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In this article, we consider a multiphasic incompressible fluid model, called the Kazhikhov-Smagulov model, with a specific stress tensor which depends on density derivatives, introduced by Korteweg. We establish the existence of global weak solution to this model in a 3D bounded domain.

RÉSUMÉ. Dans cet article, nous considérons un modèle de fluide incompressible multiphasique, appelé modèle de Kazhikhov-Smagulov, avec un tenseur de contraintes spécifique qui dépend des dérivées d'ordre élevé de la densité, introduit par Korteweg. Nous établissons l'existence d'une solution faible globale pour ce modèle dans un domaine borné en 3D.

Introduction

We are concerned with systems of PDEs describing the evolution of mixture flows.

Let Ω be a bounded open set in R 3 with boundary Γ that is regular enough and let n be the outwards unit normal on the boundary Γ. We denote by [0, T ] the time interval, for T > 0. The mixture of two fluids is described by the density ρ(t, x) ≥ 0, the velocity field v(t, x) ∈ R 3 and the pressure p(t, x), depending on the time and space variables (t, x) ∈ [0, T ] × Ω. According to [START_REF] Dunn | On the thermomechanics of interstitial working[END_REF][START_REF] Galdi | Mathematical problems for miscible, incompressible fluids with Korteweg stresses[END_REF][START_REF] Joseph | Fluid dynamics of two miscible liquids with diffusion and gradient stresses[END_REF], we consider the Korteweg equations for generalized incompressible fluids whose density and volume change with the concentration φ(t, x) ≥ 0 and eventually the temperature, but not with pressure. In general, the velocity field v of such incompressible fluids is not solenoidal, div v = 0. Assuming that each fluid is incompressible, the mass density is conserved in the absence of diffusion. The theory of Korteweg, introduced in [START_REF] Korteweg | Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité[END_REF], considers the possibility that stresses are induced by gradients of concentration and density in a slow process of diffusion of incompressible miscible liquids. Such stresses could be important in regions of high gradients and they mimic the surface tension.

In order to model the fluid capillarity effects, Korteweg introduced in the usual compressible fluid model a specific stress tensor which depends on density derivatives. Following the rigorous formulation presented in [START_REF] Dunn | On the thermomechanics of interstitial working[END_REF] (see also [START_REF] Bresch | On some compressible fluid models: Korteweg, lubrication and shallow water systems[END_REF]) and neglecting thermal fluctuations, the model reads

∂ t ρ + div (ρv) = 0, ∂ t (ρv) + div (ρv ⊗ v) = ρg + div (S + K), (1) 
where g stands for the gravity acceleration (but it can include further external forces). The viscous stress tensor S and the Korteweg stress tensor K are given by :

S = (ν div v -p)I + 2µD(v), K = (α∆ρ + β|∇ρ| 2 )I + δ(∇ρ ⊗ ∇ρ) + γD 2 x ρ, (2) 
where D(v) = (∇v + ∇v T )/2 is the strain tensor and D 2 x ρ is the hessian matrix of the density ρ. Here, the pressure p and the coefficients α, β, γ, δ, µ and ν are functions of ρ. The special case

α = κρ, β = κ 2 , δ = -κ, γ = 0,
for some constant κ > 0, corresponds precisely to Korteweg's original assumptions connected with the variational theory of Van Der Waals. In this case, the Korteweg stress tensor yields

K = κ 2 (∆ρ 2 -|∇ρ| 2 )I -κ(∇ρ ⊗ ∇ρ). (3) 
Writing div K = κρ∇(∆ρ) = κ∇(ρ∆ρ) -κ∇ρ∆ρ, (4) 
and incorporating ∇(ρ∆ρ) in the pressure term, we obtain -κ∇ρ∆ρ as a right hand side term in the momentum equation. The Korteweg's theory can be applied to processes of slow diffusion on miscible incompressible fluids, for example, water and glycerin. The two fluids are characterized by their reference mass density : ρ1 the density of the dilute phase and ρ2 the density of the dense phase. We need the velocity field of each constituent : v 1 (t, x) and v 2 (t, x), respectively. We define the volume fraction of the dilute phase 0 ≤ φ(t, x) ≤ 1 :

φ(t, x) = lim r→0
Volume occupied at time t by the dilute phase in B(x, r)

|B(x, r)| .

Then, admitting that each fluid is incompressible and keeping a constant mass density, the density of the mixture is defined by

ρ(t, x) = ρ2 1 -φ(t, x) :=ρ2(t,x) + ρ1 φ(t, x) :=ρ1(t,x) = ρ2 + (ρ 1 -ρ2 )φ(t, x).
Writing the mass conservation for the two phases, we obtain

∂ t ρ + div (ρv) = 0, with ρv(t, x) = (ρ 2 v 2 + ρ 1 v 1 )(t,
x) presents the mean mass velocity v(t, x), which is not divergence free, div v = 0. Moreover, we define the mean volume velocity

u(t, x) = 1 -φ(t, x) v 2 (t, x) + φ(t, x)v 1 (t, x).
Applying the definitions, we verify that the velocity field u is solenoidal (div u = 0). According to Kazhikhov and Smagulov [START_REF] Kazhikhov | The correctness of boundary value problems in a diffusion model of an inhomogeneous fluid[END_REF], we consider the following non-standard constraint associated to the pressure p :

div v = -div (λ∇ ln(ρ)), (5) 
where λ > 0 is a diffusion coefficient. This Fick's law (5) describes the diffusive fluxes of one fluid into the other, see also [START_REF] Calgaro | Modeling and simulation of mixture flows: Application to powder-snow avalanches[END_REF]. Obviously, when we set

v = u -λ∇ ln(ρ), (6) 
the relation yields [START_REF] Calgaro | Modeling and simulation of mixture flows: Application to powder-snow avalanches[END_REF]. The mixture density ρ verifies the mass conservation and we obtain

∂ t ρ + div (ρu) = div (λ∇ρ). (7) 
For the momentum equation (1) 2 , we start by developing each term using the relation [START_REF] Calgaro | On the global existence of weak solution for a multiphasic incompressible fluid model with Korteweg stress[END_REF], in order to eliminate v. After some calculations and using (4), we get

∂ t ρu + div ρu ⊗ u -λ div ∇ρ ⊗ u -λ div u ⊗ ∇ρ + λ∇ u • ∇ρ + λ div 2µD 2 x ln(ρ) -div 2µD(u) + ∇p -λ 2 ∇∆ρ -div ∇ρ ⊗ ∇ρ ρ = ρg + κ∇(ρ∆ρ) -κ∇ρ∆ρ. (8) 
Choosing the dynamic viscosity µ constant, as in [START_REF] Franchi | A comparison of Graffi and Kazhikov-Smagulov models for top heavy pollution instability[END_REF], we have div 2µD(u) = µ∆u and div 2µD 2

x ln(ρ) = 2µ∇∆ ln(ρ). Including all the gradient terms in the modified pressure

P = p + λ(ν + 2µ)∆ ln(ρ) + λu • ∇ρ -λ 2 ∆ρ -κρ∆ρ.
Then, we obtain the Kazhikhov-Smagulov-Korteweg model in conservative form :

           ∂ t ρu + div ρu ⊗ u -λ div ∇ρ ⊗ u -λ div u ⊗ ∇ρ -µ∆u +∇P + λ 2 div ∇ρ ⊗ ∇ρ ρ = ρg -κ∇ρ∆ρ, ∂ t ρ + div ρu = λ∆ρ, div u = 0. (9) 
The tensorial product matrix of two vectors a = (a

i ) d i=1 , b = (b i ) d i=1 is denoted by a ⊗ b with coefficients (a ⊗ b) i,j = a i b j . Taking into account the equalities ∂ t ρu + div ρu ⊗ u -λ div ∇ρ ⊗ u = ρ∂ t u + ρ(u • ∇)u -λ(∇ρ • ∇)u, -λ div u ⊗ ∇ρ = -λ(u • ∇)∇ρ = -λ∇(u • ∇ρ) + λ div ρ∇u T . Then, denoting Q T = (0, T ) × Ω, Σ = (0, T ) × Γ, the Kazhikhov-Smagulov-Korteweg (KSK) model can be written in Q T as :              ρ ∂ t u + (u • ∇)u -λ(∇ρ • ∇)u + λ div ρ∇u T -µ∆u + ∇P +λ 2 div ∇ρ ⊗ ∇ρ ρ = ρg -κ∆ρ∇ρ, ∂ t ρ + div ρu = λ∆ρ, div u = 0. (10) 
The KSK model ( 10) is completed by the following boundary and initial conditions

u(t, x) = 0, ∂ρ ∂n (t, x) = 0, (t, x) ∈ Σ, (11) 
u(0, x) = u 0 (x), ρ(0, x) = ρ 0 (x), x ∈ Ω, (12) 
with the compatibility condition div u 0 = 0, where ρ 0 : Ω → R and u 0 : Ω → R 3 are given functions. Throughout this work, we assume the hypothesis

0 < m ≤ ρ 0 (x) ≤ M < +∞, x ∈ Ω. (13) 
Let us mention some known results about the Kazhikhov-Smagulov-Korteweg model, for κ = 0 and κ > 0. Without the Korteweg stress tensor (i.e. taking κ = 0), many authors treat the so-called Kazhikhov-Smagulov model. We can refer for instance to [START_REF] Antontsev | Boundary value problems in mechanics of nonhomogeneous fluids[END_REF][START_REF] Bresch | Effects of density dependent viscosities on multiphasic incompressible fluid models[END_REF][START_REF] Franchi | A comparison of Graffi and Kazhikov-Smagulov models for top heavy pollution instability[END_REF][START_REF] Kazhikhov | The correctness of boundary value problems in a diffusion model of an inhomogeneous fluid[END_REF] for the study of the simplified model without O(λ 2 ) terms, and to [START_REF] Beirão | Diffusion on viscous fluids. Existence and asymptotic properties of solutions[END_REF][START_REF] Secchi | On the motion of viscous fluids in the presence of diffusion[END_REF] for the study of the same problem with all the terms. In [START_REF] Cai | Global regularity for the initial value problem of a 2-D Kazhikhov-Smagulov type model[END_REF][START_REF] Cai | Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model[END_REF], the authors study a two-dimensional generalized Kazhikhov-Smagulov model. Taking κ > 0, the mathematical analysis in a three-dimensional domain of different types of Kazhikhov-Smagulov-Korteweg models, was carried in the recent works [START_REF] Ezzoug | Existence and asymptotic behavior of global regular solutions to a 3-D Kazhikhov-Smagulov model with Korteweg stress[END_REF][START_REF] Calgaro | On the global existence of weak solution for a multiphasic incompressible fluid model with Korteweg stress[END_REF]. In [START_REF] Ezzoug | Existence and asymptotic behavior of global regular solutions to a 3-D Kazhikhov-Smagulov model with Korteweg stress[END_REF], the authors consider the same KSK model [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF], and they prove the existence of a unique global in time regular solution for small initial data and external forces. Also, if g = 0, they study the longtime behavior of the solution and show that it converges to the equilibrium solution with zero velocity field. In [START_REF] Calgaro | On the global existence of weak solution for a multiphasic incompressible fluid model with Korteweg stress[END_REF], the equation (10) 1 is replaced by:

ρ ∂u ∂t +(u•∇)u -λ(∇ρ•∇)u - λ 2 div ρ∇u-ρ∇u T +∇P = ρ g -κ ∆ρ∇ρ. ( 14 
)
Following [START_REF] Bresch | Effects of density dependent viscosities on multiphasic incompressible fluid models[END_REF], we have chosen a particular relation between the linear dynamic viscosity µ = µ 0 ρ and the mass diffusion coefficient λ = 2µ 0 , in order to remove the O(λ 2 ) terms in [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF] 1 . Then, we prove the global existence of weak solution of the problem ( 14)-(10) 2 -(10) 3 for arbitrary initial data and external forces, and without any assumption on the diffusivity λ.

The paper is organized as follows. In Section 2 we present the main results about [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF]. After some preliminary results recalled in Section 3, the proof of existence of global weak solution for [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF] is given in Section 4. The conclusions are summarized in Section 5.

Functional setup and main results

Let us introduce the following functional spaces (see [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF][START_REF] Temam | Navier-Stokes equations, theory and numerical analysis[END_REF] for their properties):

V = u ∈ D(Ω) 3 : div u = 0 in Ω , V = u ∈ H 1 0 (Ω) : div u = 0 in Ω , H = u ∈ L 2 (Ω) : div u = 0 in Ω, u • n = 0 on Γ , H s N = ρ ∈ H s (Ω) : ∂ρ ∂n = 0 on Γ, Ω ρ(x) dx = Ω ρ 0 (x) dx , s ≥ 2.
The spaces V and H are the closures of V in H 1 0 (Ω) and L 2 (Ω), respectively. Let us recall the definition of weak solution for the KSK model [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF]. Such class of solutions can be found in [START_REF] Bresch | Effects of density dependent viscosities on multiphasic incompressible fluid models[END_REF] for Kazhikhov-Smagulov type models and in [START_REF] Temam | Navier-Stokes equations, theory and numerical analysis[END_REF] for the incompressible Navier-Stokes equations. Definition 2.1 A pair of functions (u, ρ) is called a weak solution of problem [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF], [START_REF] Ezzoug | Existence and asymptotic behavior of global regular solutions to a 3-D Kazhikhov-Smagulov model with Korteweg stress[END_REF], [START_REF] Feireisl | On the existence of globally defined weak solutions to the Navier-Stokes equations[END_REF] on Ω if and only if the following assumptions are satisfied :

1) u ∈ L ∞ 0, T ; H ∩ L 2 0, T ; V , ρ ∈ L ∞ 0, T ; H 1 (Ω) ∩ L 2 0, T ; H 2 N and 0 < m ≤ ρ(t, x) ≤ M < +∞, a.e. (t, x) ∈ Q T .
2) For all φ ∈ C 1 [0, T ]; V such that φ(T, .) = 0, one has :

T 0 -u, ρ∂ t φ + (ρu -λ∇ρ) • ∇ φ + µ ∇u, ∇φ -λ ρ∇u T , ∇φ dt -λ 2 T 0 1 ρ ∇ρ ⊗ ∇ρ, ∇φ dt = T 0 ρg -κ∆ρ∇ρ, φ dt + ρ 0 u 0 , φ(0) . (15) 
3) For all ϕ ∈ C 1 [0, T ]; H 1 (Ω) such that ϕ(T, .) = 0, one has :

T 0 u • ∇ρ, ϕ + λ ∇ρ, ∇ϕ -ρ, ∂ t ϕ dt = ρ 0 , ϕ(0) . (16) 
REMARK. -The pressure P associated with the weak solution (u, ρ) can be obtained using [START_REF] Joseph | Fluid dynamics of two miscible liquids with diffusion and gradient stresses[END_REF] and the Rham's lemma [START_REF] Temam | Navier-Stokes equations, theory and numerical analysis[END_REF].

We present the aim of this work about the Kazhikhov-Smagulov-Korteweg model [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF]. Under some assumption on the coefficients λ, µ, κ, we prove via a Faedo-Galerkin method, the global existence of weak solution of [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF] for arbitrary initial data and external force field. Our main result reads :

Theorem 2.2 Let u 0 ∈ H, ρ 0 ∈ H 1 (Ω) satisfy (13), T > 0 and g ∈ L 2 0, T ; L 2 (Ω) . If λ µ max(1, λ 2 κ
) is sufficiently small, then there exists a weak solution (u, ρ) of [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF] global

in time such that u ∈ L ∞ 0, T ; H ∩ L 2 0, T ; V , ρ ∈ L ∞ 0, T ; H 1 (Ω) ∩ L 2 0, T ; H 2
N , with finite and uniformly bounded energy such that ∀t ≤ T,

ρ(t)u(t) 2 L 2 (Ω) +κ ∇ρ(t) 2 L 2 (Ω) + t 0 µ 2 ∇u(s) 2 L 2 (Ω) +κλ ∆ρ(s) 2 L 2 (Ω) ds ≤ √ ρ 0 u 0 2 L 2 (Ω) +κ ∇ρ 0 2 L 2 (Ω) + CM 2 µ T 0 g(s) 2 L 2 (Ω) ds.

Preliminary results

To prove the main result of this article, Theorem 2.2, we need some useful results concerning the density ρ which verifies the convection-diffusion equation. For detailed proofs of these results, we refer the readers to [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF]. Given the initial density ρ 0 and the velocity field u, we find the density ρ as solution of the following Neumann problem :

       ∂ t ρ + u • ∇ρ = λ ∆ρ in Q T , ρ(0, x) = ρ 0 (x) in Ω, ∂ρ ∂n = 0 on Σ. (17) 
The density ρ satisfies the maximum principle. This result is classical (see [START_REF] Bresch | Effects of density dependent viscosities on multiphasic incompressible fluid models[END_REF]).

Proposition 3.1 If (u, ρ) is a weak solution of (10), then

0 < m ≤ ρ(t, x) ≤ M < +∞ a.e. (t, x) ∈ Q T . ( 18 
)
Proposition 3.2 Let ρ 0 ∈ H 1 (Ω) verify ( 13) and u ∈ C [0, T ]; V ∩ H 2 (Ω) . Then there exists a unique solution ρ of ( 17) such that

ρ ∈ L ∞ 0, T ; H 1 (Ω) ∩ L 2 0, T ; H 2 N .
Moreover, we have

sup 0≤t≤T ρ(t) 2 L 2 (Ω) ≤ ρ 0 2 H 1 (Ω) , (19) 
T 0 ∇ρ(t) 2 L 2 (Ω) dt ≤ 1 2λ ρ 0 2 H 1 (Ω) , (20) 
sup 0≤t≤T ∇ρ(t) 2 L 2 (Ω) ≤ C λ ρ 0 2 H 1 (Ω) 1 + sup 0≤t≤T u(t) 2 L ∞ (Ω) , (21) 
T 0 ∆ρ(t) 2 L 2 (Ω) dt ≤ C λ λ ρ 0 2 H 1 (Ω) 1 + sup 0≤t≤T u(t) 2 L ∞ (Ω) , (22) 
where C λ is a positive constant depending only on λ.

Given ρ 0 ∈ H 1 (Ω) satisfying ( 13) and u ∈ C [0, T ]; V ∩ H 2 (Ω) , let ρ the solution obtained by Proposition 3.2. Therefore, it is clear that the following map is well defined

S : C [0, T ]; V ∩ H 2 (Ω) -→ L ∞ 0, T ; H 1 (Ω) ∩ L 2 0, T ; H 2 N , such that ρ = Su is well defined. Proposition 3.3 Let ρ 0 ∈ H 1 (Ω) verify (13) and u 1 , u 2 ∈ C [0, T ]; V ∩ H 2 (Ω) . Set ρ = ρ 1 -ρ 2 = Su 1 -Su 2 and u = u 1 -u 2 ,
we have the following estimates :

sup 0≤t≤T ρ(t) 2 L 2 (Ω) +λ T 0 ∇ρ(t) 2 L 2 (Ω) dt ≤ M 2 λ T sup 0≤t≤T u(t) 2 L 2 (Ω) , ( 23 
)
sup 0≤t≤T ∇ρ(t) 2 L 2 (Ω) + λ T 0 ∆ρ(t) 2 L 2 (Ω) dt ≤ 2T λ sup 0≤t≤T ∇ρ 1 2 L 2 (Ω) sup 0≤t≤T u 2 L ∞ (Ω) + 2M 2 T λ 3 sup 0≤t≤T u 2 2 L ∞ (Ω) sup 0≤t≤T u 2 L 2 (Ω) . (24) 
We recall that there exists an orthonormal basis of L 2 (Ω) defined by

ω k ∈ V ∩ H 2 (Ω) -P∆ω k = λ k ω k on Ω,
where P is the orthogonal projection operator of L 2 (Ω) onto H. For any n ∈ N * , we define by X n the finite dimensional subspace of H such that

X n = Vect{ω k , k = 1, . . . , n},
and we consider the orthogonal projection

P n : L 2 (Ω) → X n defined by ∀w ∈ H, P n w, v = w, v , ∀v ∈ X n . (25) 
As in [START_REF] Feireisl | On the existence of globally defined weak solutions to the Navier-Stokes equations[END_REF], we introduce a family of operators M[ρ] : X n -→ X n defined by

M[ρ]v, ω = Ω ρ v • ω dx for all v, ω ∈ X n . ( 26 
) If ρ ∈ L ∞ (Ω), then M[ρ] is well defined. Moreover, let m > 0, we set D = ρ ∈ L ∞ (Ω); ρ(x) ≥ m > 0 . Proposition 3.4 M[ρ]
is one-to-one and its inverse verifies

M[ρ] -1 L(Xn,Xn) ≤ inf x∈Ω ρ(x) -1 ∀ρ ∈ D, (27) 
M[ρ 1 ] -1 -M[ρ 2 ] -1 L(Xn,Xn) ≤ C n m 2 ρ 1 -ρ 2 L 2 (Ω) ∀ρ 1 , ρ 2 ∈ D, ( 28 
)
where C n is a constant depending on the dimension of the space X n . Thanks to Proposition 4.1, we verify that Ψ is a contraction mapping on B Tn R and we conclude the existence of a unique fixed point of Ψ. It is clear that u n the fixed point of Ψ, obtained in Proposition 4.2, implies that (u n , ρ n = Su n ) is a local solution of the Galerkin approximate problem (29). Now, we will prove that this local solution is in fact a global one. For this, we establish some uniform estimates for (u n , ρ n ) with respect to time.

Proposition 4.3 If λ µ max(1, λ 2 κ
) small enough, there exists a constant C > 0 depending on ρ 0 , u 0 , g, M, µ, κ, such that for all t ∈ [0, T n )

m u n (t) 2 L 2 (Ω) + µ 2 t 0 ∇u n (s) 2 L 2 (Ω) ds ≤ C, (35) 
κ ∇ρ n (t) 2 L 2 (Ω) + κλ t 0 ∆ρ n (s) 2 L 2 (Ω) ds ≤ C. (36) 
Proof. First, we take v = u n (t) in (29) 1 :

1 2 d dt Ω ρ n |u n | 2 dx + µ ∇u n 2 L 2 (Ω) = λ 2 Ω ∇ρ n ⊗ ∇ρ n ρ n : ∇u n dx + λ Ω ρ n ∇u T n : ∇u n dx + Ω ρ n g • u n dx -κ Ω ∆ρ n ∇ρ n • u n dx. (37) 
Second, by (29) 2 , we have

∂ t ρ n -λ∆ρ n = -u n • ∇ρ n , in the distribution sens on Q T . (38) 
Since

(u n , ρ n ) ∈ C [0, T n ]; X n × L ∞ 0, T n ; H 1 (Ω) ∩ L 2 0, T n ; H 2 N , we deduce that ∂ t ρ n ∈ L 2 0, T n ; L 2 (Ω) .
Multiplying (38) by -κ∆ρ n (t) and after integration by parts, we obtain

κ 2 d dt ∇ρ n 2 L 2 (Ω) + κ λ ∆ρ n 2 L 2 (Ω) = κ Ω ∆ρ n u n • ∇ρ n dx. (39) 
By adding (37) and (39), we get

d dt √ ρ n u n 2 L 2 (Ω) +κ ∇ρ n 2 L 2 (Ω) + 2µ ∇u n 2 L 2 (Ω) +2κλ ∆ρ n 2 L 2 (Ω) = 2λ Ω ρ n ∇u T n : ∇u n dx + 2λ 2 Ω ∇ρ n ⊗ ∇ρ n ρ n : ∇u n dx + 2 Ω ρ n g • u n dx.
Then, thanks to Proposition 3.1, and the Hölder, Poincaré and Young inequalities, we find

λ Ω ρ n ∇u T n : ∇u n dx ≤ λM ∇u n 2 L 2 (Ω) , 2λ 2 Ω ∇ρ n ⊗ ∇ρ n ρ n : ∇u n dx ≤ κλ ∆ρ n 2 L 2 (Ω) + C 2 λ 3 κ ∇u n 2 L 2 (Ω) , 2 Ω ρ n g • u n dx ≤ µ ∇u n 2 L 2 (Ω) + CM 2 µ g 2 L 2 (Ω) .
Finally, we obtain for each t ∈ [0, T n )

d dt √ ρ n u n 2 L 2 (Ω) +κ ∇ρ n 2 L 2 (Ω) + 1 -C 1 λ µ -C 2 λ 3 κµ µ ∇u n 2 L 2 (Ω) + κλ ∆ρ n 2 L 2 (Ω) ≤ CM 2 µ g 2 L 2 (Ω) . For λ µ max(1, λ 2 κ ) small enough such that C 1 λ µ + C 2 λ 3 κµ ≤ 1 2
, we get

d dt √ ρ n u n 2 L 2 (Ω) + κ ∇ρ n 2 L 2 (Ω) + µ 2 ∇u n 2 L 2 (Ω) + κλ ∆ρ n 2 L 2 (Ω) ≤ CM 2 µ g 2 L 2 (Ω) .
Evidently, thanks to the previous Proposition 4.3, we have the following :

Corollary 4.4 (u n , ρ n ) is a global solution of (29) and for all T > 0,

(u n ) n is bounded in L ∞ 0, T ; H ∩ L 2 0, T ; V , ( 40 
) (ρ n ) n is bounded in L ∞ 0, T ; H 1 (Ω) ∩ L 2 0, T ; H 2 N .
(41)

Uniform estimates for time derivatives

In this section, we establish uniform estimates for time derivatives ∂ t ρ n and ∂ t u n .

Proposition 4.5 Let T > 0. The sequence

(∂ t ρ n ) n is bounded in L 4/3 0, T ; L 2 (Ω) .
Proof. Taking the L 2 -norm of ∂ t ρ n . Applying the Hölder and Gagliardo-Nirenberg inequalities and the inequality :

∇ρ L 4 (Ω) ≤ C 0 ρ 1/2 L ∞ (Ω) ∆ρ 1/2 L 2 (Ω) , we get ∂ t ρ n L 2 (Ω) ≤ λ ∆ρ n L 2 (Ω) + C u n 1/4 L 2 (Ω) ∇u n 3/4 L 2 (Ω) ρ n 1/2 L ∞ (Ω) ∆ρ n 1/2 L 2 (Ω)
. By the uniform estimate (35) and ( 18), we get

∂ t ρ n L 2 (Ω) ≤ λ ∆ρ n L 2 (Ω) + C ∇u n 3/4 L 2 (Ω) ∆ρ n 1/2 L 2 (Ω) . (42) 
Next, applying the Young inequality ab ≤ 1 2 (a 2 + b 2 ) in (42), we get

∂ t ρ n L 2 (Ω) ≤ λ ∆ρ n L 2 (Ω) + C ∇u n 3/2
L 2 (Ω) . Thanks to the uniform time estimates (35) and (36), we deduce that ∂ t ρ n L 2 (Ω) is bounded in L 4/3 0, T . Now, by following [START_REF] Bresch | Effects of density dependent viscosities on multiphasic incompressible fluid models[END_REF], we establish an estimation of the fractional time derivative of u n .

Proposition 4.6 Let 0 < δ < T such that T -δ 0 u n (t + δ) -u n (t) 2 L 2 (Ω) dt ≤ C δ 1 4 , (43) 
where C a constant independent of n and δ.

Proof. For all functions φ ∈ X T , the approximate solution (u n , ρ n ) verifies :

d dτ Ω ρ n u n • φ dx - Ω ρ n u n • ∂φ ∂τ dx - Ω ρ n (u n • ∇)φ • u n dx + µ Ω ∇u n : ∇φ dx + λ Ω (∇ρ n • ∇)φ • u n dx -λ Ω ρ n ∇u T n : ∇φ dx -λ 2 Ω ∇ρ n ⊗ ∇ρ n ρ n : ∇φ dx = Ω ρ n g • φ dx -κ Ω ∆ρ n ∇ρ n • φ dx. (44) 
Integrating (44) with respect to τ between t and t + δ, and taking φ = u n (t + δ)u n (t)

Ω ρ n (t + δ) u n (t + δ) -ρ n (t) u n (t) u n (t + δ) -u n (t) dx = t+δ t Ω ρ n (τ ) g(τ ) -κ ∆ρ n (τ ) ∇ρ n (τ ) • u n (t + δ) -u n (t) dx dτ + t+δ t Ω ρ n (τ )u n (τ ) -λ∇ρ n (τ ) • ∇ u n (t + δ) -u n (t) • u n (τ ) dx dτ - t+δ t Ω µ ∇u n (τ ) -λ ρ n (τ )∇u T n (τ ) : ∇ u n (t + δ) -u n (t) dx dτ + λ 2 t+δ t Ω ∇ρ n (τ ) ⊗ ∇ρ n (τ ) ρ n (τ ) : ∇ u n (t + δ) -u n (t) dx dτ. (45) 
Using the following identity

ρ n (t+δ) u n (t+δ)-ρ n (t) u n (t) = ρ n (t+δ) u n (t+δ)-u n (t) + ρ n (t+δ)-ρ n (t) u n (t),
then, (45) becomes .

ρ n (t + δ) u n (t + δ) -u n (t) 2 L 2 (Ω) = - Ω ρ n (t + δ) -ρ n (t) u n (t + δ) -u n (t)
Similarly, one can obtain the desired estimates of I j (t) terms, for j = 4, . . . , 8.

At last, if we choose 0 < δ < 1 and taking into account Propositions 4.3 and 4.5, then by gathering together all the above estimates, we rewrite (46) as follows : ∇u n (t + δ) .

ρ n (t + δ) u n (t + δ) -u n (t) 2 L 2 (Ω) ≤ Cδ
Thanks to the lower bound of ρ n and Proposition 4.3, we finish the proof.

  • u n (t) dx Let us estimate I 1 (t). Applying the Hölder inequality, we get|I 1 (t)| ≤ ρ n (t + δ)ρ n (t)Using the Hölder and Young inequalities and the embedding H 1 (Ω) ⊂ L 4 (Ω), we obtain|I 1 (t)| ≤ Cδ

		t+δ						
	+	t	Ω	ρ (46)
							L 2 (Ω)	u n (t + δ) -u n (t)	L 4 (Ω)	u n (t)	L 4 (Ω) .
	In particular, we write			
						ρ n (t + δ) -ρ n (t) =	t	t+δ	∂ρ n ∂τ	dτ.
			1 4	t	t+δ	∂ρ n ∂τ	4 3 L 2 (Ω) dτ	3 4	∇u n (t + δ) 2 L 2 (Ω) + ∇u n (t) 2 L 2 (Ω)	.
	In the same way, we verify the following estimations :
	|I 2 (t)| ≤ Cδ	1 2	t	t+δ	g(τ ) 2 L 2 (Ω) dτ	1 2	∇u n (t + δ) 2 L 2 (Ω) + ∇u n (t) 2 L 2 (Ω)	,
	|I 3 (t)| ≤ Cδ	1 4	t	t+δ	∆ρ n (τ ) 2 L 2 (Ω) dτ	3 4	∇u n (t + δ) 2 L 2 (Ω) + ∇u n (t) 2 L 2 (Ω)

n (τ ) g(τ )κ ∆ρ n (τ ) ∇ρ n (τ ) • u n (t + δ)u n (t) dx dτ + t+δ t Ω ρ n (τ )u n (τ ) -λ∇ρ n (τ ) • ∇ u n (t + δ)u n (t) • u n (τ ) dx dτ -t+δ t Ω µ ∇u n (τ )λ ρ n (τ )∇u T n (τ ) : ∇ u n (t + δ)u n (t) dx dτ + λ 2 t+δ t Ω ∇ρ n (τ ) ⊗ ∇ρ n (τ ) ρ n (τ ) : ∇ u n (t + δ)u n (t) dx dτ = I 1 (t

) + I 2 (t) + I 3 (t) + I 4 (t) + I 5 (t) + I 6 (t) + I 7 (t) + I 8 (t).

4 n 1+ u 0 L

(Ω) +2R 2 ≤

Proof of Theorem 2.2 4.1. Faedo-Galerkin method

We are looking for the approximate solutions

We set

Taking (29) 1 with v = ω k , for k = 1, . . . , n, and integrating in time between 0 and t ≤ T , the solution u n verifies the following integral equations for k = 1, . . . , n :

where ρ n = Su n and q 0 = ρ 0 u 0n . Thanks to (25) and ( 26), we rewrite (31) as follows :

the resulting equation reads

Hence, u n appears as a fixed point of a suitable functional

Let X T be the Banach space C [0, T ]; X n endowed with the norm

In order to apply the Banach fixed point theorem, we establish some uniform estimates for Ψ. With Propositions 3.2, 3.3 and 3.4 in mind, we have the following :

and for all u

At this stage, we set

Proposition 4.2 There T n ∈]0, 1[ small enough and u n ∈ B Tn R such that

The existence of solution (u, ρ)

The final step to complete this study is to employ the previous uniform estimates in order to pass to the limit in the approximate problem (29). When n → +∞, we have

Thanks to (40) and (41), choosing the subsequences (u n ) n and (ρ n ) n such that

weakly-star, and

We are able to pass to the limit in the linear terms of (29), thanks to these above convergence results. Now, to ensure the passage to the limit in the nonlinear terms of (29), it is necessary to use the following strong convergence : Proposition 4.7 There exists a subsequence (u n , ρ n ) n which converges strongly to (u, ρ) in L 2 0, T ; L 2 (Ω) × L 2 0, T ; H 1 (Ω) . Moreover, (u, ρ) is a weak solution of [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF].

Proof. Applying some compactness theorems [21, Chap.3, Theorem 2.1] for ρ n and [20, Theorem 5] for u n and using Propositions 4.5 and 4.6, we get to the desired result.

Conclusions

In this paper, we study the system of PDEs derived from the compressible Navier-Stokes equations with presence of a specific Korteweg stress tensor, called the Kazhikhov-Smagulov-Korteweg (KSK) model. We arrive at verify the existence of a weak solution (u, ρ) of the KSK model [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF] global in time with finite and uniformly bounded energy. Then, we conclude the proof of Theorem 2.2, the main result of this paper.