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The dual Jacobian of a generalised hyperbolic tetrahedron,

and volumes of prisms

Alexander Kolpakov Jun Murakami

Abstract

We derive an analytic formula for the dual Jacobian matrix of a
generalised hyperbolic tetrahedron. Two cases are considered: a mildly
truncated and a prism truncated tetrahedron. The Jacobian for the
latter arises as an analytic continuation of the former, that falls in line
with a similar behaviour of the corresponding volume formulae.

Also, we obtain a volume formula for a hyperbolic n-gonal prism:
the proof requires the above mentioned Jacobian, employed in the anal-
ysis of the edge lengths behaviour of such a prism, needed later for the
Schléfli formula.

Key words: hyperbolic polyhedron, Gram matrix, volume.

1 Introduction

Let T be a generalised hyperbolic tetrahedron (in the sense of [19, 22]) de-
picted in Fig. 1. If the truncating planes associated with its ultra-ideal
vertices do not intersect, we call such a tetrahedron mildly truncated, oth-
erwise we call it intensely truncated. If only two of them intersect, we call
such a tetrahedron prism truncated [12]. Let us note that a prism truncated
orthoscheme is, in fact, a Lambert cube [11].

The volumes of the tetrahedron and its truncations are of particular interest,
since they are the simplest representatives of hyperbolic polyhedra. Over
the last decade an extensive study produced a number of volume formulae
suitable for analytic and numerical exploration [3, 5, 11, 12, 20, 22]. A similar
study was done for the spherical tetrahedron [14, 17], which can be viewed
as a natural counterpart of the hyperbolic one. Many analytic properties of
the volume formula for a hyperbolic tetrahedron came into view concerning
the Volume Conjecture [10, 18].

However, other geometric characteristics of a generalised hyperbolic tetrahe-
dron 7" are also important and bring some useful information. In particular,
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Figure 1: Generalised hyperbolic tetrahedron

Jac(T'), the Jacobian of T', which is the Jacobian matrix of the edge length
with respect to the dihedral angles, is such. This matrix enjoys many sym-
metries [15] and can be computed out of the Gram matrix of T' [7].

In the present paper, we consider Jac*(T'), the dual Jacobian of a generalised
hyperbolic tetrahedron T'. By the dual Jacobian of T" we mean the Jaco-
bian matrix of the dihedral angles with respect to the edge length. Such an
object behaves nicely when 71" undergoes both mild and intense truncation:
the dual Jacobian of a prism truncated tetrahedron is an analytic continu-
ation for that of a mildly doubly truncated one. Let us mention, that the
respective volume formulae are also connected by an analytic continuation,
in an analogous manner [12, 19].

As an application of our technique, we give a volume formula for a hyperbolic
n-gonal prism, c.f. [4].
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2 Preliminaries

Let T be a mildly truncated hyperbolic tetrahedron with vertices vy, k €
{1,2,3,4}, edges e;; (connecting the vertices v; and v;) with dihedral angles



a;j and lengths ¢;;, i,j € {1,2,3,4}, i < j.

Depending on whether the vertex vy, is proper (vi € H?), ideal (v, € OH?) or
ultra-ideal (vj defines a polar hyperplane as described in [21, Section 3], c.f.
Theorem 3.2.12), let us set the quantity e to be +1, 0 or —1, respectively.
For each vertex v; of T let us consider the face Fj; opposite to it, where
{i,7,k,1} ={1,2,3,4}. The link L(v;) of the vertex v; is either a spherical
triangle (g, = +1), a Euclidean triangle (¢; = 0) or a hyperbolic triangle
(e1 = —1). Let us define the quantity bé-k as follows:

the plane angle of Fj;; opposite to the edge ey, if ¢, = +1;

i ) zero, if g =0;
7k ") the length of the common perpendicular to the edges e;ji
and €Ll of F}'kly if gl = —1.

Here, we consider the face Fjj; as a generalised hyperbolic triangle, for which
the trigonometric laws hold as described in [2, 9].
Let us also define a quantity ,u§ by means of the formula

b
. Jjk
Wik ::/ cos(y/g1s)ds.
0
Let Nlj‘k denote the derivative of ,ué-k with respect to b; » Which means that

'3 = cos(y/ETbi).
Let oy, denote the following quantity associated with an edge ey, k,l €
{1,2,3,4}, k <,

._ L Li L —Lyy
Okl -— 56 — §€k€le .

Let 0}, denote the derivative of oy with respect to £k, so we have that

_ 1 Liy 1 —Lg
Ol = 56 + §€k€l€ .

Let us define the momentum M; of the vertex v; opposite to the face Fj,
{i,7,k, 1} ={1,2,3,4} by the following equality (c.f. [6, VIL.6]):

A R
M" = pjp g, 0

The quantity above is well defined grace to the following theorem.



Theorem 1 (The Sine Law for faces) Let Fjj,; be the face of T opposite
to the vertex vy, {i,7,k, 1} = {1,2,3,4}. Then Fjj is a generalised hyperbolic
triangle and the following equalities hold:

Mok _ Pt _ g
Oik  Oj1 Ol
Let us also define the momentum Mjy; of the face F};; opposite to the vertex
vi, {4,7,k, 1} = {1,2,3,4} by setting (c.f. [6, VIL6])
My = /‘il sin a;g sin a;;.
The quantity above is well defined, according to the following theorem.

Theorem 2 (The Sine Law for links) Let v; be the vertex of T' opposite
to the face Fyy, {i,j,k,1} = {1,2,3,4}. Then L(v;) is either a spherical, a
Euclidean or a hyperbolic triangle and the following equalities hold:

sin a;; sina;r  sinay

= = .
Fig Hii Hik

Both Theorem 1 and Theorem 2 are paraphrases of the spherical, Euclidean

or hyperbolic sine laws (for a generalised hyperbolic triangle, see [9]). The

following theorems are the cosine laws for a generalised hyperbolic triangle

adopted to the notation of the present paper.

Theorem 3 (The first Cosine Law for faces) Let Fj; be the face of T
opposite to the vertex v;, {1,7,k, 1} ={1,2,3,4}. Then Fjj; is a generalised
hyperbolic triangle and the following equality holds:

o W+ 15 1
kl — - .

N;k N;l
Theorem 4 (The second Cosine Law for faces) Let Fj; be the face of
T opposite to the vertex v;, {i,j,k,1} = {1,2,3,4}. Then Fjj; is a gener-
alised hyperbolic triangle and the following equality holds:

%

/ / /
a0y + Ti10k1
H ik = :

010kl

Theorem 5 (The Cosine Law for links) Let v; be the vertex of T oppo-
site to the face Fyi, {4, 7,k,1} = {1,2,3,4}. Then L(v;) is either a spherical,
a Euclidean or a generalised hyperbolic triangle and the following equality

holds:
1j __ COS@jj + COS jf COS Ay
okl = :

sin a;j sin a;;



3 Auxiliary lemmata

In the present section we shall consider various partial derivatives of certain
geometric quantities associated with either the faces or the vertex links of
a generalised hyperbolic tetrahedron T'. These derivatives will be used later
on in the computation of the entries of Jac*(T).

Lemma 1 For {i,j,k,1} ={1,2,3,4} we have

Ol . Hi

==

b, M
Ol - ’ :“Zl Ol . / NZI
f— —O'-l o — = —O'-k e
M o M

I,

Proof. According to the definition of oy;, we have o, = 0 only in the
following two cases: e = ¢ = +1 and £ = 0, or ¢y = ¢f = —1 and
lr; = 0. In the former case, we have a degenerate tetrahedron with two
proper vertices collapsing to one point. In the latter case the tetrahedron
has two ultra-ideal vertices, whose polar planes are tangent at a point on the
ideal boundary OH?. This is a limiting case, since in a generalised (mildly
truncated) tetrahedron two polar planes never intersect or become tangent.
Thus, we suppose that o # 0.

By taking derivatives on both sides of the first Cosine Law for faces, we get
the following formulae:

LT -
Oby, Oy pg by T el
since ]
Doy Ol o'}y i
— = O] — and — = —&j Ky
oby, oby, oby,

by a direct computation. This implies the first identity of the lemma.
Now we compute

oy doyy ((M';‘k)z +€1(M§-k)2),u§-l,u';l +N§'1N’§'k#’21 B

Ol — = — = — - - =
by, Oy (55h5)?
_M’;’l + ,u/;,k,u,zl ] Nil S M—il
Mot Wity ’ G



where we use the identity (,u’;-k)z +e(ply)? = 1 and, as before, the fact

o't ; . . . .
that 8‘;”“ = —el,u;-k. Then the second identity follows. The third one is
ik

analogous to the second one under the permutation of the indices k£ and [.
O

Lemma 2 For {i,j,k,1} ={1,2,3,4} we have

8[)@ sin Qi
= €i
8(1@' Mjkl

J : J :
by, sinai; g oby, sinai; i

=& H ks =& i
Oa, M "~ 7% Oay M

Proof. By taking derivatives on both sides of the Cosine Law for links, we
get the following formulae:

J 13 T
i Mg Dais
)

daij sin a; sin a;;

The first identity of the lemma follows.
Then we subsequently compute

. Mj abil B 8/‘%1 _ Co8ay + COS Gjj COS iy sin a;;
UM Qag,  Oag sin a;j sin a;, sin a;x, sin a;;
/1 sin a;;
ok

sin a;g sina;

The second identity follows. The third one is analogous under the permu-
tation of the indices k£ and [. [J

Now we shall prove several identities that relate the principal minors Gy;,
i€ {1,2,3,4} of the Gram matrix G := G(T) of the tetrahedron T" with its
face or vertex momenta.

Lemma 3 For {i,j,k,1} ={1,2,3,4}, we have that
det G;; = ¢ Mj2kl'

Proof. Let us perform the computation for GGi; and other cases will follow
by analogy. We have that

1 —COS@14 — COSQ13
det — COS (114 1 — COS (12 =

—COoS@13 — COSa12 1



1 — COS @14 — cos ais
.2 12 . .
= det 0 sin” a4 — '3, sinaizsinaisg =

0 —u'§4 sin a1z sin a4 sin? a3
12 \2\ i 2 2 2 \2 ;.2 2 2
= (1 — (p'54)7) sin® a1z sin® a4 = €1 (15,4)” sin” a3 sin® a1q = €1 Msjs,.

By permuting the set {7, j, k,l1} = {1,2,3,4}, one gets all other identities of
the lemma. O

Lemma 4 For {i,j,k,1} ={1,2,3,4}, we have that
— det G = sin® ajk sin? aji sin? ay (]\4’)2

Proof. Let us subsequently compute

1 —COoSa34 —COSG24 — COSa923
—cosa 1 —cosa —cosa
det G = det 34 14 13 =
—CoSagy — COSaiy 1 — CcoS a2
—COSas3 —COS@i3 — COS@i2 1
1 — COS (34 — COS (24 — COS 23
det 0 sin? asa —,u’éS sin @24 Sin aza —,u’;4 sin as3 sin as4
e ) . . . . =
0 —;1,'53 Sin as4 sin aszq sin? a4 —M/:134 sin as3 sin asq
0 —p's,sinasssinass —p's, sinags sin ass sin? az3
/1 /1
1 ) —Hao3 —H %4
sin? ag3 sin® agy sin® asy det | — o 1 —w'sy | =
o /1 o /1 1
Ho2g H3q
/1 /1
) , , 1 K3, CHa
. . . ,
sin” agg sin“ agssin“agy det | 0 e4(py3) — 05 3o
r1 1 i2
0 —o3ytia3tiay e3(134)

sin? ags sin? agy sin® asy (364 — (0%y)?) (udgpdy)? =
—sin? agz sin® agy sin® azy (M1)2.
Here we used the Cosine Law for links in the second equality and the first
Cosine Law for faces in the fourth equality. Also, we used the fact that for
{i,7,k, 1} ={1,2,3,4} one has 1 — z—:l(u;k)z = (,u’;-k)Q (in the third equality)
and ij - (Jl’j)2 = g;&; (in the sixth equality). All other identities of the
lemma follow by permuting the set {i,7,k,l} ={1,2,3,4}. O



4 Dual Jacobian of a generalised hyperbolic tetra-
hedron

In this section we shall compute the entries of the dual Jacobian matrix
Jac*(T') of a generalised hyperbolic tetrahedron 7'

Theorem 6 Let T be a generalised hyperbolic tetrahedron. Then
O(lh2, 013, €14, l23, Lo, l34)

Jac*(T) := =-n9S9,

I(a12, ar3, ara, azs, azs, azs)

where
012
013
1/2
- H;lzlé‘i det G / 9 — 014
' (—det G)3 ' 023
024
034
and
/ / / / 1
/ / / /
/ / / /
T / / / /
/ / / /
/ / / /
wher@ / / A !/ / / /
oy JikIt +€10:0510) + 0301, + €k031.0 1,01
kl - — .

2
Ok

Proof. We compute the respective derivatives, that constitute the entries
of Jac*(T"). Suppose that €; # 0, i € {1,2,3,4}, since the cases when ¢; =0
for some j € {1,2,3,4} can be dealt with in an analogous manner. Then for
{i,7,k, 1} ={1,2,3,4}, one has

(1)

8€kl N 8€kl 8[)?61 . M?@l e sinaij ~~ 1 Sinaij
aaij 8%[ 8(1@' VL ‘ Mjkl Mi sin a;g sin a;;

. 2 . R I A N O
1 S1n a5 1 1 ~~ 1 SN G5 Hielgr HikMjk ~~

Tij0kl -

M7 sin a;j sin ai; M M!



M Migg M ji M jp PN I} eidet Gy
— 0O = |~ ————— 00 = —N 0Ok
(_ dot G)3 ij Okl (_ det G)3 17Okl 100kl
Here we used the definitions of vertex and face momenta, as well as Lemmata
1 and 4. Indeed, in (1) we have that M;;, = u{tl sin a;x sina;; and in (2) we

pily, 1l pl
use the fact that o;; = —57™", o) =~ In (3) we use
i M L Mir
Bik = = Mk = o>
SN ajp S G SN A5 SN A
i M L Miu
M = Hik =

- . T
SIN Ak S1N A SN G5 SIN G

together with the identities of Lemma 4. In (4) we use Lemma 3.
Analogous to the above, we compute for {4, j, k,l} = {1,2,3,4},

— - = —¢ 0. =
Dag — Ol Dai "M Me O
Vejdet Gy sin a;g, 1
—Ep :
R sinaji sinaj; /e det Grp Oikoki
. \VEj det ij sin a;x :u;'k:u;'l Mglﬂil
kMisinajksinajl Verdet Gy, MP M
. \Ej dethj Ve det Gyveg, det Gprer detGkk\/Ei det Gy ,
—€k, OikOkl Ojf =
Ver det G Cdet G)3 R

H;l:1€i det G“
(—det G)3

Ol Ol v, B sinaig iy

/
OikOkI O =

/
OikOkL O =

/ /
—€k OikOkl Oj = —E€k N TikOkl O -

Finally, for {i,7j,k,1} = {1,2,3,4}, we compute the derivative

Ay Oty Oy Bty O,
day; (%;.k Oayy 8b§.l Oay

Since the two terms of the above sum are symmetric under the permutation
of k and [, we may compute only the first one. The second one will be
analogous. By Lemmata 1 and 2, we get

Ol POk _ P S0 ;o 1j 2
(2

— —— = —¢g]—— g =
b, Da Mi My, 7k

=




o 6
7
) foroy My sinag 1
—(0;.0: + €,0,,0:,0 e
. i i g (0
\/m sina; Mgty FiggFht
Misinaj,sinaj /ey detGy M?  MJ
(o0 + e10h o) 4] 2 det Gj; Veidet Guv/er det Girverdet Guvei det Gii _
ikOjl T €10410510k (—det G)3 Ve det Gy
H?‘:lei det Gy _
(—detG)3

=

/ / / / /
—(031,05; + €10305,0%)

— (i + €103,05107) =1 (0307 + €103,07,01)-
Here, in (5) we used the second Cosine Law for faces and in (6) we used
the equality M, = ,u};l sinaji, sinaj together with Lemma 3. In (7) we
perform a computation analogous to (3).
Thus, we obtain ' ‘

O Ol OVl Oty Oy

8akl N 8b§-k 8akl 8b§-l 8akl a

1o ror ot A A AN 2
-n (Uikajl + ElUizUlekl) -n (Uilajk + Ekaikajkakl) = —NWkl Oky-

The proof is completed. [

5 Dual Jacobian of a doubly truncated hyperbolic
tetrahedron

Let us consider the case when T is a (mildly) doubly truncated tetra-
hedron depicted in Fig. 2 with dihedral angles 0; and edge lengths ¢;,
i€ {1,2,3,4,5,6}. We suppose that the vertices cut off by the respective
polar planes are vi and vo.

If T is mildly truncated then the formula from Theorem 6 applies. If T is
a prism truncated tetrahedron, as in Fig. 3, with dihedral angles u, 6; and
edge lengths ¢, ¢;, i € {1,2,3,5,6} then its Gram matrix is given by

1 —cosfy —cosfs —cosOs

a_ | —cos 01 1 —cosflg —cosby

—cosf; —cosbg 1 —cosh /
—cosbtl3 —cosfy —cosh/ 1

which is a slightly different notation compared to [12, 13].
Each link L(vy), k = 1,2, is a hyperbolic quadrilateral with two right same-
side angles, which can be seen as a hyperbolic triangle with a single truncated

10



v, 720,

Figure 2: Doubly truncated tetrahedron (mild truncation)

vertex. Each link L(vy), k = 3,4, is a spherical triangle. In the definitions of
Section 2 we change each bilj, with i,j € {2,3,4}, i # j, for b’ij + \/—_1§ and
each béj, with 4,7 € {1,3,4}, i # j, for béj—k\/—_l%. Thus, some of the vertex
and face momenta become complex numbers. All the trigonometric rules of
Section 2 still hold grace to [2, Section 4.3]. Computing the respective
derivatives in a complete analogy to the proof of Theorem 6, we obtain the
following statement.

Figure 3: Doubly truncated tetrahedron (prism truncation)

Theorem 7 Let T be a prism truncated tetrahedron depicted in Fig. 3. Then

11



by means of the analytic continuation ayo :=/—14, £120 = /—1 p we have

Jac*(T) = O, b1, ba, b3, b5, L) O(lrg, a4, L1, Las, Loa, Lra)
©0(4,01,02,03,05,05)  O(aiz,azs, a13, a3, 24, G14)

6 Volume of a hyperbolic prism

Let @, denote the n-tuple (aq,...,,) with 0 < a < 7w, k = 1,...,n.
Let Bn and ¥, be analogous n-tuples. Let II,, := Hn(&’n,gn,’?n) be the
hyperbolic n-sided prism depicted in Fig. 4, with the respective dihedral
angles, as shown in the picture.

q,

i
.,
al H ‘\‘
i
1 .,
Y P
H
i

a;

A

¥ Y4

Bs

Figure 4: The prism IT,,(&,, B, V)

Let Sk, k =1,...,n, be the supporting hyperplane for the k-th side face of
the prism II,, (we start numbering the faces anti-clockwise from the side face
adjacent to the angles oy, 81 and 71, 72), and let Sy and S,,4+1 be those of
the top and the bottom face, correspondingly. For each S;, k=0,...,n+1,
let S,j be the respective half-space containing the unit outer normal to it.
Let S, = H3 \ S,j. Then II,, = ﬂ?;rol S;.

Let T :=T(a,d/, 3,8',7;¢) be the prism truncated tetrahedron depicted in
Fig. 5. Here a, o/, 8, 3 and v are the respective dihedral angles, ¢ is the
length of the respective edge. The volume VolT of the tetrahedron T is
given by [12, Theorem 1|*. Let v(a, &/, 3,8',7;€) := Vol T(a, o, 38,8 ,7; )
denote the respective volume function.

*in Section 7 we give a simplified formula for the volume of T'.

12
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al

2

Bl

Figure 5: The prism truncated tetrahedron T'(c, o/, 8, 5, ~; )

Let popp+1 be the common perpendicular to Sy and S,+1. Let also define
k@®m = (k+m)modn, for k,m € N. Then we can state the main theorem
of this section.

Theorem 8 Let 11, = Hn(d’n,gn,’?n) be a hyperbolic n-sided prism, as in
Fig. 4. If popn+1 C 1, then the volume of 11, is given by the formula

n

VolTT, = Y~ v(ak, akat, Bk, Bret, Yrat; £),
k=1

where £* is the unique solution to the equation %—?(6) =0, with

O(0) =7l + Y v(on, ka1, By Bret Thats ).
k=1

Let Py, k = 1,...,n, be the plane containing pop,+1 and orthogonal to
Si. First, we consider the case when pop,+1 lies inside the prism II,, and
the planes P, k = 1,...,n, divide the prism II,, into n prism truncated
tetrahedra, as shown in Fig. 6.

Then each P, meets the k-th side face of the prism II,,. Thus, the planes
S0, Sk, Ska1 and Sy,41 together with P, and Prg1 become the supporting
planes for the faces of a prism truncated tetrahedron, which we denote by
Ty. Each Py is orthogonal to Sk, So and S,,+1. The dihedral angles of

13
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S
—
AY
\\ a
\ ko1
TN
,/’/ \\\
el N,
kel [ /’/ \\\ ¥€®1
” / Iv’k
P
© % o*
B ko1

Figure 6: The decomposition of II,, (top view, on the left) and the prism
truncated tetrahedron T} (on the right)

T} inherited from the prism II,, are easily identifiable. Let uz denote the
dihedral angle along the edge pop,+1 and let £* be its length. Then we have
Ty, = T'(ak, ka1, Br, Bra1, Tka1; €), k= 1,...,n. Clearly,

n

VOI Hn - Z Vol Tk - Z 'U(Oék, ALpl, Blm Bk@la Ykl g*)
k=1 k=1

Thus, we have to prove only the following statement.

Proposition 1 If the common perpendicular popn+1 is inside the prism 11,
and each P, meets the respective side also inside Il,,, k =1,...,n, then the

equation %—? =0 has a unique solution £ = £*, the length of popni1-

Proof. Let us consider the collection of prism truncated tetrahedra 1) =
T(ak, ka1, Bk, Brat, Yea1; £), kK = 1,...,n. Each pair {T, Tke1} of them
has an isometric face corresponding to the plane Ppgi. Indeed, each such
face is completely determined by the plane angles (two right angles at the
side of length ¢, the angles ay and S at the opposite side) and one side
length. We obtain the prism II, (&, gn,in) by glueing the tetrahedra T}
together along the faces P, k = 1,...,n, in the respective order. Their
edges of length ¢ match together, and one obtains a prism if the angle sum

14



of the dihedral angles ug, k = 1,...,n, along them equals 2. We have that

0P

" v
5 + Z w(ak,ak@h Br» Brats Yret: L)

k=1

Since v is the volume function from [12, Theorem 1], then by applying the
Schléfli formula [16, Equation 1] one obtains

OP 1 &
a0 =TT g b
k=1

Thus, whenever the tetrahedra T}, constitute a prism, we have > ;_; i = 27
or, equivalently, %—f = 0. The length # in this case is exactly the length of
the common perpendicular pgp,+1 to the planes Sy and S, 11.

The rest is to prove that ¢ = ¢* is a unique solution. In order to do so,
we shall show that % >0, k=1,...,n. By using Theorem 7 we get the
following formulae for a prism truncated tetrahedron (as depicted in Fig. 3):

ol . . ol . .

a—; = —nsin ug sinh fg cosh o, a—g’ = —nsin ug sinh £5 cosh £3,
ot ol4

a—; = —7sin pg sinh £3 cosh £5, 8—66 = —7sin pg sinh f5 cosh g.

Note that the above derivatives are all negative. In our present no-
tation it means that for each prism truncated tetrahedron T}, k£ =
1,...,n, the edges of the top and bottom faces inherited from the prism
II,, diminish their length if we increase solely the parameter £. Re-
call that T, = T(ag, ake1, Bk, Bra1, Yee1;¢), and let us denote T} :=
T(Oék, ka1, Bk Brot, Veol: 6’) with ¢/ > /.

Let ABCD be the top (equiv., bottom) face of T}, as shown in Fig. 7, and
A'B'C'D’ be the top (equiv., bottom) face of T}. Since the dihedral angles
accept for yy and g remain the same, the plane angles of ABCD at A, B,
C' and those of A’B'C'D’ at A’, B’ and C’ are respectively equal. One sees
easily that we can match then ABCD and A’B’C’'D’ such that B and B’
coincide, the sides AB and A’B’, BC and B’C’ overlap and the point D’
lies inside the quadrilateral ABC'D. Then the area of A’B'C'D’ is less than
that of ABC'D. Equivalently, by the angle defect formula [1, Theorem 1.1.7],
Wy, > pui. Thus, % >0, k=1,...,n, and the proposition follows. [J
However, there is a possibility that, although the common perpendicular
PoPn+1 is entirely inside the prism II,,, one (or several) of the planes P
meets the respective Sj, partially outside of the face Sy.

15
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Figure 7: Prisms T}, and T}, with top faces marked

First we consider the case when a single plane Pi meets S} entirely outside,
as depicted in Fig. 8. Like this, we obtain the figure shaded in grey, that
consists of two triangular prisms sharing an edge.

Second we consider the case when a single plane P, meets Sj partially
outside, as depicted in Fig. 9. Like this, we obtain a more complicated
figure that consists of two tetrahedra sharing an edge (one of which has two
truncated vertices).

Thus the planes Sy, Pk, Pro1, Sk, Ske1 and S,4+1 bound a “butterfly” prism.
We put k = 1, for clarity. In the general case, k > 2, one uses induction on
the number of planes P, meeting S; outside of II,,. Here, some other cases
of “butterfly” prisms are possible.

Proposition 2 If the common perpendicular pop,+1 is completely inside the
prism 1L, the plane Py meets the plane Sy outside of I1,,, and all other Py,
k = 2,...,n, meet the respective side faces inside 11, then the volume of
the prism equals

n

VolTT, = Y v(ak, akat, Bk, Bret, Yrat; £),
k=1
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Figure 8: The decomposition of IT,, (top view, on the left) and the “butterfly”
prism truncated tetrahedron T} (on the right)

where £* is the unique solution to the equation %—?(6) =0, with

O(0) =7l + Y vl arer, Brs Bret, Wi L)
=1

Proof. We start with the case of a “butterfly” prism depicted in Fig. 8. Let
us observe that the “butterfly” prism 73 overlaps with the subsequent prism

truncated tetrahedron 75 exactly on its part Tl(o) outside of II,,. The part of

T} inside II,,, called Tl(i), contributes to the total volume of the prism. The
volume of Tl(o) is excessive in the respective volume formula and should be

subtracted. In fact, we prove that
v(ag,a, B1, B2, 72; 0%) =V := VolTli) — VolTlo),

which implies that the excess in volume brought by 75 is eliminated by the
term “—Vol Tl(o)”.

In order to do so, let us denote by 6 the dihedral angle along the common
edge of the triangular prisms Tl(o) and Tl(i). Let £y be the length of this edge.
Let v := 72 and let £, be the length of the vertical edge with dihedral angle
~v. We know that %—‘; = —% ,, by the structure of the volume formula for a
prism truncated tetrahedron. Indeed, the function V' does not correspond to
the volume of a real prism truncated tetrahedron any more, however all the

17



Figure 9: Another “butterfly” prism truncated tetrahedron T},

metric relations defining the dihedral angles between the respective planes
are preserved. Thus, after computing the derivative %—‘Z/ analogous to [12],
we obtain the latter equality. Now we compute the respective derivatives
for the parts of the “butterfly” prism 77.

Observe that the parameter 6 depends on 7, while we vary v and keep all
other dihedral angles fixed. Let us denote 4 = m — « for brevity. We have
that

o 2 205

OVl T 4, 4y 00

and
Vol T\ 4y 00
o T zov
by the Schlafli formula [16, Equation 1].
The above identities together with the fact that a% = —a% imply that

0
- v\, G2, 9 9 76* = a5 -
P (a1, ag, B, B2, v2; 0%) 97

By analogy, we can prove that

0 oV
8—51)(041,@2,51752,72;5*) = o

for any & € {a1, an, b1, Bn, p1}. The volume formula for a prism truncated
tetrahedron implies that by setting oy = o, = 7/2 and 1 = B, = 7/2 we

18



Figure 10: Parametrising the “butterfly” prism depicted in Fig. 8

get v(aq, o, B1, Bn, ¥2;£*) = 0. In the case of a “butterfly” prism 77, under
the same assignment of dihedral angles, we have that the bases of the two
triangular prisms become orthogonal to their lateral sides. Thus Tl(z) and

Tl(o) degenerate into Euclidean prisms, which means that their volumes tend
to zero. Thus, we obtain the identity v(ay, o, 81, Bn, Y23 0*) = V.

The proof of the monotonicity for the function %—?(6) is analogous to that

in Proposition 1. However, since the part Tl(o) contributes to the function
v(ay, a, B1, Bn,v2; £) with the negative sign, we have to replace the edge
lengths ¢35 and /5 with —¢3 and —/5, respectively, as shown in Fig. 10. Then
we recompute the respective derivatives of the lengths of the horizontal edges
according to Theorem 7. We obtain that the lengths /5 and fg diminish, as
before, while the lengths ¢35 and ¢5 increase. This implies that the upper

(resp., lower) triangular base of Tl(i), can be placed entirely inside the upper

resp. lower) triangular base of 7. By the area comparison argument, we
1

have that g} > p1. The inequality 88”61 > 0 follows.
All other cases of “butterfly prisms” (e.g. that in Fig. 9) can be considered
by analogy. [

Remark. In the general case, when the common perpendicular pop,+1 does
not lie entirely inside the prism II,,, we expect that an analogue to Theorem 8
holds with an exception that the equation %—?(6) = 0 may have several
solutions. However, one of these solutions is geometric and yields the volume

of 1L,,.
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7 Modified volume formula

We modify the volume formula for a prism truncated tetrahedron from [12],
in order to reduce it to a simpler form. Indeed, the formula in [12, Theo-
rem 1] uses analytic continuation and accounts for possible branching with
respect to any variable a; = e, with some j € {1,2,...,6}, and aj, = €%,
for any k € {1,2,...,6}\{j}. Usually, we put j = 4 for simplicity. However,
the formula allows for intense truncation at any edge, since it is invariant
under a permutation of the variables a;, [ € {1,...,6}.

In our case, given a prism II,, and its decomposition into prism truncated
tetrahedra T;, ¢ € {1,...,n}, we know that only the common perpendicular
PoPn+1 is produced by an intense truncation. Thus, we can always put
7 = 4 and, moreover, the variable a4 will be the only one that might cause
branching.

In this case, we suggest a simplified version of the formula from [12, Theorem
1]. This formula also has less numeric discrepancies and performs faster, if
used for an actual computation.

Let us put ap := €%, k ¢ {1,2,3,5,6}, ay := ¢, and let % =
U (a1, a9, as, a4, as, ag, z) denote

U = Lig(Z) + Lig(a1a2a4a5z) + Lig(a1a3a4a62) + Lig(a2a3a5a62)
—Lis(—ajagasz) — Lig(—ajasagz) — Lig(—agasapz) — Lis(—agagasz),

where Lis (o) is the dilogarithm function.

Let z_ and zy be two solutions to the equation e* %% =1 in the variable 2.
According to [12, 20], these are

- — V4 — A0 VG — A0
= and z4 = )

2qo 2qo

Z_ .

where

qo ‘= 14ajasas3+aiasag+asaqa6+ asasas+ ajasasas +aiasasaes+ asazasag,

1 1 1 1
Q1 ‘= —aqragazaqasag| | ay — — Jlag — — |+ a2 —— || a5 — —
ai G4 ag as

1 1

as ag

qo 1= a1a2a3a4a5a6(a1a4 + asas + asag + arasag + arasas + asasas+

a40506 + a1a2a3a4a5a6).
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Given a function f(z,y,...,2), let f(z,y,...,2) |:==; denote the difference
flx,y,...,2-) — f(x,y,...,2+). Now we define the following function ¥ =
¥ (a1, as,as,aq,as, a6, z) by means of the equality

. 8% Z=Z_
Vo= i <%(CL1, az,0as, a4, 05, de, Z) -z E lOg Z>

2=z

Proposition 3 The volume of a prism truncated tetrahedron T is given by

VolT =R (—“// + M% loga4> .
8@4

Proof. Let us denote

f(r)y=%xa <—7/ + a4% 108“@4) ,
8(14

and compute the derivative

0 ply 0 1 log ay
@<f(T)+7> _a48—a4<f(T)+ 5 >

B 0 oV
= a48—a4 <§R <—7/+ <(I48—a4 + 5) loga4>> .

The function R <a4 % + %) has an a.e. vanishing derivative, c.f. the note

in [12] after Theorem 1 saying that p = —2%R(ay %) mod 7. Hence,

(1
O (i ) a2 (g s (a2 0 L8
57 (f(T)+ 2)—@48&4 <§R< "I/+<a4aa4+2> loga4>> =

~—

The equality (1) holds because of the commutativity of the operations #

and % for the function —% + <a4 % + %) log aq. The latter holds since

ay = e’ is a real parameter.

This implies that %(5) = —g. By analogy to the proof of [12, Theorem 1],
we can show that %Tg) = —%’“, and that if 7" degenerates into a right

Euclidean prism, then f(7') — 0. Thus, VolT = f(T') and the proposition
follows. [J

Also, we have the following way to determine the dihedral angle u along the
length ¢ edge coming from the intense truncation.
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Proposition 4 The angle u is given by

_ iay 0% (ay,...,a6,%2)
o= §R< 2 8@4

Z=ZzZ—
mod 7.
Z=Z4
Proof. We have p = —2R <a4 %) mod 7, where 0 < @ < 7 and has an a.e.

vanishing derivative.
Then we compute

8%((117"'7a672ﬂ:(a17"'7a6)) 0 < a%(al,---,aﬁ,Zi) lOth) _

day Oay o+ 0z

802/((11,...,a6,zi) azi 8%(&1,...,&6,Zi)
Oay + Oay 0z
azi 8%(a1,...,a6,zi)
_8a4 0z -
802/((11,...,a6,zi)
8(14 ’

since, for some m € Z,
8%((117 -+, 06, Z:l:)
= 0z

by the definition of z_ and 2.
Therefore, we obtain

=2mim,

uw=—2R CL4% mod m = —R %8%((117"'7@672)
8a4 2 80,4

where 0 < p < 7. I

Z=Z_
mod T,
z=z4

8 Numerical examples

Finally, we produce some numerical examples concerning an n-gonal (n > 5)
prism II,, with the following distribution of dihedral angles: the angles along
the vertical edges are %”, the angles adjacent to the bottom face are 5, and
those adjacent to the top face are 5. Indeed, such a prism II,, exists due to
[8, Theorem 1.1]. Then we apply Theorem 8 for the cases n = 5,6,7, and
perform all necessary numeric computations with Wolfram Mathematica®.

22



In order to avoid excessive branching in numerical computations, we use the
modified parameters

- g~ T EIGG,
qz'- = qu and z4 = il ql/ q0q2.
I, _, ag 2q5

in the formulae for % and ¥ from Section 7.

It follows from the definition of ¢}, i = 1,2,3, above that the quantity
q2 —4q)q} is a real number, c.f. [20, Section 1.1, Lemma]. This fact prevents
computational discrepancies and simplifies any further numerical analysis of
the volume formula.

(0, ) VolIL,
(0.50672,27/5) | 2.63200
(0.38360,7/3) | 3.43626

(0.312595, 27 /7) | 4.19077

N o oy 3

Table 1: Left: parameters (¢£*, ) of T,,, right: volume of II,,

Fach of the above prisms II,, can be subdivided into n isometric copies of a
prism truncated tetrahedron T},. Indeed, T}, is a prism truncated tetrahedron
with angles 6, = 2%, Oy =03=735,05=0s =73, and p = %’T By rotating it
along the edge with dihedral angle p, we compose the desired prism II,,.

The graph of Vol T}, with n = 5, as a function of £, is shown in Fig. 11 on
the left. The graph of %—f(f) for the same prism truncated tetrahedron 7,
is depicted in Fig. 11 on the right. We observe that the function %—f(f) is

indeed monotone and has a single zero £* &~ 0.50672....

3R
06 [
05 F

SF
04 F

03 1k

02

. . . . .
o1 [ 02 04 6 08 10

Figure 11: Left: Vol T3, right: %—‘?, both as functions of ¢

The volume of Ty with #; = 2?”, b = 03 = 5, 05 = 0 = 3 and
£* =~ 0.50672... equals ~ 0.52639... by Proposition 3. Thus, we can see that
Vollls = 5 - Vol T in accordance with Theorem &8, and from Proposition 4

— ~ 2
j=1.25664... ~ 2.
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