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Discrete variational Lie group formulation
of geometrically exact beam dynamics

F. Demoures · F. Gay-Balmaz · S. Leyendecker ·
S. Ober-Blöbaum · T. S. Ratiu · Y. Weinand

Abstract The goal of this paper is to derive a structure preserving integrator for geo-
metrically exact beam dynamics, by using a Lie group variational integrator. Both spa-
tial and temporal discretization are implemented in a geometry preserving manner. The 
resulting scheme preserves both the discrete momentum maps and symplectic struc-
tures, and exhibits almost-perfect energy conservation. Comparisons with existing 
numerical schemes are provided and the convergence behavior is analyzed numerically.

1 Introduction

The goal of this paper is to derive a structure preserving integrator for geometrically 
exact beam dynamics formulated on Lie groups. We use the Lagrangian variational
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74 F. Demoures et al.

formulation of the continuous problem to obtain a Lie group variational integrator that
preserves the symmetries and symplectic structure at the discrete level, and exhibits
almost-perfect energy conservation.

The geometrically exact theory of beam dynamics was developed in [59] and [60].
This approach generalizes the formulation originally developed by [53,54] for the
plane static problem to the fully 3-dimensional dynamical case. It can be regarded
as a convenient parametrization of a three-dimensional extension of the classical
Kirchhoff–Love rod model due to [2]. The equations of motion of geometrically exact
beams are obtained by applying Hamilton’s principle to the Lagrangian (kinetic minus
potential energy) defined in material representation and expressed uniquely in terms
of convective variables (velocities and strains).

In this paper, we take advantage of this geometric approach to deduce a discrete vari-
ational principle in convective representation, thereby obtaining a structure preserving
numerical integrator. The discretization is done both spatially and temporally in a man-
ner that preserves the geometric Lie group structure of the problem. Such integrators,
based on a discrete version of Hamilton’s principle for conservative mechanical sys-
tems, are called variational integrators [50]. The associated numerical scheme, given
by the discrete Euler–Lagrange equations, is symplectic and momentum-preserving
and has an excellent long-time energy behavior. The performance of the newly derived
method is illustrated by means of numerical examples including the comparison to
other methods, discussing similarities and differences with regard to convergence
behavior and computational efficiency.

Based on different variational formulations (e.g., Hamilton, Lagrange–d’Alembert,
Hamilton–Pontryagin, etc.), variational integrators have been developed for classical
conservative mechanical systems (for an overview see [39,40]), forced [31] and con-
trolled [52] systems, constrained holonomic systems holonomic [43,45] and nonholo-
nomic systems [33], nonsmooth systems [19], stochastic systems [11], and multiscale
systems [44,63].

Based on [51], discrete Euler–Lagrange equations for systems on Lie groups, and
the associated discrete Lagrangian reductions have been carried out in [7,8,48], and
further developed in [37] and applied to many examples. These integrators are referred
to as Lie group variational integrators. The essential idea behind such integrators is
to discretize Hamiltons principle and to update group elements using group opera-
tions.

In the case of the beam, the configuration Lie group is infinite dimensional. It
contains the parametrization of the centroid line together with the orientation of cross-
sections. In order to apply Lie group variational integrators to this case, we first spa-
tially discretize the problem by preserving the Lie group structure.

We also develop an alternative variational integrator for beams, based on the
approach used in [10] for systems on Lie groups, following [26]. This approach
involves the choice of a retraction map to consistently encode in the Lie algebra
the discrete displacement made on the Lie group.

Modeling geometrically exact beams as a special Cosserat continuum (see e.g.,
[3]) has been the basis for many finite element formulations starting with [59,62]. The
formulation of beam dynamics as a Lagrangian system immediately raises the question
of the representation of the rotational degrees of freedom and their kinematics, which
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Discrete variational Lie group formulation 75

can, on the one hand, be treated by a local parametrization of the the Lie group SO(3)
or, on the other hand, by using a redundant configuration variable which is subject to
constraints.

Many current semi-discrete beam formulations avoid the introduction of constraints
by using rotational degrees of freedom, see, e.g., [25,27]. However, it has been shown
by [14], that the interpolation of non-commutative finite rotations bears the risk of
destroying the objectivity of the strain measures in the semi-discrete model. This
can be circumvented by the introduction of a director triad, which is constrained
to be orthonormal in each node of the central line of the beam; thus it forms the
columns of the rotational matrix. The spatial interpolation of the director triad leads
to objective strain measures in the spatially discretized configuration (even though
the interpolated directors might fail to be orthonormal). This idea is independently
developed in [55] and [5]. [56] offers an overview on the effects of different inter-
polation techniques concerning frame invariance and the appearance of singularities.
Furthermore, this subject is elaborated in [4,9,24,28,29]. The constrained formu-
lation is particularly popular when the beam is part of a multibody system, where
further constraints representing the connection to other (rigid or flexible) compo-
nents are naturally present. Additional popular formulations are the so called absolute
nodal coordinates formulation based on works of [57,58] or formulations in terms of
unit quaternions [34,35]. Recently, Lie group formulations are becoming more and
more important in multibody dynamics; see, e.g., [12,13]. To the authors’ knowledge,
none of the work on beam dynamics simulation uses a discrete dynamics approach
which is variational both in time and in space. However, [30] derives a purely sta-
tic discrete equilibrium for Cosserat beams using a discrete variational principle in
space.

Outline of the paper. In the first part of this paper we review the geometrically exact
theory of beams in the continuous setting. In particular, we present the equations of
motion via Hamilton’s principle which is of central importance for this paper. Then,
we explain the Lie group structure underlying the continuous model, and carry out
the spatial discretization in a way that preserves both the Lie group structure and the
objectivity of the original model. After recalling basic facts about Lie group varia-
tional integrators and the associated discrete momentum maps, Legendre transforms
and Lagrange–d’Alembert principle, we derive the Lie group variational integrator,
and the alternative version based on Lie algebras, for the beam. In particular, we com-
pute the associated discrete momentum maps and consider the effect of external forces
at the discrete level. In the last section the performance of the two derived Lie group
integrators is demonstrated by two numerical examples. The first example is a standard
benchmark problem consisting of a beam with concentrated masses at the middle and
the boundary nodes and additional external forces. The simulation results are verified
based on a comparison with the discrete solution obtained by an energy-momentum
preserving time stepping scheme with finite elements in space [41]. Based on a sec-
ond example simulating the dynamics of an initially deformed beam, a numerical
convergence analysis is performed for all three methods.

Before closing this Introduction, we recall below some basic facts concerning
Lagrangian mechanics, both at the continuous and discrete levels.
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76 F. Demoures et al.

Lagrangian dynamics and momentum maps. For a given a Lagrangian L : T Q → R

defined on the tangent bundle T Q of the configuration manifold Q, the Euler–Lagrange
equations are obtained by applying Hamilton’s principle to the action functional
associated to L . Symmetries are given by Lie group actions Φ : G × Q → Q,
(g, q) �→ Φg(q) under which the Lagrangian is invariant. In this case, the Noether
theorem guarantees that the associated momentum map J : T ∗Q → g∗, given by

〈
J(αq), ξ

〉 = 〈
αq , ξQ(q)

〉
αq ∈ T ∗Q, ξ ∈ g (1)

see [1], is a conserved quantity, where g denotes the Lie algebra of the Lie group G,
g∗ its dual, and the vector field ξQ on Q is the infinitesimal generator of the action
associated to ξ ∈ g, that is,

ξQ(q) := d

dε

∣∣∣∣
ε=0

Φexp(εξ)(q),

where exp : g → G is the exponential map of the Lie group G.
In presence of an external force field, given by a fiber preserving map F : T Q →

T ∗Q, Hamilton’s principle is replaced by the Lagrange–d’Alembert principle (see
e.g., [49])

δ

∫ T

0
L(q(t), q̇(t))dt +

∫ T

0
F(q(t), q̇(t)) · δq dt = 0,

where F(q, q̇) · δq is the virtual work done by the force field F with a virtual dis-
placement δq. This principle yields the Lagrange–d’Alembert equations

d

dt

∂L

∂q̇
− ∂L

∂q
= F(q, q̇).

Discrete Lagrange–d’Alembert principle. A complete presentation of discrete Lagr-
angian mechanics, discrete momentum maps, and discrete Noether theorems is given
in [50]. We shall now review some of these aspects, by mainly focusing on the discrete
Lagrange–d’Alembert principle.

Suppose that a time step Δt has been fixed, denote by {t j = jΔt | j = 0, . . . , N }
the sequence of time, and by qd : {t j }N

j=0 → Q, qd(t j ) = q j a discrete curve. Let

Ld : Q × Q → R, Ld = Ld(q j , q j+1) be a discrete Lagrangian which we think of
as approximating the action integral of L along the curve segment between q j and
q j+1. The discrete Lagrange–d’Alembert principle seeks discrete curves {q j }N

j=0 that
satisfy

δ

N−1∑

j=0

Ld(q
j , q j+1)+

N−1∑

j=0

(
F−

d (q
j , q j+1) · δq j + F+

d (q
j , q j+1) · δq j+1

)
= 0, (2)

for variations δq j vanishing at endpoints, where the two discrete Lagrangian forces
F±

d : Q × Q → T ∗Q are fiber preserving maps such that the second term above is
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Discrete variational Lie group formulation 77

an approximation of the integral
∫ T

0 F(q, q̇) · δq dt of the virtual work. One gets the
discrete Euler–Lagrange equations with forces

D1Ld(q
j , q j+1)+ D2Ld(q

j−1, q j )+ F+
d (q

j−1, q j )+ F−
d (q

j , q j+1) = 0, (3)

for j = 1, . . . , N −1. In the forced case, the discrete Legendre transforms are defined
by

F
F+Ld(q j , q j+1) := D2Ld(q j , q j+1)+ F+

d (q
j , q j+1) ∈ T ∗

q j+1 Q

F
F−Ld(q j , q j+1) := −D1Ld(q j , q j+1)− F−

d (q
j , q j+1) ∈ T ∗

q j Q.
(4)

The discrete Euler–Lagrange equations with forces can be equivalently written as

F
F+Ld(q

j−1, q j ) = F
F−Ld(q

j , q j+1), for j = 1, . . . , N − 1.

Given the discrete forces F±, and a Lie group actionΦ : G × Q → Q, the discrete
Lagrangian momentum maps JF+

Ld
, JF−

Ld
: Q × Q → g∗ are defined by

〈JF+
Ld
(q j , q j+1), ξ 〉 = 〈

D2Ld(q j , q j+1)+ F+(q j , q j+1), ξQ(q j+1)
〉

〈JF−
Ld
(q j , q j+1), ξ 〉 = 〈−D1Ld(q j , q j+1)− F−(q j , q j+1), ξQ(q j )

〉
.

(5)

Note that if the discrete curve {q j }N
j=0 verifies the discrete Euler–Lagrange equations

with forces (3) then we have the equality

JF+
Ld
(q j−1, q j ) = JF−

Ld
(q j , q j+1), for all j = 1, . . . , N − 1. (6)

If the discrete Lagrangian Ld is G-invariant under the action ΦQ×Q of G on Q × Q,
and if F−

d (q
j , q j+1) · ξQ(q j )+ F+

d (q
j , q j+1) · ξQ(q j+1) = 0 then the two discrete

momentum maps coincide, JF−
Ld

= JF+
Ld

=: JF
Ld

, therefore from (6), we obtain that

JF
Ld

is a conserved quantity along the discrete curve solution of (3), that is,

JF
Ld
(q j , q j+1) = JF

Ld
(q j−1, q j ), for all j = 1, . . . , N − 1. (7)

This result is referred to as the discrete forced Noether’s theorem.

Approximate energy conservation. In absence of forcing, the main feature of the
numerical scheme (q j−1, q j ) �→ (q j , q j+1) given by solving the discrete Euler–
Lagrange equations is that the associated scheme (q j , p j ) �→ (q j+1, p j+1) induced
on the phase space T ∗Q through the discrete Legendre transform defines a symplec-
tic integrator. Here we supposed that the discrete Lagrangian Ld is regular, that is,
both discrete Legendre transforms F

+Ld ,F
−Ld : Q × Q → T ∗Q are locally iso-

morphisms (for nearby q j and q j+1). The symplectic character of the integrator is
obtained by showing that the scheme (q j−1, q j ) �→ (q j , q j+1) preserves the discrete
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78 F. Demoures et al.

symplectic two-forms Ω±
Ld

:= (F±Ld)
∗Ωcan , where Ωcan is the canonical symplec-

tic form on T ∗Q, so that (q j , p j ) �→ (q j+1, p j+1) preserves Ωcan and is therefore
symplectic, see [39,50].

It is known (see [23]), that given a Hamiltonian H , a symplectic integrator for H
is exactly solving a modified Hamiltonian system for a Hamiltonian H̄ which is close
to H . So the discrete trajectory has all the properties of a conservative Hamiltonian
system, such as conservation of the energy H̄ . The same conclusion holds on the
Lagrangian side for variational integrators (see, e.g., [39]). This explains why energy
is approximately conserved for variational integrators, and typically oscillates about
the true energy. We refer to [23] for a detailed account and a full treatment of backward
error analysis for symplectic integrators.

2 Lagrangian dynamics of a beam in R
3

2.1 Basic kinematics of a beam

We review below the kinematic description of a beam in the ambient space R
3 follow-

ing [59], see also [60]. The static version of the beam model summarized below goes
back essentially to [54] who modified the classical Kirchhoff–Love model to account
for shear deformation.

The configuration of a beam is defined by specifying the position of its line of
centroids by means of a map φ : [0, L] → R

3 and the orientation of cross-sections
at points φ(S) by means of a moving basis {d1(S),d2(S),d3(S)} (sometimes called
directors) attached to the cross section. The orientation of the moving basis is described
with the help of an orthogonal transformationΛ : [0, L] → SO(3) such that dI (S) =
Λ(S)EI , I = 1, 2, 3, where {E1,E2,E3} is a fixed basis referred to as the material
frame. The configuration of the beam is thus completely determined by the maps φ
and Λ in the configuration space

Q = C∞ (
[0, L], SO(3)× R

3
)

	 Φ = (Λ, φ).

If boundary conditions are imposed, then they need to be included in this configuration
space. For example at S = 0, one can consider the boundary conditions φ(0) =
0, Λ(0) = I d, that is, the point φ(0) of the line of centroid is fixed (e.g. stays at
the origin) and the cross-section at the point φ(0) is fixed. One can also impose the
condition φ′(0) = λE3, for an arbitrary λ > 0, which means that the line of centroid
at φ(0) is orthogonal to the plan defined by E1 and E2. At the other extremity S = L
similar boundaries conditions can be imposed.

The time-evolution of the beam is described by a curve Φ(t) = (Λ(t), φ(t)) ∈ Q,
in the configuration space. The material velocity VΦ is defined by

VΦ(S, t) = d

dt
Φ(S, t) = (

Λ̇(S, t), φ̇(S, t)
)
,
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Discrete variational Lie group formulation 79

and thus belongs to the tangent space TΦQ to Q at Φ. Before defining the convective
angular and linear velocities, we first recall some notations concerning the Lie algebra
of SO(3).

Notations. We denote by so(3) the Lie algebra of SO(3) consisting of skew symmetric
matrices endowed with the Lie bracket [A, B] = AB − B A. Throughout the paper
we use the standard Lie algebra isomorphism̂ : (R3,×) → (so(3), [ , ]), called the
hat map and defined by

Ω =
⎛

⎝
Ω1

Ω2

Ω3

⎞

⎠ �→ Ω̂ :=
⎛

⎝
0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞

⎠ . (8)

We have the identity AdAΩ̂ = ÂΩ .

2.2 Lagrangian of the beam

The Lagrangian L : T Q → R of the geometrically exact beam has the expression

L(Λ, φ, Λ̇, φ̇) = 1

2

∫ L

0

(
M‖γ ‖2+ωT Jω

)
d S

−
∫ L

0
Ψint (Ω, Γ )d S −

∫ L

0
〈q, φ〉d S, (9)

where

ω̂ = ΛT Λ̇ and γ = ΛT φ̇

are the convected angular velocity and convected linear velocity, respectively, and

Ω̂ = ΛTΛ′ and Γ = ΛTφ′

are the convected angular deformation gradient and convected linear deformation
gradient, respectively.

The first integral in (9) represents the kinetic energy of the beam and is obtained by
integrating the kinetic energy of the material points over the whole body. It is assumed
that the mass density is a constant ρ0 and that the mid-line φ passes through the center
of mass of the cross section, given by a compact subset A ⊂ R

2 with smooth boundary.
The constant M = ρ0 × area(A) is the distributed loads per unit length, and J is the
inertia matrix in the body fixed frame defined as

J := −
∫

A
ρ0

̂
(
ξ1E1 + ξ2E2

)2
dξ1dξ2.
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80 F. Demoures et al.

The rotational part of the kinetic energy can also we written in terms of ω̂ as

1

2

∫ L

0
Tr
(
ω̂T Jd ω̂

)
d S, where Jd :=

∫

A
ρ0

(
ξ1E1 + ξ2E2

)(
ξ1E1 + ξ2E2

)T
dξ1dξ2 (10)

is the (non-standard) diagonal inertia matrix, also called Euler tensor.
The second term in (9) is the bending potential energy, written in terms of the

stored energy function Ψint . We assume that the unstressed state is undeformed, that
is, we have φ′(S, t = 0) = E3 and Λ(S, t = 0) = I d, for all S ∈ [0, L]. With these
assumptions, the stored energy reads

Πint (Λ, φ) = 1

2

∫ L

0

[
(Γ − E3)

T C1(Γ − E3)+ΩT C2Ω
]

d S, (11)

where we defined the matrices

C1 := Diag (G A1 G A2 E A) and C2 := Diag (E I1 E I2 G J )

of elasticity coefficients. Here A1 = A2 = A = area (A) is the cross-sectional area of
the rod, I1 and I2 are the principal moments of inertia of the cross-section, J = I1 + I2
is its polar moment of inertia, E is Young’s modulus, G = E/[2(1 + ν)] is the shear
modulus, and ν is Poisson’s ratio. This internal energy is used in [61] and [17], taking
into account that the thickness of the rod is small compared to its length, and that the
material is homogeneous and isotropic.

The third term in (9) is the exterior potential energy created by a conservative force
q per unit length.

Note that the first two terms of the Lagrangian are invariant under the left action of
the group SE(3), given by (Λ, φ) �→ (R, v)(Λ, φ) = (RΛ, v + Rφ).

Stresses. The stresses along the beam are defined by

n := ∂Ψint

∂Γ
= C1(Γ − E3), (12)

where the E1- and E2-components are the shear stresses and the E3-component is the
stretch stress. The momenta along the beam are defined by

m := ∂Ψint

∂Ω
= C2Ω, (13)

where the E1- and E2-components are the bending momenta, with respect to the
principal axes of the cross-section, and the E3-component is the torsional moment.

2.3 Equations of motion

The equations of motion are derived by applying the by computing the Lagrange–
d’Alembert principle to the Lagrangian (9) and with given external forces F : T Q →
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Discrete variational Lie group formulation 81

T ∗Q, F = (M,F). They read

{
J ω̇ + ω × Jω + C1(Γ − E3)× Γ −Ω × C2Ω − C2Ω

′ = Λ−1M

M φ̈ − (ΛC1(Γ − E3))
′ + q = F

(14)

with boundary conditions

(Γ − E3)|S=0 = 0, (Γ − E3)|S=L = 0, Ω(0) = Ω(L) = 0.

Here the condition (Γ − E3)|S=0 = 0 means that the mid-line remains orthogonal to
the cross section at point φ(0) at all time. The condition Ω(0) = 0 means there is no
bending nor torsion at the end boundary. Note that different kinds of forcing is pos-
sible like dead loads, configuration-dependent follower forces or velocity-dependent
dissipative forces.

We note that, if we remove the forces, the equations (14) can be written as follows

{
J ω̇ + ω × Jω + n × Γ −Ω × m − m′ = 0,
M φ̈ −Λ(Ω × n)−Λn′ + q = 0,

where m and n are the stresses and the momenta as defined in (12) and (13). These
are the statements of balance of angular, mass and linear momentum in the convective
description, as in [60]. We refer to [18] and [20] for more details concerning the
Lagrangian reduction process involved in the formulation of geometrically exact rods
and to [46] and [21] for the geometric description of the convective representation in
nonlinear elasticity and its associated Lagrangian variational formulation.

3 Lie group variational integrator for the beam

3.1 The Lie group structure

The goal of this section is to develop a Lie group variational integrator for the beam.
This can be done by identifying the configuration space Q of the beam with the
infinite dimensional Lie group G = C∞([0, L], SE(3)), with group multiplication
given by pointwise multiplication in the group SE(3), that is (Λ1, φ1) (Λ2, φ2) =
(Λ1Λ2, φ1 +Λ1φ2). The convective velocity can be written as

(ω̂, γ ) = (Λ, φ)−1(Λ̇, φ̇). (15)

It is important to observe that, in this setting, if boundary conditions have to be imposed
on the configuration space, they have to preserve the group structure. For example,
both boundary conditions considered in Fig. 1 preserve the group structure of G.
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82 F. Demoures et al.

Fig. 1 Illustration of the boundary conditions: Λ(0) = I d, φ(0) = 0 (left), and Λ(0) = I d, φ(0) =
0, φ′(0) = E3 (right)

3.2 Spatial discretization

Discretization of the variables. We decompose the interval [0, L] into A subintervals
K = [Sa, Sa+1] of length lK = Sa+1 − Sa . We denote by T the set of all elements K
that subdivide the interval [0, L]. The configuration of the beam at the node a is given
by Λa := Λ(Sa) and xa = φ(Sa).

Given the configurations (Λa, xa) and (Λa+1, xa+1) of the beam at the nodes a and
a + 1, we consider the following interpolations over the subinterval K

Λh(S)|K := Λaexp

(
S

lK
ψ̂a

)
and φh(S)|K := xa + S

lK
Δxa, (16)

where S ∈ [0, lK ], Δxa := xa+1 − xa and exp(ψ̂a) := ΛT
a Λa+1. Note that we con-

sistently haveΛh(lK ) = Λa+1 and xh(lK ) = xa+1. This interpolation was considered
by [14] in order to obtain a spatial discretization that preserves the objectivity of the
strain measures Ω and Γ .1 Note that, for simplicity, we parametrize the element K
using S ∈ [0, lK ] instead of S ∈ [Sa, Sa+1].

The associated convected variables ω̂h(S), γh(S), Ω̂h(S), and Γh(S) are obtained
by using the approximations φh(S) and Λh(S) instead of the original variables φ(S)
and Λ(S) in their definitions. We thus get

ω̂h(S) = Λh(S)
T Λ̇h(S),

γh(S) = Λh(S)
T φ̇h(S) = Λh(S)

T (ẋa + SΔẋa/ lK ) ,

Ω̂h(S) = Λh(S)
TΛ′

h(S) = ψ̂a/ lK ,

Γh(S) = Λh(S)
Tφ′

h(S) = Λh(S)
TΔxa/ lK .

(17)

Note that by considering S = 0 and S = lK , we obtain that at each node the relation
(15) between the material and convected velocities is preserved, that is, ωa = ΛT

a Λ̇a ,
ωa+1 = ΛT

a+1Λ̇a+1, and γa = ΛT
a ẋa, γa+1 = ΛT

a+1ẋa+1.
We use the notation ΛK = (Λa,Λa+1)

T , xK = (xa, xa+1)
T , and similarly for

Λ̇K , ẋK , ωK , γK , to denote the variables associated to an element K with nodes a and
a + 1.

1 Consider a superposed rigid motion in (Λ, φ) given by the transformation (Λ̃, φ̃) = (RΛ, v+Rφ), where
R ∈ SO(3), and v ∈ R

3. Since (Λ̃a)
T Λ̃a+1 = ΛT

a Λa+1 and Λ̃T
a Δx̃a = ΛT

a Δxa , the strain measures are
unchanged by this transformation.
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Discrete variational Lie group formulation 83

The boundary conditions in Fig. 1 are given by Λa0 = I d, xa0 = 0, or Λa0 = I d,
xa0 = 0, Δxa0 = λE3, λ > 0.

The discrete Lagrangian. The spatially discretized Lagrangian is obtained by inserting
the variables considered in (17) and Λh, Φh in the continuous Lagrangian (9) and by
considering the trapezoidal rule approximations.

For the kinetic energy, we make the following approximations on an element K of
length lK :

1

2

∫ lK

0
M‖γh(S)‖2d S ≈ lK

4
M
(
‖γa‖2 + ‖γa+1‖2

)
,

1

2

∫ lK

0

(
ωh(S)

T Jωh(S)
)

d S ≈ lK

4

(
ωT

a Jωa + ωT
a+1 Jωa+1

)
.

Concerning the potential energy, the expression obtained by usingΛh andφh instead
of Λ and φ is denoted by

VK (ΛK , xK ) :=
∫

K
Vh(S)d S,

where Vh(S) := Ψint (Λh(S), φh(S)) + Ψext (φh(S)). We approximate the potential
energy VK with the expression VK defined by

VK (ΛK , xK ) := lK

2
(Vh(0)+ Vh(lK ))

= lK

4

[(
ΛT

a
Δxa

lK
− E3

)T

C1

(
ΛT

a
Δxa

lK
− E3

)

+
(
ΛT

a+1
Δxa

lK
− E3

)T

C1

(
ΛT

a+1
Δxa

lK
− E3

)
+ 2

(lK )2
(ψa)

T C2ψa

]

+ lK

2
〈qa, xa〉 + lK

2
〈qa+1, xa+1〉 , (18)

where we recall that Δxa = xa+1 − xa , and ψ̂a = exp−1(ΛT
a Λa+1). In this last

expression, the exponential map can be approximated by the Cayley transform cay :
g → G defined by

Λ = cay
(
Ω̂
) = (

I − Ω̂/2
)−1 (

I + Ω̂/2
)

(19)

with inverse Ω̂ = cay−1(Λ) = 2(Λ− I )(Λ+ I )−1.
As a consequence, the spatially discretized Lagrangian L K : T SE(3)2 → R over

an element K of length lK , is given by

L K (ΛK , xK , Λ̇K , ẋK ) = lK

4
M
(
‖ẋa‖2 + ‖ẋa+1‖2

)
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84 F. Demoures et al.

+ lK

4

(
ωT

a Jωa + ωT
a+1 Jωa+1

)
− VK (xK ,ΛK ). (20)

The spatial discrete Lagrangian L of the total system is obtained by summing over all
the elements K , that is L = ∑

K∈T L K . Assuming that all elements K have initially
the same undeformed length lK and taking care of boundary nodes a = 0 and a = A,
we get

L
(
(Λa, xa, Λ̇a, ẋa)a∈N

) =
∑

a∈int (N )

(
lK

2
M‖ẋa‖2 + lK

2
ωT

a Jωa

)

+
∑

a∈∂N

(
lK

4
M‖ẋa‖2 + lK

4
ωT

a Jωa

)

−
∑

K∈T
VK (xK ,ΛK ), (21)

where N denotes the set of all nodes, ∂N = {0, A} is the set of boundary nodes, and
int (N ) = {1, . . . , A − 1} denotes the set of internal nodes.

Discrete stresses. Similar with (12) and (13), the discrete stresses along the beam are
defined by nh := ∂Vh

∂Γh
= C1(Γh − E3). Given an element K , the associated discrete

stress is defined by

nK := 1

2
(nh(0)+ nh(lK )) = 1

2

(
C1

(
Λa
Δxa

lK
− E3

)
+ C1

(
Λa+1

Δxa

lK
− E3

))
.

(22)

The discrete momenta along the beam are defined by mh := ∂Vh
∂Ωh

= C2Ωh . As before,
the discrete momenta associated with K read

mK := 1

2
(mh(0)+ mh(lK )) = C2ψa/ lK . (23)

3.3 Lie group variational integrators

3.3.1 Discrete Lagrange–d’Alembert equations on Lie groups

Lie group variational integrators, originated in the work of [51], were developed in
[7,8,48] for the numerical treatment of mechanical systems on finite dimensional
Lie groups, by using a discrete analogue of Lagrangian reduction. These methods
were further developed and exploited in [37]. In this approach, given a Lagrangian
L : T G → R defined on the tangent bundle T G of a Lie group G, the discrete
trivialized Lagrangian Ld(g j , f j ) : G × G → R is defined such that the following
approximation holds:
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Discrete variational Lie group formulation 85

Ld(g
j , f j ) ≈

∫ t j+1

t j
L(g(t), ġ(t))dt,

where g(t) is the solution of the Euler–Lagrange equations with g(t j ) = g j and
g(t j+1) = g j+1 = g j f j . For simplicity we use the notation L j

d := Ld(g j , f j ).
As recalled in the Introduction, the discrete Lagrange–d’Alembert principle is for-

mulated with the help of discrete Lagrangian forces F±
d = F±(g j , g j+1) : G × G →

T ∗G. In the case of Lie group variational integrators, we reformulate F±
d in terms

of g j and f j as follows. We define the discrete forces F±
d : G × G → T ∗G

by F−
d (g

i , f i ) := F−
d (g

j , g j+1) ∈ T ∗
g j G and F+

d (g
i+1, f i ) := F+

d (g
j , g j+1) ∈

T ∗
g j+1 G, where g j+1 = g j f j . From (2) and using these definitions, we deduce that

the discrete Lagrange–d’Alembert principle for Lie group variational integrators is

δ

N−1∑

j=0

Ld(g
j , f j )+

N−1∑

j=0

[
F−

d (g
j , f j ) · δg j + F+

d (g
j+1, f j ) · δg j+1

]
= 0,

for all variations δg j vanishing at endpoints. The variational principle δSd = 0 yields
the discrete Lagrange–d’Alembert equations

(g j )−1 Dg j L j
d − Ad∗

( f j )−1

(
( f j )−1 D f j L j

d

)
+ ( f j−1)−1 D f j−1L j−1

d

+(g j )−1F+
d (g

j , f j−1)+ (g j )−1F−
d (g

j , f j ) = 0

with g j = g j−1 f j−1, (24)

see Proposition 3.2 in [7]. Note that given (g j−1, f j−1), we obtain g j = g j−1 f j−1

from the second equation, and we solve the first equation to find f j . This yields a
discrete-time flow map (g j−1, f j−1) ∈ G ×G �→ (g j , f j ) ∈ G ×G, j = 1, . . . , N .

Notations for Lie groups. Left and right multiplications by g ∈ G are denoted by
Lg, Rg : G → G, Lg( f ) = g f, Rg( f ) = f g. The tangent lifted actions T Lg, T Rg :
T G → T G are sometimes denoted as gv f := T Lg(v f ) and v f g := T Rg(v f ) for
simplicity, where v f ∈ T G. Similarly, the cotangent lifted actions T ∗Lg−1 , T ∗ Rg−1 :
T ∗G → T ∗G is denoted by gα f := T ∗Lg−1(α f ) and α f g := T ∗ Rg−1(α f ), α f ∈
T ∗G, for simplicity. This notation is used in (24).

Discrete Legendre transforms. Recall that, in the forced case, there are two discrete
Legendre transforms F

F±Ld : G × G → T ∗G associated to a discrete Lagrangian
Ld(g j , g j+1), see (4). We write the Legendre transforms in terms of the discrete
Lagrangian Ld(g j , f j ) used for Lie group variational integrators, by using the fol-
lowing relation between Ld and Ld , namely,

Ld(g
j , f j ) = Ld(g

j , g j+1) with g j+1 = g j f j . (25)
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From (4), we obtain that the forced discrete Legendre transforms F
F±Ld : G × G →

G × g∗ are

F
F+L j

d =
(

g j+1, (π
j
F )

+) and F
F−L j

d =
(

g j , (π
j
F )

−) , (26)

where π j
F± are the discrete body momenta in presence of forces defined by

(π
j
F )

+ := (π j )+ + (g j f j )−1F+
d (g

j f j , f j )

= ( f j )−1 D f j L j
d + (g j f j )−1F+

d (g
j f j , f j )

(π
j
F )

− := (π j )− − (g j )−1F−
d (g

j , f j ) (27)

= −(g j )−1 Dg j L j
d + Ad∗

( f j )−1

(
( f j )−1 D f j L j

d)
)

− (g j )−1F−
d (g

j , f j ).

The discrete Lagrange–d’Alembert equations can be equivalently written as

F
F+L j−1

d = F
F−L j

d , i.e. g j−1 f j−1 = g j and (π
j−1
F )+ = (π

j
F )

−.

Discrete momentum mappings and subgroup actions. Recall from (5) that, given the
discrete forces F±, a discrete Lagrangian Ld(q j , q j+1) and a Lie group action of G
on Q, two discrete momentum maps JF±

Ld
: Q × Q → g∗ can be defined. In the present

case, we shall choose a subgroup H of G and consider the action of H on G by left
translation. Using the relation (25) and the expression (5), we get

JF+
Ld
(g j , f j ) = i∗

(
Ad∗

(g j+1)−1

(
( f j )−1 D f j L j

d

)
+ Ad∗

(g j+1)−1

(
(g j f j )−1F+

d (g
j f j , f j )

))
,

JF−
Ld
(g j , f j ) = i∗

(
−Ad∗

(g j )−1

(
(g j )−1 Dg j L j

d

)
+ Ad∗

(g j+1)−1

(
( f j )−1 D f j L j

d

)

−Ad∗
(g j )−1

(
(g j )−1F−

d (g
j , f j )

))
,

where i∗ : g∗ → h∗ is the dual map to the Lie algebra inclusion i : h → g. We note
that we have the relations

JF+
Ld
(g j , f j ) = i∗

(
Ad∗

(g j+1)−1(π
j
F )

+) and JF−
Ld
(g j , f j ) = i∗

(
Ad∗

(g j )−1(π
j
F )

−)

(28)

between the discrete momentum maps and the discrete Legendre transforms and that
the discrete Lagrange–d’Alembert equations imply the relation

JF+
Ld
(g j−1, f j−1) = JF−

Ld
(g j , f j ) (29)

in h∗. The quantities Ad∗
(g j+1)−1((π

j
F )

+) and Ad∗
(g j )−1((π

j
F )

−) are referred to as the
discrete spatial momenta in presence of forces.
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We note that in the special case H = G, the relation (29) is not only implied by the
discrete Lagrange–d’Alembert equations, but is equivalent to them.

If the discrete Lagrangian Ld is H -invariant and if the discrete forces are orthogonal
to the group action, then the two momentum maps coincide: JF+

Ld
= JF−

Ld
=: JF

Ld
, and

(29) yields the discrete forced Noether theorem

JF
Ld
(g j−1, f j−1) = JF

Ld
(g j , f j ). (30)

Example G = SE(3). We compute the relation (28) for the Lie group SE(3) because
of its importance in beam dynamics. We identify the Lie algebra se(3) = so(3)� R

3

of SE(3) with R
3 × R

3 by using the hat map (8). Via this identification, the adjoint
action reads Ad(Λ,φ)(u, v) = (Λu,Λv + φ ×Λu). Identifying the dual space se(3)∗
with R

3 × R
3 via the usual pairing on R

3, the coadjoint action reads

Ad∗
(Λ,φ)−1(m,n) = (Λm + φ ×Λn,Λn). (31)

The discrete body momenta (π j
F )

± read (π j
F )

− = ((Π
j
F )

−, (Γ j
F )

−) and (π j
F )

+ =
((Π

j
F )

+, (Γ j
F )

+), where (Π j
F )

± are the discrete angular momenta and (Γ j
F )

± are
the discrete linear momenta. Using the notations g j = (Λ j , x j ), f j = (F j , H j ) ∈
SE(3), the relations (28) read

JF+
Ld
((Λ j , x j ), (F j , H j )) = Ad∗

(Λ j+1,x j+1)−1((Π
j
F )

+, (Γ j )+F )

= (Λ j+1(Π
j
F )

+ + x j+1 ×Λ j+1(Γ
j

F )
+, Λ j+1(Γ

j
F )

+),

JF−
Ld
((Λ j , x j ), (F j , H j )) = Ad∗

(Λ j ,x j )−1((Π
j
F )

−, (Γ j
F )

−)

= (Λ j (Π
j
F )

− + x j ×Λ j (Γ
j

F )
−,Λ j (Γ

j
F )

−).

3.3.2 Symplecticity of the properties of the discrete flow, without forces

As we already recalled, the numerical scheme (g j−1, g j ) �→ (g j , g j+1) given by
the discrete Euler–Lagrange equations yields a symplectic integrator (g j , p j ) �→
(g j+1, p j+1) on T ∗G by using the discrete Legendre transforms F

±Ld(g j , g j+1).
This implies the same property for Lie group variational integrators, namely, the
numerical scheme (g j , μ j ) �→ (g j+1, μ j+1) induced on G ×g∗ by using the discrete
Legendre transforms F

±Ld(g j , f j ) is symplectic relative to the trivialized canonical
symplectic form on G × g∗, see [7,48].

As a consequence, the trivialized Hamiltonian h : T ∗G � G × g∗ → R obtained
from the continuous Lagrangian L : T G → R by Legendre transform is approxi-
mately conserved, that is, the sequence h(g j , μ j ), j = 0, . . . , N oscillates about the
true value of the Hamiltonian.

Remark 1 As in the continuous case, the discrete symplectic form will not be preserved
in the presence of forcing.
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3.4 Alternative discretization on Lie groups

In this subsection we present a variational integrator for mechanics on Lie groups based
on [10,26,32]. We will later apply this variational integrator to the beam. This inte-
grator is obtained by choosing a local diffeomorphism τ : g → G in a neighborhood
of the origin and such that τ(0) = e. Examples for τ are provided by the exponential
map or the Cayley transform. The approach will involve the right trivialized derivative
dRτ of τ defined by

dRτ(ξ) : g → g, dRτ(ξ)(η) := (
Tξ τ (η)

)
τ(ξ)−1, (32)

where Tξ τ : g → Tτ(ξ)G is the derivative of τ . The right trivialized derivative of τ−1

is defined by dRτ−1(ξ)(η) = Tgτ
−1(ηg), where g := τ(ξ). It is readily checked that

dRτ−1(ξ) = (dRτ(ξ))−1. For example, this right trivialized derivative of τ was used
in [10] to develop a variety of integrators of variational partitioned Runge–Kutta type
for Lie groups.

Let L : T G → R be a Lagrangian defined on the tangent bundle T G of a Lie group
G. Let Ld : G × g → R be a discrete Lagrangian defined as an approximation of the
action functional over one time step, namely, we have

Ld(g
j , ξ j ) ≈

∫ t j+1

t j
L(g(t), ġ(t))dt, (33)

where g(t) is the unique solution of the Euler–Lagrange equations such that g(t j ) = g j

and g(t j+1) = g j+1 and where

τ(Δt ξ i ) = (g j )−1g j+1. (34)

We assume that the time step is small enough so that (g j )−1g j+1 is in a neighborhood
of the identity element of G where the map τ is a diffeomorphism.

In terms of the discrete variables (g j , ξ j ), the discrete Lagrange–d’Alembert prin-
ciple (2) reads

δ

N−1∑

j=0

Ld(g
j , ξ j )+

N−1∑

j=0

[
F−

d (g
j , ξ j ) · δg j + F+

d (g
j+1, ξ j ) · δg j+1

]
= 0,

for all variations δg j with δg0 = δgN = 0, where F−(g j , ξ j ) ∈ T ∗
g j G and

F+(g j+1, ξ j ) ∈ T ∗
g j+1 G are the discrete external Lagrangian forces. These discrete

forces are chosen in such a way that the second term in the variational principle is
an approximation of the virtual work done by the force field in the continuous case.
Using the notation η j = (g j )−1δg j , we have the variations

δg j+1 = g j
(

Adτ(Δt ξ j )η
j+1
)
τ(Δt ξ j )
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Δt δξ j = dRτ−1(Δt ξ j )
(
−η j + Adτ(Δt ξ j )η

j+1
)
.

Then, since η0 = ηN = 0, the discrete variational principle δSd = 0 yields the
discrete Lagrange d’Alembert equations

⎧
⎪⎪⎨

⎪⎪⎩

μ j − Ad∗
τ(Δt ξ j−1)

μ j−1 = (g j )−1
(
Dg j cLd(g j , ξ j )

)+ (g j )−1
(
F−

d (g
j , ξ j )

)

+(g j )−1
(
F+

d (g
j , ξ j−1)

)

μ j = 1
Δt

(
dRτ−1(Δt ξ j )

)∗ (
Dξ j Ld(g j , ξ j )

)
, g j+1 = g jτ(Δt ξ j ),

(35)

where
(
dRτ−1(ξ)

)∗ : g∗ → g∗ denotes the dual map to dRτ−1(ξ) : g → g.
Since forces are present, one has to incorporate them in the discrete Legendre

transforms and the discrete momentum maps, as in (4). In terms of the discrete variables
(g j , ξ j ), the forced discrete Legendre transforms F

f ±Ld : G × g → G × g∗ are

F
f +Ld(g

j , ξ j ) =
(

g j+1,Ad∗
τ(Δt ξ j )

μ j + (g j+1)−1
(
F+

d (g
j+1, ξ j )

))

F
f −Ld(g

j , ξ j ) =
(

g j , μ j − (g j )−1 Dg j Ld(g
j , ξ j )− (g j )−1F−

d (g
j , ξ j )

)
.

Let H ⊂ G be a subgroup, with Lie algebra h, and consider its action on G by left
translation. The forced discrete Lagrangian momentum maps J f ±

Ld
: G × g → h∗, for

g j ∈ G and ξ j ∈ g, are computed by using the formula (5), where one has to express
it in terms of the discrete variables (g j , ξ j ) instead of (g j , g j+1). We obtain

J f +
Ld
(g j , ξ j ) = i∗Ad∗

(g j+1)−1

(
Ad∗

τ(Δt ξ j )
μ j + (g j+1)−1

(
F+

d (g
j+1, ξ j )

))
,

J f −
Ld
(g j , ξ j ) = i∗Ad∗

(g j )−1

(
μ j − (g j )−1 Dg j Ld(g

j , ξ j )− (g j )−1F−
d (g

j , ξ j )
)
,

(36)

where i∗ : g∗ → h∗ denotes the dual map to the Lie algebra inclusion i : h → g. Note
that discrete the forced Euler–Lagrange equations (35) imply the equality

J f +
Ld
(g j−1, ξ j−1) = J f −

Ld
(g j , ξ j ). (37)

If the discrete Lagrangian Ld is H -invariant and if the discrete forces verify the
condition

〈
F−(g j , ξ j ), ηg j

〉 + 〈
F+(g j+1, ξ j ), ηg j+1

〉 = 0, for all η ∈ h, then the

two discrete momentum maps coincide: J f −
Ld

= J f +
Ld

=: JLd . Therefore, by (37), we
obtain the discrete forced Noether’s theorem

JLd (g
j , ξ j ) = JLd (g

j−1, ξ j−1), for all j = 1, . . . , N − 1, (38)

as in (7).
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Remark 2 (Discrete body momenta) Recall that for mechanical systems on Lie groups
the spatial and body momenta associated to a momentum αg = ∂L/∂ ġ ∈ T ∗G are
respectively given by πS = αgg−1 and πB = g−1αg , so that we can write πB =
Ad∗

gπS . Note also that the momentum map associated to left invariance reads JL :
T ∗G → g∗, JL(αg) = αgg−1 and thus coincides with the spatial momentum so that
we have πB = Ad∗

gJL(αg).
At the discrete level, the discrete body momenta are defined by analogous formulas,

namely π±
B (g

j , ξ j ) = Ad∗
g j J±

Ld
(g j , ξ j ), and the discrete Euler–Lagrange equations

(35) can be written in terms of π±
B as

π+
B (g

j−1, ξ j−1)+ (g j )−1F+
d (g

j , ξ j−1) = π−
B (g

j , ξ j )− (g j )−1Fd(g
j , ξ j ). (39)

3.5 Lie group variational integrator for the beam

3.5.1 Time discretization

Using the same notation as before, given a node a, the discrete time evolution of this
node is given by the discrete curve (Λ j

a, x j
a), j = 0, . . . , N in SE(3). The discrete vari-

ables g j and f j = (g j )−1g j+1 associated to this node are (Λ j
a, x j

a) and (F j
a , H j

a ) :=
(Λ

j
a, x j

a)
T (Λ

j+1
a , x j+1

a ) =
(
(Λ

j
a)

TΛ
j+1
a , (Λ

j
a)

T (x j+1
a − x j

a)
)

∈ SO(3)×R
3, where,

in the last equality, we used multiplication in SE(3). We denote the time-step by
Δt = t j − t j−1, supposed to be of uniform length.

In terms of these variables (F j
a , H j

a ), we make the following approximations:

ω̂
j
a =

(
Λ

j
a

)T
Λ̇

j
a ≈

(
Λ

j
a

)T
(
Λ

j+1
a −Λ

j
a

Δt

)

= F j
a − I3

Δt

γ
j

a =
(
Λ

j
a

)T
ẋ j

a ≈
(
Λ

j
a

)T
(

x j+1
a − x j

a

Δt

)

= H j
a

Δt
.

(40)

With this approximation, the kinetic energy due to rotation, at a ∈ K , is

lKΔt

4
Tr
(
ω̂

j
a Jd(ω̂

j
a)

T
)

≈ lK

4Δt
Tr
(
(F j

a − I3)Jd(F
j

a − I3)
T
)

= lK

2Δt
Tr
(
(I3 − F j

a )Jd

)
.

The discrete Lagrangian L j
K approximating the action of the Lagrangian L K in (20)

during the time step Δt is therefore

L j
K =

∑

a∈K

{
lK

4

M‖H j
a ‖2

Δt
+ lK

2

Tr((I3 − F j
a )Jd)

Δt

}

−ΔtVK

(
Λ

j
K , x j

K

)
. (41)
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The discrete action sum, which approximates the continuous action over the time
interval [0, T ], is computed as follows

Sd((Λd , xd)) =
∑

K∈T

∑

1≤ j<N

L j
K

=
∑

a �=0,A

N−1∑

j=0

{
lK

2

M‖H j
a ‖2

Δt
+ lK

Tr((I3 − F j
a )Jd)

Δt

}

+
N−1∑

j=0

{
lK

4

M‖H j
0 ‖2

Δt
+ lK

2

Tr((I3 − F j
0 )Jd)

Δt

}

+
N−1∑

j=0

{
lK

4

M‖H j
A‖2

Δt
+ lK

2

Tr((I3 − F j
A)Jd)

Δt

}

−
∑

K∈T

∑

1≤ j<N

ΔtVK

(
Λ

j
K , x j

K

)
. (42)

3.5.2 Lie group variational integrator

The discrete evolution is obtained by applying discrete Hamilton’s principle to the dis-
crete action (42). Equivalently this consists in computing the discrete Euler–Lagrange
equations for each node a. From (24), we get the following systems of discrete Euler–
Lagrange equations

T ∗
e L

(F j−1
a ,H j−1

a )

(
D

F j−1
a

L j−1
a , D

H j−1
a

L j−1
a

)

−Ad∗
(F j

a ,H
j

a )
−1

T ∗
e L

(F j
a ,H

j
a )

(
D

F j
a
L j

a, D
H j

a
L j

a

)

+T ∗
e L

(Λ
j
a ,x

j
a )

(
D
Λ

j
a
L j

a, Dx j
a
L j

a

)
= 0, (43)

for all a ∈ N , where L j
a denotes the dependence of the discrete action Sd on

(Λ
j
a, x j

a, F j
a , H j

a ), similarly for L j−1
a . Recall that we denote by N the set of all nodes,

by ∂N = {0, A} the set of boundary nodes, and by int (N ) = {1, . . . , A − 1} the set
of internal nodes. The equations are slightly different for a ∈ int (N ) and a ∈ ∂N .
Indeed, for a ∈ int (N ) the discrete Lagrangian L j

a is

L j
a = lK

2

M‖H j
a ‖2

Δt
+ lK

Tr((I3 − F j
a )Jd)

Δt
−
∑

K	a

ΔtVK

(
Λ

j
K , x j

K

)
, (44)

whereas, for a boundary node a ∈ ∂N , it reads

L j
a = lK

4

M‖H j
a ‖2

Δt
+ lK

2

Tr((I3 − F j
a )Jd)

Δt
−
∑

K	a

ΔtVK

(
Λ

j
K , x j

K

)
. (45)
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Note that in (44) the sum in the last term involves two spatial elements K , whereas in
(45) the sum involves only one subinterval.

Remark 3 (Duality pairing) We recall that we identify the dual space so(3)∗ with so(3)
via the natural pairing of R

3, i.e. 〈̂v, ŵ〉 :=v ·w = 1
2 Tr

(
v̂T ŵ

)
, where ̂: R

3 → so(3)
is the hat map defined in (8). The tangent space at Λ ∈ SO(3) reads TΛSO(3) =
{Λξ | ξ ∈ so(3)}. We identify the cotangent space T ∗

ΛSO(3)with TΛSO(3) using the
left-invariant pairing 〈αΛ, VΛ〉 = 1

2 Tr
(
αT
ΛVΛ

)
. With this identification, the cotangent

lift of left translation reads

(Λ, φ)−1(αΛ, (φ, v)) = T ∗L(Λ,φ)(αΛ, (φ, v)) =
(
ΛTαΛ,Λ

T v
)

∈ se(3). (46)

Discrete Euler–Lagrange equations. For any matrix M , let M (A) := (M − MT )/2
its antisymmetrization. Below we shall use the following identities:

− 1

2
Tr
(

M (A)̂ξ
)

= (M (A))∨ · ξ and
(
(vwT )(A)

)∨ = 1

2
w × v, (47)

for all ξ, v,w ∈ R
3 and 3 × 3 matrices M .

A long, but straightforward computation, using (18), the discrete action sum (42),
and the discrete Euler–Lagrange equations (43), yields the following equations:

(A) Discrete Euler–Lagrange equations for rotations:

(i) Interior nodes a /∈ {0, A}
lK

Δt

(
Jd F j−1

a − (F j−1
a )T Jd

)∨ − lK

Δt

(
F j

a Jd − Jd(F
j

a )
T
)∨ = Δt Ua |t=t j

(48)

where at t = t j we have

Ua := (Λa)
−1 DΛa VK

= 1

2
C1

(
ΛT

a
Δxa−1

lK
− E3

)
×ΛT

a Δxa−1 + 1

2
C1

(
ΛT

a
Δxa

lK
− E3

)

×ΛT
a Δxa + 1

lK

(((
I +ΛT

a+1Λa

)−1
Ĉ2ψa

(
ψ̂a − 2I

))(A)
)∨

+ 1

lK

((
(ΛT

a−1Λa + I )−1Ĉ2ψa−1(2I −ψ̂a−1)Λ
T
a−1Λa

)(A))∨
. (49)

(ii) Left node a = 0

lK

2Δt

(
Jd F j−1

0 − (F j−1
0 )T Jd

)∨ − lK

2Δt

(
F j

0 Jd − Jd(F
j

0 )
T
)∨ = Δt U0|t=t j

(50)
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where at t = t j we have

U0 := (Λ0)
−1 DΛ0VK = 1

2
C1

(
ΛT

0
Δx0

lK
− E3

)
×ΛT

0 Δx0

+ 1

lK

(((
I +ΛT

1 Λ0

)−1
Ĉ2ψ0

(
ψ̂0 − 2I

))(A)
)∨

. (51)

(iii) Right node a = A

lK

2Δt

(
Jd F j−1

A − (F j−1
A )T Jd

)∨ − lK

2Δt

(
F j

A Jd − Jd(F
j
A)

T
)∨ = Δt UA|t=t j

(52)

where at t = t j we have

UA := (ΛA)
−1 DΛAVK = 1

2

[
C1

(
ΛT

A
ΔxA−1

lK
− E3

)
×ΛT

AΔxA−1

]

+ 1

lK

((
(ΛT

A−1ΛA + I )−1Ĉ2ψA−1(2I − ψ̂A−1)Λ
T
A−1ΛA

)(A))∨
. (53)

(B) Discrete Euler–Lagrange equations for positions:

(i) Interior nodes a /∈ {0, A}

lK M

Δt
Δx j

a − lK M

Δt
Δx j−1

a = −Δt ΛaVa |t=t j (54)

where at t = t j we have

ΛaVa := Dxa VK

= 1

2
(Λa−1)C1

(
ΛT

a−1
Δxa−1

lK
− E3

)
+ 1

2
(−Λa)C1

(
ΛT

a
Δxa

lK
− E3

)

+1

2
(Λa)C1

(
ΛT

a
Δxa−1

lK
− E3

)
+ 1

2
(−Λa+1)C1

(
ΛT

a+1
Δxa

lK
− E3

)

+lK q. (55)

(ii) Left node a = 0

lK M

2Δt
Δx j

0 − lK M

2Δt
Δx j−1

0 = −Δt Λ0V0|t=t j (56)
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where, at t = t j we have

Λ0V0 := Dx0VK = 1

2
(−Λ0)C1

(
ΛT

0
Δx0

lK
− E3

)

+1

2
(−Λ1)C1

(
ΛT

1
Δx0

lK
− E3

)
+ lK

2
q. (57)

(iii) Right node a = A

lK M

2Δt
Δx j

A − lK M

2Δt
Δx j−1

A = −Δt ΛAVA

∣∣∣
t=t j

(58)

ΛAVA := Dx j
A
VK = 1

2
(ΛA−1)C1

(
ΛT

A−1
ΔxA−1

lK
− E3

)

+1

2
(ΛA)C1

(
ΛT

A
ΔxA−1

lK
− E3

)
+ lK

2
q (59)

Note that the equations for translation and rotation are coupled via the known quantities
at past time nodes and hence they can be solved for the unknown configuration in a
fully decoupled way. The later equations can be solved explicitly for the unknown
translation while an iteration is necessary to solve for the unknown rotation (see
Sect. 4 on numerical examples for further details).

Remark 4 (Discrete versus continuous) We compare the discrete equations of motion
to the continuous equations (14). Given F j

a = (Λ
j
a)

TΛ
j+1
a as a relative rotation of

cross-section associated to node a between times t j and t j+1 we note that the first
line of equations (48)–(52) divided by the time step Δt is the discrete analog of the
term J ω̇ + ω × Jω of (14). This is consistent with the analog term arising in the
discrete Euler–Lagrange equations for rigid bodies obtained by Lie group variational
integrators, see [36]. The right hand side of (48)–(52) corresponds to the contribution
of the discrete potential force at time t j . By comparing with (14), we observe that the
right hand side is the discrete analog of the potential term in (14). The same holds for
a comparison of (54)–(58) to the second equation in (14).

3.5.3 Discrete body momenta and Legendre transforms

In the case of the beam, the discrete momenta are (π j )± = ((π
j

0 )
±, . . . , (π j

A)
±),

where (π j
a )

± are the discrete body momenta corresponding to the node a ∈ N . Each
of these momenta read (π j

a )
± = ((Π

j
a )

±, (Γ j
a )

±), where (Π j
a )

± are the discrete body
angular momenta and (Γ j

a )
± are the discrete linear body momenta. From (27) we

know that these discrete momenta are given by

(π
j

a )
− = ((Π

j
a )

−, (Γ j
a )

−) = −T ∗
e L

(Λ
j
a ,x

j
a )

(
D
Λ

j
a
L j

a, Dx j
a
L j

a

)

+Ad∗
(F j

a ,H
j

a )
−1

T ∗
e L

(F j
a ,H

j
a )

(
D

F j
a
L j

a, D
H j

a
L j

a

)
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(π
j

a )
+ = ((Π

j
a )

+, (Γ j
a )

+)
= T ∗

e L
(F j−1

a ,H j−1
a )

(
D

F j−1
a

L j−1
a , D

H j−1
a

L j−1
a

)
.

Their concrete expression is easily obtained from the computations in Sect. 3.5.2.
In particular, as we already mentioned, there are some slight differences between the
formulas for interior nodes and for boundary nodes.

The discrete Euler–Lagrange equations (48)–(52) can be equivalently written as

(Π
j−1

a )+ = (Π
j

a )
−, a ∈ N

while the discrete Euler–Lagrange equations (54)–(58) can be equivalently written as

(Γ
j−1

a )+ = (Γ
j

a )
−, a ∈ N .

Recall from (26) that the expressions of the momenta appear in the discrete Legendre
transforms, whose a-component read

(F−L j
d)a = ((Λ

j
a, x j

a), ((Π
j

a )
−, (Γ j

a )
−))

(F+L j
d)a = ((Λ

j
a, x j

a)(F
j

a , H j
a ), ((Π

j
a )

+, (Γ j
a )

+)).

3.5.4 Invariance and discrete momentum maps

From the expression (41) of the discrete Lagrangian of the beam, we obtain that it
is H -invariant if and only if the potential VK is H -invariant. From (18), we see that
when the conservative force q is absent, the Lagrangian is left-SE(3)-invariant under
the action Φ given by

Φ(A,v)

(
(Λ

j
a, x j

a)a∈N
)

= (AΛ j
a, v + Ax j

a)a∈N .

Note that this action is the left translation by the subgroup SE(3) ⊂ SE(3)N (diagonal
inclusion). The Lie algebra inclusion i : se(3) → se(3)N reads i(Ω, v) = (Ω, v)a∈N ,
and its dual map is given by

i∗ ((Πa, Γa)a∈N ) =
∑

a∈N
(Πa, Γa) ∈ se(3)∗.

Using the general formula (28) relating the discrete momentum maps for left transla-
tion by subgroups and the discrete body momenta, together with the formula (31) for
the coadjoint action for SE(3), we get

J+
Ld
((Λ j , x j ), (F j , H j )) = i∗

((
Ad∗

(Λ
j+1
a ,x j+1

a )−1
((Π

j
a )

+, (Γ j
a )

+)
)

a∈N

)

=
(
∑

a∈N
Λ

j+1
a (Π

j
a )

+ + x j+1
a ×Λ

j+1
a (Γ

j
a )

+,
∑

a∈N
Λ

j+1
a (Γ

j
a )

+
)

.
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Similarly, we get

J−
Ld
((Λ j , x j ), (F j , H j )) =

(
∑

a∈N
Λ

j
a(Π

j
a )

− + x j
a ×Λ

j
a(Γ

j
a )

−,
∑

a∈N
Λ

j
a(Γ

j
a )

−
)

.

By the general theory developed earlier, these momentum maps coincide since the
discrete Lagrangian is SE(3)-invariant.

The discrete Noether theorem (30) ensures that when the discrete Euler–Lagrange
equations (48)–(58) are fulfilled, then JLd is conserved in se(3)∗, i.e.

JLd ((Λ
j , x j ), (F j , H j )) = JLd ((Λ

j−1, x j−1), (F j−1, H j−1))

We denote

(J j
ang, J j

lin) := JLd ((Λ
j , x j ), (F j , H j )) (60)

the discrete angular and linear momentum map.
In general, the presence of external forces breaks the SE(3) symmetry. For example

if we consider the gravity force qa = −magE3, then the discrete Lagrangian is S1-
invariant under the S1-action

Φθ

(
(Λ

j
a, x j

a)a∈N
)

= (exp(θ Ê3)Λ
j
a, exp(θ Ê3)x

j
a)a∈N .

In this case, the Lie algebra inclusion i : R → se(3)N reads i(θ) = (θ Ê3, 0)a∈N , and
its dual map is given by

i∗ ((Πa, Γa)a∈N ) = E3 ·
∑

a∈N
Πa ∈ R.

Applying the same formulas as above, the discrete momentum maps are

J+
Ld
((Λ j , x j ), (F j , H j )) = E3 ·

∑

a∈N
Λ

j+1
a (Π

j
a )

+ + x j+1
a ×Λ

j+1
a (Γ

j
a )

+

J−
Ld
((Λ j , x j ), (F j , H j )) = E3 ·

∑

a∈N
Λ

j
a(Π

j )−a + x j
a ×Λ

j
a(Γ

j
a )

−.

As above, these two momentum maps coincide and the discrete Noether theorem
ensures its conservation.

3.5.5 Approximate energy conservation

The spatially discretized energy is given by the Hamiltonian H associated to the
Lagrangian (21) via Legendre transformation. We work with the trivialized expression
of H given by
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H ((Λa, xa,Πa, Γa)a∈N ) =
∑

a∈∂N

(
1

2lK M
‖Γa‖2 + 1

2lK
(J−1Πa)

TΠa

)

+
∑

a∈int (N )

(
1

lK M
‖Γa‖2 + 1

lK
(J−1Πa)

TΠa

)
+
∑

K∈T
VK (xK ,ΛK ). (61)

3.5.6 Initial conditions

Suppose that the initial configuration of the continuous system on G is given by
(g(0), ξ(0)) ∈ G × g. In order to solve the discrete Euler–Lagrange equations

g j−1 f j−1 = g j and (π j−1)+ = (π j )−,

we have to initialize them by choosing g0 and f 0. Given the initial conditions
(g(0), ξ(0)) we define g0 := g(0), (π0)+ =: ∂L

∂ξ
(g(0), ξ(0)), where L is the con-

tinuous Lagrangian, and f 0 is defined by solving the equation

( f 0)−1 D f 0Ld(g
0, f 0) = ∂L

∂ξ
(g(0), ξ(0)),

where the left term of the equation is defined in (27).

3.5.7 External torques and forces

As we mentioned in Sect. 3.3.1, external forces can be incorporated in the variational
integrator by using the discrete Lagrange–d’Alembert variational principle. A spatial
discretization yields expressions F((Λa, xa, Λ̇a, ẋa)a∈N )a at each node. The time
integral of the virtual work

∫ T

0

∑

a∈N
F((Λa, xa, Λ̇a, ẋa)a∈N )a · (δΛa, δxa)dt

done by these forces in the Lagrange–d’Alembert principle is then approxi-
mated via temporal discretization by an appropriate choice of the expressions
F+

d ((Λ
j+1, x j+1), (F j , H j ))a and F−

d ((Λ
j , x j ), (F j , H j ))a . Here, for simplicity,

we restrict to one-point quadrature by choosing F+
d ((Λ

j+1, x j+1), (F j , H j ))a =
(0, 0) and

F−
d ((Λ

j , x j ), (F j , H j ))a

= Δt
(
M−

a ((Λ
j , x j ), (F j , H j )),F−

a ((Λ
j , x j ), (F j , H j ))

)
,

an element of T ∗
(Λ

j
a ,x

j
a )

SE(3). According to what was recalled in Sect. 3.3.1, in presence

of external forces, the discrete body momenta (Π j
a )

± and (Γ j
a )

± are modified as
follows
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Π
j
F ,a)

+ = (Π
j

a )
+

(Γ
j

F ,a)
+ = (Γ

j
a )

+

(Π
j
F ,a)

− = (Π
j

a )
− −Δt (Λ j

a)
−1M−

a ((Λ
j , x j ), (F j , H j ))

(Γ
j

F ,a)
− = (Γ

j
a )

− −Δt (Λ j
a)

−1F−
a ((Λ

j , x j ), (F j , H j )).

(62)

The discrete Lagrange–d’Alembert principle yields the equations

(Π
j−1
F ,a )

+ = (Π
j
F ,a)

− and (Γ
j−1

F ,a )
+ = (Γ

j
F ,a)

−,

or, using (62), by

{
(Π

j−1
a )+ = (Π

j
a )

− −Δt (Λ j
a)

−1M−
a ((Λ

j , x j ), (F j , H j ))

(Γ
j−1

a )+ = (Γ
j

a )
− −Δt (Λ j

a)
−1F−

a ((Λ
j , x j ), (F j , H j )).

In absence of external forces, one recovers the discrete Euler–Lagrange equations
(48)–(58).

3.6 Alternative variational integrator for the beam

In this subsection we develop the variational integrator for the beam, by applying the
alternative approach developed in Sect. 3.4.

3.6.1 Time discretization

The discrete Lagrangian L
j

K , defined on SE(3)N+1 × se(3)N+1, approximating the
action of the Lagrangian L K in (20) over the interval [t j , t j+1], for elements K of
length lK , is

L
j

K = Δt
lK

4

∑

a∈K

{
M
∥∥∥γ j

a

∥∥∥
2 + (ω

j
a)

T Jω
j
a

}
−Δt VK

(
Λ

j
K , x j

K

)
, (63)

where, following (34), we define the discrete velocity ξ j
a := (ω

j
a , γ

j
a) ∈ se(3) in terms

of the discrete Lie group elements g j
a = (Λ

j
a, x j

a), and g j+1
a = (Λ

j+1
a , x j+1

a ) ∈ SE(3)
by

Δt (ω j
a , γ

j
a) = Δt ξ j

a = τ−1
(
(g j

a )
−1g j+1

a

)

= τ−1
(
(Λ

j
a)

−1Λ
j+1
a , (Λ

j
a)

−1Δx j
a

)
, (64)

where τ : se(3) → SE(3) is a local diffeomorphism in a neighborhood of the identity,
with τ(e) = I. As in [32], we shall use the local diffeomorphism

τ(ω, γ ) =
(

cay(ω) dRcay(ω)γ
0 1

)
,
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where cay is the Cayley map of SO(3), see (19). It is a local approximation of the
exponential map of SE(3), which is given in terms of the exponential map of SO(3)
by

exp(ω, γ ) =
(

exp(ω) dRexp(ω)γ
0 1

)
.

Using (19), we can show that dRcay(ω) : R
3 → R

3 is given by

dRcay(ω)γ = 2

4 + ‖ω‖2 (2I3 + ω)γ .

The matrix representation of the inverse of the right trivialized derivative dRτ−1(ω, γ ) :
R

3 × R
3 → R

3 × R
3 becomes

dRcay−1(ω, γ ) =
[

I3 − 1
2ω + 1

4ωωT 03

− 1
2

(
I3 − 1

2ω
)
γ I3 − 1

2ω

]

. (65)

Since we are using the pairing 〈(μ, η), (ω, γ )〉 = μ·ω+η·γ between se(3) � R
3×R

3

and its dual se∗(3) � R
3 ×R

3, the matrix of dRcay−1(ω, γ )∗ is the transpose of (65).
One can also use for τ the Cayley map of SE(3) given by

cay(ω, γ ) =
(

cay(ω)
(
I − ω

2

)−1
γ

0 1

)

.

The discrete action, which approximates the continuous action over the time interval
[0, T ], is therefore given by

Sd =
∑

K∈T

N−1∑

j=1

L
j

K = Δt
lK

2

∑

a �=0,A

N−1∑

j=0

〈Jξ j
a , ξ

j
a 〉 +Δt

lK

4

N−1∑

j=0

〈Jξ j
0 , ξ

j
0 〉

+Δt
lK

4

N−1∑

j=0

〈Jξ j
A, ξ

j
A〉 −Δt

∑

K∈T

N−1∑

j=1

VK

(
Λ

j
K , x j

K

)
,

where ξ j
a :=(ω j

a, γ
j
a) and J : R

3 × R
3 → R

3 × R
3 is the linear operator with matrix

J =
(

J 0
0 MI3

)
.

By evaluating the potential term VK at time t j , in the discrete Lagrangian (63), the
dependence of the discrete action Sd on (x j

a,Λ
j
a, H j

a , Ψ
j

a ) reads
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(i) Interior nodes a /∈ {0, A}

L
j

a = Δt
lK

2
〈Jξ j

a , ξ
j

a 〉 −Δt
∑

K	a

VK

(
Λ

j
K , x j

K

)
, (66)

(ii) Boundary nodes a ∈ {0, A}

L
j

a = Δt
lK

4
〈Jξ j

a , ξ
j

a 〉 −Δt
∑

K	a

VK

(
Λ

j
K , x j

K

)
, (67)

where in the potential term we choose the elements K containing a.

3.6.2 Alternative discrete Lagrange–d’Alembert equations

Discrete forces. Given the discrete Lagrangian La as defined in (66) and (67), we
choose the following discretization of the forces

F+
a,d((Λ

j+1
a , x j+1

a ), (ω j , γ j )) = (0, 0)

F−
a,d((Λ

j
a, x j

a), (ω
j , γ j ))

= Δt
(
M−

a ((Λ
j
a, x j

a), (ω
j , γ j )), F−

a ((Λ
j
a, x j

a), (ω
j , γ j ))

)
∈ T ∗

(Λ
j
a ,x

j
a )

SE(3),

(68)

where Ma and Fa are respectively the exterior moment and force applied in node a.
This choice is consistent with the approximation we made for the potential term.

We now give the discrete Lagrange–d’Alembert equations (35), for a given diffeo-
morphism τ : se(3) → SE(3) in a neighborhood of the origin such that τ(0) = e.

Discrete Euler–Lagrange equation for the left boundary a = 0. The equations read

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−μ j
0 + Ad∗

τ(Δt ξ j−1
0 )

μ
j−1
0 +Δt

(
(Λ

j
0)

−1(M
j
0)

−
(Λ

j
0)

−1(F
j
0)

−

)

= Δt

(
U0
V0

)∣∣∣∣
t=t j

,

μ
j
0 = lK

2

(
dRτ−1(Δt ξ j

0 )
)∗
(

Jω
j
0

Mγ
j
0

)

, g j+1
0 = g j

0τ(Δt ξ j
0 ),

(69)

with U0 given by (51) and V0 by (57). Recall,ψ0 = cay−1(ΛT
0 Λ1) andΔx0 = x1−x0.

The discrete body momenta are

π+
B (g

j
0 , ξ

j
0 ) = Ad∗

τ(Δt ξ j
0 )
μ

j
0 and π−

B (g
j
0 , ξ

j
0 ) = Δt

(
U0
V0

)
+ μ

j
0.
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Discrete Euler–Lagrange equation for the right boundary a = A. The equations read

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−μ j
A + Ad∗

τ(Δt ξ j−1
A )

μ
j−1
A +Δt

(
(Λ

j
A)

−1(M
j
A)

−
(Λ

j
A)

−1(F
j
A)

−

)

= Δt

(
UA

VA

)∣∣∣∣
t=t j

,

μ
j
A = lK

2

(
dRτ−1(Δt ξ j

A)
)∗
(

Jω
j
A

Mγ
j
A

)

, g j+1
A = g j

Aτ(Δt ξ j
A),

(70)

with UA given by (53) and VA by (59). Recall, ψA−1 = cay−1(ΛT
A−1ΛA) and

ΔxA−1 = xA − xA−1.
The discrete body momenta are

π+
B (g

j
A, ξ

j
A) = Ad∗

τ(Δt ξ j
A)
μ

j
A and π−

B (g
j
A, ξ

j
A) = Δt

(
UA

VA

)
+ μ

j
A.

Discrete Euler–Lagrange equation for a node a /∈ {0, A}. The equations read

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−μ j
a + Ad∗

τ(Δt ξ j−1
a )

μ
j−1
a +Δt

(
(Λ

j
a)

−1(Ma)
−

(Λ
j
a)

−1(Fa)
−

)

= Δt

(
Ua

Va

)∣∣∣∣
t=t j

,

μ
j
a = lK

(
dRτ−1(Δt ξ j

a )
)∗
(

Jω
j
a

Mγ
j
a

)

, g j+1
a = g j

aτ(Δt ξ j
a ),

(71)

with Ua given by (49), Va by (55),ψa = cay−1(ΛT
a Λa+1),ψa−1 = cay−1(ΛT

a−1Λa),
Δxa−1 = xa − xa−1, and Δxa−1 = xa − xa−1.

The discrete body momenta are

π+
B (g

j
a , ξ

j
a ) = Ad∗

τ(Δt ξ j
a )
μ

j
a, π−

B (g
j
a , ξ

j
a ) = (Δt)

(
Ua

Va

)
+ μ

j
a .

Discrete momentum maps. We note that when q = 0, then the discrete Lagrangian
(63) is invariant under the left action of SE(3). When q �= 0, say q =
qE3, then the discrete Lagrangian is only invariant under the S1-action given by
Φθ · (Λ j

a, x j
a) := (exp(θ Ê3)Λ

j
a, exp(θ Ê3)x

j
a), where θ ∈ R. From the expres-

sion (36) we deduce that the discrete momentum maps associated to the SE(3)
action read

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J f +
Ld
((Λ j , x j ), (ω j , γ j ))=∑a∈N Ad∗

(Λ
j
a ,x

j
a )

−1
μ

j
a

J f −
Ld
((Λ j , x j ), (ω j , γ j ))=

(
∑

a∈N Ad∗
(Λ

j
a ,x

j
a )

−1
μ

j
a

−D
(Λ

j
a ,x

j
a )

Ld((Λ
j , x j ), (ω j , γ j ))(Λ

j
a, x j

a)
−1−

(
M

j
a,F

j
a

)
(Λ

j
a, x j

a)
−1
)
.

(72)

To obtain the discrete momentum maps associated to the S1 action, one sim-
ply multiplies the above expression by the vector (E3, 0). Note that the term

123

Author's personal copy



102 F. Demoures et al.

D
(Λ

j
a ,x

j
a )

Ld((Λ
j , x j ), (ω j , γ j ))(Λ

j
a, x j

a)
−1 appearing in the discrete momentum map

can be explicitly written as

D
(Λ

j
a ,x

j
a )

Ld((Λ
j , x j ), (ω j , γ j ))(Λ

j
a, x j

a)
−1 = −Ad∗

(Λ
j
a ,x

j
a )

−1

(
U j

a,V j
a

)

= −
(
Λ

j
aU j

a + x j
a ×Λ

j
aV j

a, Λ
j
aV j

a

)
,

where the expressions of Ua,Va are given in (49), (51), (53), (55), (57), and (59). This
formula holds for both boundary nodes and interior nodes.

As recalled in (38), these discrete momentum maps (either in the S1 or SE(3)
symmetric settings) are preserved if the discrete forces are absent or are orthogonal to
the symmetry group action.

3.6.3 Approximate energy conservation

The trivialized expression of the discretized energy is given by the Hamiltonian H
associated to the Lagrangian (63) given, in terms of the convected discrete velocities
ωa, γa , by

H ((Λa, xa, ωa, γa)a∈N ) =
∑

a∈∂N

lK

4

(
M
∥∥γ a

∥∥2 + (ωa)
T Jωa

)

+
∑

a∈int (N )

lK

2

(
M
∥∥γ a

∥∥2 + (ωa)
T Jωa

)
+
∑

K∈T
VK (xK ,ΛK ). (73)

3.6.4 Comparison with other methods

Our scheme is obtained by applying a variational integrator to a semidiscretization of
the configuration space and the Lagrangian of the beam. In this sense, it is similar with
other approaches, such as, e.g. [13,25,41]. However, the specificity of our approach
lies in the fact that both the space and time discretizations are realized in a “Lie group
preserving way” which implies that the symmetries of the original problem are pre-
served by the discretization. This allows us to define the discrete notions of angular and
linear momentum maps in a consistent geometric way [50] and to obtain their exact
conservation. Another benefit of our approach is that, since it preserves a Lie group
structure, the spatial discretization in (16) can be easily combined with any Lie group
methods for the temporal discretization, such as the ones in [10,26], including the
Runge–Kutta–Munthe-Kaas methods. Regarding the spatial discretization, any inter-
polation Λh(S), φh(S) of (Λa, xa)a∈N that preserves the objectivity and the SE(3)
left action, can be used without altering our results. It can then be followed by any of
the temporal Lie group methods mentioned above. Our setting is therefore potentially
useful to derive higher order schemes.

Approaches to dynamic beam simulation being inherently different from Lie group
methods, are already mentioned in the introduction. In particular, [5,34,35] use redun-
dant coordinates like quaternions or director triads. To describe the rotational degrees
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of freedom, they need to be subject to constraints, leading to differential algebraic
equations of motion that are treated, e.g., with index reduction or projection meth-
ods. An advantage of our approach is that it does not need the introduction of any
additional constraint ensuring that the scheme preserves the Lie algebra of rotations,
since this property is naturally guaranteed through the use of Lie group variational
integrators. Furthermore, different spatial discretizations, e.g., using a staggered grid
in [34], or finite elements in [5], or using a spatially discrete Lagrangian (21) as in
this work, yield different mass matrices which influence the numerical results. For
example, for the variational case, the mass is lumped into the nodes resulting in a
diagonal mass matrix, while the finite element semidiscretization of space yields a
tridiagonal mass matrix. Since the goal of [34,35] is different than the one pursued in
this paper, the authors do not provide any information concerning the symplecticity
of the algorithm, the conservation of the symmetries (momentum maps), and of the
energy. They choose to discretize the ODE, whereas, in our approach, we discretize
directly Hamilton’s principle in a way that preserves the Lie group symmetries, which
ensures the symplecticity as well as the preservation of momentum maps.

We would like to mention that it is also possible to carry out a spacetime covariant (as
opposed to spatial followed by temporal) Lie group preserving discretization of beam
dynamics. Such a variational discretization has been carried out in [16] following the
multisymplectic discretization of [47]. This approach allows for symplecticity in both
the space and time evolutions, as well as a discrete version of covariant Noether the-
orem (that implies the classical one). However, imposing both the covariance and the
“Lie group preserving” properties allows for less freedom for the choice of the spatial
and temporal discretizations, than in the setting developed in the present paper. There-
fore, it appears that both approaches have their own advantages. Note that through
the discrete field theory point of view, some specific developments were introduced,
such as the asynchronous variational integrators [38] and the semi-discrete variational
integrators [15].

4 Numerical results

In this section, we numerically analyze the derived variational integrators by means of
two numerical examples. To this end, we implement three different integrators: first
of all the Lie group variational integrator for the beam given by equations (48)–(59),
secondly the alternative variational integrator for the beam given by equations (69)–
(71) and thirdly an energy-momentum preserving time stepping scheme with finite
elements in space as described in [41].

4.1 Implementation details

4.1.1 Lie group variational integrator for the beam

For the implementation of the Lie group variational integrator, we have in equations
(54)–(59) an explicit update to determineΔx j

a , while (48)–(53) are an implicit expres-
sion of the form
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(F j
a Jd − Jd(F

j
a )

T ) = â.

In order to solve this equation for F j
a ∈ SO(3), (the vector a and the symmetric

matrix Jd being given), we use a Newton iteration based on the Cayley transformation
as described in [37] (Sect. 3.3.8). In the following we denote the variational Lie group
integrator by ‘lgvi’.

4.1.2 Alternative variational integrator for the beam

The alternative integrator we proposed in Sects. 3.4 and 3.6 involves the choice of a
local diffeomorphism in (34). Once this diffeomorphism is chosen, no further approx-
imation is needed to derive the scheme, in contrast with the first integrator, which
involves an approximation of the velocity (40). The implementation is based on (69),
(70) and (71), each consisting of three equations. For a given group element g j

a , a
given Lie algebra element ξ j−1

a and givenμ j−1
a ,μ j

a is determined by the first equation
as an explicit update. A Newton iteration is performed to solve the second equation for
ξ

j
a , and finally, the group element is updated to g j+1 by the explicit update in the third

equation. In the following we denote the alternative variational integrator for by ‘lavi’.

4.1.3 Energy-momentum preserving time stepping scheme with finite elements in
space

For a comparison, the same problem is simulated using a well established energy-
momentum preserving time stepping scheme with finite elements in space as described
in [41]. For further energy-momentum conserving simulations of geometrically exact
beam dynamics using a finite element space discretization see e.g. [55]. In [41], the
kinematics are represented via a constrained configuration variable, discretized with
linear finite elements in space and the time discretization of the resulting constrained
Hamiltonian system is performed via a G-equivariant discrete derivative introduced by
[22]. In the discrete setting, the discrete null space method with nodal reparametrization
is applied which reduces the computational effort and improves the system’s condition,
see [42]. The resulting discrete trajectory is exactly energy and momentum conserving
(both quantities conserve their initial values up to the tolerance employed in the Newton
iteration, which is in contrast to the good energy behavior of variational schemes
where finite energy oscillations are present), but it is not symplectic. Theoretical
analysis shows that the scheme converges with second order in space and time. In
the following we denote the energy-momentum preserving time stepping scheme with
finite elements in space by ‘feem’.

4.2 Beam with concentrated masses

As a first example we consider a geometrically exact beam with a concentrated mass
m at the middle node and concentrated masses M at the boundary nodes and with a
three-dimensional loading acting on the concentrated masses (as depicted in Fig. 2).
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Fig. 2 Beam with concentrated masses

This is a standard benchmark example which has been previously addressed e.g.
in [6] with slightly different loading. The beam is initially aligned along the E3-
axis and undeformed. For this problem, the following parameters are used: beam
length L = 2, concentrated masses M = 10 and m = 1, mass density � = 1,000,
square cross-section with edge length a = 0.05, Poisson ratio ν = 0.35, and Young’s
modulus E = 107. We consider this problem without external potential forces, such
that Πext (φ) = 0.

The temporally bounded external loading has the form

Fκ(t) = f (t)Pk for k = 1, 2, 3

with

P1 = P3 = −1.0E1 + 1.6E2 − 1.2E3

P2 = 1.0E1 − 1.6E2 + 1.2E3

and the function

f (t) =
{

100
(

1 − cos
(

2π t
Tload

))
for t ≤ Tload

0 for t > Tload

for Tload = 0.1. No other external loads are present in this example. Furthermore, the
beam’s initial translational velocity is linearly distributed as

φ̇(S, 0) = ϕ(S)P, P = 1

20
(1.0E1 + 2.0E2 + 3.0E3)
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with the function

ϕ(S) =
{

4 − 16 S/L for S ≤ L/2
−10 + 16 S/L for S > L/2

and the initial rotational velocity Ω(S, 0) is zero.
For all three methods, two simulations are performed until the simulation time

T = 0.9. The first simulation is based on a constant time step Δt = 10−4 and an
equidistant spatial discretization of the central line of the beam by A = 22 beam
elements which corresponds to an element length Δl = lK = L

A for all elements K .
The second simulation uses the constant time step Δt = 10−5 and A = 66 beam
elements.

An impression of the motion and deformation of the spatially discretized beam
is given in Fig. 3 by snapshots of consecutive configurations for a simulation using
the variational Lie group integrator with Δt = 10−5 and A = 66. The elements of
the beam are colored by a linear interpolation of the sum of the norms of the stress
resultants ‖nK ‖ + ‖mK ‖ in the elements K = 1, . . . , 66, as defined in (22), (23).

For the discretization based on Δt = 10−5 and A = 66, all three integrators
provide similar beam motions. The similarity of the results can be observed Fig. 4
(right), which shows the time evolution of five selected nodes. However, for a more
rough discretization with Δt = 10−4 and A = 22, the numerical solution do not
coincide anymore (see Fig. 4 (left)). Whereas lgvi and lavi show similar behavior, the
solution of feem differs.

Also, the evolution of the energy and the stress resultants differ between the methods
for simulations withΔt = 10−4, A = 22. In Fig. 5, the energy ((61) for lgvi and (73)
for lavi), the angular momentum and linear momentum ((60) for lgvi and (72) for lavi)
of the beam are depicted for the three methods. The evolution of the stress resultants
nK (shear stresses and stretch) and mK (bending moment and torsional moment) in
the spatial elements 1, 12 and 22 is depicted in Fig. 6. It can be observed that lgvi
and lavi compute a stronger deformation, in particular concerning the extension stress
nK ,3. This yields a larger deformation energy compared to the feem, thus a smaller
kinetic energy and a larger exchange of energy between the kinetic and the potential
parts is predicted by the variational schemes.

All methods show a very good behavior concerning their structure preserving prop-
erties: as expected, from the discrete Noether theorem (Sect. 3.5.4), the two compo-
nents (angular and linear) of the discrete momentum map JLd associated with SE(3)-
invariance are preserved up to numerical accuracy after the external loads vanish at
Tload = 0.1. Also the total energy of all schemes is conserved after this time. However,
the value of the total energy differs between the variational schemes and feem due to
the different space discretization, in particular, the mass matrix differs, see Sect. 3.6.4.

Energy, linear momentum, angular momentum, and stress resultants for the finer
discretization (Δt = 10−5, A = 66) for all three methods are depicted in Figs. 7 and
8, respectively. All three methods show similar behavior for this time and space dis-
cretization. Note that for the fine discretization, all methods show the same qualitative
behavior which has been predicted by the feem already using the coarse discretization.
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Thus, for a fine enough grid, all methods converge to the same numerical solution.
This is confirmed by the following numerical convergence analysis.

All three methods show an excellent long term energy behavior. Small oscillations
are visible for lgvi and lavi, while feem yields exact energy conservation, see Fig. 9.

4.3 Numerical convergence analysis

For the convergence analysis of variational integrators, techniques based on a varia-
tional error analysis using the exact discrete Lagrangian are typically used, see e.g.
[50] and [52]. In this work, we restrict ourselves to a numerical convergence analysis
and we investigate the following simple example scenario: We consider a geomet-
rically exact beam lying in the (E1,E3)-plane with an initial deformation given as
follows: the beam describes a circular arc with opening angle 2π

3 and it is com-
pressed to 75 % of its original length L . The beam is free to move in space and has
zero initial velocity. Again, an equidistant spatial discretization is used. We choose
the following parameters: beam length L = 2, mass density � = 1,000, square
cross-section with edge length a = 0.05, Poisson ratio ν = 0.35, and Young’s
modulus E = 104. For all three methods we investigate the convergence behav-
ior to identify convergence rates and similarities and differences in their numerical
results.

The numerical convergence analysis concentrates on two aspects. First of all,
each method is analyzed separately with regard to the convergence for time grid
refinement at constant space resolution, the convergence of space grid refinement
at constant time resolution and with regard to the convergence for the simultane-
ous refinement of the space time grid and convergence rates are deduced numeri-
cally. While the first two experiments illustrate the convergence of the variational
time integration and the variational space integration for finite dimensional sys-
tems, i.e. for the ODE case, respectively, the latter illustrates the convergence of
the variational space time integration for the PDE case. Secondly, the differences
between the methods are analyzed showing that the solution of one method does
converge to the solution of another method and deduces the rate. Finally, the dif-
ferent behavior concerning the computational efficiency of the three methods is
illustrated.

4.3.1 Convergence of each method

For each method, we perform simulations with the following number of elements
A = 16, 32, 64, 128, 256 and time step Δt = 1.6 · 10−4, 8 · 10−5, 4 · 10−5, 2 ·
10−5, 10−5. The simulation time is T = 0.06 in all comparisons. The relative error
εrel for a simulation result is computed by the discrete L2-norm of the relative error
between the actual simulated configuration g and a given reference configuration gref.
To this end, the nodal relative error of a configuration g j

a = (Λ
j
a, x j

a) at a time and
space node is computed by the 2-norm, resulting in the matrix of relative error εrel
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(εrel)
j
a = ‖g j

a − gref(t j , Sa)‖2

‖gref(t j , Sa)‖2

each row containing the relative error at one time node for all spatial nodes. The
relative error for a complete simulation result of the whole beam’s motion during a
time interval [0, T ] is given by

εrel = ‖εrel‖F

√
Δt

√
Δl

where ‖.‖F is the Frobenius norm.

Convergence in time for fixed number of elements. For a fixed number of elements, we
simulate the beam with decreasing time stepΔt to analyze the numerical convergence
w.r.t. time grid refinement. Since the analytic solution is not known, we compute a
reference solution with small time step for each method in the following way: the
reference solution is computed with the same method, the same Δl, and Δt = 10−5.
This is done for all element lengths. In Fig. 10, the relative error for the three methods
is plotted logarithmically over the time step Δt for each element length Δl. The
convergence rates are approximately 1.6 for lavi and lgvi, and 2.3 for feem. Note that
by fixing Δl, the convergence analysis corresponds to a convergence analysis for an
ode-system w.r.t. Δt . For all three methods, we would expect a rate of 2.0, thus, our
numerical results almost confirm this rate (also note that we have no real solution as
reference which may lead to slightly different orders).

Convergence in space for fixed time step. For a fixed time step, we simulate the beam
with decreasing element length Δl to analyze the numerical convergence w.r.t. space
grid refinement. The reference solution is computed with the same method, the same
Δt , and A = 256. This is done for all time steps. In Fig. 11, the relative error is plotted
logarithmically over the space step Δl for each time step Δt . The convergence rates
are approximately 1.5 for lavi and lgvi, and 2.0 for feem.

Convergence in space and time simultaneously. Now we decrease the time and space
step simultaneously in the same way. For each method, the reference solution is com-
puted with the same method using Δt = 10−5 and A = 256. This is done for
(Δt, A) = (1.6 · 10−4, 16), (8 · 10−5, 32), (4 · 10−5, 64), (2 · 10−5, 128). The rel-
atives errors are given in Fig. 12. Since the space error dominates, the convergence
rates behave in the same way as the convergence rates in space, and are thus approxi-
mately 1.5 for lavi and lgvi and 2.0 for feem.

4.3.2 Differences between the methods

Next we analyze the convergence behavior between different methods. The trajectories
obtained by the three methods are computed for fixed Δl and Δt . This is done for all
time steps and for all element lengths. For (Δt, A) = (1.6 · 10−4, 16), (8 · 10−5, 32),
(4 · 10−5, 64), (2 · 10−5, 128), (1 · 10−5, 256) the relative errors are plotted in Fig. 13
versusΔt (versus space stepΔl gives the same pictures). The solution of one method
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Fig. 14 Computational efficiency for each method. Left computational time versus time step. Right relative
error versus computational time (color figure online)

does converge to the solution of another method with a rate of 1.6. lgvi and lavi lie
much closer together than feem. This is to be expected, since they have the same
space discretization and the same mass matrix whereas feem uses a different space
discretization.

4.3.3 Efficiency of each method

We store the computational time for different discretizations in time and space for each
method. In Fig. 14 (left), the computational time versus the time step (versus space step
gives the same picture) is plotted logarithmically. The general trend is as excepted: for
finer grids the computational time increases. lgvi and lavi are both faster than feem,
lgvi is even slightly faster than lavi. However, note that feem is a fully implicit method
(solving a nonlinear coupled system for the complete beam) whereas lgvi and lavi
solve a (partly explicit) system for each node. For lavi and lgvi the computational time
behaves approximately quadratic w.r.t. the time step (or space step, respectively), for
feem the computational time behaves approximately cubic, especially during the first
refinement steps. In Fig. 14 (right), the relative error versus the computational time
is plotted logarithmically. The reference solutions for the computation of the relative
error are chosen as in Sect. 4.3.1. Again, the general trend is as excepted: for more
accurate approximations more computational time is required.

4.3.4 Concluding remarks

The numerical experiments illustrate that the two Lie group variational integrators
yield quite similar simulation results, even for relatively coarse discretizations. Fur-
thermore, the convergence rates are approximately of order 1.5 in space and in time.
In contrast to that, the energy-momentum preserving time stepping scheme with finite
elements in space shows space and time convergence rates of order 2.0. On coarse
grids, the latter method’s results differ from the first two methods’ results substantially,
while the results of all methods approach each other for grid refinement. Concerning
the computational efficiency, the Lie group variational integrators are generally faster
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than the energy-momentum preserving time stepping scheme with finite elements,
with the first Lie group integrator being the fastest.
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