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Abstract

In this paper we propose a new way to compute a rough approximation solution, to be
later used as a warm starting point in a more refined optimization process, for a challenging
global optimization problem related to Earth imaging in geophysics. The warm start con-
sists of a velocity model that approximately solves a full-waveform inverse problem at low
frequency. Our motivation arises from the availability of massively parallel computing plat-
forms and the natural parallelization of evolution strategies as global optimization methods
for continuous variables.

Our first contribution consists of developing a new and efficient parametrization of the
velocity models to significantly reduce the dimension of the original optimization space. Our
second contribution is to adapt a class of evolution strategies to the specificity of the physical
problem at hands where the objective function evaluation is known to be the most expen-
sive computational part. A third contribution is the development of a parallel evolution
strategy solver, taking advantage of a recently proposed modification of these class of evolu-
tionary methods that ensures convergence and promotes better performance under moderate
budgets.

The numerical results presented demonstrate the effectiveness of the algorithm on a
realistic 3D full-waveform inverse problem in geophysics. The developed numerical approach
allows us to successfully solve an acoustic full-waveform inversion problem at low frequencies
on a reasonable number of cores of a distributed memory computer.

Keywords: Evolution strategy, global convergence, Earth imaging, inverse problem, high performance
computing (HPC), search space reduction, full-waveform inversion.
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1 Introduction

Vibrations generated by earthquakes, explosions or similar phenomena and propagated within
the Earth or along its surface can yield information about the Earth and its subsurface struc-
ture. Such a knowledge, called Earth imaging, is of major interest for economy, environment,
and science. Geologists have developed several methods for Earth imaging using seismic wave in-
formation. Acoustic full-waveform inversion (FWI) is one of such procedures and it attempts to
derive high-resolution quantitative models of the subsurface using the full information of acous-
tic waves [52]. Following [50], a description of the problem can be given as follows. During the
propagation, waves interfere with the environment and the total wavefield is recorded through a
certain number of receivers (called hydrophones or geophones). Since the waves are affected by
the physical properties of the subsurface, they are carrying information about the environment
that can be retrieved by an inversion process. The propagation waves are generated by sources
situated in the domain of consideration (see Figure 1 for a simple illustration).

GeophonesSource

Figure 1: Acoustic waves propagated by a source are reflected by a reflective layer (in white)
and are detected by the geophones. The reflective layer represents a salt dome in this example.

For many years acoustic full-waveform inversion has been almost exclusively employed by
academic researchers. Only recently it has been adopted by practitioners in industry. Nev-
ertheless, its computational cost is still large compared to other existing methods in seismic
exploration. The attractiveness of the approach is the promise of deriving high-fidelity Earth
models for seismic imaging. Since our ability to both understand and manage complex nonlinear
inversions has improved and since the available computing power has grown at the same time,
full-waveform inversion has become more and more practical.

It is known that the acoustic full-waveform inversion, formulated as a nonlinear optimization
least-squares minimization problem, can be efficiently solved if the starting propagation velocity
model is accurate enough (in the sense of explaining the data at a low frequency and still being a
smooth version of the true velocity model, see [10, 52]). Otherwise the inversion procedure suffers
from stalled convergence to spurious local minima due to the oscillatory nature of the data [28].
Thus, a crucial step related to full-waveform inversion in seismic imaging consists of finding a
good starting model (or point, in an optimization context) without the need of sophisticated a
priori knowledge on the velocity model. In industry, first- arrival travel-time tomography [30]
is the most popular method to generate an accurate initial propagation velocity model. More
recent methods such as stereo tomography [27] and inversion in the Laplace domain [41] are being
investigated in academia. It must be also mentioned here that the use of multiscale strategies



can mitigate the nonlinearity and reduce the dependence on the starting velocity model for
FWI [34, 45].

In this paper we propose a novel approach to find an initial smooth velocity model for the
full-waveform inversion problem without any a priori physical knowledge. We are motivated by
the recent availability of massively parallel computing platforms (see [36]). First we introduce
a new parametrization of the problem to reduce the number of parameters needed to describe a
velocity model and therefore the objective function of our optimization problem. Then, we show
how to adapt an Evolution Strategy (ES) to take advantage of such a model or space reduction.
ES’s are a class of evolutionary algorithms designed for searching the global minimum of a
function in a continuous space. We are motivated by the modifications in ES’s recently proposed
in [16] to ensure some form of rigorous convergence and a better computational performance
under moderate budgets of function evaluations. Thirdly, based on one of the modified ES’s
given in [16], we propose a highly parallel ES adapted to the full-waveform inversion setting.
By combining model reduction and ES’s in a parallel environment, we aim at solving realistic
instances of the problem. In fact the numerical results obtained along this direction will show
the appropriateness and promise of our approach.

We note that global optimization heuristics have already been already employed to solve re-
lated inverse problems. A first attempt to invert the ocean bottom properties [14] has been made
through simulated annealing. Later Gerstoft [19] has applied genetic algorithms to invert seis-
moacoustic data. Training a neural network to compute a reliable estimate of a one-dimensional
velocity model has been also proposed in [40]. In all these applications, the heuristics were either
applied to problems where the objective function was cheap to evaluate or where a very simple
parametrization of the velocity model was used.

The paper is organized as follows. We start by describing in Section 2 the large-scale Earth
imaging optimization problem of interest to us. In Section 3, we detail our proposed methodology
to reduce the number of unknowns, while representing the full search space as faithfully as
possible. In Section 4 we describe a parallel ES adapted to the specificity of the given application.
Numerical results for a realistic large-scale public domain inversion problem are then presented
and discussed in Section 5. Finally, we draw some conclusions and describe future lines of
research in Section 6.

2 Full-waveform inversion

Estimating the subsurface velocity from seismic recordings is the main goal of the full-waveform
inversion procedure. One uses the recorded wavefields to guess the physical properties of the
medium through which the wavefield has propagated. Two formulations (either time-domain or
frequency-domain based) are traditionally used for finding the solution of this inverse problem.
Relevant details on both approaches can be found in, e.g., [10, 34, 45, 52]. Since the frequency-
domain approach is regarded as more advantageous when solving the full-waveform inversion
in the multiple frequency case [52], we will exclusively consider this approach in our paper.
Below we briefly detail the full seismic wavefield problem (forward problem) and the associated
problem used to recover the velocity model (inverse problem). At the end of the section, we
will also introduce the three-dimensional public domain velocity model used in all our numerical
illustrations and experiments.



2.1 The forward problem

Given the medium properties (e.g., the subsurface velocity), the forward problem consists of
modeling the full seismic wavefield in a three-dimensional parallelipedic domain Ω ⊂ R3 at a
given frequency. The wave propagation is usually controlled by a partial differential equation,
whose formulation depends on the characteristics of the propagation model [13, 33]. In the
frequency domain, the acoustic propagation of a pressure field u(x, y, z) at the position (x, y, z) ∈
Ω in a heterogeneous medium is governed by the Helmholtz equation defined as:

−∆u(x, y, z)− k2(x, y, z)u(x, y, z) = s(x, y, z), (1)

where k(x, y, z) = 2πf/m(x, y, z) is the wavenumber, f ∈ R+ is the frequency in Hz, and
m(x, y, z) is the variable acoustic-wave velocity model in m/s. In equation (1), ∆ represents
the standard Laplace operator and s(x, y, z) a Dirac source term. In a more realistic scenario,
the source excitation is estimated by solving an inverse problem (see [46]). The wavelength is
given by m(x, y, z)/f . We consider absorbing boundary conditions: First, a popular approach,
called Perfectly Matched Layer formulation (PML) [4, 5], is used to obtain a satisfactory near
boundary solution, without many artificial reflections; Second, this artificial boundary layer is
used to absorb outgoing waves at any incidence angle as shown in [4]. The acoustic full-waveform
inversion requires the solution of three-dimensional Helmholtz problems at various locations of
the Dirac sources and thus leads to multiple right-hand side problems [48, 49].

In this paper, we consider a standard second-order accurate seven point finite-difference
discretization of the Helmholtz equation (1) on an uniform equidistant Cartesian grid of size
Nx×Ny ×Nz. For later use, we define N = Nx×Ny ×Nz, h the corresponding mesh grid size,
and Ωh the discrete computational domain. After discretization, the acoustic full-wave inversion
leads to the following linear system with p multiple right-hand sides:

AU = S (2)

where S ∈ CN×p and A ∈ CN×N is a sparse complex matrix (nonhermitian and nonsymmetric
due to the PML formulation). We note that the matrix A embeds the properties of the subsurface
and depends on the propagation velocity model m that we want to quantify. Since a stability
condition has to be satisfied to correctly represent the wave propagation phenomena [13], we
consider numerical discretization schemes with 10 points per wavelength. Consequently, at a
given frequency f in Hz, we deduce the mesh grid size h in m as

h =

min
(x,y,z)∈Ωh

m(x, y, z)

10 f
. (3)

In practice this last relation imposes the solution of very large systems of equations (see Sec-
tion 5, where N ≈ 106) at the frequencies of interest for the geophysicists. Such a task may be
too computationally and memory expensive when solving linear systems by sparse direct meth-
ods. Due to their indefiniteness, these systems are known to be very challenging for iterative
methods [18]. Based on previous studies [11, 12, 26], we consider a recently proposed block
flexible Krylov subspace method (BFGMRES-S [11, Algorithm 3]) for the solution of the linear
system with multiple right-hand sides (2). In [11] the authors have shown the relevance of the
BFGMRES-S algorithm combined with a variable two-level preconditioner to address the solu-
tion of such large-scale acoustic forward problems in a distributed memory parallel environment.



We refer the reader to [12, Algorithm 5] for a complete description of the geometric two-grid
preconditioner and to [33] for additional theoretical properties in relation with Krylov subspace
methods. Applications to large-scale forward acoustic problems have been considered in detail
in [26, Chapter 4].

Figure 2 depicts a graphical representation of the SEG1/EAGE2 salt dome velocity model
(described later in Section 2.3) and the real part of the wavefield at frequency 12 Hz obtained
after solving the Helmholtz equation in the case of a single source. The numerical solution
has been obtained using BFGMRES-S. We note that the wave propagation is affected by the
properties of the velocity model. The interference of the waves with the reflected layer generates
reflection waves. The latter are recorded at different time steps using geophones to generate the
so-called seismograms, i.e., the observed data for the associated inverse problem detailed next.

Figure 2: 3D SEG/EAGE salt dome velocity model: problem geometry with velocity distribution
(left) and real part of numerical solution at 12 Hz (right). Figures from [26, Chapter 4].

2.2 Full-waveform inversion as a least-squares global optimization problem

The standard formulation of acoustic full-waveform inversion (at a given frequency f) aims at
minimizing the following least-squares misfit function [50]:

J (m) =
1

2

p∑
i=1

(di(m)− diobs)
†W i(di(m)− diobs), (4)

where † denotes the adjoint operator (transpose conjugate). The weighting matrices W i are
in general used to include a priori data information. The misfit vector di(m) − diobs ∈ Rn,
related to the i-th source, is computed as the difference at the receiver positions between the

1The Society of Exploration Geophysicists.
2European Association of Geoscientists and Engineers.



recorded seismic data diobs (i.e. seismograms) and the modeled seismic one di(m). The latter one
corresponds to the modeled seismic wavefield ui (computed as the i-th column of the U solution
of (2)), projected using the operator Pdata, which extracts the values of the wavefield at the
receiver positions for each source, i.e., di(m) = Pdata(ui). The use of this projection operator
makes the full-waveform inversion an ill-posed problem, meaning that an infinite number of
velocity models matches the data, leading to the same objective function value. Therefore,
an additional regularization term is classically added to the inversion problem to make it well
posed [50]. In addition to the velocity model, the source excitation is generally unknown and
must be included as an unknown of the problem [35]. Provided that a good starting velocity
model ms is available (good in the sense that smoothly represents the structure of the true
velocity model), the minimization of the objective function (4) is in practice solved using a
Newton type method (see [52] and references therein).

2.3 The SEG/EAGE salt dome velocity model

We have conducted our numerical studies on the acoustic inverse problem using a three-dimensional
public domain velocity model known in the geophysics community as the SEG/EAGE salt dome
velocity model.

This velocity model (depicted in Figure 3) is based on a typical US Golf coast salt structure,
and special care was taken to ensure that it is geologically feasible. Hence it is widely accepted as
an adequate benchmark model for seismic imaging in the geophysics community. Next, we will
introduce a parametrization procedure to compute an appropriate basis for the velocity models,
which will then allows to compute an accurate and smooth representation of the SEG/EAGE
salt dome velocity model using a reduced number of parameters.

3 Search space reduction

Evolution Strategies are heuristic methods designed for the solution of global optimization prob-
lems (with continuous variables) that have performed well in terms of the quality of the final
point computed (see [2, 3, 22, 39]). However, like any other method for global optimization, ES’s
suffer from the curse of dimensionality, meaning that their performance is satisfactory on low
dimensional problems, but deteriorates as the dimensionality of the search space increases [29].
For realistic simulations of full-waveform inversion [26, 33], the typical size N of the velocity
models exceeds in general 106, and thus trying to solve directly the problem using an ES is ruled
out.

However, our purpose is not to solve the full-waveform inversion problem but rather to find
a good starting velocity model ms which can be later improved using a local gradient based
method. The initial velocity model ms is only required to represent the general structure of
the true model, and such a representation is often smooth and can be expressed using only a
few parameters [52]. Given an appropriate and efficient procedure to represent a velocity model
using a reduced number of parameters, the ES method will be applied to try to find the values
of the parameters that lead to a smooth representation of the unknown velocity model to be
inverted.

The problem of search space reduction has been investigated over the past years using sub-
space approaches [25, 31, 47]. In our context, a velocity model perturbation m̃ ∈ RN can be
restricted to lie in an n-dimensional subspace of RN , spanned by the vectors {vi}i=1,...,n, with



(a) The full velocity model. (b) A vertical section in the plane y = 10 km.

(c) An horizontal section in the plane z = 2.5 km. (d) The salt dome.

Figure 3: Visualization of the 3D SEG/EAGE salt dome velocity model using ParaView [24].
The geophysical domain is of size 20 × 20 × 5 km3. The seismic waves propagate in water and
in the salt dome at the minimal and maximal velocities of 1500 m/s and 4418 m/s, respectively.
The occurrence of a salt dome in the subsurface of Earth abruptly increases the velocity of
propagation of the waves.

n ≤ N (as with N , n will also later have a 3-D interpretation). The model perturbation can be
then written as follows:

m̃ =
n∑
i=1

givi = V g,

where g ∈ Rn are the new parameters to invert, and V = [v1, . . . , vn] ∈ RN×n is the so-called
reduction basis. Subspace approaches lead to an important simplification of the problem [25, 47],
but are unfortunately very sensitive to the choice of the reduction basis. In fact, by restricting
the search space to directions in a subspace, the neglected ones could be the vectors which are
important in finding a local or global minimum of the objective function J given in (4). Often
researchers use a sinusoidal basis as a reduction basis and try to find a vector g of parameters
which produces an acceptable agreement to the observation [31]. The existing subspace methods,



previously cited, use gradient information of the objective function, thus the reduction process
is problem dependent. In our case, no information about the objective function will be used,
thus our subspace technique can be applied regardless of the problem.

Inspired by the methodology used in image compressing, we propose in this work a new pro-
cedure to construct this basis using a combination of sinusoidal and rectangular basis functions,
more specifically a Discrete Cosine Transform (DCT) [9] and a step function transform. In
fact, the step function used to magnify the vector parameter g ∈ Rn, so that it fits the original
space RN , usually leads to a pixelization effect. Thus a DCT is then applied to produce a smooth
velocity model, reducing such pixelization. To simplify the exposition, we will first explain our
approach in the one-dimensional case, and then give a generalization to cover the realistic 3D
geometry of interest. We refer the reader to [15, Chapter 7] for a complete description of these
procedures.

3.1 One-dimensional space reduction

There are three main procedures in our space reduction scheme: a reduction, a duplication, and
a magnification.

In the reduction procedure, given a vector m ∈ RN discretizing a velocity vector, n sub-
divisions are first created. Then, it is taken the mean value the parameters included in each
subdivision. In our context, the reduction operation will be only used to estimate how efficient
is our magnification procedure.

The duplication procedure consists of building a vector m ∈ RN using a small-size vector
g ∈ Rn with n < N . We first construct an empty vectorm of sizeN , considering n subdivisions of
indices [xi, xi+1]. Each subdivision contains around δ = [N/n] parameters and thus δ = xi+1−xi
and xi = (i − 1)δ + 1. The n parameters of the velocity vector g are distributed over the n
subdivisions. The value associated to each subdivision is then duplicated over the δ parameters
of m assigned for that subdivision. The duplication procedure, as presented here, introduces
a pixelization effect in the constructed vector m. A DCT can then be applied to improve the
quality of the duplication and to remove the subdivision discontinuities.

A magnification procedure aims in general at removing noise or producing a less pixelated
image. The most used smoothing algorithms are based on Gaussian smoothing [1], bilateral fil-
ters [51], and sinusoidal based approaches [9]. As a smoothing procedure, we choose to work with
a sinusoidal basis since it is one of the most popular subspace approaches for FWI to generate a
smooth approximation vector using few coefficients [31]. We will smooth the pixelization effect
in the magnified vector using a DCT [9].

As we have seen before, when duplicating a velocity vector from a vector of smaller size, the
value in each subdivision is constant and thus it can be seen as a mean of all the subdivision
values. Such a property will be imposed as well on the magnified velocity vector m in the sense
that it corresponds to a model m(·) such that

1

xi − xi+1

∫ xi

xi+1

m(x)dx = g(i), i = 1, . . . , n. (5)

In turn, this velocity model m(·) is expressed using a discrete cosine basis in the following way:

m(x) =

n∑
j=1

aj cos

(
(j − 1)π

N
(x− 1)

)
, (6)



where a = (aj)1≤j≤n ∈ Rn. By incorporating the expression (6) into the equations (5), we can
obtain the vector a by solving a linear system of the form

Ca = g, (7)

where C ∈ Rn×n is a matrix with the following coefficients:

Cij =

1 if j = 1,

2N
(j−1)πδ cos

(
π
N (j − 1)(i− 1

2)δ

)
sin

(
δπ
2N (j − 1)

)
otherwise.

The matrix C is nonsingular (see the proof in the appendix). The one-dimensional smoothed
vector m is then built by evaluating (8) for all i ∈ {1, . . . , N}, which amounts to

mi =
n∑
j=1

aj cos

(
(j − 1)(i− 1)π

N

)
,

or, equivalently, to
m = Mg, (8)

where M = KC−1 ∈ RN×n and K ∈ RN×n is the matrix defined by Kij = cos( (j−1)(i−1)π
N ).

Equation (8) shows that the magnification procedure corresponds to the application of a linear
operator. The magnification cost is negligible compared to an objective function evaluation. In
fact, the magnification is accomplished by first computing C−1g ∈ Rn and then multiplying it by
K ∈ RN×n, resulting in K(C−1g) ∈ RN , while an evaluation of the objective function requires
the solution of a larger linear system of size N ×N with p multiple right-hand sides (see (2)).

3.2 Three-dimensional space reduction

A multi-dimensional transform (known as Fast Direct multi-dimensional DCT) can be carried out
by using a composition of the one-dimensional magnification procedure along each dimension [9].
Equation (8) can then be immediately extended to 2D or 3D velocity models. A detailed
description of the extension of equation (8) to higher dimensions is given in [9]. In the case of
three-dimensional data, given a 3D velocity model G of n = nx × ny × nz parameters, we ought
to build a magnified 3D velocity model m of size N = Nx × Ny × Nz � n parameters. The
magnification procedure is obtained by applying (8) first to the x axis, then to y, and finally to
z as follows (using Matlab notation):

V (:, :, k) = MxG(:, :, k), k = 1, . . . , nz,

T (:, :, k) = V (:, :, k)M>y , k = 1, . . . , nz,

m(i, :, :) = T (i, :, :)M>z , i = 1, . . . , Nx,

where Mx ∈ RNx×nx , My ∈ RNy×ny , and Mz ∈ RNz×nz are the one-dimensional smoothing
matrices defined in (8) along the axes x, y, and z, respectively.
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20 40 60 80 100 120 140 160 180 200 220
1500

2000

2500

3000

3500

4000

4500

5000

5500

i

m
(i
)

 A 1D velocity model

 

 

the true velocity model

the duplicated velocity model

(c) The duplication procedure following y axis.
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(d) The magnification procedure following y axis.
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Figure 4: Illustration using 1D SEG/EAGE salt dome velocity profiles.



3.3 Application to the SEG/EAGE salt dome velocity model

To illustrate numerically the performance of the three-dimensional approximation procedure,
we have used the SEG/EAGE salt dome velocity model introduced in Section 2.3.

Figure 4 outlines three one-dimensional SEG/EAGE salt dome velocity profiles (with respect
to the x, y, and z axes, respectively). Reduction procedures were then applied to these velocity
profiles to create vectors for duplication and magnification. Following the x axis (resp. y axis),
the velocity profile has been selected at the position y = 8.9 km and z = 2.5 km (resp. x = 8.9 km
and z = 2.5 km). In both cases the reduced velocity vector is built using n = 8 parameters only,
while N = 225 parameters are required for the true velocity vector. Following the z axis, the
velocity profile (selected at the position x = 8.9 km and y = 8.9 km) is reduced using n = 5
parameters compared to the true N = 70 ones. From the results obtained, we observe that the
smoothing effect of the DCT transform improves the quality of the duplicated velocity profiles as
a representation of the original ones, and that the space reduction approach can work relatively
well with a reduced number of parameters.

For the three dimensional case, we have found that the true velocity model can be relatively
well approximated using n = 8×8×5 = 320 parameters instead of the original N = 225×225×
70 = 3543750 ones, in the sense of still representing the main structure (i.e., the salt dome) of
the true velocity model. Figure 5 outlines an illustration of the obtained results. As expected,
the magnification procedure using DCT (see Figures 5(g)–5(i)) gives better results compared
to the duplication procedure which is based on the step function transform (see Figures 5(d)–
5(f)). Although we use only a few parameters to represent the velocity model, our smooth
magnification procedure preserves the main specificity of the true model, in particular the salt
dome.

4 A parallel ES for acoustic full-waveform inversion

In this section we start by briefly reviewing the existing methods to compute a satisfactory
initial velocity model for seismic inversion. Then we explain how to apply ES’s for this purpose
when using the space reduction introduced before. A parallel implementation of the resulting
ES’s is also proposed.

4.1 Existing methods

The acoustic full-waveform inversion problem introduced in Section 2.2 is nonconvex, and thus
its solution by optimization algorithms crucially depends on the starting velocity model ms. In
fact, it is known that the inversion procedure converges to satisfactory results only if the starting
velocity model is situated not far from a global minimizer [52]. Hence, before applying the full-
waveform inversion, a starting model is generally built. To do this, the most common techniques
are first-arrival travel-time tomography (FATT) [30], stereotomography [27] or, more recently,
inversion in the Laplace domain [41]. For many years, FATT has proven to be stable in generating
smooth velocity models of the subsurface. Some examples of application of FWI to real data
using a starting model built by FATT are described in [32, 37]. Similarly, the stereotomography is
regarded as one of the most promising methods for building a smooth velocity model. It exploits
the arrival time of locally coherent events within an automatic procedure to select a seismogram
collection [27]. Some applications to synthetic and real data sets are shown in [7, 8]. Finally,



(a) True model. (b) A vertical slice (y = 10 km). (c) An horizontal slice
(z = 2.5 km).

(d) Duplicated model. (e) A vertical slice (y = 10 km). (f) An horizontal slice
(z = 2.5 km).

(g) Magnified model. (h) A vertical slice (y = 10 km). (i) An horizontal slice
(z = 2.5 km).

Figure 5: 3D duplicated and magnified models of the SEG/EAGE salt dome velocity model.
The velocity models are built using n = 8×8×5 = 320 parameters, while N = 225×225×70 =
3543750 parameters are required for the true velocity model.

the inversion in the Laplace domain can be viewed as a frequency domain inversion using a pure
imaginary complex valued frequency that controls the time damping of the seismic wavefield.
Applications of Laplace domain FWI to synthetic and real data are proposed in [41, 42, 43].

4.2 Evolution strategies and CMA-ES

Evolutions strategies are a class of evolutionary algorithms designed for the optimization of
a possibly nonconvex function in a continuous domain without using derivatives. It has been
originally developed in [38] for the unconstrained optimization of a function, minv∈Rn f(v), and
has been extensively investigated and tested (see, e.g., [6, 21] and the references therein). We
are interested in a large class of ES’s denoted by (µ, λ)–ES, with µ and λ integers such that
1 < µ ≤ λ, where a certain number λ of points are randomly generated in each iteration, among
which µ of them are selected as the best in terms of the objective function f .



CMA-ES [23] (where CMA stands for Covariance Matrix Adaptation) is regarded as one of
the best in the class (µ, λ)–ES in terms of numerical performance [2, 3, 22, 39]. More precisely,
CMA-ES belongs to the ES family denoted by (µ/µW , λ)–ES, where the subscript ‘W’ indicates
the use of ‘recombination’ via weights. Broadly speaking, at iteration k, a candidate minimizer x̄k
is used to produce a generation of λ ‘offspring’, each consisting of adding to x̄k a random
direction multiplied by a parameter controlling the length or size of the steps; the best µ of
these are retained as ‘parents’ in a ‘selection’, and x̄k+1 is taken as a weighted combination
(‘recombination’) of these parents. The CMA component considers a Gaussian distribution of
mean zero for the random generation of the directions and provides a scheme for updating the
corresponding covariance matrix as well as the step length.

4.3 A modified CMA-ES

CMA-ES has exhibited robust performance for difficult ill-conditioned, non-separable, and highly
multi-modal problems [2, 3, 22, 39]. Its main drawback is, however, that a large budget is re-
quired to provide outstanding results. Recently, the authors in [16] have proposed modifications
to the class of algorithms in (µ/µW , λ)–ES to make them enjoying a favorable convergence prop-
erty and performing better for smaller budgets. The modifications have been essentially the
imposition of a sufficient decrease on the objective function values to accept new iterates and
the reduction of the step size when such a condition is not satisfied. Under such modifications,
these ES’s can converge globally (meaning independently of the starting point) for a first-order
stationary point. Algorithm 1 shows an adaptation of the globally convergent ES’s proposed
in [16] to the context of full-waveform inversion.

The authors in [16] have proposed three different globally convergent ES versions named
mean/mean, max/max, and max/mean. On a large data set of problems, the mean/mean
version has performed numerically the best. However, the incorporation of the mean/mean
sufficient decrease condition requires an extra objective function evaluation J (mtrial

k+1 ) at each

iteration, where mtrial
k+1 is the trial mean parent computed as the mean of the best µ generated

velocity models. The mean/mean version would therefore corrupt the parallel nature of ES’s.
In fact, if one supposes that the evaluation of J at the offspring is performed at the same
time using synchronized parallel clusters, the mean parent evaluation J (mtrial

k+1 ) will force all
these clusters to wait until the end of such an evaluation to be able to restart a new offspring
generation. Alternatively, the max/max version has shown good performance (not as good as
the mean/mean version) without the need of any extra objective function evaluation to impose
the corresponding sufficient decrease condition. Consequently, we have adopted the max/max
version in Algorithm 1.

We also note that the update of the weights to enforce the sufficient decrease condition,
originally proposed in [16], has not been activated in our setting since we aim at the least
amount of changes in the original ES’s and since such an update did not seem to have a real
impact on the results for the max/max version (see [16]).

Moreover, in the evaluation procedure of the objective function, one needs to satisfy the
relation (3). Hence we have imposed a lower bound on the velocity equal to a known minimum
value mmin = 1500m/s (the velocity model value of the water). A maximum value on the
velocity model of mmax = 4500m/s has been also imposed to avoid propagation by meaningless
velocity models. Both requirements were guaranteed by projecting the offspring models onto
the feasible domain defined by the bounds, an approach that has been shown to be globally



convergent in [17]. Since there are no other constraints rather than simple bounds on the
variables one can use the simple orthogonal `2-projection.

Algorithm 1: An adaptation of the ES algorithm to FWI setting.

Initialization: Choose positive integers λ and µ such that λ ≥ µ. Select an initial x̄0 ∈ Rn,
generate a velocity model m0 ∈ RN (using the magnification procedure) and evaluate
J (m0). Choose initial step lengths σ0, σ

ES
0 > 0 and initial weights (ω1

0, . . . , ω
µ
0 ) in a

simplex S. Let C0 be a normal distribution with the identity matrix as covariance
matrix. Choose the constants β1, β2, dmin, dmax such that 0 < β1 ≤ β2 < 1 and
0 < dmin < dmax. Select a forcing function ρ(·). Set k = 0.

Until some stopping criterion is satisfied:

1. Generation of velocity models: Generate λ velocity models Mk+1 = {m1
k+1, . . . ,

mλ
k+1} using the magnification procedure (imposing the bounds mmin and mmax by

projection) based on the sample points Yk+1 = {ȳ1
k+1, . . . , ȳ

λ
k+1} such that

ȳik+1 = x̄k + σkd
i
k,

where dik ∈ Rn is drawn from the distribution Ck and obeys dmin ≤ ‖dik‖2 ≤ dmax,
i = 1, . . . , λ.

2. Parent selection: Evaluate J (mi
k+1), i = 1, . . . , λ, and reorder the offspring points in

Yk+1 = {ỹ1
k+1, . . . , ỹ

λ
k+1} by increasing order: J (m̃1

k+1) ≤ · · · ≤ J (m̃λ
k+1).

Select the new parents as the best µ offspring sample points {ỹ1
k+1, . . . , ỹ

µ
k+1}.

3. Imposing sufficient decrease:

If J (m̃µ
k+1) ≤ J (mµ

k)− ρ(σk), then consider the iteration successful. Compute the
weighted mean of the new parents

x̄trialk+1 =

µ∑
i=1

ωikỹ
i
k+1.

Magnify x̄trialk+1 to obtain the velocity model mtrial
k+1 . Set x̄k+1 = x̄trialk+1 , mk+1 = mtrial

k+1 ,

and σk+1 ≥ σk (for example σk+1 = max{σk, σES
k }). Set also mµ

k+1 = m̃µ
k+1.

Otherwise, consider the iteration unsuccessful, set x̄k+1 = x̄k, mk+1 = mk and
σk+1 = β̄kσk, with β̄k ∈ (β1, β2). Set mµ

k+1 = mµ
k .

4. ES updates: Update the ES step length σES
k+1, the distribution Ck, and the weights

(ω1
k+1, . . . , ω

µ
k+1) ∈ S. Increment k and return to Step 1.



4.4 A parallel implementation

The proposed ES implementation consists of a synchronized parallel optimizer composed of λ
clusters (typically, the population size). Each cluster is composed of a group of processors,
which is assigned to evaluate the objective function (4). At a given iteration k, the clusters
are synchronized and not activated until the new mean parent mk+1 is defined, which in turn
depends on the iteration state (successful or not). Figure 6 sketches in detail a given iteration
of our proposed parallel implementation of Algorithm 1.

Figure 6: A graphical illustration for a given iteration of the parallel evolution strategy.

The proposed parallel implementation can be described as follows. In addition, at each
iteration, λ clusters, represented in Figure 6 by the components [Generate mi], are launched in
a synchronous manner. Each of these clusters generates a reduced velocity model based on the
ES parameters and strategies. Once the velocity model is generated, the related cluster evokes
the component [Propagate mi].

The wave propagation simulation related to each velocity model considers the p source terms
(i.e., p right-hand sides) at once. The [Propagate mi] component is based on MPI (Message
Passing Interface) and is responsible for discretizing and generating the linear system related
to the forward problem (see Section 2.1) and to provide the information needed to evaluate the
objective function J given in (4). The last component will just return the value of the objective



function to the unique master processor [Master]. Once the master processor has received results
from the λ clusters, it will choose the best, decide whether the iteration is successful or not, and
update the mean parent accordingly. The [Master] component updates also the ES parameters
(e.g., the distribution and the step length) and repeats the loop until a convergence criterion is
achieved.

The propagation in itself behaves as a black box process, hiding from the ES the complexity
of the discretization and of the forward solver. Changing the discretization and/or forward solver
parameters will not incur in any rewriting of the ES implementation. MPI-2 has been used with
the MPI COMM SPAWN primitive which allows an MPI process to spawn a number of clusters. Each
newly spawned cluster has a specific MPI COMM WORLD intracommunicator that allows us to launch
easily the propagation simulations over a number of CPU cores. We note that the proposed ES
implementation is portable and that the propagator itself can be a standalone client. When the
available cluster number is less than λ, one can launch many propagation simulations on the
same cluster until we obtain the needed function evaluations.

5 Numerical experiments

In this section we first describe the validation scenario and detail the parameters of the global
optimization algorithm. Then we analyze the numerical results obtained for the inversion proce-
dure at two frequencies. The numerical simulations have been performed on CURIE 3, a parallel
cluster located at TGCC, France (two eight-cores Intel Sandy Bridge EP (E5-2680) at 2.7 GHz
and 64 GB RAM per computing node with InfiniBand QDR Full Fat Tree interconnect) using
a Fortran 2003 implementation with MPI in single precision arithmetic. The code has been
compiled by the Intel ifort compiler suite with standard compiling options and linked with the
MKL library. The numerical experiments have been performed on a fixed number of cores (2048,
i.e., 128 computing nodes) with a maximal allowed elapsed computing time of 24 hours.

5.1 Problem and algorithm specifications

We have used a simple scenario where the p source terms are supposed to be Dirac functions
and where the observed data diobs (i.e. seismograms [50]) are generated from the propagating
velocity model that we are trying to invert (see Section 2.3). The p sources (with p = 16) are
uniformly distributed in a survey plan located at 500 meters of depth (10% of the exploration
depth).

In this scenario we consider the acoustic full waveform inversion procedure at two different
frequencies (1 Hz and 2 Hz respectively) with only 320 parameters for the initial velocity model
(see Section 3). Table 1 reports the dimensions Nx×Ny×Nz of the forward problem in agreement
with the stability condition (3), the number of clusters, as well as the population size λ versus the
frequency. As the frequency increases, the number of cores dedicated to the objective function
evaluation becomes larger. In fact, the forward problem gets more complicated to solve as far
as the frequency f increases. The initial iterate x̄0, for the parallel ES algorithm in the case of 1
Hz, is built using the magnification procedure based on two given velocity values (3000m/s and
1500m/s, distributed as follows 2 = 1 × 1 × 2). Both the nonlinearity and the ill-posedness of
the FWI problem are in practice tackled in the frequency domain using a multi-scale approach

3http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm



where one starts the inversion procedure in a low frequency range to mitigate the nonlinearity of
the inversion, and then incorporate progressively higher frequencies [44, 52]. Hence the velocity
model solution obtained in the case of 1 Hz will serve as a warm-starting point for the 2 Hz case.

In the context of CMA-ES, the choice λ = floor(4 + 3 log(n)) (where floor(·) rounds to the
nearest integer no larger than the number given) has been shown to provide a good compromise
between quality of the solution found and effort in determining it (see [20]). However, given
the strong need for global exploration at 1 Hz, we have chosen an even larger value, equal to
λ = 512, to better take advantage of the number of cores and cores per cluster, as we explain
next. Since doubling the frequency doubles the number of discretization points in each direction,
the number of cores per cluster is multiplied by at least a factor of eight when considering the
case of 2 Hz. A factor of 16 has been retained in these numerical experiments. Given that the
total number of cores is fixed to 2048 in both experiments, we note that the number of clusters
at 2 Hz is reduced from 2048/8 = 256 to 2048/128 = 16. Since the population size λ is chosen
as twice the number of available clusters, we had to run two evaluations on the same cluster to
get the entire offspring population (for both frequencies).

Frequency Nx ×Ny ×Nz Number of clusters Population size λ

1 Hz 136× 136× 34 256 (8 cores/cluster) 512 (2 evaluations/cluster)
2 Hz 272× 272× 68 16 (128 cores/cluster) 32 (2 evaluations/cluster)

Table 1: The distribution of the clusters and the population size versus frequency.

The parameters of the optimization algorithm are chosen similarly to those of CMA-ES
for unconstrained optimization (see [20]): µ = floor(λ/2) and ωi0 = ai/(a1 + · · · + aµ) with
ai = log(λ/2 + 1/2)− log(i), i = 1, . . . , µ. The choices of the distribution Ck and of the update
of σES

k also followed CMA-ES for unconstrained optimization (see [20]). The selected forcing
function was ρ(σ) = 10−4σ2. To reduce the step length in unsuccessful iterations we have used
σk+1 = 0.5σk which corresponds to set β1 = β2 = 0.5. Finally, the initial step size σ0 is set to
half of the difference between the velocity value on the bottom and the one on the top, given
(in SEG/EAGE salt dome velocity model) by 3000 m/s and 1500 m/s, respectively.

5.2 Numerical results for full-waveform inversion

Figure 7 reports a graphical representation of the inverted velocity model at 1 Hz. These nu-
merical results are found to be satisfactory since a smooth version of the true velocity model is
obtained. We can indeed consider that we are able to invert the general structure of the regarded
velocity model, since in particular the salt dome structure is recovered. We also remark that
such a model can be considered as a good starting point when using gradient based methods [52].

Figure 9(a) depicts the values of the objective function at the best population point at each
iteration for the case 1 Hz. The variation of the objective function is more significant only at the
early stages of the inversion process. Such a behavior is due to the sufficient decrease condition
which monitors the quality of the sampling procedure. We note that the objective function
value decreases from 2042.113 to 575.8082, and that after 278 iterations the inversion procedure
is stopped due to the maximal elapsed computational time.

Figure 8 shows the results obtained for f = 2 Hz. Even though the optimization procedure
is started from the inverted velocity model obtained at 1 Hz, we note that the inversion result



(a) The inverted model. (b) A vertical slice (y = 10 km). (c) An horizontal slice
(z = 2.5 km).

Figure 7: Inversion results for the salt dome velocity model using n = 320 parameters. The 1 Hz
case.

is getting less accurate and rather far from being a good approximation of the targeted velocity
model.

(a) The inverted model. (b) A vertical slice (y = 10 km). (c) An horizontal slice
(z = 2.5 km).

Figure 8: Inversion results for the salt dome velocity model using n = 320 parameters. The 2 Hz
case.

Figure 9(b) shows that the optimization procedure is converging to a fixed velocity model
with an objective function value of 123.2841 after 1220 iterations. Unlike the 1 Hz case, this
plot at 2 Hz indicates that the inversion process is getting stacked at a local minimum. The
explanation of such results is that the objective function becomes more and more noisy and
multi-modal as far as the frequency increases [44]. A possible way to overcome such a difficulty
is to increase the population size of the ES in order to encourage the global exploration.

6 Conclusions

In this paper we have presented a numerical method based on evolution strategies for the so-
lution of the acoustic full-waveform inversion problem arising in Earth imaging in geophysics.
Considering that each parameter in the velocity model to be inverted is an additional variable to
optimize, we have proposed a new parametrization of the problem, reducing the number of pa-
rameters needed to faithfully representing the velocity models. We have illustrated the efficiency
of our parametrization on the public domain SEG/EAGE salt dome velocity model, where we
were able to reconstruct a rather satisfactory approximation using very few parameters.

We have then adapted the chosen ES’s to a reduction of the original space, in particular
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Figure 9: Objective function values at the best population point during the application of
Algorithm 1 for FWI.

to the full-waveform inversion setting when using reduced parameterized velocity models. The
main purpose of the incorporation of ES’s in the inversion procedure is to find a good starting
velocity model without the need of sophisticated a priori knowledge on the background velocity
model.

Given the high cost of the problem function evaluations, a highly parallel scheme for such
ES’s has been derived and validated on parallel distributed memory platforms. The parallel im-
plementation has been tested in combination with the new model parametrization. The obtained
numerical results have shown that a great improvement can be obtained in the automation of
the inversion procedure.

The testing scenario used for the acoustic full-waveform inversion problem is a simple one
where the source excitations are known and the observed data (i.e. seismograms) is generated
using the propagating velocity model which we are trying to invert. We note that such a
scenario is not truly realistic for the following two reasons: (a) the source excitation is generally
unknown and must be rather included as an unknown of the problem, and (b) the observed data
is generally given by geophones located at the surface of the exploration domain. Thus, a more
realistic test case has to be investigated in the future to fully understand the potential of the
proposed approach.

Finally we remark that our model reduction procedure can certainly be generalized to cover
other fields of applications. Similarly, the developed parallel approach can also be applied to
other optimization problems in geosciences (e.g. well placement in reservoir modeling or analysis
of permeability of rocks in petrophysics).

Acknowledgments The authors would like to acknowledge GENCI (Grand Equipement Na-
tional de Calcul Intensif) for letting us used the CURIE computer at CCRT, Bruyères-le-
Châtel, France. This work was granted access to the HPC resources of CCRT under allocation
2014065068 made by GENCI.



Appendix

Theorem 6.1 Given n ∈ N, N ∈ N with n < N and δ = [N/n], the coefficient matrix C ∈ Rn×n
defined as

Cij =
2N

(j − 1)πδ
cos

(
π

N
(j − 1)(i− 1

2
)δ

)
sin

(
δπ

2N
(j − 1)

)
is nonsingular. (Note that for j = 1 we have used the convention sin(0)/0 = 1, i.e., Ci1 = 1.)

Proof.
A direct calculation shows that

det(C) =
n∏
j=1

2N

(j − 1)πδ
sin

(
δπ

2N
(j − 1)

)
det(M),

where M ∈ Rn×n is defined as Mij = cos( πN (j − 1)(i − 1
2)δ). The nonsingularity of M can be

deduced from the properties of DCT-III [9].
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