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An extension of Brouwer's fixed point theorem allowing discontinuities

In this article, we extend Brouwer's fixed point theorem -which states that every continuous mapping f : B → B (a closed ball of IR n ) must have a fixed point -by allowing discontinuities of f , and we apply this extension to equilibrium theory in Economics.

Résumé Une extension du théorème du point fixe de Brouwer autorisant des discontinuités

Nous étendons dans cet article le théorème du point fixe de Brouwer -qui dit que toute fonction f continue de B dans B (une boule fermée de IR n ) admet un point fixe -en autorisant un certain type de discontinuité de f sur un ensemble éventuellement infini, et appliquons cette extension à la théorie de l'équilibre général en économie.

Version française abrégée

Le théorème de Brouwer [3], qui dit que toute fonction continue f : B → B, où B est une boule fermée de IR n , admet un point fixe, reste l'un des outils les plus performants et les plus simples pour montrer l'existence de solutions d'équations, en particulier pour prouver l'existence d'équilibres économiques (voir, par exemple, [4]).

Une classe récente de problèmes d'existence d'équilibres économiques, prenant en compte l'imperfection des marchés financiers, a nécessité jusqu'à maintenant des méthodes différentes, moins élémentaires, car cette imperfection se traduisait mathématiquement par des problèmes de discontinuités (voir, par exemple, [5], [7], [9]) ; or, il n'existait pas de généralisation du théorème de Brouwer qui permette de prendre en compte ce type de discontinuité. L'objet du présent article est justement d'énoncer et de prouver une telle généralisation.

Dans la suite 1 , n est un entier strictement positif, m et k sont deux entiers tels que 0 < k ≤ m, et B désigne la boule unitée fermée centrée en 0 de IR n . Nous définissons d'abord une nouvelle notion de continuité strictement plus faible que la continuité classique, puis la notion de point fixe asymptotique. Définition 0.1 Soit V : B → M(m × k) une application lisse 2 . Soit B V = {x ∈ B | rankV (x) = k}. Nous dirons que V est régulière si pour x ∈ B\B V , DV (x) est surjective. Dans cet article, V : B → M(m × k) désignera une application régulière. Définition 0.2 Nous dirons que l'application f : B → B est V -continue si pour toute suite convergente (x n ) d'éléments de B V telle que la suite (ImV (x n )) est convergente 3 , alors lim n→+∞ f (x n ) existe. Remarque 0.3 Si f est continue, f est évidemment V-continue. Mais il existe des fonctions V -continues dont l'ensemble des points de discontinuités est infini non dénombrable. Définition 0.4 Soit f : B → B une application. On dira que x est un point fixe asymptotique de f s'il existe une suite (x n ) de B V convergeant vers x telle que lim n→+∞ f (x n ) = x. Remarque 0.5 Si f est continue, un point fixe asymptotique de f est aussi un point fixe de f .

Nous énonçons alors notre résultat principal, qui, compte tenu des remarques précédentes, constitue bien une généralisation du théorème du point fixe de Brouwer : Théorème 0.6 Soit f : B → B une application V -continue. Alors f admet un point fixe asymptotique x ∈ B.

Nous donnons maintenant un exemple géométrique simple de classe de fonctions auxquelles on peut appliquer le théorème précédent, que nous appelons classe des fonctions continues tangentiellement : Définition 0.7 Nous dirons qu'une application f : B → B est continue tangentiellement en x ∈ B si pour toute suite (x n ) d'éléments de B distints de x, convergeant vers x tangentiellement à une droite (ce qui signifie que la suite Vect{x n -x} est convergente4 ), alors lim n→+∞ f (x n ) existe. Exemple 1 Soit U : B × B → B une fonction lisse, strictement concave par rapport à la seconde variable, et soit e ∈ intB. On définit alors f :

B → B par ∀x ∈ B, f (x) = Argmax y∈B,x.(y-e)=0 U (x, y).
Une telle fonction est appelée fonction de demande en Economie Mathématique, et n'est en général pas continue en 0. On vérifie immédiatement qu'elle est continue tangentiellement en 0. Corollaire 0.8 Soit f : B → B, continue tangentiellement sur un sous-ensemble fini I de B et continue sur B\I. Alors il existe une suite (x n ) de B\I, convergeant vers x ∈ B, telle que lim n→+∞ f (x n ) = x.

Pour finir, nous donnons une application du théorème 0.6 à la théorie de l'équilibre général : dans une vaste classe de modèles récents, prenant en compte l'incomplétude des marchés financiers, l'existence d'un équilibre se traduit par l'existence d'un point fixe d'une application de la forme f (x,ImV (x)), où V est une matrice spécifiant les rendements d'actifs financiers (voir, par exemple, [START_REF] Duffie | Equilibrium in incomplete markets, I. A basic model of generic existence[END_REF], [START_REF] Hirsch | A geometric approach to a class of equilibrium existence theorems[END_REF] et [START_REF] Magill | Incomplete Markets[END_REF]). Le principal obstacle à l'existence d'équilibres est que les discontinuités de l'application x →ImV (x) peuvent engendrer des discontinuités de f . Le corollaire suivant du théorème 0.6 permet d'obtenir un point fixe asymptotique de f malgré ces discontinuités. Corollaire 0.9 Soit une application continue f :

B × G k (IR m ) → B et soit g : B → B une application vérifiant ∀x ∈ B V , g(x) = f (x, ImV (x)). Alors g admet un point fixe asymptotique x ∈ B. Remarque 0.10 Si (x n ) est une suite de B V convergeant vers x et telle que lim n→+∞ f (x n ) = x, alors par compacité de G k (IR m ), on peut supposer, à extraction près, que ImV (x n ) converge Ē ∈ G k (IR m ).
Par continuité de f et de V , le couple (x, Ē) vérifie donc f (x, Ē) = x et ImV (x) ⊂ Ē, ce qui correspond à la notion économique de pseudo-équilibre. Ainsi, une conséquence du corollaire 0.9 est l'existence d'un pseudo-équilibre dans un cadre plus général que les précédentes preuve d'existence (voir, par exemple, [START_REF] Hirsch | A geometric approach to a class of equilibrium existence theorems[END_REF] et [START_REF] Magill | Incomplete Markets[END_REF]). Surtout, cela prouve que les pseudo-équilibres peuvent s'obtenir à partir de -équilibres (où un -équilibre x ∈ B est défini par f (x) -x < ), notion qui a une signification économique plus pertinente que celle de pseudo-équilibre.

Introduction

Brouwer's fixed point theorem [START_REF] Brouwer | Über Abbildung von Mannigfaltigkeiten[END_REF], which states that every continuous mapping f from a closed ball of IR n to itself must have a fixed point, has proved to be one of the most powerful and simple tool to obtain the existence of solutions of equations, and in particular to prove the existence of economic equilibria (see, for example, [START_REF] Debreu | Theory of Value[END_REF]). Recently, a new class of economic problems, taking into account the incompletness of financial markets, has needed new tools, more complex, because incompletness implies problems of discontinuities (see, for example, [START_REF] Duffie | Equilibrium in incomplete markets, I. A basic model of generic existence[END_REF], [START_REF] Hirsch | A geometric approach to a class of equilibrium existence theorems[END_REF], [START_REF] Magill | Incomplete Markets[END_REF]): indeed, there did not exist a generalization of Brouwer's fixed point theorem (for single-valued mappings) allowing discontinuities. The aim of this article is to enounce and to prove such a generalization.

The main theorem

Let 5 n ∈ IN * and let m and k be two integers such that 0 < k ≤ m. In the following, we denote by B the closed unit ball of IR n centered at the origin. Before stating the main theorem, let us define a new notion of continuity, weaker than the classical notion, and let define the notion of asymptotic fixed point.

Definition 2.1 Let V : B → M(m × k) be a smooth 6 mapping. Let B V = {x ∈ B |rankV (x) = k}.
The mapping V is said to be regular if for every x ∈ B\B V , DV (x) is onto.

In the following, V : B → M(m × k) is a regular mapping.

Definition 2.2

The mapping f : B → B is said to be V -continuous if for every convergent sequence

(x n ) of elements of B V such that the sequence (SpanV (x n )) is convergent 7 , then lim n→+∞ f (x n ) exists. Remark 2.3 If f is continuous, then f is obviously V-continuous. Conversely, if V is continuous and f is V -continuous,
then it is easy to see that f is continuous on B V . But notice that the discontinuity set 5. In the following, the set IR n is equipped with the euclidean topology. We denote by B the closed unit ball of IR n centered at the origin, by S the unit sphere of IR n centered at the origin. If X and Y are two subsets of IR n , we denote by X\Y the set {x ∈ X | x / ∈ Y }, by X the closure of X, by intX the interior of X, by ∂X the boundary of X. For any mapping f and any subset X of its domain, f | X is the restriction of f to X. If m and k are two integers, M(m × k) denotes the set of m × k real matrices. Finally, if f is a mapping differentiable at x, then we denote by Df (x) the derivative of f at x.

6. In this article, smooth means C ∞ . 7. in the space G k (IR m ), which is the set of k-subspaces of IR m . We recall that G k (IR m ) is a metric space, and that this metric induces a manifold structure, for which G k (IR m ) is a smooth and compact k(m -k)-manifold (see [START_REF] Milnor | Characteristic classes[END_REF] p. 55-71).

of a V -continuous mapping f may be infinite, and even uncountable. For example, let m = k, n = m 2 and B be the closed unit ball centered at 0 of M(m × m) (that can be assimilated to IR n ), equipped with the canonical euclidean structure. Let then consider V : B → B the identity mapping of B and let define the mapping f : B → B by ∀M ∈ B, f (M ) = ( proj Span M (a 1 ) . . . proj Span M (a ) ) , where a 1 , ..., a m are the columns of a given matrix in B. It is easy to see that f is V -continuous but is not continuous on the set {M ∈ B | rank M < m}. Definition 2.4 Let f : B → B be a mapping. The point x is said to be an asymptotic fixed point of f if there exists a sequence (x n ) in B V converging to x and such that lim n→+∞ f (x n ) = x. Remark 2.5 If f is continuous, an asymptotic fixed point of f is a fixed point of f . We now state our main result, which is, from the previous remarks, a generalization of Brouwer's fixed point theorem: Theorem 2.6 Let f : B → B be a V -continuous mapping. Then f admits an asymptotic fixed point x ∈ B.

In the following section, we give a simple and geometric example of a class of V -continuous mappings, which we call the class of tangentially continuous mappings. Such mapping is called a demand function in Mathematical Economics. Usually, there is a discontinuity of f at 0, but one can check that f is tangentially continuous at 0. Thus, the following corollary may be applied, for example, to similar mappings: 9 Corollary 3.2 Let f : B → B be a mapping tangentially continuous on a finite subset I of B and continuous on B\I. Then there exists a sequence (x n ) in B\I, converging to x ∈ B, such that lim n→+∞ f (x n ) = x.

8. in the metric space G 1 (IR n ) = IP n-1 . 9. In fact, finding an equilibrium in standard economic models amounts to finding a fixed-point of a mapping which derives simply from demand functions, and which has the same regularity properties. Hence, for this purpose, we would not apply directly the following corollary to f , but to a related mapping, and we would not require U (B × B) ⊂ B.

An economic application

Since the middle of the 1980's, several equilibrium existence problems have been linked to the existence of a fixed point of mappings f (x,SpanV (x)), where V (x) is a matrix specifying the returns of financial assets (see, for example, [START_REF] Duffie | Equilibrium in incomplete markets, I. A basic model of generic existence[END_REF], [START_REF] Hirsch | A geometric approach to a class of equilibrium existence theorems[END_REF], [START_REF] Magill | Incomplete Markets[END_REF]). The main difficulty is that the possible discontinuities of the mapping x →SpanV (x) may imply discontinuities of f . The following corollary of Theorem 2.6 states that an asymptotic fixed point exists despite these discontinuities.

Corollary 4.1 Let f : B × G k (IR m ) → B be a continuous mapping and let g : B → B be a mapping satisfying: ∀x ∈ B V , g(x) = f (x, SpanV (x)). Then g admits an asymptotic fixed point x ∈ B.

Remark 4.2 If

x is an asymptotic fixed point, there exists a sequence (x n ) in B V converging to x and such that lim n→+∞ f (x n ) = x. From the compactness of G k (IR m ), one can suppose without any loss of generality that the sequence SpanV (x n ) converges to Ē ∈ G k (IR m ). From the continuity of f , one obtain f (x, Ē) = x and SpanV (x) ⊂ Ē. In economic literature, (x, Ē) verifying these equations is called a pseudo-equilibrium. Thus, a consequence of Corollary 4.1 is the existence of a pseudo-equilibrium in a more general setting than usual (see, for example, [START_REF] Hirsch | A geometric approach to a class of equilibrium existence theorems[END_REF] and [START_REF] Magill | Incomplete Markets[END_REF]). Above all, it proves that pseudo-equilibria can be obtained from -equilibria (where an -equilibrium x ∈ B is defined by f (x) -x < ), a notion that has a clear economic meaning, contrarily to the notion of pseudo-equilibrium. We now define a mapping f : B → B as follows: let (x, E) ∈ B; from B0 = B, there exists a sequence (x n ,SpanV (x n )) in B0 converging to (x, E). We then define f (x, E) = lim n→+∞ f (x n ). Lemma 5.2 The mapping f is well defined (i.e. the previous construction does not depend upon the choice of the sequence (x n ,SpanV (x n ))) and is continous.

Let ∈]0, 1[. Let define B1-= {(x, E) ∈ B | x < 1 -}.
10. with the following convention: if l < 0, then a l-manifold is the empty set.

3 .

 3 A geometric example of V -continuous mappings: the class of tangentially continuous mappings Definition 3.1 A mapping f : B → B is said to be tangentially continuous at x ∈ B if for every sequence (x n ) of elements of B\{x} which converges to x tangentially to a straight line (which means that the sequence Span{x n -x} converges 8 ), then lim n→+∞ f (x n ) exists. Example 1 Let U : B × B → B be a smooth mapping, strictly concave in the second variable, and e ∈int B. Then one can define the mapping f : B → B by ∀x ∈ B, f (x) = Argmax y∈B,x.(y-e)=0 U (x, y).

5 .Lemma 5 . 1

 551 Sketch of the proof of Theorem 2.6Let introduce the setB = {(x, E) ∈ int(B) × G k (IR m ) | SpanV (x) ⊂ E} and for ρ ∈ [0, k], the set Bρ = {(x, E) ∈ B | rank V (x) = k -ρ}.The following lemma is a consequence of the regularity of V : The set B is a smooth n-submanifold of int(B) × G k (IR m ). For every ρ ∈ [0, k], the set Bρ is a smooth (n -ρ 2 )-submanifold 10 of int(B) × G k (IR m ). Besides, if B0 denotes the closure of B0 in int(B) × G k (IR m ) then one has B0 = B.

Dans cet article, l'ensemble IR n sera muni de sa topologie usuelle d'espace euclidien. Nous noterons B la boule unité fermée de centre 0 de IR n , S la sphère unité de centre 0 de IR n . Si X et Y sont des sous-ensembles de IR n , nous noterons X\Y l'ensemble {x ∈ X | x / ∈ Y }, X désignera l'adhérence de X, intX l'intérieur de X, et ∂X la frontière de X. Pour toute application f et tout sous-ensemble X de son domaine de définition, f | X désignera la restriction de f à X. L'ensemble M(m × k) désignera l'ensemble des matrices à coefficients réels comportant m lignes et k colonnes. Enfin, pour toute application f différentiable en x, Df (x) désignera la différentielle de f en x.

Dans cet article, lisse signifiera C ∞ .

Il s'agit de convergence dans l'espace G k (IR m ). Nous rappelons que G k (IR m ) désigne l'ensemble des sous-espaces vectoriels de IR m de dimension k, et que cet ensemble peut-être muni d'une distance qui en fait une variété lisse compacte de dimension k(m -k). On supposera dans la suite que G k (IR m ) est munie d'une telle distance (voir[START_REF] Milnor | Characteristic classes[END_REF] p. 55-71).

dans l'espace métrique G 1 (IR n ) = IP n-1 .

If B1denotes the closure of B1in int(B) × G k (IR m ), then let notice that B1-= {(x, E) ∈ B | x ≤ 1 -}.

We will now prove that there exists (x, E) ∈ B1such that f (x, E) -x ≤ . One can see, using an approximation argument, that f can be supposed to be smooth. From Lemma 5.1, there exists x ∈ B such that rankV (x) = k and x < 1-. Let now define the mapping

From the smoothness of f , the mapping H is smooth. In the following, let suppose that the set

Then, one has the following lemma:

Now, notice that 0 is a regular value of H(0, ., .) and of H(1, ., .) 11 , two mappings from the smooth n-manifold B1to IR n , that H(0, ., .) has no zero on B1and that H(1, ., .) has one zero in B1-. Thus, one can classically define the degree (modulo 2) of these mappings (see, for example, [START_REF] Hirsch | Differentiel topology[END_REF]), and we have degH(0, ., .) = 0 [modulo 2] and degH(1, ., .) = 1 [modulo 2]. Besides, one can see that the homotopy invariance of degree (modulo 2) must be true for homotopies verifying the condition of Lemma 5.3, thus we obtain 0 = 1, a contradiction. This finally proves that there exists (x, E) ∈ B1such that f (x, E) -x ≤ . From the definition of f , it is now easy to prove the existence of an asymptotic fixed point of f . An extended version of this paper with complete proofs will appear in [START_REF] Bich | Some fixed point theorems allowing discontinuities[END_REF].