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ABSTRACT. In this article, we consider a multiphasic incompressible fluid model, called the Kazhikhov-
Smagulov model, with a specific stress tensor which depends on density derivatives, introduced by
Korteweg. We establish the existence of global weak solution to this model in a 3D bounded domain.

RESUME. Dans cet article, nous considérons un modéle de fluide incompressible multiphasique, ap-
pelé modele de Kazhikhov-Smagulov, avec un tenseur de contraintes spécifique qui dépend des dé-
rivées d’ordre élevé de la densité, introduit par Korteweg. Nous établissons I'existence d’'une solution
faible globale pour ce modéle dans un domaine borné en 3D.

KEYWORDS : Kazhikhov-Smagulov model, Korteweg model, weak solution, global existence result.
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bale.




1. Introduction

We are concerned with systems of PDEs describing the evolution of mixture flows.
Let © be a bounded open set in R® with boundary T that is regular enough and let . be
the outwards unit normal on the boundary I". We denote by [0, 7] the time interval, for
T > 0. The mixture of two fluids is described by the density p(t, ) > 0, the velocity field
v(t,x) € R3 and the pressure p(t, ), depending on the time and space variables (¢, x) €
[0,T] x Q. According to [9,[14} [15], we consider the Korteweg equations for generalized
incompressible fluids whose density and volume change with the concentration ¢ (¢, ) >
0 and eventually the temperature, but not with pressure. In general, the velocity field v
of such incompressible fluids is not solenoidal, divev # 0. Assuming that each fluid is
incompressible, the mass density is conserved in the absence of diffusion. The theory
of Korteweg, introduced in [[16], considers the possibility that stresses are induced by
gradients of concentration and density in a slow process of diffusion of incompressible
miscible liquids. Such stresses could be important in regions of high gradients and they
mimic the surface tension.

In order to model the fluid capillarity effects, Korteweg introduced in the usual com-
pressible fluid model a specific stress tensor which depends on density derivatives. Fol-
lowing the rigorous formulation presented in [9] (see also [4]) and neglecting thermal
fluctuations, the model reads

{ Op + div (pv) =0,

B, (pv) + div (pv ® v) = pg + div (S + K), 0

where g stands for the gravity acceleration (but it can include further external forces). The
viscous stress tensor .S and the Korteweg stress tensor K are given by :

S = (vdivv —p)I 4+ 2uD(v),
K = (alp+BIVpl*)I +3(Vp & Vp) +vDZp,
where D(v) = (Vv + Vo®)/2 is the strain tensor and D?p is the hessian matrix of the

density p. Here, the pressure p and the coefficients «, 3, v, §, i and v are functions of p.
The special case

2

a = Kp, ﬁ:gu 52_’% 7207

for some constant £ > 0, corresponds precisely to Korteweg’s original assumptions con-
nected with the variational theory of Van Der Waals. In this case, the Korteweg stress
tensor yields

K = g(Ap2 —[Vol)I = x(Vp & Vp). 3)
Writing
div K = kpV(Ap) = kV(pAp) — kVpAp, 4
and incorporating V(pAp) in the pressure term, we obtain —xV pAp as a right hand side
term in the momentum equation.

The Korteweg’s theory can be applied to processes of slow diffusion on miscible in-
compressible fluids, for example, water and glycerin. The two fluids are characterized
by their reference mass density : p; the density of the dilute phase and p» the density of
the dense phase. We need the velocity field of each constituent : v1 (¢, x) and va(t, x),
respectively. We define the volume fraction of the dilute phase 0 < ¢(t,x) < 1:

.. Volume occupied at time ¢ by the dilute phase in B(x, r)
ot @) = lim Bla.r)|




Then, admitting that each fluid is incompressible and keeping a constant mass density, the
density of the mixture is defined by

plt.x) = pa(1 = 6(t, @) +pr1o(t, @) = pa+ (1 — p2)(t, @).
—_— ) ———

i=pa(t,x) =p1(t,x)
Writing the mass conservation for the two phases, we obtain

Op + div (pv) =0,

with pv(t, ) = (p2v2 + p1v1)(t, ) presents the mean mass velocity v(t, x), which is
not divergence free, div v # 0. Moreover, we define the mean volume velocity

u(t,x) = (1 — o(t, m))vg(t, x) + ¢(t, x)v1(t, ).

Applying the definitions, we verify that the velocity field w is solenoidal (divu = 0).
According to Kazhikhov and Smagulov [17], we consider the following non-standard
constraint associated to the pressure p :

dive = —div (AV 1n(p)), Q)

where A > 0 is a diffusion coefficient. This Fick’s law (3) describes the diffusive fluxes
of one fluid into the other, see also [3]]. Obviously, when we set

v =wu— \Vin(p), 6)
the relation yields (3). The mixture density p verifies the mass conservation and we obtain
Op + div (pu) = div (AVp). (7)

For the momentum equation (1), we start by developing each term using the relation (@),
in order to eliminate v. After some calculations and using (), we get

O (pu) + div(pu®u) — Adiv(Vp @ u) — Adiv(u ® Vp)
+ AV(u-Vp) + Adiv(2uD? In(p)) — div(2uD(u)) + Vp

VpaV ®
- A2 (VAp — div(%)) = pg + &V (pAp) — kV pAp.

Choosing the dynamic viscosity p constant, as in [[13]], we have div(2,uD(u)) = uAu
and div(21D21n(p)) = 2uVAIn(p). Including all the gradient terms in the modified
pressure

P=p+Av+2u)Aln(p) + - Vp— N2Ap — kpAp.

Then, we obtain the Kazhikhov-Smagulov-Korteweg model in conservative form :

O (pu) + div (pu ® u) — Adiv (Vp ® u) — Adiv (u ® Vp) — Ay

LVP 4 Xdiv (Y2EVP)

O¢p + div (pu) = \Ap,
divu = 0.

= pg — kVpAp, )



The tensorial product matrix of two vectors a = (a;)%_,, b= (b;)%_, is denoted by a @ b
with ceefficients (a ® b); ; = a;b;. Taking into account the equalities
I (pu) +div (pu®@u) — Adiv (Vp®u) = pdu+ p(u-V)u—A(Vp- V)u,
—Adiv (u® Vp) = =A(u-V)Vp = —AV(u- Vp) + Adiv (pVu').
Then, denoting Q. = (0,T) x Q, ¥ = (0,T) x I, the Kazhikhov-Smagulov-Korteweg
(KSK) model can be written in Q. as :
p(Ou+ (u-V)u) — A(Vp- V)u+ Adiv (pVu') — pAu + VP

. VpV
+\2div (%) = pg — kApVp, (10)
O¢p + div (pu) = A\Ap,

divu = 0.

The KSK model (I0) is completed by the following boundary and initial conditions

u(t,x) =0, g—:;(t,:v) =0, (t,x) € %, (11)
’U,(O, w) = Uo(w), p(ou :B) = po(ilf), S Qu (12)

with the compatibility condition divug = 0, where pg : 2 — R and ug :  — R3 are
given functions. Throughout this work, we assume the hypothesis

0<m<pp(x) <M <400, xe€ (13)

Let us mention some known results about the Kazhikhov-Smagulov-Korteweg model,
fork =0and k > 0.
Without the Korteweg stress tensor (i.e. taking x = 0), many authors treat the so-called
Kazhikhov-Smagulov model. We can refer for instance to [1L 3l for the study
of the simplified model without O(A\?) terms, and to [2} [19] for the study of the same
problem with all the terms. In [7, [8], the authors study a two-dimensional generalized
Kazhikhov-Smagulov model.
Taking £ > 0, the mathematical analysis in a three-dimensional domain of different types
of Kazhikhov-Smagulov-Korteweg models, was carried in the recent works [6]. In
[TT]], the authors consider the same KSK model (I0), and they prove the existence of a
unique global in time regular solution for small initial data and external forces. Also, if
g = 0, they study the longtime behavior of the solution and show that it converges to the
equilibrium solution with zero velocity field. In [6]], the equation (I0), is replaced by:

p) A
p(a_‘;Jr(u.v)u) ~MVp-V)u—3 div(pVu—pVu")+VP = pg—r ApVp. (14)

Following [3]], we have chosen a particular relation between the linear dynamic viscos-
ity 4 = pop and the mass diffusion coefficient A = 219, in order to remove the O(\?)
terms in (IQ), . Then, we prove the global existence of weak solution of the problem (I4)-
(@IQ),-([@Q)5 for arbitrary initial data and external forces, and without any assumption on
the diffusivity .



The paper is organized as follows. In Section[2] we present the main results about (T0).
After some preliminary results recalled in Section[3] the proof of existence of global weak
solution for (IQ) is given in Sectiond The conclusions are summarized in Section 3

2. Functional setup and main results
Let us introduce the following functional spaces (see [[18][21]] for their properties):

V = {ueDQ)?®: divu=0inQ},

V = {ueH)Q): divu=0inQ},

H = {uELQ(Q):divu:OinQ,u~n:OonI‘},

s s 9p

HY = <qp€eH(Q): —=0onl, [ p(x)de= [ po(x)dx;, s>2.
on Q Q

The spaces V and H are the closures of V in Hy () and L?(£2), respectively.

Let us recall the definition of weak solution for the KSK model (I0). Such class of
solutions can be found in [3] for Kazhikhov-Smagulov type models and in for the
incompressible Navier-Stokes equations.

Definition 2.1 A pair of functions (u,p) is called a weak solution of problem
(D), (LD, (12D on Q2 if and only if the following assumptions are satisfied :
Hue L>(0,T;H) N L*(0,T;V), p € L>(0,T; H'(Q)) N L*(0,T; HY) and
0<m<p(t,e) <M< +oo, ae (t,x) € Q,.

2) Forall ¢ € C*([0,T); V) such that ¢(T,.) = 0, one has :

/0 { = (.00 + ((pu = AVp) - V) ) + u(Vut, Vo) = A(pVu”, V) ft

T 4 T
[ Vo0 Vo)t = [ (pa— rpV0.0)dt + (oo $(0))
0 0 15)
3) Forall ¢ € C*([0,T]; H*(Q)) such that o(T,.) = 0, one has :
T
/0 {(u “Vp,0) + MV, Vo) = (p, 5ts0)}dt = (po, ¢(0)). (16)

REMARK. — The pressure P associated with the weak solution (u, p) can be obtained
using (T3) and the Rham’s lemma [21].

We present the aim of this work about the Kazhikhov-Smagulov-Korteweg model
(I0). Under some assumption on the coefficients A, p, &, we prove via a Faedo-Galerkin
method, the global existence of weak solution of (I0) for arbitrary initial data and external
force field. Our main result reads :



Theorem 2.2 Let ug € H, po € H'(Q) satisfy ([3), T > 0 and g € L?(0,T;L*(Q)). If

A A2

= max(1, —) is sufficiently small, then there exists a weak solution (u, p) of (ID) global
K

in time such that
we L>(0,T;H) N L*(0,T; V),
peEL>® (O,T; HI(Q)) N L2 (0, T; HJQV),

with finite and uniformly bounded energy such that vVt < T,

t
I
Vo) g, +5 1900 12, + [ (51 T0l0) 2, A1 A0(0) 2.,

£2(9)
CMZ T
<l Vo 2., 51 Vo0 [P, 2 [ () 2., s

L2(Q)

3. Preliminary results

To prove the main result of this article, Theorem we need some useful results
concerning the density p which verifies the convection-diffusion equation. For detailed
proofs of these results, we refer the readers to [10]. Given the initial density po and the
velocity field u, we find the density p as solution of the following Neumann problem :

Op + u-Vp = AAp inQ,,

%(Ovm) = po(x) in €2, (17)
P _
I 0 on 3.

The density p satisfies the maximum principle. This result is classical (see [3]]).
Proposition 3.1 If (u, p) is a weak solution of (IQ), then
0<m<plt,z) <M < +o00 ae. (t,x) € Q,. (18)

Proposition 3.2 Let po € H'(Q) verify (I3) and u € C([0,T]; VN HQ(Q)). Then there
exists a unique solution p of (IZ) such that

p€L>(0,T; H(Q) NL*(0,T; HY).

Moreover, we have

2
L2(Q)

< |l poII? (19)

Hl(Q)’

sup || p(t) ||
0<t<T

IN

1
o eo I (20)

")’

T 2
JRAZCI

2
L2(Q)

su Vp(t C 2 1+ su u(t) ||? , 21
w190 i 2, (0 s w2, ). @D

T
Ci
2 2 2
/o I Ae(t) ”L%z) di < A I o ”Hlm) (1 +0§1tl£T I u(®) ”L°°<fz> )’ (22)

where C is a positive constant depending only on \.



Given py € H*(Q) satisfying (I3) and w € C([0,77; V N H?*(2)), let p the solution
obtained by Proposition[3.2] Therefore, it is clear that the following map is well defined

S:C([0,T];VNH?*(Q)) — L>*(0,T; H'(Q)) N L*(0,T; HY,),
such that p = Swu is well defined.

Proposition 3.3 Let py € H*(2) verify (I3) and uy,uz € C([0,T];V N HQ(Q)). Set
p=p1 — p2 = Su; — Sus and u = wy — ug, we have the following estimates :

T 2
M
2 2 < 2
1 pl0) I, 3 [ IT00) I, de < ST sp Ju) 2, @)
T
2 2
s V(1) |2, + | nset 2.,
2T o2M?32T
<= 5 Vo ||? s u||? =z g us ||? s u |2 )
A OS?ET Ve ”L2(m o<1£1£T R A3 OSI:ET o2 e oglilET | HLz(‘“

@
We recall that there exists an orthonormal basis of L (€2) defined by

wr € VA HA(Q)
—PAwy, = A\ wg on €,

where P is the orthogonal projection operator of L2(Q) onto H. For any n € N*, we
define by X, the finite dimensional subspace of H such that

Xp = Vecet{wy, k=1,...,n},
and we consider the orthogonal projection P, : L? (Q) — X,, defined by
Vw € H, (in, v) = (w, v), Vv € X,. (25)

Asin , we introduce a family of operators M|p] : X,, — X, defined by
(Mplv, w) = / pU-wder forall v,w € X,. (26)
Q
If p € L*>°(2), then M [p] is well defined. Moreover, let m > 0, we set

D = {peLOO(Q); p(m)2m>0}.

Proposition 3.4 M |p]| is one-to-one and its inverse verifies

| M) 2 xn) < (;relgp(:c))_l VoeD, (27)

_ _ Ch
| Mlp]™" = Mpa] ™"l oxn xm) < pec pr=p2 |l 20, Vp1.p2 €D, (28)

where C\, is a constant depending on the dimension of the space X,,.




4. Proof of Theorem

4.1. Faedo-Galerkin method

We are looking for the approximate solutions
(Wn, pn) € C([0,T]); Xn) x C([0,T]; H'(Q) N HY)

satisfying

/ Oy (pnun) -vdx + / pn(Up - V)u, - vde — )\/ (Vpn - V)u, - vde
Q Q Q

+ / (up, - V) ty -vde — X\ | Appuy, -vde — | Auw, - vdx
Q Q Q

+ A/ div (pn V) - vdz + /\2/ div (M) . vde
Q Pn

(29)
= / png - vdx — H/ Ap,Vp, - vdzx, Vv € Xy,
Q Q

[ ooy nde+ [wn-Vpundo=2 [ Bponde, e (@),
Q Q Q

Unp, (O) = Uon = ]P)nu07

pn(0) = po.

We set
Ntn, pr] = = ((pntn — AVpn) - V)ty — (Un - Vpu)tn + A ppuy,

+ pAu, — Adiv(p, Vul) - A?dW(W) — kAP pn + prg.

(30)

Taking (29); with v = wy, for k = 1,...,n, and integrating in time between 0 and
t < T, the solution u,, verifies the following integral equations fork =1,...,n:

¢
/pn(t)un(t)-<.u;C dx z/qo-w;C dx +/ /N[un,pn]-wk dx ds, (31)
Q Q 0o Ja

where p, = Su,, and qq = pougy,. Thanks to 23) and @8], we rewrite (31) as follows :

(Mipa 0 (0) 1) = (P ) + (P | W), pu(9)] s, ),

fork =1,...,n. Since M|p,] is invertible, then, for all ¢ € [0, T'], the resulting equation
reads

wn € C(0.T):Xn)., ant) = Mpa(t)] o (a0 + /O Nota(5), pu(s)] ds ). (32)

Hence, u,, appears as a fixed point of a suitable functional ¥

W C([0,T]);Xn) — C([0,T]; Xx)
U, — v un)

defined by

w(un)(t)=M[pn(t)]*1]p>n(qo+/0 Nt (s), pn(s)] ds), forall t € [0,T].



Let X1 be the Banach space C ([0, T]; X,) endowed with the norm

ey = 2 )l -

In order to apply the Banach fixed point theorem, we establish some uniform estimates
for ¥. With Propositions[3.2] and[3.4]in mind, we have the following :

Proposition 4.1 There exists a constant C > 0 depending on n, )\, u, k, M, m,
0o ”Hlm)’ such that for all u,, € X,

L2(0,T;L2(Q))’

M
19 (utn) g < o g gy + Cmax(T T (14w 2, ), 39

L2(9)
and for all u),u? € X,

1
| w(uh) = (u2) |, < Cmax(T,T%) (14 | uo |20 o

S R A - R NP AT

. M
At this stage, we set R = 25 o 2

and BY = {u € X, || ully, < R}.

Proposition 4.2 There exists Ty, €]0, 1] small enough and w,, € By such that
Uy, = U(u,).

Proof. Let 0 < T, < 1 such that

max (CT4 R+ ] C’T4 [1+ || uo ||

N | =

L2(Q) +2R2]) <
Thanks to Proposition .1} we verify that ¥ is a contraction mapping on Bg" and we
conclude the existence of a unique fixed point of W. |
It is clear that u,, the fixed point of ¥, obtained in Propositiond.2] implies that (w,,, p, =
Su,,) is a local solution of the Galerkin approximate problem (29). Now, we will prove
that this local solution is in fact a global one. For this, we establish some uniform esti-
mates for (u.,,, p,) with respect to time.

A A2
Proposition 4.3 If — max(1, —) small enough, there exists a constant C' > 0 depending
I K

on po,ug, g, M, u, k, such that for all t € [0,T,)

m n®) 2, + 5 [ V) 12, @5 < © G5)
) sy +60 [1 Bn(s) 2, 5 < € (36)

Proof. First, we take v = u,,(¢) in €9);:

537 [ poluald | VI = A /Qi.wndm

(37

+ /\/ anuz : Vupdx + / png - updx — Kk | Ap, Vo - upde.
Q Q Q



Second, by (29),, we have
Ot pn — NApy, = —uy, - Vo, in the distribution sens on Q... (38)
Since (wn, pn) € C([0,T]; Xn) x L>(0,T,; H(Q)) N L*(0, Ty,; H, ), we deduce that
Oy pn € L*(0,T,; L*(12)).

Multiplying (B8) by —xAp,, (t) and after integration by parts, we obtain

Von 2.+ 8N || Apn |?

L2(Q) LQ(Q)

2 Tt H /Apn Uy, - Vo, de. (39)

By adding (37) and (B9), we get
( |t 12, ) +61 Vou 12,0 ) + 20 | T |2, 4260 || Apa |1

— 2\ / puVul : Vundz + 2)° / Von & Vpn
Q Q Pn

L2(Q)
: Vupdx + 2/ Png - upde.
Q
Then, thanks to Proposition[3.1] and the Holder, Poincaré and Young inequalities, we find

/\/ pnVuy, - Vugdz < AM || Vu, |2
Q

L2()’
Vpn @V,
2)\2/ Von SN Gy dz < A || Apw |1, +02— | Ve |12,
Q Pn L2(2) L2(Q)’
M2
2 [ pug-wade < |V 2, v g,
Finally, we obtain for each ¢ € [0, T},)
L ot 1Py +5 1900 12, ) + (1—01——02—)u|| Vu, |2, .,
M2

+ x| B |2, < lal2,,, -

A A2 A 31
For — max(1, —) small enough such that C; — + Co— < —, we get
" K I K — 2

U Bm Py 4 V00 Py )+ 5T 12, 480 1 B0 I,

CM?
< lal2,,, -
I
|
Evidently, thanks to the previous Proposition[£.3] we have the following :
Corollary 4.4 (u,, p,) is a global solution of 29 and for all T > 0,
(Wn)n is bounded in L*(0,T;H) N L*(0,T;V), (40)

(pn)n is bounded in L>(0,T; H'(Q)) N L*(0,T; HY). (41)



4.2. Uniform estimates for time derivatives

In this section, we establish uniform estimates for time derivatives 0; p,, and 0; u,,.
Proposition 4.5 Let T > 0. The sequence (O; py)r, is bounded in L*/*(0, T; L*(2)).
Proof. Taking the L?-norm of O; p,. Applying the Holder and Gagliardo-Nirenberg
inequalities and the inequality : || Vo ||, , < Co || p 112 | Ap ||M2 ., we get

Lo (Q) L2’

10t i 2y < A B gy +C N 1545 1 Vun 11251 on 1526, A 11722

L2(Q) L2(2) Loo(Q) L2(Q)
By the uniform estimate (33) and (I8), we get
10100 laiy < A N B0 [y +C | Ve I8 [ B0 42, . @2)
1
Next, applying the Young inequality ab < 5 (a? + b?) in @), we get
1000 lpaiy < A Nl 86 llagy +C Il T P22,
Thanks to the uniform time estimates (35) and @36), we deduce that || 0; py |, is

bounded in L*/3(0, 7). ]
Now, by following [3]], we establish an estimation of the fractional time derivative of .

Proposition 4.6 Let 0 < 6 < T such that

Q
>,
IS

(43)

T—6
[t - w2,

where C' a constant independent of n and 0.

Proof. For all functions ¢ € X, the approximate solution (w,,, p,,) verifies :

dr Q Q 87’ Q

Vu, : Vo dx + /\/(Vpn V)¢ - u, de — )\/ onVul Vo de (44)
Q

2 Q
Von @ Vpy,

— A2 :ngdw:/png-qbdw—n/Aanpn-qbd:B.
Q Pn Q Q

Integrating (@4) with respect to 7 between ¢ and ¢ + ¢, and taking ¢ = w,, (t + ) — w, (1)

S~

[pn (t 4 0) wn(t + 0) — pn(t) un(t)] [wn(t + 6) — un(t)] de

/f [ (00051 60) ~ 5 20005 Tn)) - (49— a0)
+/tt+a/ﬂ — AV, (7)) .v) (tn(t + 6) — wn(t)) - un(r) de dr

t+5
u V(1) — X pu(7)V T(q-)) :V(un(t+6) — un(t)) do dr

/ Vpn ® Vpn( ) : V(un(t +6)— un(t)) dx dr.
Q

t

£
X2 /

&@

_|_

(45)



Using the following identity

Pr(t40) wn (t46)—pn(t) un(t) = pn(t+9) [un(t+5)—u (t )}‘i‘[pn(t"’&) n(t )} un(t),

then, (@3] becomes

” pn(t + 6) [un(t + 6) — up(t )] ||L2(Q)
/Q [on(t+8) = pn ()] [un(t +6) — un(t)] - un(t) de

[ () 80) 5 805 ) - e +8) ) d
[ [ (0nr0uam) = AV01(0) - ) (tat 4 ) = 0 (1)) - ) iz
ugﬂﬂj"QLVun )= X pu(P)VL (D)) £ ¥ (4 8) — (1) d dr

4 /f /QV”" ®V””( Ve 0 (unt +6) — un(t)) da dr

1(t) + Ia(t) + Is(t +I4( )+ Is(t) + I6(t) + I7(t) + Is(t).

Q0

)\.

(46)
Let us estimate I (t). Applying the Holder inequality, we get

()] < M on(t+06) = pn(@) | 2 | wn(t+0) = wn(@) | g | wn(®) [, -

In particular, we write

t+5 8
pult48) = pult) = [ L2
t T

Using the Holder and Young inequalities and the embedding H'(Q2) C L*(2), we obtain

1

1 5pn
|h@|sc&([ 123, ar) (Ve +0) 12, + 1 T 2, ).

In the same way, we verify the following estimations :

t+6
1
|bm|sc&([ lg(r) 12, dr )(vaﬁ+®Hmm+HWmUHmm)
. t+06
mangc&([ 18000 I, dr) (1 Funt+0) 12, + 1 Vua) 12, ).
Similarly, one can obtain the desired estimates of I;(¢) terms, for j = 4,...,8.

At last, if we choose 0 < § < 1 and taking into account Propositions 3] and 3] then by
gathering together all the above estimates, we rewrite (46} as follows :

| Vonl+ 8 [un(t+8) = un(®)] 2, < Co4 (| Vualt+6) |2, + 1| Vua() |2, ).

Thanks to the lower bound of p,, and Proposition 3] we finish the proof. |



4.3. The existence of solution (u, p)

The final step to complete this study is to employ the previous uniform estimates in
order to pass to the limit in the approximate problem (29). When n — +oc0, we have

ug, — up in H strongly.
Thanks to (#0) and (&I, choosing the subsequences (u,, ), and (py, ), such that

u, — u in L?(0,T;V) weakly,

u, — u in L*(0,T;H) weakly-star,
and

pn —> p in L*(0,T;H%) weakly,

pn —> p in L>(0,T;H(2)) weakly-star,

Oy pn — Oyp in L¥3(0,T;L*(RQ)) weakly.

We are able to pass to the limit in the linear terms of (29), thanks to these above conver-
gence results. Now, to ensure the passage to the limit in the nonlinear terms of [29)), it is
necessary to use the following strong convergence :

Proposition 4.7 There exists a subsequence (Wy,, py )n, which converges strongly to (u, p)
in L*(0, T;L? (Q)) x L2(0,T; H'()). Moreover, (u, p) is a weak solution of (I0).

Proof. Applying some compactness theorems Chap.3, Theorem 2.1] for p,, and [20,
Theorem 5] for u,, and using Propositions[£.3and .6 we get to the desired result. W

5. Conclusions

In this paper, we study the system of PDEs derived from the compressible Navier-
Stokes equations with presence of a specific Korteweg stress tensor, called the Kazhikhov-
Smagulov-Korteweg (KSK) model. We arrive at verify the existence of a weak solution
(u, p) of the KSK model (IQ) global in time with finite and uniformly bounded energy.
Then, we conclude the proof of Theorem[2.2] the main result of this paper.
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