(>§.1.2.37

miga1o(0®5) o AM) =A@V + (@1 +10 1)@ (2!l + 1)

‘ 2 3
+ .1®.1®(.1I§+ I§.3)+A(\/1)®.1.2.3.
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4.2 Reminders on WQSym

Let us recall the construction of WQSym [21].

Definition 4.3. 1. Let w be a word with letters in Nsg. We shall say that w is packed if:

Vj e N-o, 7 appears in w = 1,...,7 appear in w.

2. Let w = x1...x a wordwith letters in Nsg. There exists a unique increasing bijection f
from {x1,...,xx} to [l], with | = 0; the packed word Pack(w) is f(x1)... f(zk).

8. w=ux1...2, a word in Nyg and I < Nsg. The word wy 18 the word obtained by taking
the letters of w which are in 1.

The Hopf algebra WQSym has the set of packed words for basis. If w = wy...wg and
w’ = w] ... w] are packed words, then:

www = Z w”.

"I "
w’=wy . wy g,
Pack(w{...w})=w,

1" 1" —an!
Pack(wy ;... wy  =w

For any packed word w:

max(w)

Aw) = >, wi) ® Pack(Wimax(u))[:)-
=0

Then (WQSym, w, A) is a Hopf algebra. Moreover, WQSym has also a second coproduct §
defined on any packed word w = wy ... wg by:

Z flw) . f(wp) @ g(wr) . ... g(wg),

where the sum runs over all pairs of maps (f,g), where f : [max(w)] — [max(f)] is an
increasing surjective map and ¢ : [max(w)] — [max(g)] is an increasing map such that for any
i € [max(f)], gjy-1(;) is increasing. However, (WQSym, w, A) is not a bialgebra in the category
of right (WQSym, =, d)-comodules, as shown in the following example.

(A®Id)04((132)) = A((132)) @ (1) w (1) w (1)
F((121)® 1+ 1@ (121)) @ ((112) + (121) + (132) + (123) + (213))
+(11)® (1) @ ((112) + (121) + (132) + (123) + (213))
+A((122)) ® (1) w (11) + A((111)) ® (132),
1,324 © (0 ®0) 0 A((132)) = A((132)) ® (1) s (1) w (1)
F((12) ®1+1® (121)) @ ((112) + (121) + (132) + (123) + (213))
+(11)® (1) @ ((121) + (121) + (132) + (123) + (231))
+A((122) ® (1) w (11) + A((111)) ® (132).

This Hopf algebra admits a polynomial representation: we fix a infinite totally ordered al-
phabet X; the set of words in X is denoted by X*. For any packed word w, we consider the
noncommutative formal series:

Repx (w) = Z w' € QUX)).

w'eX* Pack(w’)=w
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Then Repx is an algebra morphism from WQSym to Q{((X)). For example:

Repy(111) = Z 3,

zeX
Repx (112) = ) 2%y, Repx(221) = ). o’w,
r<yin X r<yin X
Repx(121) = ). ayz, Repx (212) = > yay,
r<yin X r<yin X
Repy(211) = > ya?, Repy(122) = >, v,
r<yin X r<yin X
Repx(123) = Z xyz, Repx(312) = Z zxy.
r<y<zin X r<y<zin X

If X is infinite, then Repx is injective. If X and Y are two totally ordered alphabets, we shall
consider Q((X)) ® QY )) as a quotient of Q((X L Y)), through the continuous map:

UXUY)) — QUX))@QLY))
reX — z®I1,
yeY — 1®uy.

We obtain:
Repx iy = (Repx ® Repy) o A,
We shall identify Q((X x Y)) with a subalgebra of Q{(X)) ® Q{({Y)), through the continuous

map:

{ QX xY)) — QUX))@QKY))
(r,y) eXxY — z®uy.

We obtain:
Repx«y = (Repx ® Repy) o é.
4.3 Non-commutative chromatic symmetric functions

Definition 4.4. A set partition is a partition of a set [n], with n = 0. The set of set partitions
1s denoted by SP.

Theorem 4.5. 1. For any packed word w of length n and of mazimal k, we denote by p(w)
the set partition {w=(1),...,w=(k)}. For any set partition w € SP, we put:

Wo = Z w.

wePW, p(w)=w

These elements are a basis of a cocommutative Hopf subalgebra of WQSym, denoted by
WSym.

2. The following map is a Hopf algebra morphism from (Hey,m,A) to (WQSym, w, A):

Hy —> WQSym

Fow:d Ged — > f(1)...f(IG).
fePVC(G)
Its image is WSym. Moreover:
VG e, Fou(G) = > Wa.
welP(G)
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Proof. 2. For any totally ordered alphabet X, by definition of Repy, for any G € ¢, with n
vertices:

Repx o Fene(G) = >, f(1)...f(n).

FeVC(G,X)

Let us choose two infinite totally ordered alphabets X and Y. Let G, H € ¥, of respective
degrees m and n:

Rer(Fchr(GH)) = Z f(l)f(m+n)
feVC(GH,X)
= 2 PO ). ()
f'eVC(G,X),
f"eVC(H,X)

— Repx o Fchr(G)Rer o Fchr (H)
= Rer(Fchr(G) Lt Fchr(H))'

As Repy is injective, Fop, . (GH) = Fop (G) & Fep(H), 80 Fep, is an algebra morphism.
Let G € ¢4, of degree n.

(Repx ® Repy ) 0 A o Fepr(G) = Repx v © Fenr (G)
= > f(1)... f(n)

feVC(FG,XLY)

> DU W AN ()
V(G)=IuJ f'eVC(F;,X),
feVC(£,;,Y)

Z Repx © Fchr(GH) ® Repy © Fchr(G\J)
V(G)=TuJ

= (Repx ® RepY) o (Fchr &® Fch?") © A(G)

As Repx and Repy are injective, A o Fop,. = (Fepr @ Fepy) 0 A

1. So WSym is a Hopf subalgebra of WQSym, isomorphic to a quotient of Hg, so is
cocommutative. O]

Remark 4.2. 1. The Hopf algebra WSym, known as the Hopf algebra of word symmetric
functions, is described and used in [4, 6, [I5]. Here is a description of its product and
coproduct, with immediate notations:

e For any set partitions w, @’ of respective degree m and n:

WoWy = > W
w”eSP, deg(w”)=k+l,
Pack(w|f, )=,

I[k]

Pack(@ g4 ) ==

e For any set partition w = {Py,..., P}

A(Pu) = Y5 Weack(thylpery) ® Weack((nlp1))-
Ic[k]
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For example:

WiaanWiay = Wiganey + Wiaasys
WianenWiyy = Wianeney + Wiasyen + Wiaesys
AWy znay) = Wiasheniay @ 1+ Wisy 2 @ Wiy + Wiy ey @ Wiy
+ Wiy 21 @ Wiy + Wiy © Wiy ey + Wiy © Wiayp
+ Wiy @ Wiy en + 1O Wit sy 2}, 44}

2. The map Fg,. is not a bialgebra morphism from (Heg,m,d) to (WQSym, =,d). For
example:

2
1

(Fenr @ Fepp) 0 6(11) = (1) @ ((12) + (21)) + ((12) + (21)) ® ((11) + (12) + (21)),
§oF (1) = (1) ® ((12) + (21) + ((12) + (21)) ® ((11) + (12) + (21)).

4.4 Non-commutative version of I

We shall use the notations of Proposition If G be an indexed graph and f € PC(G), then
G/ ~y is an indexed graph; we denote its cardinality by k. We put:

wy = f(1)...f(k).
Proposition 4.6. Let us consider the following map:

Hy — WSym
FO G — Z wg.
fePC(G)

This is a Hopf algebra morphism. Moreover, in Ey,  wSym-

Fenr = Fo < Acnr-

Proof. This is proved in the same way as Proposition O
Ezample 4.2.
Fo(e1) = (1),
Fo(11) = (12) + (21) + (1),
2 3

Fo( Vi) = (123) + (132) 4 (213) + (231) + (312) + (321) + 3(12) + 3(21) + (1),

FO(QV?) — (123) + (132) + (213) + (231) + (312) + (321) + (122) + (211) + 2(12) + 2(21) + (1).

4.5 From non-commutative to commutative

As Q[[X]] is a quotient of Q{(X)), this polynomial representations Rep of WQSym and rep of
QSym induce a surjective Hopf algebra morphism:

W'{ WQSym — QSym

W M), (max(w))| -
Proposition 4.7. 1o Fg = Fyow and m o Fp = Foppr 0 w.

Proof. Immediate. O
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We obtain commutative diagrams of Hopf algebra morphisms:

WQSym > QSym > Q[X] WQSym "> QSym > Q[X]
FchrT FchrT % FOT FOT %
Hy ——— Hg Hy ——— Hg
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