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On extreme points of p-boxes and
belief functions

Ignacio Montes1 and Sebastien Destercke2

Abstract The extreme points of convex probability sets play an important
practical role, especially for specific, easier to manipulate sets. Although this
problem has been studied for many models (probability intervals, possibility
distributions), it remains to be studied for imprecise cumulative distributions
(a.k.a. p-boxes). This is what we do in this paper, where we characterize
the maximal number of extreme points of a p-box, give a family of p-boxes
that attains this number and show an algorithm that allows to compute the
extreme points of a given p-box. To achieve all this, we also provide what we
think to be a new characterization of extreme points of a belief function.

1 Introduction

Imprecise probability theory [10] is a powerful unifying framework for un-
certainty treatment, relying on convex sets of probabilities, or credal sets,
to model the uncertainty. Formally, they encompass many existing models:
belief functions, possibility distributions, probability intervals, . . . . To apply
such models, it is important to study their practical aspects, among which
is the characterization of their extreme points. Indeed, these extreme points
can be used in many settings, such as graphical models or statistical learning.

Extreme points of many models have already been studied. For instance,
Dempster [3] shows that the maximal number of extreme points of a belief
function on a n-element space is n!. It was later [6] proved that the maximal
number of extreme points for possibility distributions in a n-element space is
2n−1, and in [8] an algorithm to extract them was provided. In [2], authors
studied the extreme points of probability intervals.
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One practical and popular model for which extreme points have not been
characterized are p-boxes [4]. They are special kinds of belief functions whose
focal elements are ordered intervals [5, 9, 10], and are quite instrumental in
applications such as risk and reliability analysis.

In this paper, we investigate extreme point of p-boxes: we demonstrate that
their maximal number is the Pell number, and give the family of p-boxes for
which this bound is obtained. To do so, we introduce a new way to character-
ize the extreme points of a belief function. We also provide an algorithm to
compute the extreme points of a given p-box. Section 2 introduces the new
characterization, while Section 3.2 studies the extreme points of p-boxes. Due
to space restrictions, proofs and side results have been removed.

2 Extreme points of belief functions

Given a space X = {x1, . . . , xn}, a probability mass function is a function
m : P(X ) → [0, 1] satisfying m(∅) = 0 and

∑
B⊆X m(B) = 1. A probability

mass function m defines a belief Bel and a plausibility Pl function by:

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B:A∩B 6=∅

m(B) ∀A ⊆ X .

These two functions are conjugate since Bel(A) = 1 − Pl(Ac), and we can
focus on one of them. A focal set of the belief function Bel is a set E such
that m(E) > 0, and F will denote the set of focal sets. A belief function also
induces a credal set

M(Bel) = {P Prob. | Bel(A) ≤ P (A) ∀A ⊆ X}.

Being convex, the setM(Bel) can be characterized by its extreme points1,
that we will denote Ext(Bel). It is known [1, 3] that there is a correspon-
dence between the extreme points of a belief function and the permutations
of the elements of X . The extreme point Pσ ∈ Ext(Bel) associated to the
permutation σ of {1, . . . , n} is given by

Pσ({xσ(i)}) = Bel({xσ(i), . . . , xσ(n)})− Bel({xσ(i+1), . . . , xσ(n)}) (1a)

=
∑
E⊆Aσi

m(E)−
∑

E⊆Aσi+1

m(E) =
∑

xσ(i)∈E,E∩Aσ,Ci =∅

m(E) (1b)

where Aσi = {xσ(i), . . . , xσ(n)} and Aσ,Ci = {xσ(1), . . . , xσ(i−1)} is its comple-

ment, and the convention Aσn+1 = Aσ,C1 = ∅. However, we may have that

1 Recall that an extreme point P of M(Bel) is a point such that, if P1, P2 ∈ M(Bel) and

αP1 + (1− α)P2 = P for some α ∈ (0, 1), then P1 = P2 = P .
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Pσ1
= Pσ2

, as in general not all permutations give rise to different extreme
points, otherwise every belief function would have n! extreme points. Eq. (1b)
tells us that an extreme point is built iteratively, according to Algorithm 1.

Algorithm 1: Extreme point computation

Input: σ, (Bel), E = F
Output: Pσ

1 for k=1,. . . ,n do
2 For all E ∈ E s.t. xσ(k) ∈ E, assign m(E) to Pσ({xσ(k)});
3 E ← E \ {E ∈ E|xσ(k) ∈ E}
4 end

Let us now introduce another way to characterize this extreme point. To
do so, we will denote by vi\A = |{E ∈ F|xi ∈ E,E ∩ A = ∅}| the number of
focal sets counting xi as an element and having an empty intersection with
A. Given a permutation σ, let us denote by vσ = (vσ1 , . . . , v

σ
n) the vector such

that

vσi = vi\Aσ,C
σ−1(i)

= |{E ∈ F|xi ∈ E,E ∩ {xσ(1), . . . , xσ(σ−1(i)−1)} = ∅}| (2)

and by V(Bel) the set of vectors obtained for all permutation. We will also
denote vA = (v1\A, . . . , vn\A). We then have the following result.

Proposition 1. Given Bel, if two permutations σ1, σ2 satisfy Pσ1
= Pσ2

,
then vσ1 = vσ2 .

Also note that any vector v ∈ V(Bel) can be associated to a permutation
σ generating an extreme points (to see this, note the link between Eqs. (2)
and (1b)), for instance the permutation having generated it. Since by contra-
position of Proposition 1, vσ1 6= vσ2 implies Pσ1 6= Pσ2 , V(Bel) is in bijection
with Ext(Bel) (any vector induces one and only one distinct extreme point).
Given a vector v ∈ V(Bel), we can easily find back a permutation generating
it by using Algorithm 2

Algorithm 2: Permutation generating algorithm

Input: v ∈ V(Bel), E = F
Output: One permutation σ generating v

1 for k=1,. . . ,n do

2 Define v s.t. vi = |{E ∈ E|xi ∈ E}| ;

3 Find i s.t. vi = v
i\Aσ,C

k

/* Getting Aσ,Ck only necessitates σ(k − 1) */

4 Define σ(k) = i;
5 E ← E \ {E ∈ E|xσ(k) ∈ E}
6 end
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Example 1. Consider a belief function Bel defined on X = {x1, x2, x3, x4}
such that

m(E1 = {x1, x2}) = 0.2, m(E2 = {x2, x3, x4}) = 0.5, m(E3 = {x3}) = 0.3

Consider for example the permutation σ = (1, 2, 3, 4). It generates the ex-
treme point Pσ = (0.2, 0.5, 0.3, 0). Indeed, according to Alg. 1, m(E1) is
assigned to x1, m(E2) to x2 and m(E3) to x3. Then, σ generates the vector
v = (1, 1, 1, 0). Algorithm 2 can then generate permutations (1, 2, 4, 3) or
(1, 2, 3, 4), as in the first iteration we only have v1 = v1\Aσ,C1

= 1, meaning

σ(1) = 1, and in the second iteration we only have v2 = v2\Aσ,C2
= 1, and so

on . . . .
The extreme points of the belief function in this example, as well as the

permutations that generate them, can be seen in Table 1.

Permutation Probability (vσ1 , v
σ
2 , v

σ
3 , v

σ
4 )

(1,2,3,4) (1,2,4,3) Pσ1 = (0.2, 0.5, 0.3, 0) (1,1,1,0)

(1,3,2,4) (1,3,4,2) (3,4,1,2)
Pσ2 = (0.2, 0, 0.8, 0) (1, 0, 2, 0)

(3,1,2,4) (3,1,4,2)

(1,4,3,2) (1,4,2,3) (4,3,1,2)
Pσ3 = (0.2, 0, 0.3, 0.5) (1, 0, 1, 1)

(4,1,3,2) (4,1,2,3)

(2,3,1,4) (2,3,4,1) (2,4,1,3)
Pσ4 = (0, 0.7, 0.3, 0) (0, 2, 1, 0)

(2,1,3,4) (2,1,4,3) (2,4,3,1)

(3,2,1,4) (3,2,4,1) (3,4,2,1) Pσ5 = (0, 0.2, 0.8, 0) (1,0,2,0)

(4,3,2,1) (4,2,3,1) (4,2,1,3) Pσ6 = (0, 0.2, 0.3, 0.5) (0,1,1,1)

Table 1 Extreme points of the belief function of Example 1.

Note that this new characterization in terms of ”counting” vectors allows
us to derive new results about the extreme points of belief functions.

Proposition 2. Let Bel be a belief function on X = {x1, . . . , xn}. The num-
ber of extreme points of Bel is n! if and only if {xi, xj} is a focal set for any
i, j ∈ {1, . . . , n} such that i 6= j.

Proposition 3. Let Bel be a belief function on X = {x1, . . . , xn}. Denote
by F the set of focal sets of Bel. Let Bel′ be another belief function and let
F ′ = F ∪ {E} be the set of focal sets of Bel′, where E /∈ F . Then, Bel′ has
at least as many extreme points as Bel.

3 Extreme points of p-boxes

Before studying the extreme points of p-boxes, we need to make a small, useful
digression about a specific number sequence: the Pell numbers. Quite like the
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Fibonacci sequence, Pell numbers form a sequence that follows a recursive
relation P0 = 0, P1 = 1, Pn = Pn−2 + 2Pn−1. The first numbers are:
0, 1, 2, 5, 12, 29, 70, . . .. It is known that 2n−1 ≤ Pn ≤ n! for any n ≥ 1. As we
shall see, it turns out that the maximal number of extreme points of p-boxes
on X is Pn

3.1 Basic definitions

From now on we consider an ordered space2 X = {x1, . . . , xn} such that
x1 < . . . < xn. A probability box or p-box [4] (F , F ) is a pair of cumulative
distribution functions F , F : X → [0, 1] such that F ≤ F . Here we interpret
p-boxes as lower and upper bounds of an ill-known cumulative distribution,
that induce a credal set

M(F , F ) = {P Prob. | F (x) ≤ FP (x) ≤ F (x) ∀x ∈ X},

where FP denotes the cumulative distribution function associated with the
probability P .

It is known that p-boxes are particular instances of belief functions (see
[9, 10] for details). That is, to any p-box we can associate a belief function such
thatM(Bel) =M(F , F ). The focal sets E1, . . . , Ek of this belief functions are
known to be intervals3 ordered with respect to the order � between intervals
such that

[a1, a2] � [b1, b2]⇔ a1 ≤ b1, a2 ≤ b2.

That is, E1 ≺ E2 ≺ . . . ≺ Ek. For the reader interested in the way such focal
sets can be built, we refer to [5]. This is also a characteristic property, as any
belief functions whose focal sets are ordered intervals will be equivalent to a
p-box.

3.2 Extreme points of a p-box

We can easily provide first bounds over the number of extreme points of
p-boxes

Proposition 4. The maximal number of extreme points of a p-box on X =
{x1, . . . , xn} (n > 2) lies in the interval [2n−1, n!).

The exact maximal number of extreme points of a p-box is reached for the
following family of p-boxes: the Pell p-boxes on X = {x1, . . . , xn} are those

2 It should be noted that this order is not necessarily the one of real numbers, it can be
defined according to the application.
3 By interval, we mean that all elements between minE and maxE are contained in E.
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whose focal sets are

{x1}, {xn}, {x1, x2}, {xn−1, xn},
∀i = 2, . . . , n− 1, {xi−1, xi, xi+1}, and either [xi−1, xi+2] or [xi, xi+1].

Theorem 1. If (F , F ) is a p-box of the Pell family on X = {x1, . . . , xn}, its
number of extreme points is the Pell number Pn.

Theorem 2. The maximal number of extreme points of a p-box defined on
X = {x1, . . . , xn} is the Pell number Pn, and is reached if and only if the
p-box is of the Pell family.

3.3 Counting the number of extreme points of a p-box

In this section, we provide an algorithm to enumerate the extreme points of a
given p-box. This algorithm builds up a tree by incrementally assigning values
vi to vectors v ∈ V(Bel) as well as corresponding probability values. The ith
level of the tree corresponds to vi values, and each leaf then corresponds to
a distinct extreme point (whose values can be found back by going from the
leaf to the root). Pseudo-Algorithm 4 describes how children are created from
a node having depth d < n. At a given depth d, a node is created (Loop 4-14
of Algorithm 4) for each possible number of focal elements that affect their
masses to xd+1 (including 0), and the created node receive the corresponding
probability P (xd+1), the value vd+1 of the corresponding permutation vector
in V, and the update set of focal elements determining which mass remains
to be distributed to which elements. The whole tree can then be built by
applying this method recursively, until a depth n is reached. The root node
(level 0) simply starts with E = F .

Example 2. Consider a p-box (F , F ) on {x1, x2, x3, x4} whose focal sets are
given by:

E1 = {x1} E2 = {x1, x2, x3} E3 = {x1, x2, x3, x4} E4 = {x3, x4}
m 0.2 0.1 0.4 0.3

Following Algorithm 4 and starting at the root (level 0), at the first step
we have Nb = 1, Nb = 3, therefore the first level of the tree has three nodes
(the root has three children). For v1 = 3, P ({x1}) = 0.7, the update gives
E∗ = E4 = {x3, x4} = 0.3, which is used to generate the node children.
At the next level, only one node is generated with v2 = 0, P ({x2}) = 0, as
Nb = Nb = 0 (no focal set contains x2), with E∗ = E4 = {x3, x4} = 0.3.
This node in turns generate two nodes, as Nb = 0 and Nb = 1, and so on.

Figure 1 illustrates the process in a synthetic way (as not all details are
given, due to lack of space), as well as the extreme points corresponding to
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Algorithm 3: Tree building algorithm
Input: Tree node with depth d < n and associated set E of focal elements

Output: Children of node

1 Nb←
{

0 if {xd+1} 6∈ E,
1 else.

;

2 Nb← |{Ek ∈ E|xd+1 ∈ Ek}| /* Number of focal sets containing xd+1 */ ;
3 k ← infEk∈E k ;

4 for i = Nb, . . . , Nb do

5 P (xd+1)←
∑i
j=Nbm(Ej+k−1) /* m(E0) = 0 */ ;

6 vd+1 ← i ;

7 `∗ ← max`{x` ∈ Ei+k−1} /* `∗ = d+ 1 if E0 */;

8 E∗ ← E;
9 foreach E ∈ E∗ such that xd+1 ∈ E do

10 E ← E \ {x1, . . . , x`∗} ;
11 if E = ∅ then Remove E from E∗;
12 end

13 foreach E ∈ E∗ such that xd+1 6∈ E do

14 if E \ {x1, . . . , x`∗} 6= ∅ then E ← E \ {x1, . . . , x`∗};
15 end

16 Create children of depth d+ 1 and associate P (xd+1), vd+1, E∗ to it. ;

17 end

Algorithm 4: Tree building algorithm

Input: E = {E∗j |for j = 1, . . . ,K,E∗j = Ej ∈ F}, d0 = 0, P0 = 0, v0 = 0

Output: Tree of n levels
/* Tree initilization (root node) */

1 m1 = 1{x1}∈E , M1 = max{j ∈ {1, . . . , k} | x1 ∈ Ej};
2 Create Node(m1,M1, E, d0, v0, P0, v0, Parent = NULL) ;

3 while ∃ Left-most unvisited node (=Lnode) do
4 if dLnode = n then Mark Lnode visited /* Leaf reached */;

5 else
6 for k = mLnode,. . . ,MLnode do
7 Create Childnode(Lnode,#Lnode,V al = k,F) ;

8 Mark Childnode unvisited

9 end

10 end
11 Mark Lnode visited

12 end

leaves of the trees. The development of the second level of the three is given
only for v1 = 1, to illustrate the update of E (Line 7 of Alg. 5).
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Algorithm 5: Tree node creation algorithm

Input: Node(m,M, E, d, v, P,#ParentNode),#Node,Val,F
Output: Childnode of Node

1 dn = d+ 1, vn =Val, Pn =
∑V al
j=mm(E∗j ) /* n =depth of Node */ ;

2 Ind = maxi{xi ∈ E∗V al};
3 for j = V al + 1, . . . ,K do /* Update focal sets of E */

4 if j ≤M then E∗j = E∗j \ {x1, . . . , xInd} /* Else E∗j unchanged */;

5 end

6 mn = 1{xdn}∈E
, Mn = max

j=V al+1,...,K
{xdn ∈ Ej} ;

7 Create Childnode(mn,Mn, E, dn, vn, Pn,#Node)

v1 = 1

P (x1) = 0.2

x2 x3 x4

v2 = 1

P (x2) = 0.1
x3 x4

v2 = 0

P (x2) = 0
x3 x4

v2 = 2

P (x2) = 0.5
x3 x4

P6 = (0.2, 0.1, 0, 0.7)

P7 = (0.2, 0, 0.8, 0)
P8 = (0.2, 0, 0.1, 0.7)

P4 = (0.2, 0.5, 0.3, 0)
P5 = (0.2, 0.5, 0, 0.3)

v1 = 2

P (x1) = 0.3

x2 x3 x3

P3 = (0.3, 0, 0, 0.7)

v1 = 3

P (x1) = 0.7

x2 x3 x4

P1 = (0.7, 0, 0.3, 0)
P2 = (0.7, 0, 0, 0.3)

Fig. 1 Algorithm for extracting the extreme points of Example 2.

4 Conclusions

In this paper, we have characterized the maximal number of extreme points
and have provided an algorithm to enumerate them through the construction
of a tree structure.

There are still some interesting open problems, for instance we could try
to extend our present results to the multivariate case (bivariate p-boxes) [7].
Nevertheless, this seems to be a hard problem because the connection between
(univariate) p-boxes and belief functions no longer holds for bivariate p-boxes.
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