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Introduction

Let T be a generalised hyperbolic tetrahedron (in the sense of [START_REF] Murakami | A volume formula for hyperbolic tetrahedra in terms of edge lengths[END_REF][START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF]) depicted in Fig. 1. If the truncating planes associated with its ultra-ideal vertices do not intersect, we call such a tetrahedron mildly truncated, otherwise we call it intensely truncated. If only two of them intersect, we call such a tetrahedron prism truncated [START_REF] Kolpakov | Volume of a doubly truncated hyperbolic tetrahedron[END_REF]. Let us note that a prism truncated orthoscheme is, in fact, a Lambert cube [START_REF] Kellerhals | On the volume of hyperbolic polyhedra[END_REF]. The volumes of the tetrahedron and its truncations are of particular interest, since they are the simplest representatives of hyperbolic polyhedra. Over the last decade an extensive study produced a number of volume formulae suitable for analytic and numerical exploration [START_REF] Cho | On the volume formula for hyperbolic tetrahedra[END_REF][START_REF] Derevnin | A formula for the volume of a hyperbolic tetrahedron[END_REF][START_REF] Kellerhals | On the volume of hyperbolic polyhedra[END_REF][START_REF] Kolpakov | Volume of a doubly truncated hyperbolic tetrahedron[END_REF][START_REF] Murakami | On the volume of hyperbolic and spherical tetrahedron[END_REF][START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF]. A similar study was done for the spherical tetrahedron [START_REF] Kolpakov | Volume formula for a Z 2 -symmetric spherical tetrahedron through its edge lengths[END_REF][START_REF] Murakami | The volume formulas for a spherical tetrahedron[END_REF], which can be viewed as a natural counterpart of the hyperbolic one. Many analytic properties of the volume formula for a hyperbolic tetrahedron came into view concerning the Volume Conjecture [START_REF] Kashaev | The hyperbolic volume of knots from the quantum dilogarithm[END_REF][START_REF] Murakami | The colored Jones polynomials and the simplicial volume of a knot[END_REF]. However, other geometric characteristics of a generalised hyperbolic tetrahedron T are also important and bring some useful information. In particular, Figure 1: Generalised hyperbolic tetrahedron Jac(T ), the Jacobian of T , which is the Jacobian matrix of the edge length with respect to the dihedral angles, is such. This matrix enjoys many symmetries [START_REF] Luo | 3-dimensional Schläfli formula and its generalization[END_REF] and can be computed out of the Gram matrix of T [START_REF] Guo | Calculus of generalized hyperbolic tetrahedra[END_REF]. In the present paper, we consider Jac ⋆ (T ), the dual Jacobian of a generalised hyperbolic tetrahedron T . By the dual Jacobian of T we mean the Jacobian matrix of the dihedral angles with respect to the edge length. Such an object behaves nicely when T undergoes both mild and intense truncation: the dual Jacobian of a prism truncated tetrahedron is an analytic continuation for that of a mildly doubly truncated one. Let us mention, that the respective volume formulae are also connected by an analytic continuation, in an analogous manner [START_REF] Kolpakov | Volume of a doubly truncated hyperbolic tetrahedron[END_REF][START_REF] Murakami | A volume formula for hyperbolic tetrahedra in terms of edge lengths[END_REF]. As an application of our technique, we give a volume formula for a hyperbolic n-gonal prism, c.f. [START_REF] Derevnin | The Coxeter prisms in H 3 " in Recent advances in group theory and low-dimensional topology[END_REF]. a ij and lengths ℓ ij , i, j ∈ {1, 2, 3, 4}, i < j. Depending on whether the vertex v k is proper (v k ∈ H 3 ), ideal (v k ∈ ∂H 3 ) or ultra-ideal (v k defines a polar hyperplane as described in [21, Section 3], c.f. Theorem 3.2.12), let us set the quantity ε k to be +1, 0 or -1, respectively. For each vertex v i of T let us consider the face F jkl opposite to it, where {i, j, k, l} = {1, 2, 3, 4}. The link L(v l ) of the vertex v l is either a spherical triangle (ε l = +1), a Euclidean triangle (ε l = 0) or a hyperbolic triangle (ε l = -1). Let us define the quantity b i jk as follows:

b i jk :=       
the plane angle of F jkl opposite to the edge e jk , if ε l = +1; zero, if ε l = 0; the length of the common perpendicular to the edges e jl and e kl of F jkl , if ε l = -1.

Here, we consider the face F jkl as a generalised hyperbolic triangle, for which the trigonometric laws hold as described in [START_REF] Cho | Trigonometry in extended hyperbolic space and extended de Sitter space[END_REF][START_REF] Guo | Rigidity of polyhedral surfaces -II[END_REF]. Let us also define a quantity µ i jk by means of the formula

µ i jk := b i jk 0 cos( √ ε l s)ds.
Let µ ′ i jk denote the derivative of µ i jk with respect to b i jk , which means that

µ ′ i jk = cos( √ ε l b i jk ).
Let σ kl denote the following quantity associated with an edge e kl , k, l ∈ {1, 2, 3, 4}, k < l,

σ kl := 1 2 e ℓ kl - 1 2 ε k ε l e -ℓ kl .
Let σ ′ kl denote the derivative of σ kl with respect to ℓ kl , so we have that

σ ′ kl = 1 2 e ℓ kl + 1 2 ε k ε l e -ℓ kl .
Let us define the momentum M i of the vertex v i opposite to the face F jkl , {i, j, k, l} = {1, 2, 3, 4} by the following equality (c.f. [6, VII.6]):

M i := µ i jk µ i jl σ kl .
The quantity above is well defined grace to the following theorem.

Theorem 1 (The Sine Law for faces) Let F jkl be the face of T opposite to the vertex v i , {i, j, k, l} = {1, 2, 3, 4}. Then F jkl is a generalised hyperbolic triangle and the following equalities hold:

µ i jk σ jk = µ i jl σ jl = µ i kl σ kl .
Let us also define the momentum M jkl of the face F jkl opposite to the vertex v i , {i, j, k, l} = {1, 2, 3, 4} by setting (c.f. [6, VII.6])

M jkl := µ j kl sin a ik sin a il . The quantity above is well defined, according to the following theorem.

Theorem 2 (The Sine Law for links) Let v i be the vertex of T opposite to the face F jkl , {i, j, k, l} = {1, 2, 3, 4}. Then L(v i ) is either a spherical, a Euclidean or a hyperbolic triangle and the following equalities hold:

sin a ij µ j kl = sin a ik µ k jl = sin a il µ l jk .
Both Theorem 1 and Theorem 2 are paraphrases of the spherical, Euclidean or hyperbolic sine laws (for a generalised hyperbolic triangle, see [START_REF] Guo | Rigidity of polyhedral surfaces -II[END_REF]). The following theorems are the cosine laws for a generalised hyperbolic triangle adopted to the notation of the present paper.

Theorem 3 (The first Cosine Law for faces) Let F jkl be the face of T opposite to the vertex v i , {i, j, k, l} = {1, 2, 3, 4}. Then F jkl is a generalised hyperbolic triangle and the following equality holds:

σ ′ kl = µ ′ i kl + µ ′ i jk µ ′ i jl µ i jk µ i jl .
Theorem 4 (The second Cosine Law for faces) Let F jkl be the face of T opposite to the vertex v i , {i, j, k, l} = {1, 2, 3, 4}. Then F jkl is a generalised hyperbolic triangle and the following equality holds:

µ ′ i jk = -ε l σ ′ jk + σ ′ jl σ ′ kl σ jl σ kl .
Theorem 5 (The Cosine Law for links) Let v i be the vertex of T opposite to the face F jkl , {i, j, k, l} = {1, 2, 3, 4}. Then L(v i ) is either a spherical, a Euclidean or a generalised hyperbolic triangle and the following equality holds: µ ′ j kl = cos a ij + cos a ik cos a il sin a ik sin a il .

Auxiliary lemmata

In the present section we shall consider various partial derivatives of certain geometric quantities associated with either the faces or the vertex links of a generalised hyperbolic tetrahedron T . These derivatives will be used later on in the computation of the entries of Jac ⋆ (T ).

Lemma 1 For {i, j, k, l} = {1, 2, 3, 4} we have

∂ℓ kl ∂b i kl = -ε j µ i kl M i , ∂ℓ kl ∂b i jk = -σ ′ jl µ i kl M i , ∂ℓ kl ∂b i jl = -σ ′ jk µ i kl M i .
Proof. According to the definition of σ kl , we have σ kl = 0 only in the following two cases: ε k = ε l = +1 and ℓ kl = 0, or ε k = ε l = -1 and ℓ kl = 0. In the former case, we have a degenerate tetrahedron with two proper vertices collapsing to one point. In the latter case the tetrahedron has two ultra-ideal vertices, whose polar planes are tangent at a point on the ideal boundary ∂H 3 . This is a limiting case, since in a generalised (mildly truncated) tetrahedron two polar planes never intersect or become tangent. Thus, we suppose that σ kl = 0. By taking derivatives on both sides of the first Cosine Law for faces, we get the following formulae:

σ kl ∂ℓ kl ∂b i kl = ∂σ ′ kl ∂b i kl = 1 µ i jk µ i jl ∂µ ′ i kl ∂b i kl = -ε j µ i kl µ i jk µ i jl , since ∂σ ′ kl ∂b i kl = σ kl ∂ℓ kl ∂b i kl and ∂µ ′ i kl ∂b i kl = -ε j µ i kl
by a direct computation. This implies the first identity of the lemma. Now we compute

σ kl ∂ℓ kl ∂b i jk = ∂σ ′ kl ∂b i jk = - ((µ ′ i jk ) 2 + ε l (µ i jk ) 2 )µ i jl µ ′ i jl + µ i jl µ ′ i jk µ ′ i kl (µ i jk µ i jl ) 2 = - µ ′ i jl + µ ′ i jk µ ′ i kl µ i jk µ i kl • µ i kl µ i jk µ i jl = -σ ′ jl µ i kl µ i jk µ i jl .
where we use the identity (µ ′ i jk ) 2 + ε l (µ i jk ) 2 = 1 and, as before, the fact that

∂µ ′i jk ∂b i jk = -ε l µ i jk .
Then the second identity follows. The third one is analogous to the second one under the permutation of the indices k and l.

Lemma 2 For {i, j, k, l} = {1, 2, 3, 4} we have

∂b j kl ∂a ij = ε i sin a ij M jkl ∂b j kl ∂a ik = ε i sin a ij M jkl µ ′ l jk , ∂b j kl ∂a il = ε i sin a ij M jkl µ ′ k jl .
Proof. By taking derivatives on both sides of the Cosine Law for links, we get the following formulae:

-ε i µ j kl ∂b j kl ∂a ij = ∂µ ′ j kl ∂a ij = - sin a ij sin a ik sin a il .
The first identity of the lemma follows.

Then we subsequently compute

-ε i µ j kl ∂b j kl ∂a ik = ∂µ ′ j kl ∂a ik = - cos a il + cos a ij cos a ik sin a ij sin a ik sin a ij sin a ik sin a il = µ ′ l jk sin a ij sin a ik sin a il .
The second identity follows. The third one is analogous under the permutation of the indices k and l. Now we shall prove several identities that relate the principal minors G ii , i ∈ {1, 2, 3, 4} of the Gram matrix G := G(T ) of the tetrahedron T with its face or vertex momenta.

Lemma 3 For {i, j, k, l} = {1, 2, 3, 4}, we have that det G ii = ε i M 2 jkl .
Proof. Let us perform the computation for G 11 and other cases will follow by analogy. We have that

det   1 -cos a14 -cos a13 -cos a14 1 -cos a12 -cos a13 -cos a12 1   = = det   1 -cos a14 -cos a13 0 sin 2 a14 -µ ′2 34 sin a13 sin a14 0 -µ ′2 34 sin a13 sin a14 sin 2 a13   = = (1 -(µ ′ 2 34 ) 2
) sin 2 a 13 sin 2 a 14 = ε 1 (µ 2 34 ) 2 sin 2 a 13 sin 2 a 14 = ε 1 M 2 234 . By permuting the set {i, j, k, l} = {1, 2, 3, 4}, one gets all other identities of the lemma.

Lemma 4 For {i, j, k, l} = {1, 2, 3, 4}, we have that

-det G = sin 2 a jk sin 2 a jl sin 2 a kl (M i ) 2 . Proof. Let us subsequently compute det G = det     1 -cos a 34 -cos a 24 -cos a 23 -cos a 34 1 -cos a 14 -cos a 13 -cos a 24 -cos a 14 1 -cos a 12 -cos a 23 -cos a 13 -cos a 12 1     = det     1 -cos a34 -cos a24 -cos a23 0 sin 2 a34 -µ ′1 23 sin a24 sin a34 -µ ′1 24 sin a23 sin a34 0 -µ ′1
23 sin a24 sin a34 sin 2 a24 -µ ′1 34 sin a23 sin a24 0 -µ ′1 24 sin a23 sin a34 -µ ′1 34 sin a23 sin a24

sin 2 a23     = sin 2 a 23 sin 2 a 24 sin 2 a 34 det   1 -µ ′ 1 23 -µ ′ 1 24 -µ ′ 1 23 1 -µ ′ 1 34 -µ ′ 1 24 -µ ′ 1 34 1   = sin 2 a 23 sin 2 a 24 sin 2 a 34 det   1 -µ ′ 1 23 -µ ′ 1 24 0 ε 4 (µ 1 23 ) 2 -σ ′ 34 µ 1 23 µ 1 24 0 -σ ′ 34 µ 1 23 µ 1 24 ε 3 (µ 1 24 ) 2   = sin 2 a 23 sin 2 a 24 sin 2 a 34 (ε 3 ε 4 -(σ ′ 34 ) 2 )(µ 1 23 µ 1 24 ) 2 = -sin 2 a 23 sin 2 a 24 sin 2 a 34 (M 1 ) 2 .
Here we used the Cosine Law for links in the second equality and the first Cosine Law for faces in the fourth equality. Also, we used the fact that for {i, j, k, l} = {1, 2, 3, 4} one has 1

-ε l (µ i jk ) 2 = (µ ′ i jk ) 2 (in the third equality) and σ 2 ij -(σ ′ ij ) 2 = ε i ε j (in the sixth equality).
All other identities of the lemma follow by permuting the set {i, j, k, l} = {1, 2, 3, 4}.

Dual Jacobian of a generalised hyperbolic tetrahedron

In this section we shall compute the entries of the dual Jacobian matrix Jac ⋆ (T ) of a generalised hyperbolic tetrahedron T .

Theorem 6 Let T be a generalised hyperbolic tetrahedron. Then 

Jac ⋆ (T ) := ∂(ℓ
η := Π 4 i=1 ε i det G ii (-det G) 3 1/2 , D :=         σ 12 σ 13 σ 14 σ 23 σ 24 σ 34        
and

S :=         ω 12 ε 1 σ ′ 14 ε 1 σ ′ 13 ε 2 σ ′ 24 ε 2 σ ′ 23 1 ε 1 σ ′ 14 ω 13 ε 1 σ ′ 12 ε 3 σ ′ 34 1 ε 3 σ ′ 23 ε 1 σ ′ 13 ε 1 σ ′ 12 ω 14 1 ε 4 σ ′ 34 ε 4 σ ′ 24 ε 2 σ ′ 24 ε 3 σ ′ 34 1 ω 23 ε 2 σ ′ 12 ε 3 σ ′ 13 ε 2 σ ′ 23 1 ε 4 σ ′ 34 ε 2 σ ′ 12 ω 24 ε 4 σ ′ 14 1 ε 3 σ ′ 23 ε 4 σ ′ 24 ε 3 σ ′ 13 ε 4 σ ′ 14 ω 34        
, where

ω kl := σ ′ ik σ ′ jl + ε l σ ′ il σ ′ jl σ ′ kl + σ ′ il σ ′ jk + ε k σ ′ ik σ ′ jk σ ′ kl σ 2 kl .
Proof. We compute the respective derivatives, that constitute the entries of Jac ⋆ (T ). Suppose that ε i = 0, i ∈ {1, 2, 3, 4}, since the cases when ε j = 0 for some j ∈ {1, 2, 3, 4} can be dealt with in an analogous manner. Then for {i, j, k, l} = {1, 2, 3, 4}, one has

∂ℓ kl ∂a ij = ∂ℓ kl ∂b j kl ∂b j kl ∂a ij = -ε i µ j kl M j • ε i sin a ij M jkl (1) = - 1 M j sin a ij sin a ik sin a il = - 1 M j sin aij sin a ik sin a il 1 σij 1 σ kl σij σ kl (2) = - 1 M j sin aij sin a ik sin a il σij σ kl µ i jk µ i jl M i µ l ik µ l jk M l (3) = 8 - M ijk M ikl M ijl M jkl (-det G) 3 σ ij σ kl (4) = - Π 4 i=1 ε i det G ii (-det G) 3 σ ij σ kl = -η σ ij σ kl .
Here we used the definitions of vertex and face momenta, as well as Lemmata 1 and 4. Indeed, in [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF] we have that M ijk = µ j kl sin a ik sin a il and in (2) we use the fact that

σ ij = µ l ik µ l jk M l , σ kl = µ i jk µ i jl M i . In (3) we use µ i jk = M ijk sin a jl sin a kl , µ l ik = M ikl sin a ij sin a jk , µ i jl = M ijl sin a jk sin a kl , µ l jk = M jkl sin a ij sin a ik ,
together with the identities of Lemma 4. In (4) we use Lemma 3. Analogous to the above, we compute for {i, j, k, l} = {1, 2, 3, 4},

∂ℓ kl ∂a ik = ∂ℓ kl ∂b i jk ∂b i jk ∂a ik = -ε k sin a ik M ijl µ i kl M i σ ′ jk = -ε k ε j det G jj M i sin a jk sin a jl sin a ik √ ε k det G kk 1 σ ik σ kl σ ik σ kl σ ′ jk = -ε k ε j det G jj M i sin a jk sin a jl sin a ik √ ε k det G kk µ i jk µ i jl M i µ j il µ j kl M j σ ik σ kl σ ′ jk = -ε k ε j det G jj √ ε k det G kk √ ε l det G ll √ ε k det G kk √ ε k det G kk √ ε i det G ii (-det G) 3 σ ik σ kl σ ′ jk = -ε k Π 4 i=1 ε i det G ii (-det G) 3 σ ik σ kl σ ′ jk = -ε k η σ ik σ kl σ ′ jk .
Finally, for {i, j, k, l} = {1, 2, 3, 4}, we compute the derivative

∂ℓ kl ∂a kl = ∂ℓ kl ∂b i jk ∂b i jk ∂a kl + ∂ℓ kl ∂b i jl ∂b i jl ∂a kl .
Since the two terms of the above sum are symmetric under the permutation of k and l, we may compute only the first one. The second one will be analogous. By Lemmata 1 and 2, we get

∂ℓ kl ∂b i jk ∂b i jk ∂a kl = -ε l µ i kl M i sin a il M ijk σ ′ jl µ ′ j ik (5) = -(σ ′ ik σ ′ jl + ε l σ ′ il σ ′ jl σ ′ kl ) µ i kl M i sin a il M ijk 1 σ il σ kl (6) = -(σ ′ ik σ ′ jl + ε l σ ′ il σ ′ jl σ ′ kl ) ε j det G jj M i sin a jk sin a jl sin a il √ ε l det G ll µ i jk µ i jl M i µ j ik µ j kl M j (7) 
=

-(σ ′ ik σ ′ jl + ε l σ ′ il σ ′ jl σ ′ kl ) εj det Gjj (-det G) 3 √ ε l det G ll √ ε k det G kk √ ε l det G ll √ εi det Gii √ ε l det G ll = -(σ ′ ik σ ′ jl + ε l σ ′ il σ ′ jl σ ′ kl ) Π 4 i=1 ε i det G ii (-det G) 3 = -η (σ ′ ik σ ′ jl + ε l σ ′ il σ ′ jl σ ′ kl ).
Here, in (5) we used the second Cosine Law for faces and in (6) we used the equality M ikl = µ i kl sin a jk sin a jl together with Lemma 3. In [START_REF] Guo | Calculus of generalized hyperbolic tetrahedra[END_REF] we perform a computation analogous to (3). Thus, we obtain

∂ℓ kl ∂a kl = ∂ℓ kl ∂b i jk ∂b i jk ∂a kl + ∂ℓ kl ∂b i jl ∂b i jl ∂a kl = -η (σ ′ ik σ ′ jl + ε l σ ′ il σ ′ jl σ ′ kl ) -η (σ ′ il σ ′ jk + ε k σ ′ ik σ ′ jk σ ′ kl ) = -η ω kl σ 2 kl .
The proof is completed.

Dual Jacobian of a doubly truncated hyperbolic tetrahedron

Let us consider the case when T is a (mildly) doubly truncated tetrahedron depicted in Fig. 2 with dihedral angles θ i and edge lengths ℓ i , i ∈ {1, 2, 3, 4, 5, 6}. We suppose that the vertices cut off by the respective polar planes are v 1 and v 2 .

If T is mildly truncated then the formula from Theorem 6 applies. If T is a prism truncated tetrahedron, as in Fig. 3, with dihedral angles µ, θ i and edge lengths ℓ, ℓ i , i ∈ {1, 2, 3, 5, 6} then its Gram matrix is given by

G =     1 -cos θ 1 -cos θ 5 -cos θ 3 -cos θ 1 1 -cos θ 6 -cos θ 2 -cos θ 5 -cos θ 6 1 -cosh ℓ -cos θ 3 -cos θ 2 -cosh ℓ 1     ,
which is a slightly different notation compared to [START_REF] Kolpakov | Volume of a doubly truncated hyperbolic tetrahedron[END_REF][START_REF] Kolpakov | Erratum to: Volume of a doubly truncated hyperbolic tetrahedron[END_REF]. Each link L(v k ), k = 1, 2, is a hyperbolic quadrilateral with two right sameside angles, which can be seen as a hyperbolic triangle with a single truncated 

i 1j , with i, j ∈ {2, 3, 4}, i = j, for b i 1j + √ -1 π 2 and each b i 2j , with i, j ∈ {1, 3, 4}, i = j, for b i 2j + √ -1 π 2 .
Thus, some of the vertex and face momenta become complex numbers. All the trigonometric rules of Section 2 still hold grace to [2, Section 4.3]. Computing the respective derivatives in a complete analogy to the proof of Theorem 6, we obtain the following statement. 

Volume of a hyperbolic prism

Let α n denote the n-tuple (α 1 , . . . , α n ) with 0 < α k < π, k = 1, . . . , n.

Let β n and γ n be analogous n-tuples. Let Π n := Π n ( α n , β n , γ n ) be the hyperbolic n-sided prism depicted in Fig. 4, with the respective dihedral angles, as shown in the picture. Let S k , k = 1, . . . , n, be the supporting hyperplane for the k-th side face of the prism Π n (we start numbering the faces anti-clockwise from the side face adjacent to the angles α 1 , β 1 and γ 1 , γ 2 ), and let S 0 and S n+1 be those of the top and the bottom face, correspondingly. For each S k , k = 0, . . . , n + 1, let S + k be the respective half-space containing the unit outer normal to it. Let S - k = H 3 \ S + k . Then Π n = n+1 i=0 S - i . Let T := T (α, α ′ , β, β ′ , γ; ℓ) be the prism truncated tetrahedron depicted in Fig. 5. Here α, α ′ , β, β ′ and γ are the respective dihedral angles, ℓ is the length of the respective edge. The volume Vol T of the tetrahedron T is given by [12, Theorem 1] * . Let v(α, α ′ , β, β ′ , γ; ℓ) := Vol T (α, α ′ , β, β ′ , γ; ℓ) denote the respective volume function. Theorem 8 Let Π n = Π n ( α n , β n , γ n ) be a hyperbolic n-sided prism, as in Fig. 4. If p 0 p n+1 ⊂ Π n , then the volume of Π n is given by the formula

Vol Π n = n k=1 v(α k , α k⊕1 , β k , β k⊕1 , γ k⊕1 ℓ ⋆ ),
where ℓ ⋆ is the unique solution to the equation ∂Φ ∂ℓ (ℓ) = 0, with

Φ(ℓ) := πℓ + n k=1 v(α k , α k⊕1 , β k , β k⊕1 , γ k⊕1 ; ℓ).
Let P k , k = 1, . . . , n, be the plane containing p 0 p n+1 and orthogonal to S k . First, we consider the case when p 0 p n+1 lies inside the prism Π n and the planes P k , k = 1, . . . , n, divide the prism Π n into n prism truncated tetrahedra, as shown in Fig. 6.

Then each P k meets the k-th side face of the prism Π n . Thus, the planes S 0 , S k , S k⊕1 and S n+1 together with P k and P k⊕1 become the supporting planes for the faces of a prism truncated tetrahedron, which we denote by T k . Each P k is orthogonal to S k , S 0 and S n+1 . The dihedral angles of T k inherited from the prism Π n are easily identifiable. Let µ k denote the dihedral angle along the edge p 0 p n+1 and let ℓ ⋆ be its length. Then we have

T k = T (α k , α k⊕1 , β k , β k⊕1 , γ k⊕1 ; ℓ ⋆ ), k = 1, . . . , n. Clearly, Vol Π n = n k=1 Vol T k = n k=1 v(α k , α k⊕1 , β k , β k⊕1 , γ k⊕1 ; ℓ ⋆ ).
Thus, we have to prove only the following statement.

Proposition 1 If the common perpendicular p 0 p n+1 is inside the prism Π n and each P k meets the respective side also inside Π n , k = 1, . . . , n, then the equation ∂Φ ∂ℓ = 0 has a unique solution ℓ = ℓ ⋆ , the length of p 0 p n+1 .

Proof. Let us consider the collection of prism truncated tetrahedra

T k = T (α k , α k⊕1 , β k , β k⊕1 , γ k⊕1 ; ℓ), k = 1, . . . , n. Each pair {T k , T k⊕1 } of them
has an isometric face corresponding to the plane P k⊕1 . Indeed, each such face is completely determined by the plane angles (two right angles at the side of length ℓ, the angles α k and β k at the opposite side) and one side length. We obtain the prism Π n ( α n , β n , γ n ) by glueing the tetrahedra T k together along the faces P k , k = 1, . . . , n, in the respective order. Their edges of length ℓ match together, and one obtains a prism if the angle sum of the dihedral angles µ k , k = 1, . . . , n, along them equals 2π. We have that

∂Φ ∂ℓ = π + n k=1 ∂v ∂ℓ (α k , α k⊕1 , β k , β k⊕1 , γ k⊕1 ; ℓ).
Since v is the volume function from [12, Theorem 1], then by applying the Schläfli formula [16, Equation 1] one obtains

∂Φ ∂ℓ = π - 1 2 n k=1 µ k .
Thus, whenever the tetrahedra T k constitute a prism, we have n k=1 µ k = 2π or, equivalently, ∂Φ ∂ℓ = 0. The length ℓ in this case is exactly the length of the common perpendicular p 0 p n+1 to the planes S 0 and S n+1 . The rest is to prove that ℓ = ℓ ⋆ is a unique solution. In order to do so, we shall show that ∂µ k ∂ℓ > 0, k = 1, . . . , n. By using Theorem 7 we get the following formulae for a prism truncated tetrahedron (as depicted in Fig. 3):

∂ℓ 2 ∂ℓ = -η sin µ k sinh ℓ 6 cosh ℓ 2 , ∂ℓ 3 ∂ℓ = -η sin µ k sinh ℓ 5 cosh ℓ 3 , ∂ℓ 5 ∂ℓ = -η sin µ k sinh ℓ 3 cosh ℓ 5 , ∂ℓ 6 ∂ℓ = -η sin µ k sinh ℓ 2 cosh ℓ 6 .
Note that the above derivatives are all negative. In our present notation it means that for each prism truncated tetrahedron T k , k = 1, . . . , n, the edges of the top and bottom faces inherited from the prism Π n diminish their length if we increase solely the parameter ℓ. Recall that T k = T (α k , α k⊕1 , β k , β k⊕1 , γ k⊕1 ; ℓ), and let us denote

T ′ k := T (α k , α k⊕1 , β k , β k⊕1 , γ k⊕1 ; ℓ ′ ) with ℓ ′ > ℓ.
Let ABCD be the top (equiv., bottom) face of T k , as shown in Fig. 7, and A ′ B ′ C ′ D ′ be the top (equiv., bottom) face of T ′ k . Since the dihedral angles accept for µ k and µ ′ k remain the same, the plane angles of ABCD at A, B, C and those of A ′ B ′ C ′ D ′ at A ′ , B ′ and C ′ are respectively equal. One sees easily that we can match then ABCD and A ′ B ′ C ′ D ′ such that B and B ′ coincide, the sides AB and A ′ B ′ , BC and B ′ C ′ overlap and the point D ′ lies inside the quadrilateral ABCD. Then the area of A ′ B ′ C ′ D ′ is less than that of ABCD. Equivalently, by the angle defect formula [1, Theorem 1.1.7], µ ′ k > µ k . Thus, ∂µ k ∂ℓ > 0, k = 1, . . . , n, and the proposition follows. However, there is a possibility that, although the common perpendicular p 0 p n+1 is entirely inside the prism Π n , one (or several) of the planes P k meets the respective S k partially outside of the face S k . First we consider the case when a single plane P k meets S k entirely outside, as depicted in Fig. 8. Like this, we obtain the figure shaded in grey, that consists of two triangular prisms sharing an edge. Second we consider the case when a single plane P k meets S k partially outside, as depicted in Fig. 9. Like this, we obtain a more complicated figure that consists of two tetrahedra sharing an edge (one of which has two truncated vertices). Thus the planes S 0 , P k , P k⊕1 , S k , S and S n+1 bound a "butterfly" prism. We put k = 1, for clarity. In the general case, k ≥ 2, one uses induction on the number of planes P k meeting S k outside of Π n . Here, some other cases of "butterfly" prisms are possible.

Proposition 2 If the common perpendicular p 0 p n+1 is completely inside the prism Π n , the plane P 1 meets the plane S 1 outside of Π n , and all other P k , k = 2, . . . , n, meet the respective side faces inside Π n , then the volume of the prism equals where ℓ ⋆ is the unique solution to the equation ∂Φ ∂ℓ (ℓ) = 0, with

Vol Π n = n k=1 v(α k , α k⊕1 , β k , β k⊕1 , γ k⊕1 ; ℓ ⋆ ),
Φ(ℓ) := πℓ + n k=1 v(α k , α k⊕1 , β k , β k⊕1 , γ k ; ℓ).
Proof. We start with the case of a "butterfly" prism depicted in Fig. 8. Let us observe that the "butterfly" prism T 1 overlaps with the subsequent prism truncated tetrahedron T 2 exactly on its part

T (o) 1 outside of Π n . The part of T 1 inside Π n , called T (i)
1 , contributes to the total volume of the prism. The volume of T (o) 1 is excessive in the respective volume formula and should be subtracted. In fact, we prove that

v(α 1 , α 2 , β 1 , β 2 , γ 2 ; ℓ ⋆ ) = V := Vol T (i) 1 -Vol T (o) 1 ,
which implies that the excess in volume brought by T 2 is eliminated by the term "-Vol T (o) 1 ". In order to do so, let us denote by θ the dihedral angle along the common edge of the triangular prisms T 1 . Let ℓ θ be the length of this edge. Let γ := γ 2 and let ℓ γ be the length of the vertical edge with dihedral angle γ. We know that ∂V ∂γ = -1 2 ℓ γ , by the structure of the volume formula for a prism truncated tetrahedron. Indeed, the function V does not correspond to the volume of a real prism truncated tetrahedron any more, however all the Figure 9: Another "butterfly" prism truncated tetrahedron T k metric relations defining the dihedral angles between the respective planes are preserved. Thus, after computing the derivative ∂V ∂ℓ analogous to [START_REF] Kolpakov | Volume of a doubly truncated hyperbolic tetrahedron[END_REF], we obtain the latter equality. Now we compute the respective derivatives for the parts of the "butterfly" prism T 1 . Observe that the parameter θ depends on γ, while we vary γ and keep all other dihedral angles fixed. Let us denote γ = π -γ for brevity. We have that ∂Vol T The above identities together with the fact that

∂ ∂γ = -∂ ∂γ imply that ∂ ∂γ 2 v(α 1 , α 2 , β 1 , β 2 , γ 2 ; ℓ ⋆ ) = ∂V ∂γ 2 .
By analogy, we can prove that

∂ ∂ξ v(α 1 , α 2 , β 1 , β 2 , γ 2 ; ℓ ⋆ ) = ∂V ∂ξ ,
for any ξ ∈ {α 1 , α n , β 1 , β n , µ 1 }. The volume formula for a prism truncated tetrahedron implies that by setting α 1 = α n = π/2 and β 1 = β n = π/2 we Figure 10: Parametrising the "butterfly" prism depicted in Fig. 8 get v(α 1 , α n , β 1 , β n , γ 2 ; ℓ ⋆ ) = 0. In the case of a "butterfly" prism T 1 , under the same assignment of dihedral angles, we have that the bases of the two triangular prisms become orthogonal to their lateral sides. Thus T (i) [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF] and

T (o)
1 degenerate into Euclidean prisms, which means that their volumes tend to zero. Thus, we obtain the identity v(α 1 , α n , β 1 , β n , γ 2 ; ℓ ⋆ ) = V . The proof of the monotonicity for the function ∂Φ ∂ℓ (ℓ) is analogous to that in Proposition 1. However, since the part T contributes to the function v(α 1 , α n , β 1 , β n , γ 2 ; ℓ) with the negative sign, we have to replace the edge lengths ℓ 3 and ℓ 5 with -ℓ 3 and -ℓ 5 , respectively, as shown in Fig. 10. Then we recompute the respective derivatives of the lengths of the horizontal edges according to Theorem 7. We obtain that the lengths ℓ 2 and ℓ 6 diminish, as before, while the lengths ℓ 3 and ℓ 5 increase. This implies that the upper (resp., lower) triangular base of T (i)′ 1 can be placed entirely inside the upper (resp. lower) triangular base of T (i) [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF] . By the area comparison argument, we have that µ ′ 1 > µ 1 . The inequality ∂µ 1 ∂ℓ > 0 follows. All other cases of "butterfly prisms" (e.g. that in Fig. 9) can be considered by analogy.

Remark. In the general case, when the common perpendicular p 0 p n+1 does not lie entirely inside the prism Π n , we expect that an analogue to Theorem 8 holds with an exception that the equation ∂Φ ∂ℓ (ℓ) = 0 may have several solutions. However, one of these solutions is geometric and yields the volume of Π n .

Modified volume formula

We modify the volume formula for a prism truncated tetrahedron from [START_REF] Kolpakov | Volume of a doubly truncated hyperbolic tetrahedron[END_REF], in order to reduce it to a simpler form. Indeed, the formula in [12, Theorem 1] uses analytic continuation and accounts for possible branching with respect to any variable a j = e ℓ , with some j ∈ {1, 2, . . . , 6}, and a k = e i θ k , for any k ∈ {1, 2, . . . , 6}\{j}. Usually, we put j = 4 for simplicity. However, the formula allows for intense truncation at any edge, since it is invariant under a permutation of the variables a l , l ∈ {1, . . . , 6}. In our case, given a prism Π n and its decomposition into prism truncated tetrahedra T i , i ∈ {1, . . . , n}, we know that only the common perpendicular p 0 p n+1 is produced by an intense truncation. Thus, we can always put j = 4 and, moreover, the variable a 4 will be the only one that might cause branching. In this case, we suggest a simplified version of the formula from [START_REF] Kolpakov | Volume of a doubly truncated hyperbolic tetrahedron[END_REF]Theorem 1]. This formula also has less numeric discrepancies and performs faster, if used for an actual computation. Let us put a k := e i θ k , k ∈ {1, 2, 3, 5, 6}, a 4 := e ℓ , and let U = U (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z) denote

U := Li 2 (z) + Li 2 (a 1 a 2 a 4 a 5 z) + Li 2 (a 1 a 3 a 4 a 6 z) + Li 2 (a 2 a 3 a 5 a 6 z) -Li 2 (-a 1 a 2 a 3 z) -Li 2 (-a 1 a 5 a 6 z) -Li 2 (-a 2 a 4 a 6 z) -Li 2 (-a 3 a 4 a 5 z),
where Li 2 (•) is the dilogarithm function. Let z -and z + be two solutions to the equation e z ∂U ∂z = 1 in the variable z. According to [START_REF] Kolpakov | Volume of a doubly truncated hyperbolic tetrahedron[END_REF][START_REF] Murakami | On the volume of hyperbolic and spherical tetrahedron[END_REF], these are z -:= -q 1 -q 2 1 -4q 0 q 2 2q 2 and z + := -q 1 + q 2 1 -4q 0 q 2 2q 2 , where q 0 := 1+a 1 a 2 a 3 +a 1 a 5 a 6 +a 2 a 4 a 6 +a 3 a 4 a 5 +a 1 a 2 a 4 a 5 +a 1 a 3 a 4 a 6 +a 2 a 3 a 5 a 6 ,

q 1 := -a 1 a 2 a 3 a 4 a 5 a 6 a 1 - 1 a 1 a 4 - 1 a 4 + a 2 - 1 a 2 a 5 - 1 a 5 + a 3 - 1 a 3 a 6 - 1 a 6 ,
q 2 := a 1 a 2 a 3 a 4 a 5 a 6 (a 1 a 4 + a 2 a 5 + a 3 a 6 + a 1 a 2 a 6 + a 1 a 3 a 5 + a 2 a 3 a 4 + a 4 a 5 a 6 + a 1 a 2 a 3 a 4 a 5 a 6 ).

Given a function f (x, y, . . . , z), let f (x, y, . . . , z) | z=z - z=z + denote the difference f (x, y, . . . , z -) -f (x, y, . . . , z + ). Now we define the following function V = V (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z) by means of the equality The equality (1) holds because of the commutativity of the operations ℜ and ∂ ∂a 4 for the function -V + a 4 ∂V ∂a 4 + µ 2 log a 4 . The latter holds since a 4 = e ℓ is a real parameter. This implies that ∂f (T ) ∂µ = -ℓ 2 . By analogy to the proof of [12, Theorem 1], we can show that ∂f (T )

V := i 4 U (
∂θ k = -ℓ k
2 , and that if T degenerates into a right Euclidean prism, then f (T ) → 0. Thus, Vol T = f (T ) and the proposition follows. Also, we have the following way to determine the dihedral angle µ along the length ℓ edge coming from the intense truncation. 

Numerical examples

Finally, we produce some numerical examples concerning an n-gonal (n ≥ 5) prism Π n with the following distribution of dihedral angles: the angles along the vertical edges are 2π 5 , the angles adjacent to the bottom face are π 3 , and those adjacent to the top face are π 2 . Indeed, such a prism Π n exists due to [8, Theorem 1.1]. Then we apply Theorem 8 for the cases n = 5, 6, 7, and perform all necessary numeric computations with Wolfram Mathematica R .
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 2 Figure 2: Doubly truncated tetrahedron (mild truncation)
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 3 Figure 3: Doubly truncated tetrahedron (prism truncation)
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 4 Figure 4: The prism Π n ( α n , β n , γ n )
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 5 Figure 5: The prism truncated tetrahedron T (α, α ′ , β, β ′ , γ; ℓ)
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 6 Figure 6: The decomposition of Π n (top view, on the left) and the prism truncated tetrahedron T k (on the right)
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 7 Figure 7: Prisms T k and T ′ k with top faces marked

Figure 8 :

 8 Figure 8: The decomposition of Π n (top view, on the left) and the "butterfly" prism truncated tetrahedron T k (on the right)

  formula [16, Equation 1].

  [START_REF] Kolpakov | Volume of a doubly truncated hyperbolic tetrahedron[END_REF] , ℓ 13 , ℓ 14 , ℓ 23 , ℓ 24 , ℓ 34 ) ∂(a 12 , a 13 , a 14 , a 23 , a 24 , a 34 ) = -η DS D,

	where

  2 , ℓ 3 , ℓ 5 , ℓ 6 ) ∂(ℓ, θ 1 , θ 2 , θ 3 , θ 5 , θ 6 ) = ∂(ℓ 12 , ℓ 34 , ℓ 13 , ℓ 23 , ℓ 24 , ℓ 14 ) ∂(a 12 , a 34 , a 13 , a 23 , a 24 , a 14 ) .

  a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z) -z The volume of a prism truncated tetrahedron T is given byVol T = ℜ -V + a 4 ∂V ∂a 4 log a 4 .

												∂U ∂z	log z	z=z -z=z +	.
	Proposition 3 Proof. Let us denote							
				f (T ) = ℜ -V + a 4	∂V ∂a 4	log a 4 ,
	and compute the derivative					
		∂ ∂ℓ	f (T ) +	µ ℓ 2	= a 4	∂ ∂a 4		f (T ) +	µ log a 4 2	=
		= a 4	∂ ∂a 4	ℜ -V + a 4	∂V ∂a 4	+	µ 2	log a 4	.
	∂V ∂a 4 + µ 2 has an a.e. vanishing derivative, c.f. the note in [12] after Theorem 1 saying that µ ≡ -2 ℜ(a 4 The function ℜ a 4 ∂V ∂a 4 ) mod π. Hence,
	∂ ∂ℓ	f (T ) +	µ ℓ 2	= a 4	∂ ∂a 4	ℜ -V + a 4	∂V ∂a 4	+	µ 2	log a 4	(1) =
				(1) = ℜ -a 4	∂V ∂a 4	+ a 4	∂V ∂a 4		+	µ 2	=	µ 2	.

  Proposition 4 The angle µ is given by Proof. We have µ ≡ -2ℜ a 4 ∂V ∂a 4 mod π, where 0 < µ < π and has an a.e. vanishing derivative. Then we compute ∂U (a 1 , . . . , a 6 , z ± (a 1 , . . . , a 6 )) ∂U (a 1 , . . . , a 6 , z ± ) ∂z log z ± = ∂U (a 1 , . . . , a 6 , z ± ) ∂a 4 + ∂z ± ∂a 4 ∂U (a 1 , . . . , a 6 , z ± ) ∂z

	µ ≡ -ℜ	i a 4 2	∂U (a 1 , . . . , a 6 , z) ∂a 4	z=z -z=z +	mod π.
		∂a 4		-	∂ ∂a 4	z ±
						-	∂z ± ∂a 4
	Therefore, we obtain					
	µ ≡ -2ℜ a 4	∂V ∂a 4	mod π ≡ -ℜ	i a 4 2	∂U (a 1 , . . . , a 6 , z) ∂a 4	z=z -z=z +	mod π,
	where 0 < µ < π.					

∂U (a 1 , . . . , a 6 , z ± ) ∂z = ∂U (a 1 , . . . , a 6 , z ± ) ∂a 4 ,

since, for some m ∈ Z,

z ± ∂U (a 1 , . . . , a 6 , z ± ) ∂z = 2π i m,

by the definition of z -and z + .
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* in Section 7 we give a simplified formula for the volume of T .

In order to avoid excessive branching in numerical computations, we use the modified parameters

in the formulae for U and V from Section 7.

It follows from the definition of q ′ i , i = 1, 2, 3, above that the quantity q ′2

1 -4q ′ 0 q ′ 2 is a real number, c.f. [20, Section 1.1, Lemma]. This fact prevents computational discrepancies and simplifies any further numerical analysis of the volume formula. 

Each of the above prisms Π n can be subdivided into n isometric copies of a prism truncated tetrahedron T n . Indeed, T n is a prism truncated tetrahedron with angles θ 1 = 2π 5 , θ 2 = θ 3 = π 2 , θ 5 = θ 6 = π 3 , and µ = 2π n . By rotating it along the edge with dihedral angle µ, we compose the desired prism Π n . The graph of Vol T n , with n = 5, as a function of ℓ, is shown in Fig. 11 on the left. The graph of ∂Φ ∂ℓ (ℓ) for the same prism truncated tetrahedron T n is depicted in Fig. 11 on the right. We observe that the function ∂Φ ∂ℓ (ℓ) is indeed monotone and has a single zero ℓ ⋆ ≈ 0.50672....