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Chromatic polynomials and bialgebras of graphs

The chromatic polynomial is characterized as the unique polynomial invariant of graphs, compatible with two interacting bialgebras structures: the first coproduct is given by partitions of vertices into two parts, the second one by a contraction-extraction process. This gives Hopf-algebraic proofs of Rota's result on the signs of coefficients of chromatic polynomials and of Stanley's interpretation of the values at negative integers of chromatic polynomials. We also consider chromatic symmetric functions and their noncommutative versions.

Introduction

In graph theory, the chromatic polynomial, introduced by Birkhoff and Lewis [START_REF] Birkhoff | Chromatic polynomials[END_REF] in order to treat the four color theorem, is a polynomial invariant attached to a graph; its values at X " k gives the number of valid colorings of the graph with k colors, for any integer k ě 1. Numerous results are known on this object, as for example the alternation of signs of its coefficients, a result due to Rota [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF], proved with the help of the Möbius inversion in certain lattices.

Our aim here is to insert chromatic polynomials into the theory of combinatorial Hopf algebras, and to recover new proofs of these classical results. Our main tools, presented in the first section, will be a Hopf algebra pH G , m, ∆q and a bialgebra pH G , m, δq, both based on graphs. They share the same product, given by disjoint union; the first (cocommutative) coproduct, denoted by ∆, is given by partitions of vertices into two parts; the second (not cocommutative) one, denoted by δ, is given by a contraction-extraction process. For example:

∆p q " b 1 `1 b `3 b `3 b , δp q " b `3 b `b ,
or, in a decorated version, where a, b, c are positive integers:

∆p a c b
degpGq " 7tvertices of Gu ´7tconnected components of Gu.

These two bialgebras are in cointeraction, a notion described in [START_REF] Calaque | Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series[END_REF][START_REF] Foissy | Commutative and non-commutative bialgebras of quasi-posets and applications to Ehrhart polynomials[END_REF][START_REF] Manchon | On bialgebras and Hopf algebras or oriented graphs[END_REF][START_REF]A review on comodule-bialgebras[END_REF]: pH G , m, ∆q is a bialgebra-comodule over pH G , m, δq, see Theorem 1.7. Another example of interacting bialgebras is the pair pQrXs, m, ∆q and pQrXs, m, δq, where m is the usual product of QrXs and the two coproducts ∆ and δ are defined by:

∆pXq " X b 1 `1 b X, δpXq " X b X.
This has interesting consequences, proved and used on quasi-posets in [START_REF] Foissy | Commutative and non-commutative bialgebras of quasi-posets and applications to Ehrhart polynomials[END_REF], listed here in Theorem 2.1. In particular:

1. There exists a unique morphism φ 1 : H G Ñ QrXs, which is a Hopf algebra morphism from pH G , m, ∆q to pQrXs, m, ∆q and also a bialgebra morphism from pH G , m, δq to pQrXs, m, δq.

2. We denote by pM G , ˚q the monoid of characters of pH G , m, δq. This monoid acts on the set E H G ÝÑQrXs of Hopf algebra morphisms from pH G , m, ∆q to pQrXs, m, ∆q, via the map:

Ð : " E H G ÑQrXs ˆMG ÝÑ E H G ÑQrXs pφ, λq ÝÑ φ Ð λ " pφ b λq ˝δ.
Moreover, the action of M G over E H G ÑQrXs is free of rank 1, with φ 1 as a generator.

The morphism φ 1 is described in the second section: for any graph G, φ 1 pGq is the chromatic polynomial P chr pGq (Theorem 2.4). This characterizes the chromatic polynomial as the unique polynomial invariant on graphs compatible with both bialgebraic structures. To this morphim is attached a character denoted by λ chr , which allows to reconstruct P chr trough the action of M G : for any graph G, P chr pGq " ÿ " λ chr pG| "qX clp"q , where the sum is over a family of equivalences " on the set of vertices of G, clp"q is the number of equivalence classes of ", and G| " is a graph obtained by restricting G to the classes of " (Corollary 2.5). Moreover, the inverse of λ chr for the convolution associated to the coproduct δ is the character λ 0 which sends any graph to 1, whereas the inverse of λ chr for the convolution associated to the coproduct δ is related to acyclic orientations of graphs and allows to describe the antipode of pH G , m, ∆q, see Corollary 2.18. Therefore, the knowledge of the chromatic character implies the knowledge of the chromatic polynomial; we give a formula for computing this chromatic character on any graph with the notion (used in Quantum Field Theory) of forests, through the antipode of a quotient of pH G , m, δq, see Proposition 2.6. We give a Hopf-algebraic proof of the classical way to compute the chromatic polynomial by induction on the number of edges by an extraction-contraction of an edge in Proposition 2.8, and deduce a similar way to compute the chromatic character. As consequences, we obtain proofs of Rota's result on the sign of the coefficients of a chromatic polynomial (Corollary 2.12) and of Stanley's interpretation of values at negative integers of a chromatic polynomial in Corollary 2.17. The link with Rota's proof is made via the lattice attached to a graph, defined in Proposition 2.9.

We then study morphisms from this double bialgebra of graphs to the function of quasisymmetric functions QSym [START_REF] Aguiar | Combinatorial Hopf algebras and generalized Dehn-Sommerville relations[END_REF][START_REF] Israel | Noncommutative symmetric functions[END_REF][START_REF] Hazewinkel | Symmetric functions, noncommutative symmetric functions and quasisymmetric functions. II[END_REF][START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF][START_REF]Enumerative combinatorics[END_REF]. For this, we need to generalize the construction on graphs to graphs decorated by elements of an abelian semigroup pD, `q, obtaining a Hopf algebra pH GpDq , m, ∆q and a bialgebra pH GpDq , m, δq on the same algebra, which we give a graduation with the help of a map wt : pD, `q ÝÑ N ą0 (Proposition 1.10). Using Aguiar, Bergeron and Sottile's theory of combinatorial Hopf algebras [START_REF] Aguiar | Combinatorial Hopf algebras and generalized Dehn-Sommerville relations[END_REF], we introduce a homogeneous Hopf algebra morphism F pDq chr from H GpDq to QSym. This morphism F pDq chr sends any graph G to its chromatic symmetric function, as defined by Stanley [START_REF]A symmetric function generalization of the chromatic polynomial of a graph[END_REF]. Moreover, F pDq chr is the unique potential homogeneous morphism compatible with both bialgebraic structure and we prove that it indeed satisfies this property if, and only if the map wt giving the graduation is a semigroup morphism (Theorems 3.4 and 3.6). Note that this condition excludes the nondecorated case, identified with D " t˚u, giving its unique semigroup structure ˚`˚" ˚and the graduation defined by wtp˚q " 1. As a consequence, we obtain a diagram of Hopf algebra morphisms:

H GpDq P pDq chr / / F pDq chr QrXs QSym H : : u u u u u u u u u
where H is given with the help of Hilbert polynomials (Proposition 3.2). The last section deals with a non-commutative version of the chromatic symmetric function: the Hopf algebra of graphs is replaced by a non-commutative Hopf algebra of indexed graphs, and QSym is replaced by the Hopf algebra of packed words WQSym. For any indexed graph G, its noncommutative chromatic symmetric function F chr pGq can also be seen as a symmetric formal series in non-commutative indeterminates (Theorem 4.5): we recover in this way Gebhard and Sagan's chromatic symmetric function introduced in [START_REF] Gebhard | A chromatic symmetric function in noncommuting variables[END_REF] and related in [START_REF] Rosas | MacMahon symmetric functions, the partition lattice, and Young subgroups[END_REF] to MacMahon symmetric functions.

Thanks. I am grateful to Mercedes Rosas, who pointed the link with Gebhard and Sagan's chromatic symmetric function in noncommuting variables, and to Viviane Pons, who noticed an important mistake in the preceding version of the paper. Notations 0.1.

1. All the vector spaces in the text are taken over Q.

2. We denote by N ą0 " t1, 2, 3, . . .u the set of positive integers.

3. For any integer n ě 0, we denote by rns the set t1, . . . , nu. In particular, r0s " H.

4.

The usual product of the polynomial algebra QrXs is denoted by m. This algebra is given two bialgebra structures, defined by:

∆pXq " X b 1 `1 b X, δpXq " X b X.
Identifying QrX, Y s and QrXs b QrY s: @P P QrXs, ∆pP qpX, Y q " P pX `Y q, δpP qpX, Y q " P pXY q.

The counit of ∆ is given by: @P P QrXs, εpP q " P p0q.

The counit of δ is given by: @P P QrXs, ε 1 pP q " P p1q.

Moreover, pQrXs, m, ∆q is a Hopf algebra, of antipode S sending any P pXq P QrXs to P p´Xq.

Hopf algebraic structures on graphs

We refer to [START_REF] Harary | Graph theory[END_REF] for classical results and vocabulary on graphs. Recall that a graph is a pair G " pV pGq, EpGqq, where V pGq is a finite set, and EpGq is a subset of the set of parts of V pGq of cardinality 2. In sections 1 and 2, we shall work with isoclasses of graphs, which we will simply call graphs. For any graph G, we denote by |G| the cardinality of V pGq and by ccpGq the number of its connected components. By convention, the empty graph 1 is considered as non connected.

The set of graphs is denoted by G. For example, here are graphs G with |G| ď 4:

1; ; , ; , , , ; , , , , , , , , , , . 
A graph is totally disconnected if it has no edge.

We denote by H G the vector space generated by the set of graphs. The disjoint union of graphs gives it a commutative, associative product m. As an algebra, H G is (isomorphic to) the free commutative algebra generated by connected graphs.

The first coproduct

Definition 1.1. Let G be a graph and I Ď V pGq. The graph G |I is defined by: • V pG |I q " I.

• EpG |I q " ttx, yu P EpGq | x, y P Iu.

We refer to [START_REF] Abe | Hopf algebras[END_REF][START_REF] Kassel | Quantum groups[END_REF][START_REF] Sweedler | Hopf algebras[END_REF] for classical results and notations on bialgebras and Hopf algebras. The following Hopf algebra is introduced in [START_REF] William | Incidence Hopf algebras[END_REF]: Proposition 1.2. We define a coproduct ∆ on H G by:

@G P G, ∆pGq " ÿ V pGq"I\J G |I b G |J .
Then pH G , m, ∆q is a graded, connected, cocommutative Hopf algebra. Its counit is given by:

@G P G, εpGq " δ G,1 .
Proof. If G, H are two graphs, then V pGHq " V pGq \ V pHq, so:

∆pGHq " ÿ V pGq"I\J, V pHq"K\L GH| I \ K b GH |J\L " ÿ V pGq"I\J, V pHq"K\L G |I H |K b G |J H |L " ∆pGq∆pHq.
If G is a graph, and I Ď J Ď V pGq, then pG |I q |J " G |J . Hence:

p∆ b Idq ˝∆pGq " ÿ V pGq"I\L, I"J\K pG |I q |J b pG |I q |K b G |L " ÿ V pGq"J\K\L G |J b G |K b G |L " ÿ V pGq"J\I, I"K\L G |J b pG |I q |K b pG |I q |L " pId b ∆q ˝∆pGq. So ∆ is coassociative. It is obviously cocommutative. Example 1.1. ∆p q " b 1 `1 b , ∆p q " b 1 `1 b `2 b , ∆p q " b 1 `1 b `3 b `3 b , ∆p q " b 1 `1 b `2 b `b `2 b `b .

The second coproduct

Notations 1.1. Let V be a finite set " be an equivalence on V .

• We denote by π " : V ÝÑ V { " the canonical surjection.

• We denote by clp"q the cardinality of V { ".

Definition 1.3. Let G a graph, and " be an equivalence relation on V pGq.

(Contraction).

The graph V pGq{ " is defined by:

V pG{ "q " V pGq{ ", EpG{ "q " ttπ " pxq, π " pyqu | tx, yu P EpGq, π " pxq ‰ π " pyqu.

(Extraction)

. The graph V pGq| " is defined by:

V pG| "q " V pGq,

EpG| "q " ttx, yu P EpGq | x " yu.

3. We shall write " ŸG if, for any c P V pGq{ ", G |c is connected.

Roughly speaking, G{ " is obtained by contracting each equivalence class of " to a single vertex, and by deleting the loops and multiple edges created in the process; G |" is obtained by deleting the edges which extremities are not equivalent, so is the product of the restrictions of G to the equivalence classes of ".

We now define a coproduct on H G . This coproduct, which can also be found in [START_REF] William | Incidence Hopf algebras[END_REF], can also be deduced from a general operadic construction [START_REF] Van Der Laan | Hopf algebras and coloured Koszul duality[END_REF], see also [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF]. A similar construction is defined on various families of oriented graphs in [START_REF] Manchon | On bialgebras and Hopf algebras or oriented graphs[END_REF].

Proposition 1.4. We define a coproduct δ on H G by:

@G P G, δpGq " ÿ "ŸG
pG{ "q b pG| "q.

Then pH G , m, δq is a bialgebra. Its counit is given by:

@G P G, ε 1 pGq " # 1 if G is totally disconnected, 0 otherwise.
It is graded, putting:

@G P G, degpGq " |G| ´ccpGq.
In particular, a basis of its homogeneous component of degree 0 is given by totally disconnected graphs, including 1.

Proof. Let G, H be graphs and " be an equivalence on V pGHq " V pGq \ V pHq. We put " 1 "" |V pGq and " 2 |V pHq . The connected components of GH are the ones of G and H, so " ŸGH if, and only if, the two following conditions are satisfied:

• " 1 ŸG and " 2 ŸH. • If x " y, then px, yq P V pGq 2 \ V pHq 2 .
Note that the second point implies that " is entirely determined by " 1 and " 2 . Moreover, if this holds, pGHq{ "" pG{ " 1 qpH{ " 2 q and pGHq| "" pG| " 1 qpH| " 2 q, so:

δpGHq " ÿ " 1 ŸG, " 2 ŸH
pG{ " 1 qpH{ " 2 q b pG| " 1 qpH| " 2 q " δpGqδpHq.

Let G be a graph. If " ŸG, the connected components of G{ " are the image by the canonical surjection of the connected components of G; the connected components of G| " are the equivalence classes of ". If " and " 1 are two equivalences on G, we shall denote " 1 ď" if for all x, y P V pGq, x " 1 y implies x " y. Then:

pδ b Idq ˝δpGq " ÿ "ŸG," 1 ŸG{"
pG{ "q{ " 1 bpG{ "q| " 1 bG| " " ÿ "," 1 ŸG, " 1 ď" pG{ "q{ " 1 bpG{ "q| " 1 bG| " " ÿ "," 1 ŸG, " 1 ď" pG{ " 1 q b pG| " 1 q{ " bpG| " 1 q| " " ÿ "ŸG," 1 ŸG|" pG{ " 1 q b pG| " 1 q{ " bpG| " 1 q| " " pId b δq ˝δpGq.

So δ is coassociative.

We define two special equivalence relations " 0 and " 1 on G: for all x, y P V pGq,

• x " 0 y if, and only if, x " y.

• x " 1 y if, and only if, x and y are in the same connected component of G.

Note that " 0 , " 1 ŸG. Moreover, if " ŸG, G{ " is not totally disconnected, except if """ 1 ; G| " is not totally disconnected, except if """ 0 . Hence:

• If G is totally disconnected, then δpGq " G b G.
• Otherwise, putting n " |G| and k " ccpGq:

δpGq " k b G `G b n `kerpε 1 q b kerpε 1 q. So ε 1 is indeed the counit of δ.
Let G be a graph, with n vertices and k connected components (so of degree n ´k). Let " ŸG. Then:

1. G{ " has cardinality clp"q and k connected components, so is of degree clp"q ´k. 2. G| " has cardinality n and clp"q connected components, so is of degree n ´clp"q.

Hence, degpG{ "q `degpG| "q " clp"q ´k `n ´clp"q " n ´k " degpGq: δ is homogeneous.

Example 1.2. δp q " b , δp q " b `b , δp q " b `3 b `b , δp q " b `2 b `b . Remark 1.1. Let G P G.
The following conditions are equivalent:

• ε 1 pGq " 1.

• ε 1 pGq ‰ 0.

• degpGq " 0.

• G is totally disconnected.

1.3 Antipode for the second coproduct pH G , m, δq is not a Hopf algebra: the group-like element has no inverse. However, the graduation of pH G , m, δq induced a graduation of H 1 G " pH G , m, δq{x ´1y, which becomes a graded, connected bialgebra, hence a Hopf algebra; we denote its antipode by S 1 . Note that, as a commutative algebra, H 1 G is freely generated by connected graphs different from .

The notations and ideas of the following definition and theorem come from Quantum Field Theory, where they are applied to Renormalization with the help of Hopf algebras of Feynman graphs; see for example [START_REF] Connes | Hopf algebras, renormalization and noncommutative geometry[END_REF][START_REF]Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem[END_REF] for an introduction. (c) For all I P F, G |I is connected and not reduced to the graph .

The set of forests of G is denoted by FpGq.

2. Let F P FpGq; it is partially ordered by the inclusion. For any I P FpGq, the relation " I is the equivalence on I which classes are the maximal elements (for the inclusion) of tJ P F | J Ĺ Iu (if this is non-empty), and singletons. We put:

G F " ź IPF pG |I q{ " I .
Example 1.3. The graph has only one forest, F " t u; F " . The graph has four forests:

• F " t u; in this case, F " .

• Three forests F " t , u; for each of them, F " .

Theorem 1.6. For any connected graph G, G ‰ , in H 1 G :

S 1 pGq " ÿ F PFpGq p´1q 7F G F .
Proof. By induction on the number n of vertices of G. If n " 2, then G " . As δ 1 p q " b 1 `1 b , S 1 p q " ´" ´F , where F " t u is the unique forest of . Let us assume the result at all ranks ă n. Then:

S 1 pGq " ´G ´ÿ "ŸG, "‰" 1 pG{ "qS 1 pG| "q " ´G ´ÿ "ŸG, "‰" 1 G{""tI 1 ,...,I k u ÿ F i PFpG |I i q p´1q 7F 1 `...`7F k pG{ "qpG |I 1 q F 1 . . . pG |I k q F k .
Note that each forest of G different from tGu consists of tGu with the union of of forests F 1 , . . . , F k on nonintersecting, connected subsets I 1 , . . . , I k of V pGq. Therefore:

S 1 pGq " ´G ´ÿ F PFpGq, F ‰tGu p´1q 7F ´1G F " ÿ F PFpGq p´1q 7F G F .
Example 1.4. In H 1 G :

S 1 p q " ´, S 1 p q " ´`3 , S 1 p q " ´`2 .

Cointeraction

Theorem 1.7. With the coaction δ, pH G , m, ∆q and pH G , m, δq are in cointeraction, that is to say that pH G , m, ∆q is a pH G , m, δq-comodule bialgebra, or a Hopf algebra in the category of pH G , m, δq-comodules. In other words:

• δp1q " 1 b 1.

• m 1,3,24 ˝pδ b δq ˝∆ " p∆ b Idq ˝δ, with:

m 1,3,24 : " H G b H G b H G b H G ÝÑ H G b H G b H G a 1 b b 1 b a 2 b b 2 ÝÑ a 1 b a 2 b b 1 b 2 .
• For all a, b P H G , δpabq " δpaqδpbq.

• For all a P H G , pε b Idq ˝δpaq " εpaq1.

Proof. The first and third points are already proved, and the fourth one is immediate for any a P G. Let us prove the second point. For any graph G P G:

p∆ b Idq ˝δpGq " ÿ "ŸG, V pGq{""I\J pG{ "q |I b pG{ "q |J b G| " " ÿ V pGq"I 1 \J 1 , " 1 ŸG |I , " 2 ŸG |J pG |I 1 q{ " 1 bpG |J 1 q{ " 2 bpG |I 1 q| " 1 pG |J 1 q| " 2
" m 1,3,24 ˝pδ b δq ˝∆pGq.

For the second equality, I 1 " π ´1 " pIq, I 2 " π ´1 " pJq, " 1 "" |I 1 and " 2 "" |J 1 .

Decorated versions

We fix a nonempty set D.

Definition 1.8. A D-decorated graph is a pair pG, d G q, where G is a graph and d G : V pGq ÝÑ D is a map. We denote by GpDq the set of isoclasses of D-decorated graphs, and by H GpDq the vector space generated by GpDq.

Example 1.5. For any k P N, let us denote by G k pDq the set of D-decorated graphs with k vertices. Then:

G 1 pta, b, cuq " t a , b , c u, G 2 pta, b, cuq " t a a , a b , a c , b b , b c , c c , a a , a b , a c , b b , b c , c c u, G 3 pta, b, cuq " $ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % a a a , a a b , a a c , a b b , a b c , a c c , b b b , b b c , b c c , c c c , a a a , a a - .
If G and H are two D-decorated graphs, their disjoint union is naturally also a D-decorated graph: hence, the disjoint union makes H GpDq an associative, commutative algebra, which unit is the empty graph 1. Moreover, if G is a D-decorated graph and I Ă V pGq, then G |I is also a D-decorated graph, with d G |I " pd G q |I . Then H GpDq is a Hopf algebra, with the coproduct defined by:

@G P GpDq, ∆pGq " ÿ V pGq"I\J G |I b G |J .
Example 1.6. If a, b, c P D:

∆p a q " a b 1 `1 b a , ∆p a b q " a b b 1 `1 b a b `a b b `b b a , ∆p a c b q " a c b b 1 `1 b a c b `a b b c `a c b b `b c b a `c b a b `b b a c `a b b c , ∆p a c b q " a c b b 1 `1 b a c b `a b b c `a c b b `b c b a `b b a c `c b a b `a b b c .
In order to define the second coproduct, we need more structure on D: let us assume that pD, `q is an abelian semigroup (that is to say, `is a commutative, associative binary operation on D). If G is a D-decorated graph and " is an equivalence on V pGq. As V pG |"q " V pGq, G |" is a D-decorated graph, with d G|" " d G . W define d G{" by:

@c P V pG{ "q " V pGq{ ", d G{" pcq " ÿ xPc d G pxq.
As pD, `q is an abelian semigroup, this is well-defined, and in this way G{ " becomes a Ddecorated graph. The proof of Proposition 1.4 can be extended to the D-decorated case; with the notations of the proof of this theorem, if ", " 1 ŸG and " 1 ď", then, as decorated graphs:

pG{ "q{ " 1 " pG{ " 1 q, pG{ "q |" 1 " pG| " 1 q{ ", G |" " pG |" 1 q |" .
Hence, H GpDq is a bialgebra, with the coproduct defined by:

@G P GpDq, δpGq " ÿ "ŸG
pG{ "q b pG| "q.

Example 1.7. If a, b, c P D:

δp a q " a b a , δp a b q " a `b b a b `a b b a b , δp a c b q " a `b `c b a c b `a `b c b c a b `a `c b b b a c `b `c a b a b c `a c b b a b c , δp a c b q " a `b `c b a c b `a `c b b b a c `a `b c b c a b `a c b b a b c .
Theorem 1.9. With the coaction δ, pH GpDq , m, ∆q and pH GpDq , m, δq are in cointeraction. Moreover, let us consider the forgetful map:

F pDq : " H GpDq ÝÑ H G pG, d G q P GpDq ÝÑ G P G,
then F pDq is a surjective Hopf algebra morphism from pH GpDq , m, ∆q to pH G , m, ∆q and a bialgebra morphism from compatible pH GpDq , m, δq to pH G , m, δq.

Remark 1.2. When D is a singleton, F pDq is an isomorphism. Through this isomorphism, we identify H G with H GpDq , when D " t˚u is a singleton, given its unique semigroup structure ˚`˚" ˚. Let us now give H GpDq a graduation. A graded set is a pair pD, wtq, where wt : D ÝÑ N ą0 is a map. Given such a map, we put, for any D-decorated graph G:

wtpGq " ÿ xPV pGq wtpxq.
For any n ě 0, let pH GpDq q n be the subspace of H GpDq generated by the D-decorated graphs G with wtpGq " n. Then: Proposition 1.10. If pD, wtq is a graded set, the map wt induces a connected graduation of the Hopf algebra pH GpDq , m, ∆q.

Remark 1.3. The nondecorated case H G is obtained with the weight defined by wtp˚q " 1.

Chromatic polynomials

In all this section, we fix an abelian semigroup pD, `q and work in H GpDq . This situation includes the nondecorated case, when D " t˚u.

Consequence of the cointeraction

We can apply the results of [10]: Theorem 2.1. We denote by M GpDq the monoid of characters of H GpDq . In the nondecorated case, we shall simply write M G .

1. Let λ P M GpDq . It is an invertible element if, and only if, for any d P D, λp d q ‰ 0.

2. Let B be a Hopf algebra, and E H GpDq ÑB be the set of Hopf algebra morphisms from pH GpDq , m, ∆q to B. Then M GpDq acts on E H GpDq ÑB by: Ð:

" E H GpDq ÑB ˆMGpDq ÝÑ E H GpDq ÑB pφ, λq ÝÑ φ Ð λ " pφ b λq ˝δ.

Let λ P M

GpDq . There exists a unique element φ P E H GpDq ÑQrXs such that:

@x P H GpDq , φpxqp1q " λpxq.
4. There exists a unique morphism φ pDq 1

: H GpDq ÝÑ QrXs, such that:

• φ pDq 1
is a Hopf algebra morphism from pH GpDq , m, ∆q to pQrXs, m, ∆q.

• φ pDq 1

is a bialgebra morphism from pH GpDq , m, δq to pQrXs, m, δq.

This morphism is the unique element φ P E H GpDq ÑQrXs such that:

@x P H GpDq , φpxqp1q " ε 1 pxq.
In the nondecorated case, we shall simply write φ 1 .

5.

The following map is a bijection:

# M GpDq ÝÑ E H GpDq ÑQrXs λ ÝÑ φ pDq 1 Ð λ.
We shall determine φ pDq 1

in the next section.

A first morphism

Proposition 2.2. We define φ pDq 0

: H GpDq ÝÑ QrXs by:

@G P GpDq, φ pDq 0 pGq " X |V pGq| .
Then φ pDq 0 is a Hopf algebra morphism from pH GpDq , m, ∆q to pQrXs, m, ∆q. In the nondecorated case, we shall simply write φ 0 .

Proof. This map is obviously an algebra morphism. For any graph G, of degree n:

pφ pDq 0 b φ pDq 0 q ˝∆pGq " ÿ V pGq"I\J X |I| b X |J| " n ÿ i"0 ˆn i ˙Xi b X n´i " ∆pX n q " ∆ ˝φpDq 0 pGq. So φ pDq 0
is a Hopf algebra morphism.

Remark 2.1. This morphism φ pDq 0

is not compatible with δ. For example, in the nondecorated case:

δ ˝φ0 p q " δpXq 2 " X 2 b X 2 , pφ 0 b φ 0 q ˝δp q " pφ 0 b φ 0 qp b `b q " X 2 b X 2 `X b X 2 .

Determination of φ pDq 1

Let us recall the definition of the chromatic polynomial, due to Birkhoff and Lewis [START_REF] Birkhoff | Chromatic polynomials[END_REF]:

Definition 2.3. Let G be a graph and X a set. 1. A X-coloring of G is a map f : V pGq ÝÑ X. 2. A N-coloring of G is packed if f pV pGqq " rks, with k ě 0. The set of packed colorings of G is denoted by PCpGq. 3. A valid X-coloring of G by X is a X-coloring f such that if ti, ju P EpGq, then f piq ‰ f pjq.
The set of valid X-colorings of G is denoted by VCpG, Xq; the set of packed valid colorings of G is denoted by PVCpGq.

4. An independent subset of G is a subset I of V pGq such that G |I is totally disconnected. We denote by IPpGq the set of partitions tI 1 , . . . , I k u of V pGq such that for all p P rks, I p is an independent subset of G.

5.

For any k ě 1, the number of valid rks-colorings of G is denoted by P chr pGqpkq. This defines a unique polynomial P chr pGq P QrXs, called the chromatic polynomial of G.

Note that if f is a X-coloring of a graph G, it is valid if, and only if, the partition of V pGq tf ´1pxq | x P f pV pGqqu belongs to IPpGq. Theorem 2.4.

1. The morphism P chr : H G ÝÑ QrXs is the morphism φ 1 of Theorem 2.1.

The unique morphism φ

pDq 1 of Theorem 2.1 is P pDq chr " P chr ˝FpDq .

Proof. 1. It is immediate that, for any graphs G and H, P chr pGHqpkq " P chr pGqpkqP chr pHqpkq for any k, so P chr pGHq " P chr pGqP chr pHq: P chr is an algebra morphism. Let G be a graph, and k, l ě 1. We consider the two sets:

C " VCpG, rk `lsq, D " tpI, c 1 , c 2 q | I Ď V pGq, c 1 P VCpG |I , rksq, c 2 P VCpG |V pGqzI , rlsqu.
We define a map θ : C ÝÑ D by θpcq " pI, c 1 , c 2 q, with:

• I " tx P V pGq | cpxq P rksu.

• For all x P I, c 1 pxq " cpxq.

• For all x R I, c 2 pxq " cpxq ´k.

We define a map θ 1 : D ÝÑ C by θpI, c 1 , c 2 q " c, with:

• For all x P I, cpxq " c 1 pxq.

• For all x R I, cpxq " c 2 pxq `k.

Both θ and θ 

q ¨ÿ V pGq"I\J G |I b G |J 'pk, lq
" pP chr b P chr q ˝∆pGqpk, lq.

As this is true for all k, l ě 1, ∆ ˝Pchr pGq " pP chr b P chr q ˝∆pGq. Moreover:

εpGq " ε ˝Pchr pGq " P chr pGqp0q "

# 1 if G is empty, 0 otherwise. So P chr P E H G ÑQrXs .
For any graph G P G:

P chr pGqp1q " # 1 if G is totally disconnected, 0 otherwise; " ε 1 pGq.
So φ 1 " P chr .

2. By composition, P chr ˝FpDq satisfies the two required conditions.

The chromatic character

Corollary 2.5. For any connected graph G P G, we put:

λ chr pGq " dP chr pGq dX p0q.
We extend λ as an element of M G : for any graph G, if G 1 , . . . , G k are the connected components of G, λ chr pGq " λ chr pG 1 q . . . λ chr pG k q.

Then λ chr is an invertible element of M G , and we denote its inverse by λ 0 . Then, for any graph G, λ 0 pGq " 1, or, equivalently:

@G P G, ÿ "ŸG λ chr pG{ "q " ÿ "ŸG λ chr pG |"q " ε 1 pGq.
Moreover, P chr " φ 0 Ð λ chr , or equivalently:

@G P G, P chr pGq " ÿ "ŸG λ chr pG| "qX clp"q .
Proof. By Theorem 2.1, there exists a unique λ P M G , such that φ 0 " φ 1 Ð λ. Then:

ε 1 ˝φ0 " ε 1 ˝pφ 1 b λq ˝δ " ppε 1 ˝φ1 q b λq ˝δ " pε 1 b λq ˝δ " ε 1 ˚λ " λ.
Therefore, for any graph G, λpGq " ε 1 pX |V pGq| q " 1. As λp q " 1, by Theorem 2.1, λ is invertible, and then φ 1 " φ 0 Ð λ ˚´1 . For any graph G, by definition of δ:

φ 1 pGq " ÿ "ŸG λ ˚´1 pG| "qX clp"q .
If G is connected, there exists a unique " 1 ŸG such that clp" 1 q " 1: this is the equivalence relation such that for any x, y P V pGq, x " 1 y. Moreover, G |" 1 " G. Hence, the coefficient of X in P chr pXq is λ ˚´1 pG |" 1 q `0 " λ ˚´1 pGq, so:

λ ˚´1 pGq " dP chr pGq dX p0q " λ chr pGq.
Consequently, λ ´1 chr " λ.

The character λ chr will be called the chromatic character. Its inverse is denoted by λ 0 . We extend it to any H GpDq by λ pDq chr " λ chr ˝FpDq . Then its inverse is λ pDq 0

"" λ 0 ˝FpDq . Then, as F pDq is compatible with both bialgebraic structures on H GpDq :

φ pDq 1 " φ pDq 0 Ð λ pDq chr .
Proposition 2.6. λ chr p q " 1; if G is a connected graph, G ‰ , then:

λ chr pGq " ÿ F PFpGq p´1q 7F .
Proof. We have λ chr p q " λ 0 p q " 1, so both λ chr and λ 0 can be seen as characters on H 1 G . Hence, for any connected graph G, different from :

λ chr pGq " λ 0 ˝S1 pGq " ÿ F PFpGq p´1q 7F λ 0 pG F q " ÿ F PFpGq p´1q 7F ,
as λ 0 pHq " 1 for any graph H P G.

Example 2.1. 1. By direct computations, we obtain:

G λ chr pGq 1 ´1 2 1 ´6 ´4 ´2 ´3 ´1 ´1 2.
If G is a complete graph with n vertices, P chr pGqpXq " XpX ´1q . . . pX ´n `1q, so λ chr pGq " p´1q n´1 pn ´1q!.

3. If G is a tree with n vertices, P chr pGqpXq " XpX ´1q n´1 , so λ chr pGq " p´1q n´1 .

Extraction and contraction of edges

Definition 2.7. Let G be a graph and e P EpGq.

(Contraction of e)

. The graph G{e is G{ " e , where " e is the equivalence which classes are e and singletons.

(Subtraction of e).

The graph Gze is the graph pV pGq, EpGqzteuq.

3. We shall say that e is a bridge (or an isthmus) of G if ccpGzeq ą ccpGq.

We now give an algebraic proof of the following well-known result [START_REF] Harary | Graph theory[END_REF], which allows to compute the chromatic polynomial by induction on the number of edges: Proposition 2.8. For any graph G, for any edge e of G: P chr pGq " P chr pGzeq ´Pchr pG{eq; λ chr pGq " # ´λchr pG{eq if e is a bridge, λ chr pGzeq ´λchr pG{eq otherwise.

Proof. Let G be a graph, and e P EpGq. Let us prove that for all k ě 1, P chr pGqpkq " P chr pGzeqpkq ´Pchr pG{eqpkq. We proceed by induction on k. If k " 1, P chr pGqp1q " ε 1 pGq " 0.

If G has only one edge, then Gze and G{e are totally disconnected, and:

P chr pGzeqp1q ´Pchr pG{eqp1q " 1 ´1 " 0.
Otherwise, Gze and G{e have edges, and:

P chr pGzeqp1q ´Pchr pG{eqp1q " 0 ´0 " 0.
Let us assume the result at rank k. Putting e " tx, yu: So the result holds for all k ě 1. Hence, P chr pGq " P chr pGzeq ´Pchr pG{eq.

P chr pGzeqpk `
Let us assume that G is connected. Note that G{e is connected. If e is a bridge, then Gze is not connected; each of its connected components belongs to the augmentation ideal of H G , so their images belong to the augmentation ideal of QrXs, that is to say XQrXs; hence, P chr pGzeq P X 2 QrXs, so: If G is not connected, we can write G " G 1 G 2 , where G 1 is connected and e is an edge of G 1 . Then:

λ
λ chr pGq " λ chr pG 1 qλ chr pG 2 q " #
´λchr pG 1 {eqλ chr pG 2 q if e is a bridge, λ chr pG 1 zeqλ chr pG 2 q ´λchr pG 1 {eqλ chr pG 2 q otherwise; " # ´λchr ppG 1 {eqG 2 q if e is a bridge, λ chr ppG 1 zeqG 2 q ´λchr ppG 1 {eqG 2 q otherwise; " # ´λchr pG{eq if e is a bridge, λ chr pGzeq ´λchr pG{eq otherwise.

So the result holds for any graph G.

Example 2.2. For any n ě 3, let us denote by C n the cyclic graph with n vertices. Then λ chr pC 3 q " 2. Choosing any edge e of C n with n ě 4, C n {e " C n´1 and C n ze is a chain on n vertices, so is a tree. Hence: λ chr pC n q " p´1q n´1 ´λchr pC n´1 q.

A direct induction proves that for any n ě 3, λ chr pC n q " p´1q n´1 pn ´1q.

Lattices attached to graphs

We here make the link with Rota's methods for proving the alternation of signs in the coefficients of chromatic polynomials.

The following order is used to prove Proposition 1.4:

Proposition 2.9. Let G be a graph. We denote by RpGq the set of equivalences " on V pGq, such that " ŸG. Then RpGq is partially ordered by refinement: @ ", " 1 P RpGq, "ď" 1 if p@x, y P V pGq, x " y ùñ x " 1 yq.

In other words, "ď" 1 if the equivalence classes of " 1 are disjoint unions of equivalence classes of ". Then pRpGq, ďq is a bounded graded lattice. Its minimal element " 0 is the equality; its maximal element " 1 is the relation which equivalence classes are the connected components of RpGq.

Proof. Let ", " 1 P RpGq. We define " ^"1 as the equivalence which classes are the connected components of the subsets Cl " pxq X Cl " 1 pyq, x, y P V pGq. By its very definition, " ^"1 ŸG, and " ^"1 ď", " 1 . If " 2 ď", " 1 ď in RpGq, then the equivalence classes of " and " 1 are disjoint union of equivalence classes of " 2 , so their intersections also are; as the equivalence classes of " 2 are connected, the connected components of these intersections are also disjoint union of equivalence classes of " 2 . This means that " 2 ď" ^"1 .

We define " _ " 1 as the relation defined on V pGq in the following way: for all x, y P V pGq, x " _ " 1 y if there exists x 1 , x 1 1 , . . . , x k , x 1 k P V pGq such that:

x "

x 1 " x 1 1 " 1 x 2 " . . . " 1 x k " 1 x 1 k " y.
It is not difficult to prove that " _ " 1 is an equivalence. Moreover, if x " y, then x " _ " 1 y (x 1 " x, x 1 1 " y); if x " 1 y, then x " _ " 1 y (x 1 " x 1 1 " x, x 2 " x 1 2 " y). Let C be an equivalence class of " _ " 1 , and let x, y P C. With the preceding notations, as the equivalence classes of " and " 1 are connected, for all p P rks, there exists a path from x p to x 1 p , formed of elements "-equivalent, hence " _ " 1 -equivalent; for all p P rk ´1s, there exists a path from x 1 p to x 1 p`1 , formed of elements " 1 -equivalent, hence " _ " 1 -equivalent. Concatening these paths, we obtain a path from x to y in C, which is connected. So " _ " 1 P RpGq, and ", " 1 ď" _ " 1 . Moreover, if ", " 1 ď" 2 , then obviously " _ " 1 ď" 2 . We proved that RpGq is a lattice.

For any "P RpGq, we put degpGq " |G| ´clp"q. Note that degp" 0 q " 0. Let us assume that " is covered by " 1 in RpGq. We denote by C 1 , . . . , C k the classes of ". As "ď" 1 , the classes of " 1 are disjoint unions of C p ; as "‰" 1 , one of them, denoted by C 1 , contains at least two C p . As C 1 is connected, there is an edge in C 1 connecting two different C p ; up to a reindexation, we assume that there exists an edge from C 1 to C 2 in C 1 . Then C 1 \ C 2 is connected, and the equivalence " 2 which classes are C 1 \ C 2 , C 3 , . . . C k satisfies "ď" 2 ď" 1 . As " 1 covers ", " 1 "" 2 , so degp" 1 q " |G| ´k `1 " degp"q `1.

Remark 2.2. This lattice is isomorphic to the one of [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF]. The isomorphism between them sends a element "P RpGq to the partition formed by its equivalence classes. 1. If "ď" 1 in RpGq, then the poset r", " 1 s is isomorphic to RppG| " 1 q{ "q.

2. For any "ď" 1 in RpGq, µ G p", " 1 q " λ chr ppG| " 1 q{ "q. In particular:

µ G p" 0 , " 1 q " λ chr pGq.

Proof. Let "ď" 1 P RpGq. If " 2 is an equivalence on V pGq, then "ď" 2 ď" if, and only if, the following conditions are satisfied:

• " 2 goes to the quotient G{ ", as an equivalence denoted by " 2 .

• " 2 P RppG| " 1 q{ "q.

Hence, we obtain a map from r", " 1 s to RppG| " 1 q{ "q, sending " 2 to " 2 . It is immediate that this is a lattice isomorphism.

Let "ď" 1 P RpGq. As r", " 1 s is isomorphic to the lattice RppG| " 1 q{ "q: ÿ "ď" 2 ď" 1 λ chr ppG| " 2 q{ "q " ÿ " 2 PRppG|" 1 q{"q λ chr pppG{ " 1 q{ "q|" 2 q " P chr ppG| " 1 q{ "qp1q "

# 1 if pG| " 1 q{ " is totally disconnected, 0 otherwise; " # 1 if """ 1 , 0 otherwise.
Hence, µ G p", " 1 q " λ chr ppG| " 1 q{ "q.

Remark 2.3. We now use the notion of incidence algebra of a family of posets exposed in [START_REF] William | Incidence Hopf algebras[END_REF]. We consider the family of posets:

tr", " 1 s | G P G, "ď" 1 in RpGqu.
It is obviously interval-closed. We define an equivalence relation on this family as the one generated by r", " 1 s " RppG| " 1 q{ "q. The incidence bialgebra associated to this family is pH G , m, δq.

Proposition 2.11. Let G a graph.

1. Let G 1 , . . . , G k be the connected components of G. Then RpGq « RpG 1 q ˆ. . . ˆRpG k q.

2. Let e be a bridge of G. Then RpGq « RpG{eq ˆRp q.

3. We consider the following map:

ζ G : " RpGq ÝÑ PpEpGqq " ÝÑ EpG| "q.
This map is injective; for any ", " 1 P RpGq, "ď" 1 if, and only if,

ζ G p"q Ď ζ G p" 1 q.
Moreover, ζ G is bijective if, and only if, G is a forest -that is to say a graph such that any edge is a bridge.

Proof. 1. If G, H are graphs and " is an equivalence on V pGHq, then " ŸGH if, and only if:

• " |V pGq ŸG.

• " |V pHq ŸH.

• For any x, y P V pGq \ V pHq, px " yq ùñ ppx, yq P V pGq 2 \ V pHq 2 .

Hence, the map sending " to p" |V pGq , " |V pHq q from RpGHq to RpGq ˆRpHq is an isomorphism; the first point follows.

2. Note that Rp q " t , u, with ď . By the first point, it is enough to prove it if G is connected. Let us put e " tx 1 , x 2 u, G 1 , respectively G 2 , the connected components of Gze containing x 1 , respectively x 2 . We define a map ψ : RpG{eq ˆRp q to RpGq in the following way: if " Ÿ RpG{eq,

• ψp", q "", defined by x " y if x"y. This is clearly an equivalence; moreover, x 1 " x 2 . if

x " y, there exists a path from x to y in G{e, formed by vertices "-equivalent to x and y. Adding edges e if needed in this path, we obtain a path from x to y in G, formed by vertices "-equivalent to x and y; hence, " ŸG.

• ψp", q "", defined by x " y if x"y and px, yq P V pG 1 q 2 \ V pG 2 q 2 . This is clearly an equivalence; moreover, we do not have x 1 " x 2 . If x " y, let us assume for example that both of them belong to G 1 . There is a path in Gze from x to y, formed by vertices formed by vertices "-equivalent to x and y. We choose such a path of minimal length. If this path contains vertices belonging to G 2 , as e is a bridge of G, it has the form:

x ´. . . ´x1 ´. . . ´x1 ´. . . ´y.

Hence, we can obtain a shorter path from x to y: this is a contradiction. So all the vertices of this path belong to G 1 ; hence, they are all "-equivalent. Finally, " ŸG.

Let us assume that ψp", q " ψp" 1 , q "". If x"y, then x " y, so x"y; by symmetry, " " " 1 . Let us assume that ψp", q " ψp" 1 , q "". If x"y:

• If x, y P V pG 1 q or x, y P V pG 2 q, then x " y, so x"y.

• If px, yq P V pG 1 q ˆV pG 2 q or px, yq P V pG 2 q ˆV pG 1 q, up to a permutation we can assume that x P V pG 1 q and y P V pG 2 q. As " Ÿ G{e, there exists a path from x to y formed by "-equivalent vertices. This path necessarily goes via x 1 " x 2 . Hence, x " x 1 and y " x 2 , so x"x 1 and y"x 2 , and finally x"y.

By symmetry, " " " 1 . We proved that ψ is injective.

Let " ŸG. If x 1 " x 2 , then " goes through the quotient G{e and gives an equivalence "ŸG{e. Moreover, ψp", q "". Otherwise, " ŸGze " G 1 G 2 ; let us denote the equivalence classes of " by C 1 , . . . , C k`l , with

x 1 P C 1 , x 2 P C k`1 , C 1 , . . . , C k Ď V pG 1 q, C k`1 , . . . , C k`l Ď V pG 2 q. Let " the equivalence on V pG{eq which equivalence classes are C 1 \ C k`1 , C 2 , . . . , C k , C k`2 , . . . , C k`l .
Then " Ÿ G{e and ψp", q "". We proved that ψ is surjective.

It is immediate that ψp" 1 , " 2 q ď ψp" 1 1 , " 1 2 q if, and only if, " 1 ď " 1 1 and " 2 ď" 1 2 . So ψ is a lattice isomorphism.

3. Let ", " 1 be elements of RpGq. If "ď" 1 , then the connected components of G| " 1 are disjoint unions of connected components of G| ", so EpG| "q Ď EpG| " 1 q.

If EpG| "q Ď EpG| " 1 q, then the connected components of G| " 1 are disjoint unions of connected components of G| ", so "ď" 1 .

Consequently, if ζ G p"q " ζ G p" 1 q, then "ď" 1 and " 1 ď", so """ 1 : ζ G is injective.

Let us assume that ζ G is surjective. Let e P EpGq; we consider "P RpGq, such that ζ G p"q " EpGqze. In other words, G| "" Gze. Hence, "‰" 1 , so clp"q ă clp" 1 q: G| " has strictly more connected components than G. This proves that e is a bridge, so G is a forest.

Let us assume that G is a forest. We denote by k the number of its edges. As any edge of G is a bridge, by the second point, RpGq is isomorphic to Rp q k ˆRp q ccpGq , so is of cardinal

2 k ˆ1ccpGq " 2 k . Hence, ζ G is surjective.
Remark 2.4. As a consequence, isomorphic posets may be associated to non-isomorphic graphs: for example, Rp q « Rp q « Rp q 3 .

Applications

Corollary 2.12. Let G be a graph.

1. λ chr pGq is non-zero, of sign p´1q degpGq .

2. We put P chr pGq " a 0 `. . . `an X n .

• For any i, a i ‰ 0 if, and only if, ccpGq ď i ď |G|.

• If ccpGq ď i ď |G|, the sign of a i is p´1q |G|´i .

3. ´a|G|´1 is the number of edges of |G|.

Proof. 1. For any graph G, we put λchr pGq " p´1q degpGq λ chr pGq. This defines a character λ P M G . Let us prove that for any edge e of G:

λchr pGq " #
λchr pG{eq if e is a bridge, λchr pGzeq `λ chr pG{eq otherwise.

We proceed by induction on the number k of edges of G. If k " 0, there is nothing to prove. Let us assume the result at all ranks ă k, with k ě 1. Let e be an edge of G. We shall apply the induction hypothesis to G{e and Gze. Note that ccpG{eq " ccpGq and |G{e| " |G| ´1, so degpG{eq " degpGq ´1.

• If e is a bridge, then:

λ chr pGq " ´p´1q degpG{eq λchr pG{eq " p´1q degpGq λchr pG{eq.

• If e is not a bridge, then ccpGzeq " ccpGq, and |Gze| " |G|, so degpGzeq " degpGq. Hence: λ chr pG{eq " p´1q degpGzeq λchr pGzeq ´p´1q degpG{eq λchr pG{eq " p´1q degpGq λchr pGzeq `p´1q degpGq λchr pG{eq " p´1q degpGq p λchr pGzeq `λ chr pG{eqq.

So the result holds for any graph G.

If G has no edge, then degpGq " 0 and λ chr pGq " λchr pGq " 1. An easy induction on the number of edges proves that for any graph G, λchr pGq ě 1.

By Corollary 2.5, for any i:

a i " ÿ "ŸG, clp"q"i λ chr pG| "q " ÿ "ŸG, clp"q"i p´1q |G|´i
λchr pG| "q " p´1q |G|´i ÿ "ŸG, clp"q"i λchr pG| "q.

As for any graph H, λchr pHq ě 1, this is non-zero if, and only if, there exists a relation " ŸG, such that clp"q " i. If this holds, the sign of a i is p´1q |G|´i . It remains to prove that there exists a relation " ŸG, such that clp"q " i if, and only if, ccpGq ď i ď |G|.

ùñ. If " ŸG, with clp"q " i, as the equivalence classes of " are connected, each connected component of G is a union of classes of ", so i ě ccpGq. Obviously, i ď |G|. ðù. We proceed by decreasing induction on i. If i " |G|, then the equality of V pGq answers the question. Let us assume that ccpGq ď i ă |G| and that the result holds at rank i `1.

Let " 1 ŸG, with clp" 1 q " i `1. We denote by I 1 , . . . , I i`1 the equivalence classes of " 1 . As I 1 , . . . , I i`1 are connected, the connected components of G are union of I p ; as i `1 ą ccpGq, one of the connected components of G, which we call G 1 , contains at least two equivalence classes of " 1 . As G 1 is connected, there exists an edge in G 1 , relation two vertices into different equivalence classes of " 1 ; up to a reindexation, we assume that they are I 1 and I 2 . Hence, I 1 \I 2 is connected. We consider the relation " which equivalence classes are I 1 \ I 2 , I 3 , . . . , I i`1 : then " ŸG and clp"q " i.

3. For i " |G| ´1, we have to consider relations " ŸG such that clp"q " |G| ´1. These equivalences are in bijection with edges, via the map ζ G of Proposition 2.11. For such an equivalence, G| "" |G|´1 , so λ chr pG| "q " ´1. Finally, a i " ´|EpV q|.

Remark 2.5. The result on the signs of the coefficients of P chr pGq is due to Rota [START_REF] Rota | On the foundations of combinatorial theory. I. Theory of Möbius functions[END_REF], who proved it using the Möbius function of the poset of Proposition 2.11. ùñ. If G is not a forest, there exists an edge e of G which is not a bridge. Then:

|λ chr pGq| " |λ chr pGzeq| `|λ chr pG{eq| ě 1 `1 " 2. So |λ chr pGq| ‰ 1.
Lemma 2.14. If G is a graph and e is a bridge of G, then: λ chr pGq " ´λchr pGzeq " ´λchr pG{eq.

Proof. We already proved in Proposition 2.11 that λ chr pGq " ´λchr pG{eq. Let us prove that λ chr pGq " ´λchr pGzeq by induction on the number k of edges of G which are not bridges. If k " 0, then G and Gze are forests with n vertices, ccpGzeq " ccpGq `1 and: λ chr pGq " ´λchr pGzeq " p´1q degpGq .

Let us assume the result at rank k ´1, k ě 1. Let f be an edge of G which is not a bridge of G. λ chr pGq " λ chr pGzf q ´λchr pG{f q " ´λchr ppGzf qzeq `λchr ppG{f qzeq " ´λchr ppGzeqzf q `λchr ppGzeq{f q " ´λchr pGzeq.

So the result holds for any bridge of any graph. Proposition 2.15.

1. Let G and H be two graphs, with V pGq " V pHq and EpGq Ď EpHq. Then:

|λ chr pGq| ď |λ chr pHq| `ccpGq ´ccpHq ´7pEpHq ´EpGqq ď |λ chr pHq|.

Moreover, if ccpGq " ccpHq, then |λ chr pGq| " |λ chr pHq| if, and only if, G " H.

2.

For any graph G, |λ chr pGq| ď p|G| ´1q!, with equality if, and only if, G is complete.

Proof. 1. We put k " 7pEpHqzEpGqq. There exists a sequence e 1 , . . . , e k of edges of H such that:

G 0 " G, G k " H, @i P rks, G i´1 " G i ze i .
For all i, ccpG i q " ccpG i´1 q `1 if e i is a bridge of G i , and ccpG i q " ccpG i´1 q otherwise. Hence, ccpGq ´ccpHq ď k. We denote by I the set of indices i such that ccpG i q " ccpG i´1 q; then 7I " k ´ccpGq `ccpHq. Moreover:

|λ chr pG i q| " # |λ chr pG i´1 q| `|λ chr ppG i q{e i q| ą |λ chr pG i´1 q| if i P I, |λ chr pG i´1 q| if i R I.
As a conclusion, |λ chr pGq| ď |λ chr pHq| ´7I " |λ chr pHq| `ccpGq ´ccpHq ´k ď |λ chr pHq|.

If ccpGq " ccpHq and |λ chr pGq| " |λ chr pHq|, then k " 0, so G " H.

2. We put n " |G|. We apply the first point with H the complete graph such that V pHq " V pGq. We already observed that |λ chr pHq| " pn ´1q!, so:

|λ chr pGq| ď pn ´1q!. If G is not connected, there exist graphs G 1 , G 2 such that G " G 1 G 2 , n 1 " |G 1 s ă n, n 2 " |G 2 | ă n. Hence:
|λ chr pGq| " |λ chr pG 1 q||λ chr pG 2 q ď pn 1 ´1q!pn 2 ´1q! ď pn 1 `n2 ´2q ă pn ´1q!.

If G is connected, then ccpGq " ccpHq: if |λ chr pGq| " |λ chr pHq|, then G " H.

Values of the chromatic polynomial at negative integers

Theorem 2.16. Let k ě 1 and G a graph. Then p´1q |G| P chr pGqp´kq is the number of families ppI 1 , . . . , I k q, O 1 , . . . , O k q such that:

• I 1 \ . . . \ I k " V pGq (note that one may have empty I p 's).

• For all 1 ď i ď k, O i is an acyclic orientation of G |I i .

In particular, p´1q |G| P chr pGqp´1q is the number of acyclic orientations of G.

Proof. By the extraction-contraction process:

• If G is totally disconnected, p´1q |G| P chr pGqp´1q " 1.

• If G has an edge e, p´1q |G| P chr pGqp´1q " p´1q |Gze| P chr pGzeqp´1q`p´1q |G{e| P chr pG{eqp´1q.

For any graph H, let us denote by ApHq the set of acyclic orientations of H. Let G be a graph and e " tx, yu be an edge of G. If σ P ApG{eq, we deduce an orientation σ of Gze by lifting the orientations of the edges of G{e to the edges of Gze. Obviously, this defines an injective map ι from ApG{eq to ApGzeq.

If σ P ApG{eq, let us denote by ι `pσq, respectively ι ´pGq, the orientation of G obtained from ιpσq by orientating e from x to y, respectively from y to x. Let us assume that one of them is not acyclic. We obtain for example a cycle

x Ñ y Ñ x 1 Ñ . . . Ñ x k " x,
which induces a cycle in the orientation σ of G{e: this is a contradiction. We obtain two maps ι `, ι ´: ApG{eq ÝÑ ApGq, both injective, with disjoint images.

Let σ P ApGzeqzιpApG{eqq. We denote by σ `, respectively σ ´, the orientation of G obtained from σ by orientating e from x to y, respectively from y to x. As σ R ιpApG{eqq, there exists a vertex z P V pGq, with edges tx, zu and ty, zu, such that, tx, zu is oriented from x to z and ty, zu from z to y, up to a permutation of x and y. Then y Ñ x Ñ z Ñ y is a cycle in σ ´: at most one of σ `and σ ´is acyclic. Let us assume that none of them is acyclic. We obtain two cycles in σ `and σ ´:

x Ñ y Ñ y 1 . . . Ñ y k " x, y Ñ x Ñ x 1 . . . Ñ x l " y.
We obtain then a cycle y Ñ y 1 . . . Ñ y k Ñ x 1 Ñ . . . Ñ x l " y in σ, which is not acyclic. Hence, exactly one of σ ´and σ `is acyclic: we obtain an injective map κ : ApGzeqzιpApG{eqq ÝÑ ApGq. Clearly, the images of three maps are disjoint and cover the whole ApGq. Hence:

|ApGq| " 2|ApG{eq| `|ApGzeqzApG{eq| " |ApG{eq| `|ApGzeq|.
An easy induction on the number of edges of G then proves that p´1q |G| P chr pGqp´1q is indeed |ApGq|.

If k ě 2:

p´1q |G| P chr pGqp´kq " p´1q |G| P chr pGqpp´1q `. . . `p´1qq " p´1q |G| ∆ pk´1q ˝Pchr pGqp´1, . . . , ´1q " p´1q |G| P bk chr ˝∆pk´1q pGqp´1, . . . , ´1q " p´1q |G| ÿ V pGq"I 1 \...\I k P chr pG |I 1 qp´1q . . . P chr pG |I k qp´1q " ÿ V pGq"I 1 \...\I k p´1q |G |I 1 | P chr pG |I 1 qp´1q . . . p´1q |G |I k | P chr pG |I k qp´1q.
The case k " 1 implies the result.

We recover the interpretation of Stanley [25]:

Corollary 2.17. Let k ě 1 and G a graph. Then p´1q |G| P chr pGqp´kq is the number of pairs pf, Oq where • f is a map from V pGq to rks.

• O is an acyclic orientation of G.

• If there is an oriented edge from x to y in V pGq for the orientation O, then f pxq ď f pyq.

Proof. Let A be the set of families defined in Theorem 2.16, and B be the set of pairs defined in Corollary 2.17. We define a bijection θ : A ÝÑ B in the following way: if ppI 1 , . . . , I k q, O 1 , . . . , O k q P A, we put θppI 1 , . . . , I k q, O 1 , . . . , O k q " pf, Oq, such that:

1. f ´1ppq " I p for any p P rks.

2. If e " tx, yu P EpGq, we put f pxq " i and f pxq " j. If i " j, then e is oriented as in O i .

Otherwise, if i ă j, e is oriented from i to j if i ă j and from j to i if i ą j.

Note that O is indeed acyclic: if there is an oriented path from x to y in G of length ě 1, then f increases along this path. If f remains constant, as O f pxq is acyclic, x ‰ y. Otherwise, f pxq ă f pyq, so x ‰ y. It is then not difficult to see that θ is bijective.

This gives us a formula for the antipode of pH GpDq , m, ∆q, proved in [START_REF] Humpert | The incidence Hopf algebra of graphs[END_REF] in another way in the nondecorated case: Corollary 2.18. Let us denote by S the antipode of pH GpDq , m, ∆q. For any graph G P GpDq:

SpGq " ÿ "ŸG
p´1q clp"q 7tacyclic orientations of G{ "uG |" .

Proof. Let us denote by ‹ the convolution product associated to ∆ in M GpDq , and by µ " ε 1 ˝S the inverse of ε 1 for ‹. Let us put T " pµ b Idq ˝δ. Then, in the convolution algebra EndpH GpDq q, with the product ‹ associated to the Hopf algebra pH GpDq , m, ∆q: where η : Q ÝÑ H GpDq send 1 P Q on the empty graph (unit map). Consequently:

T ‹ Id " m
T " T ‹ Id ‹ S " pη ˝εq ‹ S " S.
Let us now prove that for any graph G P GpDq:

µpGq " P pDq chr pGqp´1q.

As P pDq chr is a Hopf algebra morphism from pH GpDq , m, ∆q to pQrXs, m, ∆q and ε 1 ˝P pDq chr " ε 1 :

P pDq chr pGqp´1q " S ˝P pDq chr pGqp1q " ε 1 ˝S ˝P pDq chr pGq " ε 1 ˝P pDq chr ˝SpGq " ε 1 ˝SpGq " µpGq.
By Theorem 2.16: µpGq " p´1q |G| 7tacyclic orientations of Gu.

3 Chromatic symmetric functions

Reminders on QSym

The Hopf algebra QSym [START_REF] Aguiar | Combinatorial Hopf algebras and generalized Dehn-Sommerville relations[END_REF][START_REF] Israel | Noncommutative symmetric functions[END_REF][START_REF] Hazewinkel | Symmetric functions, noncommutative symmetric functions and quasisymmetric functions. II[END_REF][START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF][START_REF]Enumerative combinatorics[END_REF] has a basis pM u q indexed by compositions, that is to say finite sequences of positive integers. Its product is given by quasi-shuffles. For example, if a, b, c, d P N ą0 :

M a M bcd " M abcd `Mbacd `Mbcad `Mbcda `Mpa`bqcd `Mbpa`cqd `Mabpc`dq , M ab M cd " M abcd `Macbd `Macdb `Mcabd `Mcadb `Mcdab `Mpa`cqbd `Mpa`cqdb `Mcpa`dqb `Mapb`cqd `Macpb`dq `Mcapb`dq `Mpa`bqpc`dq .
Its coproduct is given by deconcatenation: for any composition w,

∆pM w q " ÿ uv"w M u b M v .
For example, if a, b, c P N ą0 :

∆pM a q " M a b 1 `1 b M a , ∆pM a,b q " M a,b b 1 `Ma b M b `1 b M a,b , ∆pM a,b,c q " M a,b,c b 1 `Ma,b b M c `Ma b M b,c `1 b M a,b,c .
For any composition w, we denote by |w| the sum of its letters; this induces a connected graduation of QSym. There exists a second coproduct δ, such that for any composition w of length n:

δpM w q " n ÿ k"1 ÿ w"w 1 ...w k M |w 1 |...|w k | b M w 1 . . . M w k .
For example, if a, b, c P N ą0 :

δpM a q " M a b M a , δpM a,b q " M a,b b M a M b `Ma`b b M a,b , δpM a,b,c q " M a,b,c b M a M b M c `Ma`b,c b M a,b M c `Ma,b`c b M a M b,c `Ma`b`c b M a,b,c .
The counit of this coproduct is denoted by ε 1 ; for any composition u, ε 1 pM u q " # 1 if u has only one letter, 0 otherwise.

Moreover, QSym admits a polynomial representation. Let X be a totally ordered alphabet -that is to say a set with a total order. For any u 1 . . . u n P N ą0 , we consider the element:

rep X pM u 1 ,...,un q " ÿ x 1 ă...ăxn in X x u 1 1 . . . x un n P QrrXss.
We define in this way an algebra morphism rep X : QSym ÝÑ QrrXss. Moreover, for any k P N, the restriction of rep X to the k-th homogeneous component QSym k of QSym is injective if, and only if, |X| ě k.

If X and Y are two totally ordered alphabets, X \ Y is also totally ordered: for all x P X, y P Y, x ď y. We identify QrrX \ Yss with QrrXss b QrrYss, via the continous morphism sending x P X to x b 1 and y P Y to 1 b y. Then:

rep X\Y " prep X b rep Y q ˝∆.
The cartesian product X ˆY is totally ordered by the lexicographic order: for any x, x 1 P X, y, y 1 P Y, xy ď x 1 y 1 if, and only if, px ă x 1 q or (x " x 1 and y ď y 1 ). We identify QrrX ˆYss with a subring of QrrXss b QrrYss through the continous morphism sending px, yq P X ˆY to x b y. Then:

rep XˆY " prep X b rep Y q ˝δ.
Let us prove the associativity of ∆ and of δ and the cointeraction with the help of these polynomial representations. We choose X, Y and Z three infinite totally alphabets. Firstly, observe that, as totally ordered alphabets:

pX \ Y q \ Z " X \ pY \ Zq.
Therefore:

prep X b rep Y b rep Z q ˝p∆ b Idq ˝∆ " rep pX\Y q\Z " rep X\pY \Zq " prep X b rep Y b rep Z q ˝pId b ∆q ˝∆.
As rep X , rep Y and rep Z are injective, p∆ b Idq ˝∆ " pId b ∆q ˝∆. Secondly, observe that, as totally ordered alphabets: pX ˆY q ˆZ " X ˆpY ˆZq.

and finally x P A n b A `kerpΦ 1 q b A `A b kerpΦ 1 q.

Existence, ðù. We shall use the polynomial representation of QSym. If X, Y are totally ordered alphabets, as Φ 1 is compatible with ∆:

rep X\Y ˝Φ1 " prep X b rep Y q ˝∆ ˝Φ1 " prep X b rep Y q ˝pΦ 1 b Φ 1 q ˝∆.
Let us prove that for any finite totally ordered alphabet X, for any totally ordered alphabet Y:

rep XˆY ˝Φ1 " prep X b rep Y q ˝pΦ 1 b Φ 1 q ˝δ.
We proceed by induction on n " |X|. If n " 1, we put X " txu. Let a P A k , with k P N. By the hypothesis on A: pΦ 1 b Φ 1 q ˝δpaq P QSym k b QSym.

Therefore:

prep X b rep Y qpΦ 1 b Φ 1 q ˝δpaq " x k pε 1 b rep Y q ˝pΦ 1 b Φ 1 q ˝δpaq " x k pε 1 b rep Y ˝Φ1 q ˝δpaq " x k pId Q b rep Y ˝Φ1 q loooooooooomoooooooooon "rep Y ˝Φ1 ˝pε 1 b Idq ˝δ looooomooooon "Id A paq " x k rep Y ˝Φ1 paq " rep XˆY ˝Φ1 paq.
Let us assume that the results holds for any totally ordered alphabet X 1 such that |X 1 | ă |X|, with |X| ě 2. Let x n be the maximal element of X. We put X 1 " Xztx n u and X 2 " tx n u, such that X " X 1 \ X 2 . Then:

X ˆY " pX 1 \ X 2 q ˆY " pX 1 ˆYq \ pX 2 ˆYq, so:

rep XˆY ˝Φ1 " rep pX 1 ˆYq\pX 2 ˆYq ˝Φ1 " prep X 1 ˆY b rep X 2 ˆYq ˝pΦ 1 b Φ 1 q ˝∆ " prep X 1 b rep Y b rep X 2 b rep Y q ˝pΦ 1 b Φ 1 b Φ 1 b Φ 1 q ˝pδ b δq ˝∆ " prep X 1 b rep X 2 b rep Y q ˝m1,3,24 ˝pΦ 1 b Φ 1 b Φ 1 b Φ 1 q ˝pδ b δq ˝∆ " prep X 1 b rep X 2 b rep Y q ˝pΦ 1 b Φ 1 b Φ 1 q ˝m1,3,24 ˝pδ b δq ˝∆ " prep X 1 b rep X 2 b rep Y q ˝pΦ 1 b Φ 1 b Φ 1 q ˝p∆ b Idq ˝δ " prep X 1 \X 2 b rep Y q ˝pΦ 1 b Φ 1 q ˝δ " prep X b rep Y q ˝pΦ 1 b Φ 1 q ˝δ.
Let a P A. Let us choose a totally ordered alphabet X of cardinality n such that:

δpaq P à k,lďn A k b A l .
Then:

rep XˆX ˝Φ1 paq " prep X b rep X q ˝δ ˝Φ1 paq " prep X b rep X q ˝pΦ 1 b Φ 1 q ˝δpaq.
By injectivity of rep X till degree n, as |X| ě n, δ ˝Φ1 paq " pΦ 1 b Φ 1 q ˝δpaq. q " M wtpaq,wtpbq,wtpcq `Mwtpaq,wtpcq,wtpbq `Mwtpbq,wtpaq,wtpcq `Mwtpbq,wtpcq,wtpaq `Mwtpcq,wtpaq,wtpbq `Mwtpcq,wtpbq,wtpaq `Mwtpaq,wtpbq`wtpcq `Mwtpbq`wtpcq,wtpaq .

In the nondecorated case, this simplifies:

F chr p q " M 1 , F chr p q " 6M 1,1,1 , F chr p q " 2M 1,1 , F chr p q " 6M 1,1,1 `M1,2 `M2,1 .
For any graph G, F chr pGq is the chromatic symmetric function of [START_REF]A symmetric function generalization of the chromatic polynomial of a graph[END_REF], when realized with the totally ordered alphabet X " tx 1 ă x 2 ă . . .u. For example:

rep X ˝Fchr p q " 8 ÿ i"1
x i , rep X ˝Fchr p q " ÿ i,jě1 i‰j

x i x j , rep X ˝Fchr p q " ÿ i,j,kě1, i‰j, i‰k, j‰k

x i x j x k , rep X ˝Fchr p q " ÿ i,j,kě1, i‰j, i‰k

x i x j x k " ÿ i,j,kě1, i‰j, i‰k, j‰k

x i x j x k `ÿ i,jě1, i‰j x i x 2 j .
We now fix an abelian semigroup pD, `q and a map wt : D ÝÑ N ą0 , inducing a graduation on H GpDq . Theorem 3.6. There exists a morphism Φ 1 : H GpDq ÝÑ QSym such that:

1. Φ 1 : pH GpDq , m, ∆q ÝÑ pQSym, m, ∆q is a homogeneous morphism of Hopf algebras, 2. Φ 1 : pH GpDq , m, δq ÝÑ pQSym, m, δq is a morphism of bialgebras, if, and only if, wt : pD, `q ÝÑ pN ą0 , `q is a semigroup morphism. If so, Φ 1 " F pDq chr (and therefore Φ 1 is unique).

Proof. ùñ. By Theorem 3.4, ε 1 ˝Φ1 " ε 1 , so necessarily Φ 1 " Φ ε 1 " F Comparing, we obtain wtpaq `wtpbq " wtpa `bq, so wt is a semigroup morphism.

ðù. Let us assume that wt is a semigroup morphism. Let G P GpDq and " ŸG. Then, obviously, wtpG |"q " wtpGq and:

wtpG{ "q " ÿ cPV pG{"q wtpdpcqq " ÿ cPV pG{"q Hence, for any n P N, δppH GpDq q n q Ď pH GpDq q n b pH GpDq q n . By Theorem 3.4-2, Φ ε 1 is a morphism for both bialgebraic structures.

Example 3.2. As a consequence, in the nondecorated case, F chr is not compatible with δ. Indeed, for example:

δ ˝Fchr p q pF chr b F chr q ˝δp q " 2δpM 1,1 q " pF chr b F chr qp b `b q " 2pM 1,1 b M 1 M 1 `M2 b M 1,1 q, " 2pM 1,1 b M 1 M 1 `M1 b M 1,1 q.
On the other side, if pD, `q " pN ą0 , `q and wt " Id N ą0 , then F Dq chr is compatible with δ:

δ ˝Fchr p 1 1 q pF chr b F chr q ˝δp 1 1 q " 2δpM 1,1 q " pF chr b F chr qp 1 1 b 1 1 `2 b 1 1 q " 2pM 1,1 b M 1 M 1 `M2 b M 1,1 q, " 2pM 1,1 b M 1 M 1 `M2 b M 1,1 q.
Proposition 3.7. The image of F pDq chr is included in Sym. It is equal to Sym, if and only if, there exists a P D, such that wtpaq " 1.

Proof. As H GpDq is cocommutative, F pDq chr pH GpDq q is a cocommutative Hopf subalgebra of QSym, so is included in Sym, greatest cocommutative subalgebra of QSym.

If 1 R wtpDq, then there is no element of H GpDq homogeneous of degree 1. As F pDq chr is homogeneous, there is no element x P H GpDq such that Φ 1 pxq " M 1 .

If wtpaq " 1, let us consider the complete graph G n with n vertices, all decorated by a. By definition of F pDq chr , F pDq chr pG n q " n!M 1 n , so for any n, M 1 n P Φ 1 pH GpDq q. As these elements (which are the elementary symmetric functions) generate Sym, Φ 1 pH GpDq q " Sym.

Extension of φ 0

Proposition 3.8. Let G be a graph and f P PCpGq. We define the equivalence " f in V pGq as the unique one which classes are the connected components of the subsets f ´1pxq, x P rmaxpf qs. Then, the coloring f induces a packed valid coloring f of G{ " f : @x P V pGq, f pxq " f pxq.

Proof. We have to prove that f is a valid coloring of G{ " f . Let x, y be two vertices of G{ " f , related by an edge (this implies that they are different); we assume that f pxq " f pyq. There exist x 1 , y 1 P V pGq, such that x 1 " f x and y 1 " f y, and x 1 , y 1 are related by an edge in G. By definition of " f , there exist vertices x 1 " x 1 , . . . , x k " x, y " y 1 , . . . , y l " y 1 in G such that f px 1 q " . . . " f px k q, gpy 1 q " . . . " gpy l q, and for all p, q, x p and x p`1 , y q and y q`1 are related by an edge in G. Hence, there is a path in G from x to y, such that for any vertex z on this path, f pzq " f pxq " f pyq: this implies that x " f y, so x " y. This is a contradiction, so f is valid.

Proposition 3.9. Let us consider the following map:

F pDq 0 : $ & % H GpDq ÝÑ QSym G ÝÑ ÿ f PPCpGq M f .
This is a Hopf algebra morphism, and F pDq 0

˝H " φ pDq 0 . It is homogeneous if, and only if, wt : pD, `q ÝÑ pN ą0 , `q is a semigroup morphism. Moreover, in E H GpDq ÑQSym :

F pDq chr " F pDq 0 Ð λ pDq chr .
Proof. Let G be graph. By Proposition 3.8, we have a map:

θ : $ & % PCpGq ÝÑ ğ "ŸG PVCpG{ "q f ÝÑ f P PVCpG{ " f q.
θ is injective: if θpf q " θpgq, then " f "" g and for any x P V pGq, f pxq " f pxq " gpxq " gpxq.

Let us show that θ is surjective. Let f P PVCpG{ "q, with " ŸG. We define f P PCpGq by f pxq " f pxq for any vertex x. By definition of f , the equivalence classes of " are included in sets f ´1piq, and are connected, as " ŸG, so are included in equivalence classes of " f : if x " y, then x " f y. Let us assume that x " f y. There exists a path x " x 1 , . . . , x k " y in G, such that f px 1 q " . . . " f px k q. So f px 1 q " . . . " f px k q. As f is a valid coloring of G{ ", there is no edge between x p and x p`1 in G{ " for any p; this implies that x p " x p`1 for any p, so x " x 1 " x k " y. Finally, """ f , so θpf q " f . Using the bijection θ, we obtain: q is homogeneous of degree wtpaq `wtpbq, so M wtpa`bq is homogeneous of degree wtpaq `wtpbq. Hence, wtpa `bq " wtpaq `wtpbq, and wt is a semigroup morphism. Conversely, if G P GpDq, any term appearing in F q " M wtpaq,wtpbq,wtpcq `Mwtpaq,wtpcq,wtpbq `Mwtpbq,wtpaq,wtpcq `Mwtpbq,wtpcq,wtpaq `Mwtpcq,wtpaq,wtpbq `Mwtpcq,wtpbq,wtpaq `Mwtpa`bq,wtpcq `Mwtpa`cq,wtpbq `Mwtpb`cq,wtpaq `Mwtpcq,wtpa`bq `Mwtpbq,wtpa`cq `Mwtpaq,wtpb`cq `Mwtpa`b`cq .

F pDq 0 pGq " ÿ f PPCpGq M f " ÿ "ŸG ÿ f PPVCpG{"q M f " ÿ "ŸG F pDq chr pG{ "q " ÿ "ŸG
In the nondecorated case, this simplifies:

F 0 p q " M 1 ,
F 0 p q " 6M 111 `4M 11 `M12 `M21 `M1 , F 0 p q " 2M 11 `M1 , F 0 p q " 6M 111 `6M 11 `M1 .

4 Non-commutative versions 1. An indexed graph is a graph G such that V pGq " rns, with n ě 0. The set of indexed graphs is denoted by G .

2. Let G " prns, EpGqq be an indexed graph and let I Ď rns. There exists a unique increasing bijection f : I ÝÑ rks, where k " 7I. We denote by G |I the indexed graph defined by: G |I " prks, ttf pxq, f pyqu | tx, yu P EpGq, x, y P Iuq.

3. Let G be an indexed graph and " ŸG.

(a) The graph G| " is an indexed graph.

(b) We order the elements of V pGq{ " by their minimal elements; using the unique increasing bijection from V pGq{ " to rks, G{ " becomes an indexed graph.

4. Let G " prks, EpGqq and H " prls, EpHqq be indexed graphs. The indexed graph GH is defined by:

V pGHq " rk `ls,

EpGHq " EpGq \ ttx `k, y `lu | tx, yu P EpHqu.

The Hopf algebra pH G , m, ∆q is, as its commutative version, introduced in [24]:

Theorem 4.2.

1. We denote by H G the vector space generated by indexed graphs. We define a product m and two coproducts ∆ and δ on H G in the following way: Then pH G , m, ∆q is a graded cocommutative Hopf algebra, and pH G , m, δq is a bialgebra.

2.

Let : H G ÝÑ H G be the surjection sending an indexed graph to its isoclass. Example 4.1.

∆p 1 q " 1 b 1 `1 b 1 , ∆p 1 

Reminders on WQSym

Let us recall the construction of WQSym [START_REF] Novelli | Polynomial realization of some trialgebras[END_REF].

Definition 4.3.

1. Let w be a word with letters in N ą0 . We shall say that w is packed if: @j P N ą0 , j appears in w ùñ 1, . . . , j appear in w.

2. Let w " x 1 . . . x k a wordwith letters in N ą0 . There exists a unique increasing bijection f from tx 1 , . . . , x k u to rls, with l ě 0; the packed word Packpwq is f px 1 q . . . f px k q. Then pWQSym, ], ∆q is a Hopf algebra. Moreover, WQSym has also a second coproduct δ defined on any packed word w " w 1 . . . w k by: δpwq " ÿ f,g f pw 1 q . . . f pw k q b gpw 1 q . . . gpw k q, where the sum runs over all pairs of maps pf, gq, where f : rmaxpwqs ÝÑ rmaxpf qs is an increasing surjective map and g : rmaxpwqs ÝÑ rmaxpgqs is an increasing map such that for any i P rmaxpf qs, g |f ´1piq is increasing. However, pWQSym, ], ∆q is not a bialgebra in the category of right pWQSym, ], δq-comodules, as shown in the following example. This Hopf algebra admits a polynomial representation: we fix a infinite totally ordered alphabet X; the set of words in X is denoted by X ˚. For any packed word w, we consider the noncommutative formal series:

Rep X pwq " ÿ w 1 PX ˚, Packpw 1 q"w w 1 P QxxXyy.

For example: W tt1,2uu W tt1uu " W tt1,2u,t3uu `Wtt1,2,3uu , W tt1u,t2uu W tt1uu " W tt1u,t2u,t3uu `Wtt1,3u,t2uu `Wtt1u,t2,3uu , ∆pW tt1,3u,t2u,t4uu q " W tt1,3u,t2u,t4uu b 1 `Wtt1,3u,t2uu b W tt1uu `Wtt1,2u,t3uu b W tt1uu `Wtt1u,t2uu b W tt1,2uu `Wtt1,2uu b W tt1u,t2uu `Wtt1uu b W tt1,2u,t3uu `Wtt1uu b W tt1,3u,t2uu `1 b W tt1,3u,t2u,t4uu .

2. The map F chr is not a bialgebra morphism from pH G , m, δq to pWQSym, ], δq. For example:

pF chr b F chr q ˝δp 1 2 q " p1q b pp12q `p21qq `pp12q `p21qq b pp11q `p12q `p21qq, δ ˝Fchr p 1 2 q " p11q b pp12q `p21qq `pp12q `p21qq b pp11q `p12q `p21qq.

Non-commutative version of F 0

We shall use the notations of Proposition 3.8. If G be an indexed graph and f P PCpGq, then G{ " f is an indexed graph; we denote its cardinality by k. We put:

w f " f p1q . . . f pkq.

Proposition 4.6. Let us consider the following map:

F 0 : $ & % H G ÝÑ WSym G ÝÑ ÿ f PPCpGq w f .
This is a Hopf algebra morphism. Moreover, in E H G ÑWSym :

F chr " F 0 Ð λ chr .
Proof. This is proved in the same way as Proposition 3.9.

Example 4.2.

F 0 p 1 q " p1q, F 0 p 1 2 q " p12q `p21q `p1q,

F 0 p 1 3 2
q " p123q `p132q `p213q `p231q `p312q `p321q `3p12q `3p21q `p1q,

F 0 p 1 3 2
q " p123q `p132q `p213q `p231q `p312q `p321q `p122q `p211q `2p12q `2p21q `p1q.

From non-commutative to commutative

As QrrXss is a quotient of QxxXyy, this polynomial representations Rep of WQSym and rep of QSym induce a surjective Hopf algebra morphism: π :

"

WQSym ÝÑ QSym w ÝÑ M |w ´1p1q|,...,|w ´1pmaxpwqq| .

Proposition 4.7. π ˝F0 " F 0 ˝ and π ˝Fchr " F chr ˝ .

Proof. Immediate.

Definition 1 . 5 .

 15 Let G be a connected graph, G ‰ .1. A forest of G is a set F of subsets of V pGq, such that: (a) V pGq P F.(b) If I, J P F, then I Ď J, or J Ď I, or I X J " H.

Example 2 . 3 .Proposition 2 . 10 .

 23210 We represent "P RpGq by G| ". Here are examples of RpGq, represented by their Hasse graphs. We index the vertices of the graphs by letters for a better understanding. Let G be a graph. We denote by µ G the Möbius function of RpGq.

Corollary 2 . 13 .

 213 Let G be a graph; |λ chr pGq| " 1 if, and only if, G is a forest. Proof. ðù. Then each component of G is a tree. The result then comes from Example 2.1, last point.

" pµ b ε 1 b

 1 ˝pµ b Idq ˝pδ b Idq ˝∆ " m ˝pµ b Id b ε 1 b Idq ˝pδ b δq ˝∆ " pµ b ε 1 b Idq ˝m1,3,24 ˝pδ b δq ˝∆ Idq ˝p∆ b Idq ˝δ " pµ ‹ ε 1 b Idq ˝δ " pε b Idq ˝δ " η ˝ε,

Example 3 . 1 .

 31 Let a, b, c P D. F pDq chr p a q " M wtpaq , wtpaq,wtpbq,wtpcq `Mwtpaq,wtpcq,wtpbq `Mwtpbq,wtpaq,wtpcq `Mwtpbq,wtpcq,wtpaq `Mwtpcq,wtpaq,wtpbq `Mwtpcq,wtpbq,wtpaq ,

  pDq chr . Let a, b P D. Then: δ ˝Φ1 p a b q " pM wtpaq,wtpbq `Mwtpbq,wtpaq q b M wtpaq M wtpbq `Mwtpaq`wtpbq b pM wtpaq,wtpbq `Mwtpbq,wtpaq q, " pΦ 1 b Φ 1 q ˝δp a b q " pΦ 1 b Φ 1 qp a b b a b `a `b b a b q " pM wtpaq,wtpbq `Mwtpbq,wtpaq q b M wtpaq M wtpbq `Mwtpa`bq b pM wtpaq,wtpbq `Mwtpbq,wtpaq q.

" P chr Ð λ pDq 0 " φ pDq 0 .

 00 algebra morphism, taking its values in Sym. Hence:H ˝F pDq 0 " H ˝pF pDq chr Ð λ pDq 0 q " pH ˝F pDq chr q Ð λ pDq 0Let us assume that F pDq 0 is homogeneous. For any a, b P D, F pDq 0 p a b

Example 3 . 3 .

 33 Let a, b, c P D. wtpaq,wtpbq `Mwtpbq,wtpaq `Mwtpa`bq , wtpaq,wtpbq,wtpcq `Mwtpaq,wtpcq,wtpbq `Mwtpbq,wtpaq,wtpcq `Mwtpbq,wtpcq,wtpaq `Mwtpcq,wtpaq,wtpbq `Mwtpcq,wtpbq,wtpaq `Mwtpa`bq,wtpcq `Mwtpa`cq,wtpbq `Mwtpbq`wtpcq,wtpaq `Mwtpcq,wtpa`bq `Mwtpbq,wtpa`cq `Mwtpaq,wtpbq`wtpcq `Mwtpa`b`cq ,

4. 1

 1 Non-commutative Hopf algebra of graphsDefinition 4.1.

@

  G, H P G , mpG b Hq " GH, @G " prns, EpGqq P G , ∆pGq "

  (a) : pH G , m, ∆q ÝÑ pH G , m, ∆q is a surjective Hopf algebra morphism. (b) : pH G , m, δq ÝÑ pH G , m, δq is a surjective bialgebra morphism. (c) We put ρ " pId b q ˝δ : H G ÝÑ H G b H G . This defines a coaction of pH G , m, δq on H G ; moreover, pH G , m, ∆q is a Hopf algebra in the category of pH G , m, δq-comodules. Proof. 1. Similar to the proofs of Propositions 1.2 and 1.4. 2. Points (a) and (b) are immediate; point (c) is proved in the same way as Theorem 1.7.

3. w " x 1 1 w 2 .w

 112 . . . x k a word in N ą0 and I Ď N ą0 . The word w |I is the word obtained by taking the letters of w which are in I.The Hopf algebra WQSym has the set of packed words for basis. If w " w 1 . . . w k and w 1 " w 1 1 . . . w 1 l are packed words, then:w ] w 1 " ÿ w 2 "w 2 1 ...w 2 k`l , Packpw 2 1 ...w 2 k q"w, Packpw 2 k`1 ...w 2 k`l "wFor any packed word w: |ris b Packpw rmaxpwqszris q.

p∆ b

  Idq ˝δpp132qq " ∆pp132qq b p1q ] p1q ] p1q `pp121q b 1 `1 b p121qq b pp112q `p121q `p132q `p123q `p213qq `p11q b p1q b pp112q `p121q `p132q `p123q `p213qq `∆pp122qq b p1q ] p11q `∆pp111qq b p132q, ] 1,3,24 ˝pδ b δq ˝∆pp132qq " ∆pp132qq b p1q ] p1q ] p1q `pp121q b 1 `1 b p121qq b pp112q `p121q `p132q `p123q `p213qq `p11q b p1q b pp121q `p121q `p132q `p123q `p231qq `∆pp122qq b p1q ] p11q `∆pp111qq b p132q.

  1 are well-defined; moreover, θ ˝θ1 " Id D and θ 1 ˝θ " Id C , so θ is a bijection. Via the identification of QrXs b QrXs and QrX, Y s: chr pG |I qpkqP chr pG |V pGqzI qplq " pP chr b P chr

	∆ ˝Pchr pGqpk, lq " P chr pGqpk `lq
	" 7C
	" 7D
	ÿ
	"
	IĎV pGq

P
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The Hopf algebra QSym contains the cocommutative Hopf subalgebra Sym of symmetric functions; this subalgebra is linearly generated by the elements:

where k ě 1 and u 1 , . . . , u k P N ą0 . Let us apply the results of [START_REF] Foissy | Commutative and non-commutative bialgebras of quasi-posets and applications to Ehrhart polynomials[END_REF] to QSym. Proposition 3.2. For any k ě 0, we denote by H k the k-th Hilbert polynomial:

Let us consider the map:

Then H is the unique morphism from QSym to QrXs compatible with m, ∆ and δ.

Proof. By [START_REF] Foissy | Commutative and non-commutative bialgebras of quasi-posets and applications to Ehrhart polynomials[END_REF], such a morphism exists and is unique. Let us prove that H is indeed compatible with m, ∆ and δ. For any finite totally ordered alphabet X, of cardinality k, for any a P QSym, by definition of the polynomial representation of QSym:

If a, b P QSym, for any k ě 1, if X is a totally ordered alphabet of cardinality k:

Hence, Hpabq " HpaqHpbq. If a P QSym, for any k, l ě 1, choosing totally ordered alphabets X and Y of respective cardinality k and l:

∆ ˝Hpaqpk, lq δ ˝Hpaqpk, lq " Hpaqpk `lq " Hpaqpklq

" pH b Hq ˝∆paqpk, lq; " pH b Hq ˝δpaqpk, lq.

Hence, ∆ ˝H " pH b Hq ˝∆ and δ ˝H " pH b Hq ˝δ.

1 but X ˆpY \ Zq ‰ pX ˆY q \ pX ˆZq in general.

Cointeraction and quasi-symmetric functions

The following result is proved by Aguiar and Bergeron in [START_REF] Aguiar | Combinatorial Hopf algebras and generalized Dehn-Sommerville relations[END_REF]. It states that QSym is a terminal object in a suitable category of combinatorial Hopf algebras:

Theorem 3.3. Let pA, m, ∆q be a graded, connected Hopf algebra, and α be a character on A.

There exists a unique homogeneous Hopf algebra morphism Φ α : pA, m, ∆q ÝÑ pQSym, m, ∆q, such that α " ε 1 ˝Φα . For any a P A:

where, for any j ě 1, π j is the canonical projection on the j-th homogeneous component A j of A.

Theorem 3.4. Let pA, m, ∆q and pA, m, δq be cointeracting bialgebras, such that pA, m, ∆q is a graded connected Hopf algebra. We denote by ε 1 the counit of the coalgebra pA, δq.

1. There exists a morphism Φ 1 : A ÝÑ QSym such that:

(a) Φ 1 : pA, m, ∆q ÝÑ pQSym, m, ∆q is a homogeneous morphism of Hopf algebras, (b) Φ 1 : pA, m, δq ÝÑ pQSym, m, δq is a morphism of bialgebras, if, and only if:

Moreover, if this holds, then Φ 1 " Φ ε 1 , and the unique morphism φ 1 : A ÝÑ KrXs given by Theorem 2.1 is Φ 1 ˝H.

If:

then for any character α on A, Φ α " Φ ε 1 Ð α.

Existence, ùñ. Let us assume that δ ˝Φ1 " pΦ 1 b Φ 1 q ˝δ. Let x P A n . Let us put δpxq "

where x i,j P A i for any pi, jq. As Φ 1 is homogeneous, Φ 1 pxq P QSym n . By definition of the coproduct δ of QSym, δ ˝Φ1 pxq P QSym n b QSym n . Hence:

Hence: i ‰ n ùñ ÿ j Φ 1 px i,j q b Φ 1 py i,j q " 0.

The morphism Φ 1 ˝H : A ÝÑ QSym is compatible with both bialgebraic structures by composition. By unicity in Theorem 2.1, it is equal to φ 1 .

2. Let a P A n . Then by hypothesis, Φ 1 Ð αpaq " pΦ 1 b αq ˝δpaq P QSym n , so Φ 1 Ð α is a homogeneous Hopf algebra morphism. Moreover:

3.3 Double morphisms from graphs to quasisymmetric functions Notations 3.1. For any graph G P GpDq, for any f P PCpGq and for any i P rmaxpf qs, we put:

M f " M wtpf ´1p1qq...wtpf ´1 maxpf qq P QSym.

In other words, f ´1piq is the sum of the weights of the connected components of the subgraph of G which vertices are the vertices of G colored by i.

Remark 3.1. If wt : pD, `q ÝÑ pN ą0 , `q is a semigroup morphism, this simplify:

wtpf ´1piqq " wt ¨ÿ xPV pGq, f pxq"i dpxq '.

Proposition 3.5. Let D be a nonempty set. We define F pDq chr : H GpDq ÝÑ QSym by:

Then F pDq chr is a Hopf algebra morphism, equal to φ ε 1 . Proof. Let us apply Theorem 3.3 in order to describe Φ ε 1 : for any nonempty G P GpDq,

Moreover, for any graph H, ε 1 pHq " 1 if H is totally disconnected and 0 otherwise. Hence:

Then Rep X is an algebra morphism from WQSym to QxxXyy. For example:

If X is infinite, then Rep X is injective. If X and Y are two totally ordered alphabets, we shall consider QxxXyy b QxxYyy as a quotient of QxxX \ Yyy, through the continuous map:

We obtain:

We shall identify QxxX ˆYyy with a subalgebra of QxxXyy b QxxYyy, through the continuous map: " QxxX ˆYyy ÝÑ QxxXyy b QxxYyy px, yq P X ˆY ÝÑ x b y.

We obtain:

Rep XˆY " pRep X b Rep Y q ˝δ.

Non-commutative chromatic symmetric functions

Definition 4.4. A set partition is a partition of a set rns, with n ě 0. The set of set partitions is denoted by SP.

Theorem 4.5.

1. For any packed word w of length n and of maximal k, we denote by ppwq the set partition tw ´1p1q, . . . , w ´1pkqu. For any set partition P SP, we put:

These elements are a basis of a cocommutative Hopf subalgebra of WQSym, denoted by WSym.

2. The following map is a Hopf algebra morphism from pH G , m, ∆q to pWQSym, ], ∆q:

Its image is WSym. Moreover:

Proof. 2. For any totally ordered alphabet X, by definition of Rep X , for any G P G , with n vertices:

Let us choose two infinite totally ordered alphabets X and Y. Let G, H P G , of respective degrees m and n:

As Rep X is injective, F chr pGHq " F chr pGq ] F chr pHq, so F chr is an algebra morphism.

Let G P G , of degree n.

As Rep X and Rep Y are injective, ∆ ˝Fchr " pF chr b F chr q ˝∆.

1. So WSym is a Hopf subalgebra of WQSym, isomorphic to a quotient of H G , so is cocommutative.

Remark 4.2.

1. The Hopf algebra WSym, known as the Hopf algebra of word symmetric functions, is described and used in [START_REF] Bergeron | Invariants and coinvariants of the symmetric groups in noncommuting variables[END_REF][START_REF] Bultel | Word symmetric functions and the Redfield-Pólya theorem[END_REF][START_REF] Hivert | Commutative combinatorial Hopf algebras[END_REF]. Here is a description of its product and coproduct, with immediate notations:

• For any set partitions , 1 of respective degree m and n: W W 1 " ÿ 2 PSP, degp 2 q"k`l, Packp 2 |rks q" , Packp 2 |rk`lszrks q" 1 W 2 .

• For any set partition " tP 1 , . . . , P k u:

We obtain commutative diagrams of Hopf algebra morphisms: