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In this paper we propose a new way to compute a rough approximation solution, to be later used as a warm starting point in a more refined optimization process, for a challenging global optimization problem related to Earth imaging in geophysics. The warm start consists of a velocity model that approximately solves a full-waveform inverse problem at low frequency. Our motivation arises from the availability of massively parallel computing platforms and the natural parallelization of evolution strategies as global optimization methods for continuous variables.

Our first contribution consists of developing a new and efficient parametrization of the velocity models to significantly reduce the dimension of the original optimization space. Our second contribution is to adapt a class of evolution strategies to the specificity of the physical problem at hands where the objective function evaluation is known to be the most expensive computational part. A third contribution is the development of a parallel evolution strategy solver, taking advantage of a recently proposed modification of these class of evolutionary methods that ensures convergence and promotes better performance under moderate budgets.

The numerical results presented demonstrate the effectiveness of the algorithm on a realistic 3D full-waveform inverse problem in geophysics. The developed numerical approach allows us to successfully solve an acoustic full-waveform inversion problem at low frequencies on a reasonable number of cores of a distributed memory computer.

Introduction

Vibrations generated by earthquakes, explosions or similar phenomena and propagated within the Earth or along its surface can yield information about the Earth and its subsurface structure. Such a knowledge, called Earth imaging, is of major interest for economy, environment, and science. Geologists have developed several methods for Earth imaging using seismic wave information. Acoustic full-waveform inversion (FWI) is one of such procedures and it attempts to derive high-resolution quantitative models of the subsurface using the full information of acoustic waves [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. Following [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF], a description of the problem can be given as follows. During the propagation, waves interfere with the environment and the total wavefield is recorded through a certain number of receivers (called hydrophones or geophones). Since the waves are affected by the physical properties of the subsurface, they are carrying information about the environment that can be retrieved by an inversion process. The propagation waves are generated by sources situated in the domain of consideration (see Figure 1 for a simple illustration). For many years acoustic full-waveform inversion has been almost exclusively employed by academic researchers. Only recently it has been adopted by practitioners in industry. Nevertheless, its computational cost is still large compared to other existing methods in seismic exploration. The attractiveness of the approach is the promise of deriving high-fidelity Earth models for seismic imaging. Since our ability to both understand and manage complex nonlinear inversions has improved and since the available computing power has grown at the same time, full-waveform inversion has become more and more practical.

It is known that the acoustic full-waveform inversion, formulated as a nonlinear optimization least-squares minimization problem, can be efficiently solved if the starting propagation velocity model is accurate enough (in the sense of explaining the data at a low frequency and still being a smooth version of the true velocity model, see [START_REF] Brossier | Imagerie Sismique à Deux Dimensions des Milieux Visco-élastiques par Inversion des Formes d'Ondes : Développements Méthodologiques et Applications[END_REF][START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]). Otherwise the inversion procedure suffers from stalled convergence to spurious local minima due to the oscillatory nature of the data [START_REF] Mulder | Exploring some issues in acoustic full waveform inversion[END_REF]. Thus, a crucial step related to full-waveform inversion in seismic imaging consists of finding a good starting model (or point, in an optimization context) without the need of sophisticated a priori knowledge on the velocity model. In industry, first-arrival travel-time tomography [START_REF] Nolet | Seismic Tomography: With Applications in Global Seismology and Exploration Geophysics[END_REF] is the most popular method to generate an accurate initial propagation velocity model. More recent methods such as stereo tomography [START_REF] Lambaré | [END_REF] and inversion in the Laplace domain [START_REF] Shin | Waveform inversion in the Laplace domain[END_REF] are being investigated in academia. It must be also mentioned here that the use of multiscale strategies can mitigate the nonlinearity and reduce the dependence on the starting velocity model for FWI [START_REF] Pratt | Inverse theory applied to multi-source cross-hole tomography. Part 1: Acoustic wave-equation method[END_REF][START_REF] Sirgue | Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies[END_REF].

In this paper we propose a novel approach to find an initial smooth velocity model for the full-waveform inversion problem without any a priori physical knowledge. We are motivated by the recent availability of massively parallel computing platforms (see [START_REF] Rauber | Parallel Programming: for Multicore and Cluster Systems[END_REF]). First we introduce a new parametrization of the problem to reduce the number of parameters needed to describe a velocity model and therefore the objective function of our optimization problem. Then, we show how to adapt an Evolution Strategy (ES) to take advantage of such a model or space reduction. ES's are a class of evolutionary algorithms designed for searching the global minimum of a function in a continuous space. We are motivated by the modifications in ES's recently proposed in [START_REF] Diouane | Globally convergent evolution strategies[END_REF] to ensure some form of rigorous convergence and a better computational performance under moderate budgets of function evaluations. Thirdly, based on one of the modified ES's given in [START_REF] Diouane | Globally convergent evolution strategies[END_REF], we propose a highly parallel ES adapted to the full-waveform inversion setting. By combining model reduction and ES's in a parallel environment, we aim at solving realistic instances of the problem. In fact the numerical results obtained along this direction will show the appropriateness and promise of our approach.

We note that global optimization heuristics have already been already employed to solve related inverse problems. A first attempt to invert the ocean bottom properties [START_REF] Collins | Nonlinear inversion for ocean bottom properties[END_REF] has been made through simulated annealing. Later Gerstoft [START_REF] Gerstoft | Nonlinear inversion for ocean bottom properties[END_REF] has applied genetic algorithms to invert seismoacoustic data. Training a neural network to compute a reliable estimate of a one-dimensional velocity model has been also proposed in [START_REF] Röth | Application of Neural Networks to Seismic Inverse Problems[END_REF]. In all these applications, the heuristics were either applied to problems where the objective function was cheap to evaluate or where a very simple parametrization of the velocity model was used.

The paper is organized as follows. We start by describing in Section 2 the large-scale Earth imaging optimization problem of interest to us. In Section 3, we detail our proposed methodology to reduce the number of unknowns, while representing the full search space as faithfully as possible. In Section 4 we describe a parallel ES adapted to the specificity of the given application. Numerical results for a realistic large-scale public domain inversion problem are then presented and discussed in Section 5. Finally, we draw some conclusions and describe future lines of research in Section 6.

Full-waveform inversion

Estimating the subsurface velocity from seismic recordings is the main goal of the full-waveform inversion procedure. One uses the recorded wavefields to guess the physical properties of the medium through which the wavefield has propagated. Two formulations (either time-domain or frequency-domain based) are traditionally used for finding the solution of this inverse problem. Relevant details on both approaches can be found in, e.g., [START_REF] Brossier | Imagerie Sismique à Deux Dimensions des Milieux Visco-élastiques par Inversion des Formes d'Ondes : Développements Méthodologiques et Applications[END_REF][START_REF] Pratt | Inverse theory applied to multi-source cross-hole tomography. Part 1: Acoustic wave-equation method[END_REF][START_REF] Sirgue | Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies[END_REF][START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. Since the frequencydomain approach is regarded as more advantageous when solving the full-waveform inversion in the multiple frequency case [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF], we will exclusively consider this approach in our paper. Below we briefly detail the full seismic wavefield problem (forward problem) and the associated problem used to recover the velocity model (inverse problem). At the end of the section, we will also introduce the three-dimensional public domain velocity model used in all our numerical illustrations and experiments.

The forward problem

Given the medium properties (e.g., the subsurface velocity), the forward problem consists of modeling the full seismic wavefield in a three-dimensional parallelipedic domain Ω ⊂ R 3 at a given frequency. The wave propagation is usually controlled by a partial differential equation, whose formulation depends on the characteristics of the propagation model [START_REF] Cohen | Higher-Order Numerical Methods for Transient Wave Equations[END_REF][START_REF] Pinel | A Perturbed Two-level Preconditioner for the Solution of Three-Dimensional Heterogeneous Helmholtz Problems with Applications to Geophysics[END_REF]. In the frequency domain, the acoustic propagation of a pressure field u(x, y, z) at the position (x, y, z) ∈ Ω in a heterogeneous medium is governed by the Helmholtz equation defined as:

-∆u(x, y, z) -k 2 (x, y, z)u(x, y, z) = s(x, y, z), (1) 
where k(x, y, z) = 2πf /m(x, y, z) is the wavenumber, f ∈ R + is the frequency in Hz, and m(x, y, z) is the variable acoustic-wave velocity model in m/s. In equation ( 1), ∆ represents the standard Laplace operator and s(x, y, z) a Dirac source term. In a more realistic scenario, the source excitation is estimated by solving an inverse problem (see [START_REF] Sjogreen | Source estimation by full wave form inversion[END_REF]). The wavelength is given by m(x, y, z)/f . We consider absorbing boundary conditions: First, a popular approach, called Perfectly Matched Layer formulation (PML) [START_REF] Berenger | A perfectly matched layer for absorption of electromagnetic waves[END_REF][START_REF] Berenger | Three-dimensional perfectly matched layer for absorption of electromagnetic waves[END_REF], is used to obtain a satisfactory near boundary solution, without many artificial reflections; Second, this artificial boundary layer is used to absorb outgoing waves at any incidence angle as shown in [START_REF] Berenger | A perfectly matched layer for absorption of electromagnetic waves[END_REF]. The acoustic full-waveform inversion requires the solution of three-dimensional Helmholtz problems at various locations of the Dirac sources and thus leads to multiple right-hand side problems [START_REF] Sourbier | FWT2D: A massively parallel program for frequency-domain Full-Waveform Tomography of wide-aperture seismic data -Part 1: Algorithm[END_REF][START_REF] Sourbier | FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic datapart 2: numerical examples and scalability analysis[END_REF].

In this paper, we consider a standard second-order accurate seven point finite-difference discretization of the Helmholtz equation ( 1) on an uniform equidistant Cartesian grid of size N x × N y × N z . For later use, we define N = N x × N y × N z , h the corresponding mesh grid size, and Ω h the discrete computational domain. After discretization, the acoustic full-wave inversion leads to the following linear system with p multiple right-hand sides:

A U = S (2) 
where S ∈ C N ×p and A ∈ C N ×N is a sparse complex matrix (nonhermitian and nonsymmetric due to the PML formulation). We note that the matrix A embeds the properties of the subsurface and depends on the propagation velocity model m that we want to quantify. Since a stability condition has to be satisfied to correctly represent the wave propagation phenomena [START_REF] Cohen | Higher-Order Numerical Methods for Transient Wave Equations[END_REF], we consider numerical discretization schemes with 10 points per wavelength. Consequently, at a given frequency f in Hz, we deduce the mesh grid size h in m as

h = min (x,y,z)∈Ω h m(x, y, z) 10 f . (3) 
In practice this last relation imposes the solution of very large systems of equations (see Section 5, where N ≈ 10 6 ) at the frequencies of interest for the geophysicists. Such a task may be too computationally and memory expensive when solving linear systems by sparse direct methods. Due to their indefiniteness, these systems are known to be very challenging for iterative methods [START_REF] Ernst | Why it is difficult to solve Helmholtz problems with classical iterative methods[END_REF]. Based on previous studies [START_REF] Calandra | A modified block flexible GMRES method with deflation at each iteration for the solution of non-hermitian linear systems with multiple right-hand sides[END_REF][START_REF] Calandra | Flexible variants of block restarted GMRES methods with application to geophysics[END_REF][START_REF] Lago | A Study on Block Flexible Iterative Solvers with Application to Earth Imaging Problem in Geophysics[END_REF], we consider a recently proposed block flexible Krylov subspace method (BFGMRES-S [11, Algorithm 3]) for the solution of the linear system with multiple right-hand sides [START_REF] Auger | Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed[END_REF]. In [START_REF] Calandra | A modified block flexible GMRES method with deflation at each iteration for the solution of non-hermitian linear systems with multiple right-hand sides[END_REF] the authors have shown the relevance of the BFGMRES-S algorithm combined with a variable two-level preconditioner to address the solution of such large-scale acoustic forward problems in a distributed memory parallel environment.

We refer the reader to [12, Algorithm 5] for a complete description of the geometric two-grid preconditioner and to [START_REF] Pinel | A Perturbed Two-level Preconditioner for the Solution of Three-Dimensional Heterogeneous Helmholtz Problems with Applications to Geophysics[END_REF] for additional theoretical properties in relation with Krylov subspace methods. Applications to large-scale forward acoustic problems have been considered in detail in [START_REF] Lago | A Study on Block Flexible Iterative Solvers with Application to Earth Imaging Problem in Geophysics[END_REF]Chapter 4]. Figure 2 depicts a graphical representation of the SEG1 /EAGE2 salt dome velocity model (described later in Section 2.3) and the real part of the wavefield at frequency 12 Hz obtained after solving the Helmholtz equation in the case of a single source. The numerical solution has been obtained using BFGMRES-S. We note that the wave propagation is affected by the properties of the velocity model. The interference of the waves with the reflected layer generates reflection waves. The latter are recorded at different time steps using geophones to generate the so-called seismograms, i.e., the observed data for the associated inverse problem detailed next. 

Full-waveform inversion as a least-squares global optimization problem

The standard formulation of acoustic full-waveform inversion (at a given frequency f ) aims at minimizing the following least-squares misfit function [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF]:

J (m) = 1 2 p i=1 (d i (m) -d i obs ) † W i (d i (m) -d i obs ), (4) 
where † denotes the adjoint operator (transpose conjugate). The weighting matrices W i are in general used to include a priori data information. The misfit vector d i (m) -d i obs ∈ R n , related to the i-th source, is computed as the difference at the receiver positions between the recorded seismic data d i obs (i.e. seismograms) and the modeled seismic one d i (m). The latter one corresponds to the modeled seismic wavefield u i (computed as the i-th column of the U solution of ( 2)), projected using the operator P data , which extracts the values of the wavefield at the receiver positions for each source, i.e., d i (m) = P data (u i ). The use of this projection operator makes the full-waveform inversion an ill-posed problem, meaning that an infinite number of velocity models matches the data, leading to the same objective function value. Therefore, an additional regularization term is classically added to the inversion problem to make it well posed [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF]. In addition to the velocity model, the source excitation is generally unknown and must be included as an unknown of the problem [START_REF] Pratt | Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model[END_REF]. Provided that a good starting velocity model m s is available (good in the sense that smoothly represents the structure of the true velocity model), the minimization of the objective function ( 4) is in practice solved using a Newton type method (see [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF] and references therein).

The SEG/EAGE salt dome velocity model

We have conducted our numerical studies on the acoustic inverse problem using a three-dimensional public domain velocity model known in the geophysics community as the SEG/EAGE salt dome velocity model.

This velocity model (depicted in Figure 3) is based on a typical US Golf coast salt structure, and special care was taken to ensure that it is geologically feasible. Hence it is widely accepted as an adequate benchmark model for seismic imaging in the geophysics community. Next, we will introduce a parametrization procedure to compute an appropriate basis for the velocity models, which will then allows to compute an accurate and smooth representation of the SEG/EAGE salt dome velocity model using a reduced number of parameters.

Search space reduction

Evolution Strategies are heuristic methods designed for the solution of global optimization problems (with continuous variables) that have performed well in terms of the quality of the final point computed (see [START_REF] Auger | Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed[END_REF][START_REF] Auger | Experimental comparisons of derivative free optimization algorithms[END_REF][START_REF] Hansen | Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009[END_REF][START_REF] Rios | Derivative-free optimization: A review of algorithms and comparison of software implementations[END_REF]). However, like any other method for global optimization, ES's suffer from the curse of dimensionality, meaning that their performance is satisfactory on low dimensional problems, but deteriorates as the dimensionality of the search space increases [START_REF] Nabi | A comparative study of CMA-ES on large scale global optimisation[END_REF]. For realistic simulations of full-waveform inversion [START_REF] Lago | A Study on Block Flexible Iterative Solvers with Application to Earth Imaging Problem in Geophysics[END_REF][START_REF] Pinel | A Perturbed Two-level Preconditioner for the Solution of Three-Dimensional Heterogeneous Helmholtz Problems with Applications to Geophysics[END_REF], the typical size N of the velocity models exceeds in general 10 6 , and thus trying to solve directly the problem using an ES is ruled out.

However, our purpose is not to solve the full-waveform inversion problem but rather to find a good starting velocity model m s which can be later improved using a local gradient based method. The initial velocity model m s is only required to represent the general structure of the true model, and such a representation is often smooth and can be expressed using only a few parameters [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. Given an appropriate and efficient procedure to represent a velocity model using a reduced number of parameters, the ES method will be applied to try to find the values of the parameters that lead to a smooth representation of the unknown velocity model to be inverted.

The problem of search space reduction has been investigated over the past years using subspace approaches [START_REF] Kennett | Subspace methods for large inverse problems with multiple parameter classes[END_REF][START_REF] Oldenburg | Generalized subspace methods for large-scale inverse problems[END_REF][START_REF] Skilling | Maximum entropy image reconstruction -general algorithm[END_REF]. In our context, a velocity model perturbation m ∈ R N can be restricted to lie in an n-dimensional subspace of R N , spanned by the vectors {v i } i=1,...,n , with n ≤ N (as with N , n will also later have a 3-D interpretation). The model perturbation can be then written as follows:

m = n i=1 g i v i = V g,
where g ∈ R n are the new parameters to invert, and V = [v 1 , . . . , v n ] ∈ R N ×n is the so-called reduction basis. Subspace approaches lead to an important simplification of the problem [START_REF] Kennett | Subspace methods for large inverse problems with multiple parameter classes[END_REF][START_REF] Skilling | Maximum entropy image reconstruction -general algorithm[END_REF], but are unfortunately very sensitive to the choice of the reduction basis. In fact, by restricting the search space to directions in a subspace, the neglected ones could be the vectors which are important in finding a local or global minimum of the objective function J given in [START_REF] Berenger | A perfectly matched layer for absorption of electromagnetic waves[END_REF]. Often researchers use a sinusoidal basis as a reduction basis and try to find a vector g of parameters which produces an acceptable agreement to the observation [START_REF] Oldenburg | Generalized subspace methods for large-scale inverse problems[END_REF]. The existing subspace methods, previously cited, use gradient information of the objective function, thus the reduction process is problem dependent. In our case, no information about the objective function will be used, thus our subspace technique can be applied regardless of the problem.

Inspired by the methodology used in image compressing, we propose in this work a new procedure to construct this basis using a combination of sinusoidal and rectangular basis functions, more specifically a Discrete Cosine Transform (DCT) [START_REF] Britanak | Discrete Cosine and Sine Transforms[END_REF] and a step function transform. In fact, the step function used to magnify the vector parameter g ∈ R n , so that it fits the original space R N , usually leads to a pixelization effect. Thus a DCT is then applied to produce a smooth velocity model, reducing such pixelization. To simplify the exposition, we will first explain our approach in the one-dimensional case, and then give a generalization to cover the realistic 3D geometry of interest. We refer the reader to [START_REF] Diouane | Globally Convergent Evolution Strategies with Application to an Earth Imaging Problem in Geophysics[END_REF]Chapter 7] for a complete description of these procedures.

One-dimensional space reduction

There are three main procedures in our space reduction scheme: a reduction, a duplication, and a magnification.

In the reduction procedure, given a vector m ∈ R N discretizing a velocity vector, n subdivisions are first created. Then, it is taken the mean value the parameters included in each subdivision. In our context, the reduction operation will be only used to estimate how efficient is our magnification procedure.

The duplication procedure consists of building a vector m ∈ R N using a small-size vector g ∈ R n with n < N . We first construct an empty vector m of size N , considering n subdivisions of indices [x i , x i+1 ]. Each subdivision contains around δ = [N/n] parameters and thus δ = x i+1 -x i and x i = (i -1)δ + 1. The n parameters of the velocity vector g are distributed over the n subdivisions. The value associated to each subdivision is then duplicated over the δ parameters of m assigned for that subdivision. The duplication procedure, as presented here, introduces a pixelization effect in the constructed vector m. A DCT can then be applied to improve the quality of the duplication and to remove the subdivision discontinuities.

A magnification procedure aims in general at removing noise or producing a less pixelated image. The most used smoothing algorithms are based on Gaussian smoothing [START_REF] Aditya | A comprehensive review of image smoothing techniques[END_REF], bilateral filters [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF], and sinusoidal based approaches [START_REF] Britanak | Discrete Cosine and Sine Transforms[END_REF]. As a smoothing procedure, we choose to work with a sinusoidal basis since it is one of the most popular subspace approaches for FWI to generate a smooth approximation vector using few coefficients [START_REF] Oldenburg | Generalized subspace methods for large-scale inverse problems[END_REF]. We will smooth the pixelization effect in the magnified vector using a DCT [START_REF] Britanak | Discrete Cosine and Sine Transforms[END_REF].

As we have seen before, when duplicating a velocity vector from a vector of smaller size, the value in each subdivision is constant and thus it can be seen as a mean of all the subdivision values. Such a property will be imposed as well on the magnified velocity vector m in the sense that it corresponds to a model m(•) such that

1 x i -x i+1 x i x i+1 m(x)dx = g(i), i = 1, . . . , n. (5) 
In turn, this velocity model m(•) is expressed using a discrete cosine basis in the following way:

m(x) = n j=1 a j cos (j -1)π N (x -1) , (6) 
where a = (a j ) 1≤j≤n ∈ R n . By incorporating the expression (6) into the equations ( 5), we can obtain the vector a by solving a linear system of the form

Ca = g, (7) 
where C ∈ R n×n is a matrix with the following coefficients:

C ij =    1 if j = 1, 2N (j-1)πδ cos π N (j -1)(i -1 2 )δ sin δπ 2N (j -1) otherwise.
The matrix C is nonsingular (see the proof in the appendix). The one-dimensional smoothed vector m is then built by evaluating ( 8) for all i ∈ {1, . . . , N }, which amounts to

m i = n j=1 a j cos (j -1)(i -1)π N ,
or, equivalently, to

m = M g, (8) 
where M = KC -1 ∈ R N ×n and K ∈ R N ×n is the matrix defined by K ij = cos( (j-1)(i-1)π

N

). Equation [START_REF] Billette | Velocity macro-model estimation from seismic reflection data by stereotomography[END_REF] shows that the magnification procedure corresponds to the application of a linear operator. The magnification cost is negligible compared to an objective function evaluation. In fact, the magnification is accomplished by first computing C -1 g ∈ R n and then multiplying it by K ∈ R N ×n , resulting in K(C -1 g) ∈ R N , while an evaluation of the objective function requires the solution of a larger linear system of size N × N with p multiple right-hand sides (see ( 2)).

Three-dimensional space reduction

A multi-dimensional transform (known as Fast Direct multi-dimensional DCT) can be carried out by using a composition of the one-dimensional magnification procedure along each dimension [START_REF] Britanak | Discrete Cosine and Sine Transforms[END_REF]. Equation [START_REF] Billette | Velocity macro-model estimation from seismic reflection data by stereotomography[END_REF] can then be immediately extended to 2D or 3D velocity models. A detailed description of the extension of equation ( 8) to higher dimensions is given in [START_REF] Britanak | Discrete Cosine and Sine Transforms[END_REF]. In the case of three-dimensional data, given a 3D velocity model G of n = n x × n y × n z parameters, we ought to build a magnified 3D velocity model m of size N = N x × N y × N z n parameters. The magnification procedure is obtained by applying (8) first to the x axis, then to y, and finally to z as follows (using Matlab notation):

V (:, :, k) = M x G(:, :, k), k = 1, . . . , n z , T (:, :, k) = V (:, :, k)M y , k = 1, . . . , n z , m(i, :, :) = T (i, :, :)M z , i = 1, . . . , N x ,
where M x ∈ R Nx×nx , M y ∈ R Ny×ny , and M z ∈ R Nz×nz are the one-dimensional smoothing matrices defined in (8) along the axes x, y, and z, respectively. 

Application to the SEG/EAGE salt dome velocity model

To illustrate numerically the performance of the three-dimensional approximation procedure, we have used the SEG/EAGE salt dome velocity model introduced in Section 2.3.

Figure 4 outlines three one-dimensional SEG/EAGE salt dome velocity profiles (with respect to the x, y, and z axes, respectively). Reduction procedures were then applied to these velocity profiles to create vectors for duplication and magnification. Following the x axis (resp. y axis), the velocity profile has been selected at the position y = 8.9 km and z = 2.5 km (resp. x = 8.9 km and z = 2.5 km). In both cases the reduced velocity vector is built using n = 8 parameters only, while N = 225 parameters are required for the true velocity vector. Following the z axis, the velocity profile (selected at the position x = 8.9 km and y = 8.9 km) is reduced using n = 5 parameters compared to the true N = 70 ones. From the results obtained, we observe that the smoothing effect of the DCT transform improves the quality of the duplicated velocity profiles as a representation of the original ones, and that the space reduction approach can work relatively well with a reduced number of parameters.

For the three dimensional case, we have found that the true velocity model can be relatively well approximated using n = 8 × 8 × 5 = 320 parameters instead of the original N = 225 × 225 × 70 = 3543750 ones, in the sense of still representing the main structure (i.e., the salt dome) of the true velocity model. Figure 5 outlines an illustration of the obtained results. As expected, the magnification procedure using DCT (see Figures 5(g)-5(i)) gives better results compared to the duplication procedure which is based on the step function transform (see Figures 5(d)-5(f)). Although we use only a few parameters to represent the velocity model, our smooth magnification procedure preserves the main specificity of the true model, in particular the salt dome.

A parallel ES for acoustic full-waveform inversion

In this section we start by briefly reviewing the existing methods to compute a satisfactory initial velocity model for seismic inversion. Then we explain how to apply ES's for this purpose when using the space reduction introduced before. A parallel implementation of the resulting ES's is also proposed.

Existing methods

The acoustic full-waveform inversion problem introduced in Section 2.2 is nonconvex, and thus its solution by optimization algorithms crucially depends on the starting velocity model m s . In fact, it is known that the inversion procedure converges to satisfactory results only if the starting velocity model is situated not far from a global minimizer [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. Hence, before applying the fullwaveform inversion, a starting model is generally built. To do this, the most common techniques are first-arrival travel-time tomography (FATT) [START_REF] Nolet | Seismic Tomography: With Applications in Global Seismology and Exploration Geophysics[END_REF], stereotomography [START_REF] Lambaré | [END_REF] or, more recently, inversion in the Laplace domain [START_REF] Shin | Waveform inversion in the Laplace domain[END_REF]. For many years, FATT has proven to be stable in generating smooth velocity models of the subsurface. Some examples of application of FWI to real data using a starting model built by FATT are described in [START_REF] Operto | Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai Trough[END_REF][START_REF] Ravaut | Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: Application to a thrust belt[END_REF]. Similarly, the stereotomography is regarded as one of the most promising methods for building a smooth velocity model. It exploits the arrival time of locally coherent events within an automatic procedure to select a seismogram collection [START_REF] Lambaré | [END_REF]. Some applications to synthetic and real data sets are shown in [START_REF] Billette | Practical aspects and applications of 2D stereotomography[END_REF][START_REF] Billette | Velocity macro-model estimation from seismic reflection data by stereotomography[END_REF]. Finally, the inversion in the Laplace domain can be viewed as a frequency domain inversion using a pure imaginary complex valued frequency that controls the time damping of the seismic wavefield. Applications of Laplace domain FWI to synthetic and real data are proposed in [START_REF] Shin | Waveform inversion in the Laplace domain[END_REF][START_REF] Shin | A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains[END_REF][START_REF] Shin | Laplace-domain full-waveform inversion of seismic data lacking low-frequency information[END_REF].

Evolution strategies and CMA-ES

Evolutions strategies are a class of evolutionary algorithms designed for the optimization of a possibly nonconvex function in a continuous domain without using derivatives. It has been originally developed in [START_REF] Rechenberg | Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution[END_REF] for the unconstrained optimization of a function, min v∈R n f (v), and has been extensively investigated and tested (see, e.g., [START_REF] Beyer | Evolution strategies: A comprehensive introduction[END_REF][START_REF] Hansen | Evolution strategies[END_REF] and the references therein). We are interested in a large class of ES's denoted by (µ, λ)-ES, with µ and λ integers such that 1 < µ ≤ λ, where a certain number λ of points are randomly generated in each iteration, among which µ of them are selected as the best in terms of the objective function f . CMA-ES [START_REF] Hansen | On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation[END_REF] (where CMA stands for Covariance Matrix Adaptation) is regarded as one of the best in the class (µ, λ)-ES in terms of numerical performance [START_REF] Auger | Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed[END_REF][START_REF] Auger | Experimental comparisons of derivative free optimization algorithms[END_REF][START_REF] Hansen | Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009[END_REF][START_REF] Rios | Derivative-free optimization: A review of algorithms and comparison of software implementations[END_REF]. More precisely, CMA-ES belongs to the ES family denoted by (µ/µ W , λ)-ES, where the subscript 'W' indicates the use of 'recombination' via weights. Broadly speaking, at iteration k, a candidate minimizer xk is used to produce a generation of λ 'offspring', each consisting of adding to xk a random direction multiplied by a parameter controlling the length or size of the steps; the best µ of these are retained as 'parents' in a 'selection', and xk+1 is taken as a weighted combination ('recombination') of these parents. The CMA component considers a Gaussian distribution of mean zero for the random generation of the directions and provides a scheme for updating the corresponding covariance matrix as well as the step length.

A modified CMA-ES

CMA-ES has exhibited robust performance for difficult ill-conditioned, non-separable, and highly multi-modal problems [START_REF] Auger | Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed[END_REF][START_REF] Auger | Experimental comparisons of derivative free optimization algorithms[END_REF][START_REF] Hansen | Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009[END_REF][START_REF] Rios | Derivative-free optimization: A review of algorithms and comparison of software implementations[END_REF]. Its main drawback is, however, that a large budget is required to provide outstanding results. Recently, the authors in [START_REF] Diouane | Globally convergent evolution strategies[END_REF] have proposed modifications to the class of algorithms in (µ/µ W , λ)-ES to make them enjoying a favorable convergence property and performing better for smaller budgets. The modifications have been essentially the imposition of a sufficient decrease on the objective function values to accept new iterates and the reduction of the step size when such a condition is not satisfied. Under such modifications, these ES's can converge globally (meaning independently of the starting point) for a first-order stationary point. Algorithm 1 shows an adaptation of the globally convergent ES's proposed in [START_REF] Diouane | Globally convergent evolution strategies[END_REF] to the context of full-waveform inversion.

The authors in [START_REF] Diouane | Globally convergent evolution strategies[END_REF] have proposed three different globally convergent ES versions named mean/mean, max/max, and max/mean. On a large data set of problems, the mean/mean version has performed numerically the best. However, the incorporation of the mean/mean sufficient decrease condition requires an extra objective function evaluation J (m trial k+1 ) at each iteration, where m trial k+1 is the trial mean parent computed as the mean of the best µ generated velocity models. The mean/mean version would therefore corrupt the parallel nature of ES's. In fact, if one supposes that the evaluation of J at the offspring is performed at the same time using synchronized parallel clusters, the mean parent evaluation J (m trial k+1 ) will force all these clusters to wait until the end of such an evaluation to be able to restart a new offspring generation. Alternatively, the max/max version has shown good performance (not as good as the mean/mean version) without the need of any extra objective function evaluation to impose the corresponding sufficient decrease condition. Consequently, we have adopted the max/max version in Algorithm 1.

We also note that the update of the weights to enforce the sufficient decrease condition, originally proposed in [START_REF] Diouane | Globally convergent evolution strategies[END_REF], has not been activated in our setting since we aim at the least amount of changes in the original ES's and since such an update did not seem to have a real impact on the results for the max/max version (see [START_REF] Diouane | Globally convergent evolution strategies[END_REF]).

Moreover, in the evaluation procedure of the objective function, one needs to satisfy the relation (3). Hence we have imposed a lower bound on the velocity equal to a known minimum value m min = 1500m/s (the velocity model value of the water). A maximum value on the velocity model of m max = 4500m/s has been also imposed to avoid propagation by meaningless velocity models. Both requirements were guaranteed by projecting the offspring models onto the feasible domain defined by the bounds, an approach that has been shown to be globally convergent in [START_REF] Diouane | Globally convergent evolution strategies for constrained optimization[END_REF]. Since there are no other constraints rather than simple bounds on the variables one can use the simple orthogonal 2 -projection.

Algorithm 1: An adaptation of the ES algorithm to FWI setting. Initialization: Choose positive integers λ and µ such that λ ≥ µ. Select an initial x0 ∈ R n , generate a velocity model m 0 ∈ R N (using the magnification procedure) and evaluate J (m 0 ). Choose initial step lengths σ 0 , σ ES 0 > 0 and initial weights (ω 1 0 , . . . , ω µ 0 ) in a simplex S. Let C 0 be a normal distribution with the identity matrix as covariance matrix. Choose the constants

β 1 , β 2 , d min , d max such that 0 < β 1 ≤ β 2 < 1 and 0 < d min < d max . Select a forcing function ρ(•). Set k = 0.
Until some stopping criterion is satisfied:

1. Generation of velocity models: Generate λ velocity models M k+1 = {m 1 , . . . , m λ k+1 } using the magnification procedure (imposing the bounds m min and m max by projection) based on the sample points

Y k+1 = {ȳ 1 k+1 , . . . , ȳλ k+1 } such that ȳi k+1 = xk + σ k d i k ,
where

d i k ∈ R n is drawn from the distribution C k and obeys d min ≤ d i k 2 ≤ d max , i = 1, . . . , λ.
2. Parent selection: Evaluate J (m i k+1 ), i = 1, . . . , λ, and reorder the offspring points in Y k+1 = {ỹ 1 k+1 , . . . , ỹλ k+1 } by increasing order:

J ( m1 k+1 ) ≤ • • • ≤ J ( mλ k+1
). Select the new parents as the best µ offspring sample points {ỹ 1 k+1 , . . . , ỹµ k+1 }.

3. Imposing sufficient decrease: 

If J ( mµ k+1 ) ≤ J (m µ k ) -ρ(σ k ),

A parallel implementation

The proposed ES implementation consists of a synchronized parallel optimizer composed of λ clusters (typically, the population size). Each cluster is composed of a group of processors, which is assigned to evaluate the objective function (4). At a given iteration k, the clusters are synchronized and not activated until the new mean parent m k+1 is defined, which in turn depends on the iteration state (successful or not). Figure 6 sketches in detail a given iteration of our proposed parallel implementation of Algorithm 1.

Figure 6: A graphical illustration for a given iteration of the parallel evolution strategy.

The proposed parallel implementation can be described as follows. In addition, at each iteration, λ clusters, represented in Figure 6 The wave propagation simulation related to each velocity model considers the p source terms (i.e., p right-hand sides) at once. The [Propagate m i ] component is based on MPI (Message Passing Interface) and is responsible for discretizing and generating the linear system related to the forward problem (see Section 2.1) and to provide the information needed to evaluate the objective function J given in (4). The last component will just return the value of the objective function to the unique master processor [Master]. Once the master processor has received results from the λ clusters, it will choose the best, decide whether the iteration is successful or not, and update the mean parent accordingly. The [Master] component updates also the ES parameters (e.g., the distribution and the step length) and repeats the loop until a convergence criterion is achieved.

The propagation in itself behaves as a black box process, hiding from the ES the complexity of the discretization and of the forward solver. Changing the discretization and/or forward solver parameters will not incur in any rewriting of the ES implementation. MPI-2 has been used with the MPI COMM SPAWN primitive which allows an MPI process to spawn a number of clusters. Each newly spawned cluster has a specific MPI COMM WORLD intracommunicator that allows us to launch easily the propagation simulations over a number of CPU cores. We note that the proposed ES implementation is portable and that the propagator itself can be a standalone client. When the available cluster number is less than λ, one can launch many propagation simulations on the same cluster until we obtain the needed function evaluations.

Numerical experiments

In this section we first describe the validation scenario and detail the parameters of the global optimization algorithm. Then we analyze the numerical results obtained for the inversion procedure at two frequencies. The numerical simulations have been performed on CURIE3 , a parallel cluster located at TGCC, France (two eight-cores Intel Sandy Bridge EP (E5-2680) at 2.7 GHz and 64 GB RAM per computing node with InfiniBand QDR Full Fat Tree interconnect) using a Fortran 2003 implementation with MPI in single precision arithmetic. The code has been compiled by the Intel ifort compiler suite with standard compiling options and linked with the MKL library. The numerical experiments have been performed on a fixed number of cores (2048, i.e., 128 computing nodes) with a maximal allowed elapsed computing time of 24 hours.

Problem and algorithm specifications

We have used a simple scenario where the p source terms are supposed to be Dirac functions and where the observed data d i obs (i.e. seismograms [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF]) are generated from the propagating velocity model that we are trying to invert (see Section 2.3). The p sources (with p = 16) are uniformly distributed in a survey plan located at 500 meters of depth (10% of the exploration depth).

In this scenario we consider the acoustic full waveform inversion procedure at two different frequencies (1 Hz and 2 Hz respectively) with only 320 parameters for the initial velocity model (see Section 3). Table 1 reports the dimensions N x ×N y ×N z of the forward problem in agreement with the stability condition (3), the number of clusters, as well as the population size λ versus the frequency. As the frequency increases, the number of cores dedicated to the objective function evaluation becomes larger. In fact, the forward problem gets more complicated to solve as far as the frequency f increases. The initial iterate x0 , for the parallel ES algorithm in the case of 1 Hz, is built using the magnification procedure based on two given velocity values (3000m/s and 1500m/s, distributed as follows 2 = 1 × 1 × 2). Both the nonlinearity and the ill-posedness of the FWI problem are in practice tackled in the frequency domain using a multi-scale approach where one starts the inversion procedure in a low frequency range to mitigate the nonlinearity of the inversion, and then incorporate progressively higher frequencies [START_REF] Sirgue | The importance of low frequency and large offset in waveform inversion[END_REF][START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF]. Hence the velocity model solution obtained in the case of 1 Hz will serve as a warm-starting point for the 2 Hz case.

In the context of CMA-ES, the choice λ = floor(4 + 3 log(n)) (where floor(•) rounds to the nearest integer no larger than the number given) has been shown to provide a good compromise between quality of the solution found and effort in determining it (see [START_REF] Hansen | The CMA Evolution Strategy: A tutorial[END_REF]). However, given the strong need for global exploration at 1 Hz, we have chosen an even larger value, equal to λ = 512, to better take advantage of the number of cores and cores per cluster, as we explain next. Since doubling the frequency doubles the number of discretization points in each direction, the number of cores per cluster is multiplied by at least a factor of eight when considering the case of 2 Hz. A factor of 16 has been retained in these numerical experiments. Given that the total number of cores is fixed to 2048 in both experiments, we note that the number of clusters at 2 Hz is reduced from 2048/8 = 256 to 2048/128 = 16. Since the population size λ is chosen as twice the number of available clusters, we had to run two evaluations on the same cluster to get the entire offspring population (for both frequencies).

Frequency The parameters of the optimization algorithm are chosen similarly to those of CMA-ES for unconstrained optimization (see [START_REF] Hansen | The CMA Evolution Strategy: A tutorial[END_REF]): µ = floor(λ/2) and

ω i 0 = a i /(a 1 + • • • + a µ ) with a i = log(λ/2 + 1/2) -log(i), i = 1, . . . , µ.
The choices of the distribution C k and of the update of σ ES k also followed CMA-ES for unconstrained optimization (see [START_REF] Hansen | The CMA Evolution Strategy: A tutorial[END_REF]). The selected forcing function was ρ(σ) = 10 -4 σ 2 . To reduce the step length in unsuccessful iterations we have used σ k+1 = 0.5σ k which corresponds to set β 1 = β 2 = 0.5. Finally, the initial step size σ 0 is set to half of the difference between the velocity value on the bottom and the one on the top, given (in SEG/EAGE salt dome velocity model) by 3000 m/s and 1500 m/s, respectively.

Numerical results for full-waveform inversion

Figure 7 reports a graphical representation of the inverted velocity model at 1 Hz. These numerical results are found to be satisfactory since a smooth version of the true velocity model is obtained. We can indeed consider that we are able to invert the general structure of the regarded velocity model, since in particular the salt dome structure is recovered. We also remark that such a model can be considered as a good starting point when using gradient based methods [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF].

Figure 9(a) depicts the values of the objective function at the best population point at each iteration for the case 1 Hz. The variation of the objective function is more significant only at the early stages of the inversion process. Such a behavior is due to the sufficient decrease condition which monitors the quality of the sampling procedure. We note that the objective function value decreases from 2042.113 to 575.8082, and that after 278 iterations the inversion procedure is stopped due to the maximal elapsed computational time.

Figure 8 shows the results obtained for f = 2 Hz. Even though the optimization procedure is started from the inverted velocity model obtained at 1 Hz, we note that the inversion result is getting less accurate and rather far from being a good approximation of the targeted velocity model. Figure 9(b) shows that the optimization procedure is converging to a fixed velocity model with an objective function value of 123.2841 after 1220 iterations. Unlike the 1 Hz case, this plot at 2 Hz indicates that the inversion process is getting stacked at a local minimum. The explanation of such results is that the objective function becomes more and more noisy and multi-modal as far as the frequency increases [START_REF] Sirgue | The importance of low frequency and large offset in waveform inversion[END_REF]. A possible way to overcome such a difficulty is to increase the population size of the ES in order to encourage the global exploration.

Conclusions

In this paper we have presented a numerical method based on evolution strategies for the solution of the acoustic full-waveform inversion problem arising in Earth imaging in geophysics. Considering that each parameter in the velocity model to be inverted is an additional variable to optimize, we have proposed a new parametrization of the problem, reducing the number of parameters needed to faithfully representing the velocity models. We have illustrated the efficiency of our parametrization on the public domain SEG/EAGE salt dome velocity model, where we were able to reconstruct a rather satisfactory approximation using very few parameters.

We have then adapted the chosen ES's to a reduction of the original space, in particular to the full-waveform inversion setting when using reduced parameterized velocity models. The main purpose of the incorporation of ES's in the inversion procedure is to find a good starting velocity model without the need of sophisticated a priori knowledge on the background velocity model.

Given the high cost of the problem function evaluations, a highly parallel scheme for such ES's has been derived and validated on parallel distributed memory platforms. The parallel implementation has been tested in combination with the new model parametrization. The obtained numerical results have shown that a great improvement can be obtained in the automation of the inversion procedure.

The testing scenario used for the acoustic full-waveform inversion problem is a simple one where the source excitations are known and the observed data (i.e. seismograms) is generated using the propagating velocity model which we are trying to invert. We note that such a scenario is not truly realistic for the following two reasons: (a) the source excitation is generally unknown and must be rather included as an unknown of the problem, and (b) the observed data is generally given by geophones located at the surface of the exploration domain. Thus, a more realistic test case has to be investigated in the future to fully understand the potential of the proposed approach.

Finally we remark that our model reduction procedure can certainly be generalized to cover other fields of applications. Similarly, the developed parallel approach can also be applied to other optimization problems in geosciences (e.g. well placement in reservoir modeling or analysis of permeability of rocks in petrophysics).

Figure 1 :

 1 Figure 1: Acoustic waves propagated by a source are reflected by a reflective layer (in white) and are detected by the geophones. The reflective layer represents a salt dome in this example.

Figure 2 :

 2 Figure 2: 3D SEG/EAGE salt dome velocity model: problem geometry with velocity distribution (left) and real part of numerical solution at 12 Hz (right). Figures from [26, Chapter 4].

  (a) The full velocity model. (b) A vertical section in the plane y = 10 km. (c) An horizontal section in the plane z = 2.5 km. (d) The salt dome.

Figure 3 :

 3 Figure 3: Visualization of the 3D SEG/EAGE salt dome velocity model using ParaView [24]. The geophysical domain is of size 20 × 20 × 5 km 3 . The seismic waves propagate in water and in the salt dome at the minimal and maximal velocities of 1500 m/s and 4418 m/s, respectively. The occurrence of a salt dome in the subsurface of Earth abruptly increases the velocity of propagation of the waves.

  model the duplicated velocity model (a) The duplication procedure following x axis.

  model the magnified velocity model (b) The magnification procedure following x axis.

  model the true velocity model the duplicated velocity model (c) The duplication procedure following y axis.

  model the true velocity model the magnified velocity model (d) The magnification procedure following y axis.

  model the duplicated velocity model (e) The duplication procedure following z axis.

  model the magnified velocity model (f) The magnification procedure following z axis.
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 4 Figure 4: Illustration using 1D SEG/EAGE salt dome velocity profiles.

  (a) True model. (b) A vertical slice (y = 10 km). (c) An horizontal slice (z = 2.5 km). (d) Duplicated model. (e) A vertical slice (y = 10 km). (f) An horizontal slice (z = 2.5 km). (g) Magnified model. (h) A vertical slice (y = 10 km). (i) An horizontal slice (z = 2.5 km).
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 5 Figure 5: 3D duplicated and magnified models of the SEG/EAGE salt dome velocity model. The velocity models are built using n = 8 × 8 × 5 = 320 parameters, while N = 225 × 225 × 70 = 3543750 parameters are required for the true velocity model.
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 4 then consider the iteration successful. Compute the weighted mean of the new parents xtrial Magnify xtrial k+1 to obtain the velocity model m trial k+1 . Set xk+1 = xtrial k+1 , m k+1 = m trial k+1 , and σ k+1 ≥ σ k (for example σ k+1 = max{σ k , σ ES k }). Set also m µ k+1 = mµ k+1 . Otherwise, consider the iteration unsuccessful, set xk+1 = xk , m k+1 = m k and σ k+1 = βk σ k , with βk ∈ (β 1 , β 2 ). Set m µ k+1 = m µ k . ES updates: Update the ES step length σ ES k+1 , the distribution C k , and the weights (ω 1 k+1 , . . . , ω µ k+1 ) ∈ S. Increment k and return to Step 1.

  by the components [Generate m i ], are launched in a synchronous manner. Each of these clusters generates a reduced velocity model based on the ES parameters and strategies. Once the velocity model is generated, the related cluster evokes the component [Propagate m i ].

  (a) The inverted model. (b) A vertical slice (y = 10 km).(c) An horizontal slice (z = 2.5 km).
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 7 Figure 7: Inversion results for the salt dome velocity model using n = 320 parameters. The 1 Hz case.
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 a The inverted model. (b) A vertical slice (y = 10 km).(c) An horizontal slice (z = 2.5 km).
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 8 Figure 8: Inversion results for the salt dome velocity model using n = 320 parameters. The 2 Hz case.
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 9 Figure 9: Objective function values at the best population point during the application of Algorithm 1 for FWI.

Table 1 :

 1 N x × N y × N z Number of clusters The distribution of the clusters and the population size versus frequency.
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Appendix

Theorem 6.1 Given n ∈ N, N ∈ N with n < N and δ = [N/n], the coefficient matrix C ∈ R n×n defined as

is nonsingular. (Note that for j = 1 we have used the convention sin(0)/0 = 1, i.e., C i1 = 1.)

Proof.

A direct calculation shows that

where M ∈ R n×n is defined as

2 )δ). The nonsingularity of M can be deduced from the properties of DCT-III [START_REF] Britanak | Discrete Cosine and Sine Transforms[END_REF].