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Introduction

In this paper we suggest a method of computing volume for a polytope P in three-dimensional hyperbolic space H 3 . We require the polytope P to be simple, so that the computation of volumes may combine two processes of initially different nature. First, a reduction of P (as a trivalent graph) to the tetrahedron by a sequence of I -H (or Whitehead) and so-called "capping" moves. And second, a decomposition of P into a number of generalised tetrahedra T i , i = 1, . . . , n, such that T i partition P into geometric parts, and Vol P = n i=1 Vol T i .
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With such a decomposition we associate a function Φ(ℓ 1 , . . . , ℓ m ), m ≥ 1, that depends on some additional geometric parameters of the decomposition (in fact. lengths of some common perpendiculars to the faces of P ). Under some conditions, we show that Vol P can be expressed through the value of Φ(ℓ * 1 , . . . , ℓ * m ) at a critical point (ℓ * 1 , . . . , ℓ * m ). Finally, we use our method in a large number of examples, by implementing it in Wolfram Mathematica R [?]. We also check our computations, where possible, with the Orb software [?]. This part of our work falls in line with the recent study on the Volume Conjecture for generalised tetrahedra by Costantino and Murakami [?] and for general hyperbolic polytopes by Costantino, Guéritaud and van der Veen [?]. Next, given a polytope P , we consider its 1-skeleton Γ as a trivalent graph, compute the Kirillov-Reshetikhin invariants of Γ with an appropriate colouring of its edges determined by the corresponding dihedral angles of P and study their asymptotic behaviour. We conjecture that the sequence of combinatorial moves that is used in order to compute the Kirillov-Reshetikhin invariants of the corresponding trivalent graph Γ is associated with the sequence of moves used in the combinatorial reduction of P . Then the geometric decomposition of P associated with the respective sequence of I -H and capping moves might be used in order to establish a link between the volume of P and the asymptotic behaviour of the Kirillov-Reshetikhin invariants of Γ. Such a link has been colloquially named the Volume Conjecture by various authors, and is first established in [?]. A similar study of quantum invariants in the case of manifolds with boundary has been recently performed by Chen and Yang [?]. The paper is structured as follows: after recalling some preliminary results on the volume formulas for generalised hyperbolic tetrahedra (cf. [?, ?] and [?]), we proceed to the description of our method and formulate the main statement of the paper. We illustrate our method in two main working examples: computing the volume of a hyperbolic prism Π, and that of a hyperbolic "pleated" prism P. Then, we provide a more computationally complicated example of a dodecahedron with various Coxeter dihedral angles. However, the method of present paper is not restricted to Coxeter polytopes. We expect it to work in a wide variety of dihedral angles, and expect that it can be generalised to allow computing volumes of knotted trivalent graphs. Finally, we state a number of conjectures relating the volume of a hyperbolic polyhedron P to the Kirillov-Reshetikhin invariants of its 1-skeleton Γ, viewed as a trivalent graph in the topological 3-sphere. Various numeric experiments are described, that corroborate our conjectures.
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Preliminaries

Below, we describe a method to compute the volume of a simple polyhedron P ⊂ H 3 that admits a decomposition into generalised hyperbolic tetrahedra. We recall, that a convex polytope P is simple if the valence of each vertex equals the dimension of P . Here, it means that each vertex of P is trivalent. Below we define a generalised tetrahedron, and the decomposition of a given polyhedron P into such generalised tetrahedra following a simple combinatorial procedure. We shall consider a polyhedron P both as a combinatorial object, i.e. a trivalent planar graph, and a geometric object. First of all, we deal with combinatorial polyhedra and the associated combinatorial operations or "moves" that are applied to them as to graphs. Namely, we describe two combinatorial operations on the one-skeleton of P , associated with a decomposition into generalised tetrahedra. The first is the classical I -H move, and the second is capping a triangular face with a tetrahedron: Figure 2: A "capping" move These moves have been introduced in [?], and later used in [?, ?] for the purposes of defining a statistical sum over a spin network associated with a hyperbolic polyhedron. By following the general argument for trivalent knotted graphs in [?, §7], it's not hard to see that the following statement holds.

Figure 3: A pentagonal prism Π Lemma 1 Suppose that P is a simple polyhedron, which is not a tetrahedron. Then there exists a sequence of I -H moves and capping moves transforming P into a tetrahedron. From the matrix G we produce the dual (generalised) Gram matrix G * of T , that corresponds to its "vertices" v k , although some of them are outer normals to the respective polar planes P v k . We refer the reader to [?] for the standard definitions of the Gram matrices G and G * , as well as relations between their entries. If v k is ultra-ideal, we associate with it a plane H v k = P v k , otherwise we put H v k = H 3 . Given a plane H n with the outer normal n, let H + n denote the half-space which n points to and let H - n denote the half-space which -n points to. Then, the generalised hyperbolic tetrahedron T is defined as

T = 4 k=1 H - n k ∩ 4 k=1 H - v k .
Thus, each generalised tetrahedron T still can be characterised by six parameters a 1 , a 2 , . . . , a 6 , each of which corresponds to an edge of the "standard" tetrahedron. However, we have to distinguish two cases:

1. if the planes H n i and H n j intersect along an edge e ij with parameter a k , then we set a k = e iα k , where α k is the internal dihedral angle along e ij ;

2. if the planes H n i and H n j are ultra-parallel, then the vertices v k and v l are ultra-ideal and the planes H v k and H v l intersect along the common perpendicular p ij to H n i and H n j : thus we set the respective parameter a k = e -ℓ k , where ℓ k is the length of p ij .

In Fig. ?? the case of a prism-truncated tetrahedron (see [?, ?] and [?]) is illustrated in detail. This type of generalised tetrahedron will appear quite often in the examples below, as well as several other types that we enumerate below. 

G =      1 -a 1 +1/a 1 2 -a 2 +1/a 2 2 -a 6 +1/a 6 2 -a 1 +1/a 1 2 1 -a 3 +1/a 3 2 -a 5 +1/a 5 2 -a 2 +1/a 2 2 -a 3 +1/a 3 2 1 -a 4 +1/a 4 2 -a 6 +1/a 6 2 -a 5 +1/a 5 2 -a 4 +1/a 4 2 1      , (1) 
as if T were a "usual" tetrahedron: it is still sufficient to determine T uniquely, up to an isometry (see [?, ?] and [?]).

Given a generalised hyperbolic tetrahedron T with Gram matrix (??), we define the following auxiliary quantities in order to state a formula for Vol T . Let U = U (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z) denote the function

U = Li 2 (z) + Li 2 (a 1 a 2 a 4 a 5 z) + Li 2 (a 1 a 3 a 4 a 6 z) + Li 2 (a 2 a 3 a 5 a 6 z) (2) 
-Li 2 (-a 1 a 2 a 3 z) -Li 2 (-a 1 a 5 a 6 z) -Li 2 (-a 2 a 4 a 6 z) -Li 2 (-a 3 a 4 a 5 z)
depending on seven complex variables a k , k = 1, 6 and z, where Li 2 (•) is the dilogarithm function.

Let z -and z + be two solutions to the equation e z ∂U ∂z = 1 in the variable z. According to [?], these are

z -= -q 1 -q 2 1 -4q 0 q 2 2q 2 and z + = -q 1 + q 2 1 -4q 0 q 2 2q 2 , (3) 
where

q 0 = 1+ a 1 a 2 a 3 + a 1 a 5 a 6 + a 2 a 4 a 6 + a 3 a 4 a 5 + a 1 a 2 a 4 a 5 + a 1 a 3 a 4 a 6 + a 2 a 3 a 5 a 6 , q 1 = -a 1 a 2 a 3 a 4 a 5 a 6 a 1 - 1 a 1 a 4 - 1 a 4 + a 2 - 1 a 2 a 5 - 1 a 5 + a 3 - 1 a 3 a 6 - 1 a 6 , (4) 
q 2 = a 1 a 2 a 3 a 4 a 5 a 6 (a 1 a 4 + a 2 a 5 + a 3 a 6 + a 1 a 2 a 6 + a 1 a 3 a 5 + a 2 a 3 a 4 + a 4 a 5 a 6 + a 1 a 2 a 3 a 4 a 5 a 6 ).
Given a function f (x, y, . . . , z), let f (x, y, . . . , z) | z=z - z=z + denote the difference f (x, y, . . . , z -) -f (x, y, . . . , z + ). Now we define the following function V = V (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z) by means of the equality

V = i 4 U (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z) -z ∂U ∂z log z z=z - z=z + . ( 5 
)
Depending on the type t|a . . . |p . . . of the tetrahedron T , we consider the following cases.

1. One pair of ultra-parallel faces. This is a prism truncated tetrahedron T , that has the symbol t|aijklm|pn for i, j, k, l, m, n ∈ {1, . . . , 6}. In Fig. ??, we illustrate the case t|a12356|p4. The volume of T can be expressed by the formula

Vol T = ℜ -V + a 4 ∂V ∂a 4 log a 4 , (6) 
where V = V (a 1 , . . . , a 6 ) is the "volume function", as described in [?].

2. Two pairs of ultra-parallel faces. In Fig. ??, illustrate the case t|a2356|p14.

Here, all the vertices of T are ultra-ideal. In complete analogy to the proof of [?, Proposition 3], we can show that the volume of T in this case equals The volume of T is 

Vol T = ℜ   -V + k∈{1,4} a k ∂V ∂a k log a k   . (7 
Vol T = ℜ   -V + k∈{5,6} a k ∂V ∂a k log a k   . (8) 
T = ℜ   -V + k∈{4,5,6} a k ∂V ∂a k log a k   . (9) 
5. Four pairs of ultra-parallel faces. We illustrate the case t|a14|p2356 in Fig. ??. Here, T has only ultra-ideal vertices and its faces are arranged in 

Vol T = ℜ   -V + k∈{2,3,5,6} a k ∂V ∂a k log a k   . (10) 
Lemma 2 The volume of a generalised hyperbolic tetrahedron can be expressed by one of the formulae (??)-(??).

The proof of the lemma above is analogous to the proof of [?, Proposition 3] (each of the above formulae are simplified versions of [?, Theorem 1]). We also refer the reader to [?] for a geometric interpretation of the extra terms involving derivatives of V in the volume formulae above.

Let us now reconsider the previous examples of a pentagonal prism Π and a pleated prism P. We shall derive a geometric decomposition for each of them from the associated sequence of combinatorial transformations.

Remark. The geometric decomposition may look quite different from the combinatorial picture. Although it is directed by a sequence of I H and "capping" moves, each such a move result in "chopping off" a generalised tetrahedron from the polyhedron P . The geometric shapes of polyhedra in each step of such a decomposition will vary from what is present in the combinatorial picture where only the 1-skeleton of P is modified as a trivalent graph.

Example. Let us consider the first transformation ih 1 of the prism Π, as depicted in Fig. ??. Let us suppose that the common perpendicular p 67 to the plane 6 and the plane 7 is situated entirely inside Π. Then we draw two planes S 1 and S 2 orthogonal to the sides 1 and 2 of Π, and passing through p 67 . Suppose these planes land on the sides of Π in its interior. Then we cut along Π along the planes S 1 and S 2 , and thus "chop off" a polyhedron T 1 bounded by the planes of the faces 1, 2, 6 and 7 intersecting along the respective edges (or, more precisely, parts of edges) of the initial prism Π, and the planes S 1 and S 2 intersecting along p 67 . Let us note that T 1 is nothing but a generalised tetrahedron of type t|a12345|p6.

The capping transformations cap 1 , cap 2 and cap 3 in Fig. ?? correspond to further "chopping off" of generalised tetrahedra (of type t|a12345|p6):

-the tetrahedron T 2 , formed by the planes 2, 3, 6, 7, and the planes S 2 , S 3 (orthogonal to the faces 2 and 3, respectively),

-the tetrahedron the tetrahedron T 3 , formed by the planes 1, 5, 6, 7, and the planes S 3 , S 5 (orthogonal to the faces 1 and 5, respectively),

-the tetrahedron the tetrahedron T 4 , formed by the planes 3, 4, 6, 7, and the planes S 3 , S 4 (orthogonal to the faces 3 and 4, respectively).

Figure 13: A geometric decomposition of Π into tetrahedra T i , i = 1, . . . , 5, of type t|a12345|p6

In each case we assume that the plane S k lands orthogonally on the k-th face of Π in its interior. Thus, the prism Π is divided into generalised tetrahedra. The last tetrahedron in Fig. ?? corresponds to the generalised tetrahedron T 5 formed by the planes 4, 5, 6, 7 and S 4 , S 5 .

The geometric decomposition of the prism Π following the combinatorial moves in Fig. ?? is depicted in Fig. ??, with all the tetrahedra T i marked. ♦

Example. Let us consider the first transformation ih 1 of the pleated prism P. Let us suppose that the common perpendiculars to any pairs of faces lie inside P, if they exist. Let us take the common perpendicular p 67 to the plane 6 and the plane 7. Then we perform the transformation ih 1 on the edge e 12 (the intersection of the planes 1 and 2). This results in detaching a generalised tetrahedron T 1 , corresponding to the planes 1, 2, 6 and 7 (the normals to these planes determine T 1 completely through the corresponding Gram matrix, however there are two more polar planes bounding it), whose edges consist of the edges involved in the ih 1 move, and the edges coming from the intersection of the planes S 1 and S 2 , orthogonal to the faces 1 and 2, and passing through the common perpendicular p 67 to the plane 6 and the plane 7. The planes S 1 and S 2 intersect along p 67 and land on the faces 1 and 2, respectively, as well as they intersect the planes 6 and 7, yielding seven new edges in total.

Here and below we suppose that each plane S k , orthogonal to the k-th face of P, lands on it orthogonally and inside P.

The transformations cap 1 and cap 2 , which result in capping the triangular faces in Fig. ?? mean further detaching of the generalised tetrahedra T 2 and T 3 , each defined by the outer normals to the four planes 2, 3, 6, 7 and 1, 5, 6, 7, respectively. Now we consider the transformation ih 2 performed on the edge e 48 (the intersection of planes 4 and 8). We take the common perpendicular p 35 to the planes 3 and 5, and again suppose that it lies inside the pleated prism P. We draw two planes passing through p 35 : S 4 orthogonal to the face 4, and S 8 orthogonal to the face 8. Now, we detach one more generalised tetrahedron T 4 defined by the planes 3, 4, 5 and 8.

The transformation c 3 and c 4 correspond to detaching two more tetrahedra: T 5 defined by the planes 3, 5, 6 and 8, and T 6 defined by the planes 3, 5, 4 and 7.

Here we supposed that all possible common perpendiculars are situated inside P, the planes coming through the common perpendiculars orthogonally to the faces of P land in the interior of the faces, and the generalised tetrahedra T k do not overlap. In other words, we suppose that the tetrahedra T k form a decomposition of P: we shall write P = ⊔ k T k . ♦ Below we give examples where the above decomposition is realised for a concrete polyhedron, having the combinatorial type of a pentagonal prism or a pleated prism and prescribed dihedral angles.

Figure 14: A geometric realisation of the prism Π with given dihedral angles, and its decomposition into generalised tetrahedra

Example. Let us consider the pentagonal prism Π depicted in Fig. ??. Each edge of Π is labelled with an label q/p, corresponding to a dihedral angle of pπ/q. In this case, the common perpendicular p 67 to the planes 6 and 7 lies entirely inside the prism Π, and the planes S k , k = 1, . . . , 5 passing through p 67 and orthogonal to the sides of Π subdivide the prism into five "prism truncated" tetrahedra T k (i.e. tetrahedra of type t|a12345|p6), k = 1, 5, which are mutually isometric. In this decomposition all the generalised tetrahedra T k have disjoint interiors, and Π = ⊔ 5 k=1 T k . The volume of each T k , as well as the volume of the prism Π is computed in [?]: Vol T k = 0.52639, Vol Π = 5 • Vol T k ≈ 2.63200. Here we use formula (??) to compute the volumes of all T k , k = 1, . . . , 5. As described in [?], the volume computation proceeds by defining the function Φ(ℓ) = This equation can be easily solved, which allows us to determine the necessary parameter ℓ. ♦ Figure 15: A geometric realisation of the prism P with given dihedral angles, and its decomposition into generalised tetrahedra

Example. Now we consider the pleated prism P depicted in Fig. ?? together with the labels for its dihedral angles. The common perpendiculars p 1 = p 67 (to the planes 6 and 7) and p 2 = p 35 (to the planes 3 and 5) in this case lie inside P, and the planes S k , k = 1, . . . , 8, passing through each of them, respectively, land orthogonally into the interior of the k-th face. Then the pleated prism P is decomposed into seven generalised tetrahedra T k : six are of type t|a12345|p6 (the tetrahedra 1-3 and 5-7), and one is of type t|a2356|p14 (the tetrahedron 4 in the middle). We compute the volume of P. In order to do so, let ℓ k , k = 1, 2, denote the length of p k . Then we have

Vol P = 7 k=1 Vol T k ,
where we use formula (??) for the tetrahedra T k , k ∈ {1, 2, 3, 5, 6, 7} (of type t|a12345|p6) and formula (??) for the tetrahedron T 4 (of type t|a2356|p14).

The tetrahedra T k form the pleated prism P when the angle sum around each p l equals 2π. The dihedral angle along the edge playing the role of p l in each generalised tetrahedron equals

α p l (T k ) = 2a 6 ∂V ∂a 6 (T k ) mod π,
with l = 1 for the tetrahedra T k , k ∈ {1, 2, 3} and l = 2 for the tetrahedra T k , k ∈ {5, 6, 7}, while

α p 1 (T 4 ) = 2a 1 ∂V ∂a 1 (T 4 ) mod π, α p 2 (T 4 ) = 2a 4 ∂V ∂a 4 (T 4 ) mod π. Let us put Φ(ℓ 1 , ℓ 2 ) = 7 k=1 Vol T k + π k∈{1,2} ℓ k .
Then, from the above equations, we deduce that ℓ k is a solution to the system of equations

∂Φ ∂ℓ k = 0, k = 1, 2.
We can transform the above equations into a system of algebraic equations in the variables x k = e -ℓ k :

e ∂Φ ∂ℓ k = 1, k = 1, 2.
This equation is as a polynomial equation in the variables x k , and can be easily solved by computer. Moreover, the functions ∂Φ ∂ℓ k are monotone in each variable ℓ k , k = 1, 2, while keeping the other variable fixed (in the domain where the function Φ is defined). This follows from the fact that the respective dihedral angles of the tetrahedra T k , k = 1, . . . , 7, are monotone functions of ℓ k , k = 1, 2 (cf. Solving the above equations about ℓ k , we obtain that they have a unique common solution (ℓ 1 , ℓ 2 ) ≈ (0.383438, 1.06239), and the volume of P is consequently equal to ∼ 2.34308. Here we use formula (??) to compute the volumes of T k , k ∈ {1, 2, 3, 5, 6, 7}, and formula (??) to compute the volume of T 4 . ♦

Volume of a polyhedron

We prove the following theorem, that allows us for computing the volume of a finite-volume simple polyhedron P , provided it has a decomposition into generalised tetrahedra, e.g. produced by a sequence of I --H and "capping" moves. Here, by a decomposition we mean a subdivision of P into non-overlapping generalised tetrahedra. An analogous synthesis of a combinatorial decomposition followed by a geometric volume computation may be found in [?, ?] as applied to Euclidean polyhedra.

Theorem 1 Let P ⊂ H 3 be a finite-volume simple polyhedron that admits a decomposition into generalised tetrahedra T k . Then the volume of P can be expressed as

Vol P = k Vol T k (a k1 , . . . , a k6 ), (11) 
where a kl are the six angle/length parameters corresponding to each generalised tetrahedron, the angle parameters a kl = e iα kl come from the original dihedral angles of the polyhedron, and the edge parameters a kl = e -ℓ kl are determined from a solution to the system of algebraic equations, in which each equation is associated with a common perpendicular p kl to some faces F k and F l of P serving as an edge for a number of generalised tetrahedra

T m , e ∂Φ kl (ℓ kl ) ∂ℓ kl = 1, ( 12 
)
with Φ kl (ℓ kl ) = p kl ∩Tm =∅ Vol T m (a m1 , . . . , a m6 ) + π ℓ kl , ( 13 
)
where each monomial in the variables a kl has degree at most four.

Proof. We have that

∂Φ kl (ℓ kl ) ∂ℓ kl = - p kl ∩Tm =∅ α kl 2 + π, (14) 
where α kl is the dihedral angle along an edge of a generalised tetrahedron T m , corresponding to a common perpendicular p kl to some faces F k and F l of P .

Since the polyhedron P admits a decomposition into generalised tetrahedra T k , then for some length parameters ℓ kl (which will be the same for each tetrahedron T m whose edge ℓ kl coincides with the common perpendicular p kl ) we have

p kl ∩Tm =∅ α kl = 2π. ( 15 
)
Thus, (??) implies (??) for these length ℓ kl .

Looking at the expression for the function Vol T k , we observe that ∂Φ kl (ℓ kl ) ∂ℓ kl consists of expressions having the form log(1 + m t ), where m t is a monomial in the parameters a kl . The longest monomial m has the form

a k 1 l 1 a k 2 l 2 a k 3 l 3 a k 4 l 4 .
Thus, if all a kmkn happen to be edge parameters (i.e. a kmkn = e -ℓ kmkn ) then we have an equation of degree four, at most. Let us call a finite-volume polyhedron P ⊂ H 3 "width uniform" if all the common perpendiculars to its facets lie inside P . We also recall that P ⊂ H 3 is called a Coxeter polyhedron if all its dihedral angles are integer submultiples of π, i.e. have the form π/m, for an integer m ≥ 2. These polyhedra form an important class widely used in further constructions of hyperbolic orbifolds and manifolds [?]. The following fact obviously holds as a consequence of geodesic convexity.

Lemma 3 Every Coxeter polytope (or, more generally, every acute-angled polyhedron) is width uniform.

A width uniform polyhedron has a geometric decomposition into generalised tetrahedra. We also notice that each polytope P may be decomposed into a number of generalised tetrahedra T k following a sequence of I -H and "capping" moves, although Theorem ?? may not apply directly. E.g. some of the T k 's may overlap, and thus we shall need to use the "inclusion-exclusion" formula in order to express the volume of P through the volumes of T k . As well, some of the polar hyperplanes bounding T k may land on the faces of P entirely or partially outside P forming "butterfly" generalised tetrahedra, some of which are depicted in Fig. ??,c.f. [?].

The volume formula of [?] works in either case, however, the glueing equations (??)-(??) will not have a unique solution. Still, the value of the volume of P can be found by using some solution among (usually few) solutions of the glueing equations.

Figure 17: Some examples of "butterfly" generalised tetrahedra

Further computational examples

Below we give more numeric examples of volume computation for several polytopes. We start with the pleated prism P, and then proceed to a dodecahedron D. We shall use Coxeter dihedral angles (i.e. dihedral angles of the form π/n, for n a natural number ≥ 2), so we can "double-check" the volume of each polytope P with the following procedure: the volume of P equals the volume of the reflection orbifold obtained from P by mirroring all its faces. We create a "double" of the respective reflection orbifold, which is an orientable orbifold O(P ) with underlying space the three-sphere S 3 , and singular set combinatorially isomorphic to the 1-skeleton of P . Each singular edge e carries an angle of 2π/n, corresponding to the angle of π/n in the original polytope P . The volume of O(P ) can be computed by the "Orb" software [?], and Vol O(P ) = 2 VolP . First, we pick the pleated prism P from our previous example, and reduce it to a tetrahedron by a different sequence of I -H and capping moves depicted in Fig. ??. Thus, the position of the common perpendiculars in the new subdivision will be different.

As shown in Fig. ??, we have again 7 tetrahedra to consider, five of which are of the type t|a12356|p4 (the tetrahedra T i , i ∈ {1, 2, 3, 6, 7}), and two are of the type t|a1234|p56 (the tetrahedra T i , i ∈ {4, 5}). Here, our computations find that the length of the common perpendicular p 1 = p 67 to the planes 6 and 7 is ℓ 1 ≈ 0.383438, and the length of the common perpendicular p 2 = p 47 to the planes 4 and 7 is ℓ 2 ≈ 0.626516. The volume of the prism P equals, as before, Vol P ≈ 2.34308. By using various sequences of I -H and capping moves, and therefore where Γ, c (r) is the unitary spin network (the Kirillov-Reshetikhin invariant with framing c (r) , r = 3, 5, . . . ) associated with Γ, c.f. [?, ?] and the root of unity is specified at q = exp 4πi r . First we recall some necessary basic definition that are used in our computation below. Let r ≥ 3 be a odd integer, q = exp(4πi/r) and the quantum number {n} and factorial {n}! be defined as {n} = q n/2 -q -n/2 , {n, k} = {n} {n-1} • • • {n-k+1}, {n}! = {n, n}. 

z {z + 1}! {1} {z -A 1 }! {z -A 2 }! {z -A 3 }! {z -A 4 }! {B 1 -z}! {B 2 -z}! {B 3 -z}! ,
where

A 1 = a + b + e, A 2 = a + c + f, A 3 = b + d + f, A 4 = c + d + e, B 1 = a + b + c + d, B 2 = a + d + e + f, B 3 = b + c + e + f, ∆(x, y, z) = {-x + y + z}! {x -y + z}! {x + y -z}! {1} {x + y + z + 1}! .
and z runs from max(A 1 , A Example. Let Π be the pentagonal prism depicted in Fig. ??. Let Γ be the planar graph given by the 1-skeleton of Π, with edges e 1 , . . . , e 15 , and the corresponding dihedral angles α 1 , . . . , α 15 along them. Here, we have that α i ∈ π 2 , π 3 , 2π 5 . Let c (r) be the sequence of colourings s (r)

x + y + z ∈ Z, x + y + z ≤ r -2, 0 ≤ x + y -z, x -y + z, -x + y + z.
i , i = 1, . . . , 15, r = 3, 5, 7, . . . of the edges e i of Γ such that the conditions of Conjecture ?? are satisfied. This means that we have s

(r) i = ⌊ r-3 4 ⌋ for each α i = π 2 , s (r) i = ⌊ r-3
3 ⌋ for each α i = π 3 , and s (r) i = ⌊ 3(r-3) 10 ⌋ for each α i = 2π 5 . Then the unitary spin network associated with Γ evaluates into

Γ, c (r) = k (-1) k {k + 1} {1}   ⌊ r-3 3 ⌋ ⌊ r-3 3 ⌋ ⌊ 3(r-3) 10 ⌋ ⌊ r-3 4 ⌋ ⌊ r-3 4 ⌋ k RW q=exp( 4πi r )   5 .
In Table ?? we collect the results of numerical computations of the quantity Analogous, however way more tedious computations may be carried out in the case of the hyperbolic dodecahedra D i , i = 1, 2, 3, described in Section ??. ♦ Each time an I -H move or a capping move is performed on Γ, we have a generalised tetrahedron detached from the polyhedron P . As a step towards verification of Conjecture ?? we suggest investigating if the following statements hold.

V (r) = 2π r log Γ, c ( 
Conjecture 2 Let α, β, γ, δ, ǫ, φ be the dihedral angles of a generalised hyperbolic tetrahedron T , which may have ideal and ultra-ideal vertices, though no truncating polar planes determined by its ultra-ideal vertices intersect. Let a

(r) , b (r) , • • • , f (r) , r = 3, 5, 7, • • • be sequences of integers satisfying 4 π lim r→∞ a (r) r = π -α, 4 π lim r→∞ b (r) r = π -β, 4 π lim r→∞ c (r) r = π -γ, 4 π lim r→∞ d (r) r = π -δ, 4 π lim r→∞ e (r) r = π -ǫ, 4 π lim r→∞ f (r) r = π -φ,
where r is always an odd integer. Then *

2 π lim r→∞ 1 r log a (r) b (r) e (r) d (r) c (r) f (r) RW q=exp( 4πi r ) = Vol(T ). (16) 
In Fig. ?? we illustrate the values of V (α) = Vol T α , for a regular tetrahedron with all dihedral angles equal to α. The tetrahedron T α is spherical for α > arccos(1/3), Euclidean for α = arccos(1/3), and hyperbolic for π/3 < α < arccos(1/3). It is ideal for α = π/3, truncated (i.e. has ultra-ideal vertices) hyperbolic for 0 < α < π/3, and it deforms into a regular ideal octahedron O for α = 0. The octahedron O has all dihedral angles equal to π/2 and its volume is Vol O ≈ 3.663.... Let us notice that the tetrahedron considered in the above conjecture is supposed to have only mild vertex truncations, c.f. [?]. Another conjecture considers a generalised hyperbolic tetrahedron T with some vertices * We suppose that the sequences a (r) , . . . , f (r) are such that the corresponding 6j-symbol is well-defined. intensely truncated. We specify this conjecture for the case of a prism truncated tetrahedron, considered in [?, ?]. Although, one may state an analogous conjecture for a generalised tetrahedron of any type considered in Section ??. {(j + 1) (2 f (r) + 1)} {j} = Vol(T ). ( 17) † However, only two truncating polar planes determined by its ultra-ideal vertices intersect.

‡ We suppose that the sequences a (r) , . . . , f (r) are such that the corresponding 6j-symbol is well-defined.

Let T α,β be the doubly truncated tetrahedron with dihedral angle α at its usual five edges and β at the edge arising from intense truncation. Let U (k, l) = Since the volume of P is a sum of volumes of the generalised tetrahedra T i composing it, we hope that there might be a correspondence between the asymptotic behaviour of the sums (??)-(??) associated with each tetrahedron T i , and the asymptotic behaviour of the Kirillov-Reshetikhin invariant Γ, c (r) of the whole polyhedron P .

Figure 1 :

 1 Figure 1: An I -H move

Example.

  Let us take a pentagonal prism Π depicted in Fig. ?? and apply a sequence of combinatorial transformations to its one-skeleton, as shown in Fig. ??.

Figure 4 :Figure 5 :Figure 6 :

 456 Figure 4: A sequence of I -H and capping moves applied to the prism Π Thus, having applied a short sequence of combinatorial moves we obtain a tetrahedron. ♦

Figure 7 :

 7 Figure 7: A prism-truncated tetrahedron

Figure 8 :

 8 Figure 8: A tetrahedron of type t|a12356|p4

Figure 9 :

 9 Figure 9: A tetrahedron of type t|a2356|p14

) 3 .

 3 Two pairs of ultra-parallel faces, another configuration. A tetrahedron of type t|a1234|p56 is depicted in Fig.??. Here, three vertices v 1 , v 2 and v 3 are ultra-ideal and the vertex v 4 is proper.

Figure 10 :

 10 Figure 10: A tetrahedron of type t|a1234|p56

Figure 11 : A tetrahedron of type t|a123|p456 4 .

 114 Figure 11: A tetrahedron of type t|a123|p456 4. One face that is ultra-parallel to three others. In Fig. ??, a tetrahedron of type t|a123|p456 is shown. Here, three faces are adjacent around the proper vertex v 4 , while three other vertices v 1 , v 2 and v 3 are ultra-ideal. The volume of T is

Figure 12 :

 12 Figure 12: A tetrahedron of type t|a14|p2356

5 k=1

 5 Vol T k + πℓ, where ℓ is the length of the common perpendicular p 56 , and solving the equation ∂Φ(ℓ) ∂ℓ = 0.We can transform the last equation into an algebraic equation about x = e -ℓ :

  Fig. ??).

Figure 16 :

 16 Figure 16: The dihedral angles of the tetrahedron T 4 as fucntions of edge lengths ℓ 1 and ℓ 2 (the graph is symmetric under exchanging ℓ 1 and ℓ 2 )

Figure 18 :

 18 Figure 18: Another sequence of I -H and capping moves reducing the pleated prism P to a tetrahedron

Figure 19 :Figure 21 :Figure 23 :

 192123 Figure19: A geometric realisation of the pleated prism P with given dihedral angles, and its decomposition into generalised tetrahedra

.

  The Racah-Wigner quantum 6j-symbol is defined for six half-integers a, b, c, d, e, f in the set {0, 1/2, 1, 3/2, • • • , (r -2)/2} and the actual formula is given by [?] as follows: a, b, e) ∆(a, c, f ) ∆(b, d, f ) ∆(c, d, e)× z (-1)

  The actual computation of the Kirillov-Reshetikhin invariant of a coloured trivalent graph Γ with colouring c follows the skein relations (4.1)-(4.13) and (5.4), (5.6) described in [?].

  Figure 25: Values of the quantum 6j-symbol and V (α).

Conjecture 3

 3 Let α, β, γ, δ, ǫ, φ be the dihedral angles of a prism truncated hyperbolic tetrahedron T , which may have ideal or ultra-ideal vertices. † Let the parameter φ represent the dihedral angle at the edge arising from intense truncation. Let a (r) , b (r) , • • • , f (r) (r = 3, 5, 7, • • • ) be sequences of integers satisfying4 π lim r→∞ a (r) r = π -α, 4 π lim r→∞ b (r) r = π -β, 4 π lim r→∞ c (r) r = π -γ, 4 π lim r→∞ d (r) r = π -δ, 4 π lim r→∞ e (r) r = π -ǫ, 4 π lim r→∞ f (r) r = π -φ,where r is always an odd integer. Then ‡ ) b (r) e (r) d (r) c (r)

  j + 1)(2 l + 1)} {2j + 1} .In Fig.?? the values of U ((r -3)/3, l) and V (β) = Vol T π/3,β are shown.

Figure 26 :

 26 Figure 26: Values of U ( r-3 3 , l) and V (β).

  2 , A 3 , A 4 ) to min(B 1 , B 2 , B 3 ). Above we suppose that the triples (a, b, e), (a, c, f ), (b, d, f ) and(c, d, e) are all admissible. Here, a triple of half integers (x, y, z) in {0, 1/2, • • • , (r-2)/2} is said to be admissible if x, y, z satisfy

Table 1 :

 1 r) for various odd values of r. The values of Kirillov-Reshetikhin invariants for Π We also perform numerical computations for the pleated prism P depicted in Fig.??. The numeric values of its Kirillov-Reshetikhin invariants are given in Table?? for various odd values of r.

	r	483	963	1923	3843	Vol Π
	V (r) 2.27094 2.42388 2.51421 2.56627 ≈ 2.63200

Table 2 :

 2 The values of Kirillov-Reshetikhin invariants for P