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The dual Jacobian of a generalised hyperbolic tetrahedron,

and volumes of prisms

Alexander Kolpakov Jun Murakami

Abstract

We derive an analytic formula for the dual Jacobian matrix of a
generalised hyperbolic tetrahedron. Two cases are considered: a mildly
truncated and a prism truncated tetrahedron. The Jacobian for the
latter arises as an analytic continuation of the former, that falls in line
with a similar behaviour of the corresponding volume formulae.

Also, we obtain a volume formula for a hyperbolic n-gonal prism:
the proof requires the above mentioned Jacobian, employed in the anal-
ysis of the edge lengths behaviour of such a prism, needed later for the
Schläfli formula.

Key words: hyperbolic polyhedron, Gram matrix, volume.

1 Introduction

Let T be a generalised hyperbolic tetrahedron (in the sense of [19, 22]) de-
picted in Fig. 1. If the truncating planes associated with its ultra-ideal
vertices do not intersect, we call such a tetrahedron mildly truncated, oth-
erwise we call it intensely truncated. If only two of them intersect, we call
such a tetrahedron prism truncated [12]. Let us note that a prism truncated
orthoscheme is, in fact, a Lambert cube [11].
The volumes of the tetrahedron and its truncations are of particular interest,
since they are the simplest representatives of hyperbolic polyhedra. Over
the last decade an extensive study produced a number of volume formulae
suitable for analytic and numerical exploration [3, 5, 11, 12, 20, 22]. A similar
study was done for the spherical tetrahedron [14, 17], which can be viewed
as a natural counterpart of the hyperbolic one. Many analytic properties of
the volume formula for a hyperbolic tetrahedron came into view concerning
the Volume Conjecture [10, 18].
However, other geometric characteristics of a generalised hyperbolic tetrahe-
dron T are also important and bring some useful information. In particular,
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Figure 1: Generalised hyperbolic tetrahedron

Jac(T ), the Jacobian of T , which is the Jacobian matrix of the edge length
with respect to the dihedral angles, is such. This matrix enjoys many sym-
metries [15] and can be computed out of the Gram matrix of T [7].
In the present paper, we consider Jac⋆(T ), the dual Jacobian of a generalised
hyperbolic tetrahedron T . By the dual Jacobian of T we mean the Jaco-
bian matrix of the dihedral angles with respect to the edge length. Such an
object behaves nicely when T undergoes both mild and intense truncation:
the dual Jacobian of a prism truncated tetrahedron is an analytic continu-
ation for that of a mildly doubly truncated one. Let us mention, that the
respective volume formulae are also connected by an analytic continuation,
in an analogous manner [12, 19].
As an application of our technique, we give a volume formula for a hyperbolic
n-gonal prism, c.f. [4].

Acknowledgements. The authors gratefully acknowledge financial sup-
port provided by the Swiss National Science Foundation (SNSF project
no. P300P2-151316) and the Japan Society for the Promotion of Science
(Grant-in-Aid projects no. 25287014, no. 2561002 and Invitation Programs
for Research project no. S-14021). The authors thank the anonymous referee
for his/her careful reading of the manuscript and helpful comments.

2 Preliminaries

Let T be a mildly truncated hyperbolic tetrahedron with vertices vk, k ∈
{1, 2, 3, 4}, edges eij (connecting the vertices vi and vj) with dihedral angles
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aij and lengths ℓij, i, j ∈ {1, 2, 3, 4}, i < j.
Depending on whether the vertex vk is proper (vk ∈ H

3), ideal (vk ∈ ∂H3) or
ultra-ideal (vk defines a polar hyperplane as described in [21, Section 3], c.f.
Theorem 3.2.12), let us set the quantity εk to be +1, 0 or −1, respectively.
For each vertex vi of T let us consider the face Fjkl opposite to it, where
{i, j, k, l} = {1, 2, 3, 4}. The link L(vl) of the vertex vl is either a spherical
triangle (εl = +1), a Euclidean triangle (εl = 0) or a hyperbolic triangle
(εl = −1). Let us define the quantity bijk as follows:

bijk :=







the plane angle of Fjkl opposite to the edge ejk, if εl = +1;
zero, if εl = 0;
the length of the common perpendicular to the edges ejl
and ekl of Fjkl, if εl = −1.

Here, we consider the face Fjkl as a generalised hyperbolic triangle, for which
the trigonometric laws hold as described in [2, 9].
Let us also define a quantity µi

jk by means of the formula

µi
jk :=

∫ bi
jk

0
cos(

√
εls)ds.

Let µ′i
jk denote the derivative of µi

jk with respect to bijk, which means that

µ′i
jk = cos(

√
εlb

i
jk).

Let σkl denote the following quantity associated with an edge ekl, k, l ∈
{1, 2, 3, 4}, k < l,

σkl :=
1

2
eℓkl − 1

2
εkεle

−ℓkl .

Let σ′
kl denote the derivative of σkl with respect to ℓkl, so we have that

σ′
kl =

1

2
eℓkl +

1

2
εkεle

−ℓkl .

Let us define the momentum Mi of the vertex vi opposite to the face Fjkl,
{i, j, k, l} = {1, 2, 3, 4} by the following equality (c.f. [6, VII.6]):

M i := µi
jk µ

i
jl σkl.

The quantity above is well defined grace to the following theorem.
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Theorem 1 (The Sine Law for faces) Let Fjkl be the face of T opposite
to the vertex vi, {i, j, k, l} = {1, 2, 3, 4}. Then Fjkl is a generalised hyperbolic
triangle and the following equalities hold:

µi
jk

σjk
=

µi
jl

σjl
=

µi
kl

σkl
.

Let us also define the momentum Mjkl of the face Fjkl opposite to the vertex
vi, {i, j, k, l} = {1, 2, 3, 4} by setting (c.f. [6, VII.6])

Mjkl := µj
kl sin aik sin ail.

The quantity above is well defined, according to the following theorem.

Theorem 2 (The Sine Law for links) Let vi be the vertex of T opposite
to the face Fjkl, {i, j, k, l} = {1, 2, 3, 4}. Then L(vi) is either a spherical, a
Euclidean or a hyperbolic triangle and the following equalities hold:

sin aij

µj
kl

=
sin aik

µk
jl

=
sin ail

µl
jk

.

Both Theorem 1 and Theorem 2 are paraphrases of the spherical, Euclidean
or hyperbolic sine laws (for a generalised hyperbolic triangle, see [9]). The
following theorems are the cosine laws for a generalised hyperbolic triangle
adopted to the notation of the present paper.

Theorem 3 (The first Cosine Law for faces) Let Fjkl be the face of T
opposite to the vertex vi, {i, j, k, l} = {1, 2, 3, 4}. Then Fjkl is a generalised
hyperbolic triangle and the following equality holds:

σ′
kl =

µ′i
kl + µ′i

jk µ
′i
jl

µi
jk µ

i
jl

.

Theorem 4 (The second Cosine Law for faces) Let Fjkl be the face of
T opposite to the vertex vi, {i, j, k, l} = {1, 2, 3, 4}. Then Fjkl is a gener-
alised hyperbolic triangle and the following equality holds:

µ′i
jk =

−εlσ
′
jk + σ′

jlσ
′
kl

σjlσkl
.

Theorem 5 (The Cosine Law for links) Let vi be the vertex of T oppo-
site to the face Fjkl, {i, j, k, l} = {1, 2, 3, 4}. Then L(vi) is either a spherical,
a Euclidean or a generalised hyperbolic triangle and the following equality
holds:

µ′j
kl =

cos aij + cos aik cos ail
sin aik sin ail

.
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3 Auxiliary lemmata

In the present section we shall consider various partial derivatives of certain
geometric quantities associated with either the faces or the vertex links of
a generalised hyperbolic tetrahedron T . These derivatives will be used later
on in the computation of the entries of Jac⋆(T ).

Lemma 1 For {i, j, k, l} = {1, 2, 3, 4} we have

∂ℓkl
∂bikl

= −εj
µi
kl

M i
,

∂ℓkl
∂bijk

= −σ′
jl

µi
kl

M i
,

∂ℓkl
∂bijl

= −σ′
jk

µi
kl

M i
.

Proof. According to the definition of σkl, we have σkl = 0 only in the
following two cases: εk = εl = +1 and ℓkl = 0, or εk = εl = −1 and
ℓkl = 0. In the former case, we have a degenerate tetrahedron with two
proper vertices collapsing to one point. In the latter case the tetrahedron
has two ultra-ideal vertices, whose polar planes are tangent at a point on the
ideal boundary ∂H3. This is a limiting case, since in a generalised (mildly
truncated) tetrahedron two polar planes never intersect or become tangent.
Thus, we suppose that σkl 6= 0.
By taking derivatives on both sides of the first Cosine Law for faces, we get
the following formulae:

σkl
∂ℓkl
∂bikl

=
∂σ′

kl

∂bikl
=

1

µi
jkµ

i
jl

∂µ′i
kl

∂bikl
= −εj

µi
kl

µi
jkµ

i
jl

,

since
∂σ′

kl

∂bikl
= σkl

∂ℓkl
∂bikl

and
∂µ′i

kl

∂bikl
= −εj µ

i
kl

by a direct computation. This implies the first identity of the lemma.
Now we compute

σkl
∂ℓkl
∂bijk

=
∂σ′

kl

∂bijk
= −

((µ′i
jk)

2 + εl(µ
i
jk)

2)µi
jlµ

′i
jl + µi

jlµ
′i
jkµ

′i
kl

(µi
jkµ

i
jl)

2
=

−
µ′i

jl + µ′i
jkµ

′i
kl

µi
jkµ

i
kl

· µi
kl

µi
jkµ

i
jl

= −σ′
jl

µi
kl

µi
jkµ

i
jl

.
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where we use the identity (µ′i
jk)

2 + εl(µ
i
jk)

2 = 1 and, as before, the fact

that
∂µ′i

jk

∂bi
jk

= −εlµ
i
jk. Then the second identity follows. The third one is

analogous to the second one under the permutation of the indices k and l.
�

Lemma 2 For {i, j, k, l} = {1, 2, 3, 4} we have

∂bjkl
∂aij

= εi
sin aij
Mjkl

∂bjkl
∂aik

= εi
sin aij
Mjkl

µ′l
jk,

∂bjkl
∂ail

= εi
sin aij
Mjkl

µ′k
jl.

Proof. By taking derivatives on both sides of the Cosine Law for links, we
get the following formulae:

−εi µ
j
kl

∂bjkl
∂aij

=
∂µ′j

kl

∂aij
= − sin aij

sin aik sin ail
.

The first identity of the lemma follows.
Then we subsequently compute

−εi µ
j
kl

∂bjkl
∂aik

=
∂µ′j

kl

∂aik
= −cos ail + cos aij cos aik

sin aij sin aik

sin aij
sin aik sin ail

=

µ′l
jk

sin aij
sin aik sin ail

.

The second identity follows. The third one is analogous under the permu-
tation of the indices k and l. �
Now we shall prove several identities that relate the principal minors Gii,
i ∈ {1, 2, 3, 4} of the Gram matrix G := G(T ) of the tetrahedron T with its
face or vertex momenta.

Lemma 3 For {i, j, k, l} = {1, 2, 3, 4}, we have that

detGii = εi M
2
jkl.

Proof. Let us perform the computation for G11 and other cases will follow
by analogy. We have that

det





1 − cos a14 − cos a13

− cos a14 1 − cos a12

− cos a13 − cos a12 1



 =

6



= det





1 − cos a14 − cos a13

0 sin2 a14 −µ′2
34 sin a13 sin a14

0 −µ′2
34 sin a13 sin a14 sin2 a13



 =

= (1− (µ′2
34)

2) sin2 a13 sin
2 a14 = ε1 (µ

2
34)

2 sin2 a13 sin
2 a14 = ε1 M

2
234.

By permuting the set {i, j, k, l} = {1, 2, 3, 4}, one gets all other identities of
the lemma. �

Lemma 4 For {i, j, k, l} = {1, 2, 3, 4}, we have that

− detG = sin2 ajk sin2 ajl sin
2 akl (M

i)2.

Proof. Let us subsequently compute

detG = det







1 − cos a34 − cos a24 − cos a23
− cos a34 1 − cos a14 − cos a13
− cos a24 − cos a14 1 − cos a12
− cos a23 − cos a13 − cos a12 1







=

det







1 − cos a34 − cos a24 − cos a23

0 sin2 a34 −µ′1
23 sin a24 sin a34 −µ′1

24 sin a23 sin a34

0 −µ′1
23 sin a24 sin a34 sin2 a24 −µ′1

34 sin a23 sin a24

0 −µ′1
24 sin a23 sin a34 −µ′1

34 sin a23 sin a24 sin2 a23







=

sin2 a23 sin2 a24 sin
2 a34 det





1 −µ′1
23 −µ′1

24

−µ′1
23 1 −µ′1

34

−µ′1
24 −µ′1

34 1



 =

sin2 a23 sin2 a24 sin
2 a34 det





1 −µ′1
23 −µ′1

24

0 ε4(µ
1
23)

2 −σ′
34µ

1
23µ

1
24

0 −σ′
34µ

1
23µ

1
24 ε3(µ

1
24)

2



 =

sin2 a23 sin2 a24 sin
2 a34 (ε3ε4 − (σ′

34)
2)(µ1

23µ
1
24)

2 =

− sin2 a23 sin2 a24 sin
2 a34 (M1)2.

Here we used the Cosine Law for links in the second equality and the first
Cosine Law for faces in the fourth equality. Also, we used the fact that for
{i, j, k, l} = {1, 2, 3, 4} one has 1− εl(µ

i
jk)

2 = (µ′i
jk)

2 (in the third equality)

and σ2
ij − (σ′

ij)
2 = εiεj (in the sixth equality). All other identities of the

lemma follow by permuting the set {i, j, k, l} = {1, 2, 3, 4}. �
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4 Dual Jacobian of a generalised hyperbolic tetra-

hedron

In this section we shall compute the entries of the dual Jacobian matrix
Jac⋆(T ) of a generalised hyperbolic tetrahedron T .

Theorem 6 Let T be a generalised hyperbolic tetrahedron. Then

Jac⋆(T ) :=
∂(ℓ12, ℓ13, ℓ14, ℓ23, ℓ24, ℓ34)

∂(a12, a13, a14, a23, a24, a34)
= −ηDS D ,

where

η :=

(
Π4

i=1εi detGii

(− detG)3

)1/2

, D :=











σ12
σ13

σ14
σ23

σ24
σ34











and

S :=











ω12 ε1σ
′
14 ε1σ

′
13 ε2σ

′
24 ε2σ

′
23 1

ε1σ
′
14 ω13 ε1σ

′
12 ε3σ

′
34 1 ε3σ

′
23

ε1σ
′
13 ε1σ

′
12 ω14 1 ε4σ

′
34 ε4σ

′
24

ε2σ
′
24 ε3σ

′
34 1 ω23 ε2σ

′
12 ε3σ

′
13

ε2σ
′
23 1 ε4σ

′
34 ε2σ

′
12 ω24 ε4σ

′
14

1 ε3σ
′
23 ε4σ

′
24 ε3σ

′
13 ε4σ

′
14 ω34











,

where

ωkl :=
σ′
ikσ

′
jl + εlσ

′
ilσ

′
jlσ

′
kl + σ′

ilσ
′
jk + εkσ

′
ikσ

′
jkσ

′
kl

σ2
kl

.

Proof. We compute the respective derivatives, that constitute the entries
of Jac⋆(T ). Suppose that εi 6= 0, i ∈ {1, 2, 3, 4}, since the cases when εj = 0
for some j ∈ {1, 2, 3, 4} can be dealt with in an analogous manner. Then for
{i, j, k, l} = {1, 2, 3, 4}, one has

∂ℓkl
∂aij

=
∂ℓkl

∂bjkl

∂bjkl
∂aij

= −εi
µj
kl

M j
· εi

sin aij
Mjkl

(1)
︷︸︸︷
= − 1

M j

sin aij
sin aik sin ail

=

−
1

M j

sin aij

sin aik sin ail

1

σij

1

σkl

σijσkl

(2)
︷︸︸︷
= −

1

M j

sin aij

sin aik sin ail

σijσkl

µi
jkµ

i
jl

M i

µl
ikµ

l
jk

M l

(3)
︷︸︸︷
=
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−MijkMiklMijlMjkl
√

(− detG)3
σijσkl

(4)
︷︸︸︷
= −

√

Π4
i=1εi detGii

(− detG)3
σijσkl = −η σijσkl.

Here we used the definitions of vertex and face momenta, as well as Lemmata
1 and 4. Indeed, in (1) we have that Mijk = µj

kl sin aik sin ail and in (2) we

use the fact that σij =
µl
ik

µl
jk

M l , σkl =
µi
jk

µi
jl

M i . In (3) we use

µi
jk =

Mijk

sin ajl sin akl
, µl

ik =
Mikl

sin aij sin ajk
,

µi
jl =

Mijl

sin ajk sin akl
, µl

jk =
Mjkl

sin aij sin aik
,

together with the identities of Lemma 4. In (4) we use Lemma 3.
Analogous to the above, we compute for {i, j, k, l} = {1, 2, 3, 4},

∂ℓkl
∂aik

=
∂ℓkl
∂bijk

∂bijk
∂aik

= −εk
sin aik
Mijl

µi
kl

M i
σ′
jk =

−εk

√
εj detGjj

M i sin ajk sin ajl

sin aik√
εk detGkk

1

σikσkl
σikσkl σ

′
jk =

−εk

√
εj detGjj

M i sin ajk sin ajl

sin aik√
εk detGkk

µi
jkµ

i
jl

M i

µj
ilµ

j
kl

M j
σikσkl σ

′
jk =

−εk

√
εj detGjj√
εk detGkk

√
εl detGll

√
εk detGkk

√
εk detGkk

√
εi detGii

√

(− detG)3
σikσkl σ

′
jk =

−εk

√

Π4
i=1εi detGii

(− detG)3
σikσkl σ

′
jk = −εk η σikσkl σ

′
jk.

Finally, for {i, j, k, l} = {1, 2, 3, 4}, we compute the derivative

∂ℓkl
∂akl

=
∂ℓkl
∂bijk

∂bijk
∂akl

+
∂ℓkl
∂bijl

∂bijl
∂akl

.

Since the two terms of the above sum are symmetric under the permutation
of k and l, we may compute only the first one. The second one will be
analogous. By Lemmata 1 and 2, we get

∂ℓkl
∂bijk

∂bijk
∂akl

= −εl
µi
kl

M i

sin ail
Mijk

σ′
jl µ

′j
ik

(5)
︷︸︸︷
=
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−(σ′
ikσ

′
jl + εlσ

′
ilσ

′
jlσ

′
kl)

µi
kl

M i

sin ail
Mijk

1

σilσkl

(6)
︷︸︸︷
=

−(σ′
ikσ

′
jl + εlσ

′
ilσ

′
jlσ

′
kl)

√
εj detGjj

M i sin ajk sin ajl

sin ail√
εl detGll

µi
jkµ

i
jl

M i

µj
ikµ

j
kl

M j

(7)
︷︸︸︷
=

−(σ′

ikσ
′

jl + εlσ
′

ilσ
′

jlσ
′

kl)

√

εj detGjj

(−detG)3

√

εl detGll

√

εk detGkk

√

εl detGll

√

εi detGii
√

εl detGll

=

−(σ′
ikσ

′
jl + εlσ

′
ilσ

′
jlσ

′
kl)

√

Π4
i=1εi detGii

(− detG)3
= −η (σ′

ikσ
′
jl + εlσ

′
ilσ

′
jlσ

′
kl).

Here, in (5) we used the second Cosine Law for faces and in (6) we used
the equality Mikl = µi

kl sin ajk sin ajl together with Lemma 3. In (7) we
perform a computation analogous to (3).
Thus, we obtain

∂ℓkl
∂akl

=
∂ℓkl
∂bijk

∂bijk
∂akl

+
∂ℓkl
∂bijl

∂bijl
∂akl

=

−η (σ′
ikσ

′
jl + εlσ

′
ilσ

′
jlσ

′
kl)− η (σ′

ilσ
′
jk + εkσ

′
ikσ

′
jkσ

′
kl) = −η ωkl σ

2
kl.

The proof is completed. �

5 Dual Jacobian of a doubly truncated hyperbolic

tetrahedron

Let us consider the case when T is a (mildly) doubly truncated tetra-
hedron depicted in Fig. 2 with dihedral angles θi and edge lengths ℓi,
i ∈ {1, 2, 3, 4, 5, 6}. We suppose that the vertices cut off by the respective
polar planes are v1 and v2.
If T is mildly truncated then the formula from Theorem 6 applies. If T is
a prism truncated tetrahedron, as in Fig. 3, with dihedral angles µ, θi and
edge lengths ℓ, ℓi, i ∈ {1, 2, 3, 5, 6} then its Gram matrix is given by

G =







1 − cos θ1 − cos θ5 − cos θ3
− cos θ1 1 − cos θ6 − cos θ2
− cos θ5 − cos θ6 1 − cosh ℓ
− cos θ3 − cos θ2 − cosh ℓ 1







,

which is a slightly different notation compared to [12, 13].
Each link L(vk), k = 1, 2, is a hyperbolic quadrilateral with two right same-
side angles, which can be seen as a hyperbolic triangle with a single truncated
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Figure 2: Doubly truncated tetrahedron (mild truncation)

vertex. Each link L(vk), k = 3, 4, is a spherical triangle. In the definitions of
Section 2 we change each bi1j , with i, j ∈ {2, 3, 4}, i 6= j, for bi1j +

√
−1π

2 and

each bi2j, with i, j ∈ {1, 3, 4}, i 6= j, for bi2j+
√
−1π

2 . Thus, some of the vertex
and face momenta become complex numbers. All the trigonometric rules of
Section 2 still hold grace to [2, Section 4.3]. Computing the respective
derivatives in a complete analogy to the proof of Theorem 6, we obtain the
following statement.

Figure 3: Doubly truncated tetrahedron (prism truncation)

Theorem 7 Let T be a prism truncated tetrahedron depicted in Fig. 3. Then

11



by means of the analytic continuation a12 :=
√
−1 ℓ, ℓ12 =

√
−1µ we have

Jac⋆(T ) :=
∂(µ, ℓ1, ℓ2, ℓ3, ℓ5, ℓ6)

∂(ℓ, θ1, θ2, θ3, θ5, θ6)
=

∂(ℓ12, ℓ34, ℓ13, ℓ23, ℓ24, ℓ14)

∂(a12, a34, a13, a23, a24, a14)
.

6 Volume of a hyperbolic prism

Let ~αn denote the n-tuple (α1, . . . , αn) with 0 < αk < π, k = 1, . . . , n.
Let ~βn and ~γn be analogous n-tuples. Let Πn := Πn(~αn, ~βn, ~γn) be the
hyperbolic n-sided prism depicted in Fig. 4, with the respective dihedral
angles, as shown in the picture.

Figure 4: The prism Πn(~αn, ~βn, ~γn)

Let Sk, k = 1, . . . , n, be the supporting hyperplane for the k-th side face of
the prism Πn (we start numbering the faces anti-clockwise from the side face
adjacent to the angles α1, β1 and γ1, γ2), and let S0 and Sn+1 be those of
the top and the bottom face, correspondingly. For each Sk, k = 0, . . . , n+1,
let S+

k be the respective half-space containing the unit outer normal to it.

Let S−
k = H

3 \ S+
k . Then Πn =

⋂n+1
i=0 S−

i .
Let T := T (α,α′, β, β′, γ; ℓ) be the prism truncated tetrahedron depicted in
Fig. 5. Here α, α′, β, β′ and γ are the respective dihedral angles, ℓ is the
length of the respective edge. The volume Vol T of the tetrahedron T is
given by [12, Theorem 1]∗. Let v(α,α′, β, β′, γ; ℓ) := Vol T (α,α′, β, β′, γ; ℓ)
denote the respective volume function.

∗in Section 7 we give a simplified formula for the volume of T .
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Figure 5: The prism truncated tetrahedron T (α,α′, β, β′, γ; ℓ)

Let p0pn+1 be the common perpendicular to S0 and Sn+1. Let also define
k⊕m := (k+m)modn, for k,m ∈ N. Then we can state the main theorem
of this section.

Theorem 8 Let Πn = Πn(~αn, ~βn, ~γn) be a hyperbolic n-sided prism, as in
Fig. 4. If p0pn+1 ⊂ Πn, then the volume of Πn is given by the formula

VolΠn =
n∑

k=1

v(αk, αk⊕1, βk, βk⊕1, γk⊕1; ℓ
⋆),

where ℓ⋆ is the unique solution to the equation ∂Φ
∂ℓ (ℓ) = 0, with

Φ(ℓ) := πℓ+
n∑

k=1

v(αk, αk⊕1, βk, βk⊕1, γk⊕1; ℓ).

Let Pk, k = 1, . . . , n, be the plane containing p0pn+1 and orthogonal to
Sk. First, we consider the case when p0pn+1 lies inside the prism Πn and
the planes Pk, k = 1, . . . , n, divide the prism Πn into n prism truncated
tetrahedra, as shown in Fig. 6.
Then each Pk meets the k-th side face of the prism Πn. Thus, the planes
S0, Sk, Sk⊕1 and Sn+1 together with Pk and Pk⊕1 become the supporting
planes for the faces of a prism truncated tetrahedron, which we denote by
Tk. Each Pk is orthogonal to Sk, S0 and Sn+1. The dihedral angles of

13



Figure 6: The decomposition of Πn (top view, on the left) and the prism
truncated tetrahedron Tk (on the right)

Tk inherited from the prism Πn are easily identifiable. Let µk denote the
dihedral angle along the edge p0pn+1 and let ℓ⋆ be its length. Then we have
Tk = T (αk, αk⊕1, βk, βk⊕1, γk⊕1; ℓ

⋆), k = 1, . . . , n. Clearly,

Vol Πn =

n∑

k=1

Vol Tk =

n∑

k=1

v(αk, αk⊕1, βk, βk⊕1, γk⊕1; ℓ
⋆).

Thus, we have to prove only the following statement.

Proposition 1 If the common perpendicular p0pn+1 is inside the prism Πn

and each Pk meets the respective side also inside Πn, k = 1, . . . , n, then the
equation ∂Φ

∂ℓ = 0 has a unique solution ℓ = ℓ⋆, the length of p0pn+1.

Proof. Let us consider the collection of prism truncated tetrahedra Tk =
T (αk, αk⊕1, βk, βk⊕1, γk⊕1; ℓ), k = 1, . . . , n. Each pair {Tk, Tk⊕1} of them
has an isometric face corresponding to the plane Pk⊕1. Indeed, each such
face is completely determined by the plane angles (two right angles at the
side of length ℓ, the angles αk and βk at the opposite side) and one side
length. We obtain the prism Πn(~αn, ~βn, ~γn) by glueing the tetrahedra Tk

together along the faces Pk, k = 1, . . . , n, in the respective order. Their
edges of length ℓ match together, and one obtains a prism if the angle sum

14



of the dihedral angles µk, k = 1, . . . , n, along them equals 2π. We have that

∂Φ

∂ℓ
= π +

n∑

k=1

∂v

∂ℓ
(αk, αk⊕1, βk, βk⊕1, γk⊕1; ℓ).

Since v is the volume function from [12, Theorem 1], then by applying the
Schläfli formula [16, Equation 1] one obtains

∂Φ

∂ℓ
= π − 1

2

n∑

k=1

µk.

Thus, whenever the tetrahedra Tk constitute a prism, we have
∑n

k=1 µk = 2π
or, equivalently, ∂Φ

∂ℓ = 0. The length ℓ in this case is exactly the length of
the common perpendicular p0pn+1 to the planes S0 and Sn+1.
The rest is to prove that ℓ = ℓ⋆ is a unique solution. In order to do so,
we shall show that ∂µk

∂ℓ > 0, k = 1, . . . , n. By using Theorem 7 we get the
following formulae for a prism truncated tetrahedron (as depicted in Fig. 3):

∂ℓ2
∂ℓ

= −η sinµk sinh ℓ6 cosh ℓ2,
∂ℓ3
∂ℓ

= −η sinµk sinh ℓ5 cosh ℓ3,

∂ℓ5
∂ℓ

= −η sinµk sinh ℓ3 cosh ℓ5,
∂ℓ6
∂ℓ

= −η sinµk sinh ℓ2 cosh ℓ6.

Note that the above derivatives are all negative. In our present no-
tation it means that for each prism truncated tetrahedron Tk, k =
1, . . . , n, the edges of the top and bottom faces inherited from the prism
Πn diminish their length if we increase solely the parameter ℓ. Re-
call that Tk = T (αk, αk⊕1, βk, βk⊕1, γk⊕1; ℓ), and let us denote T ′

k :=
T (αk, αk⊕1, βk, βk⊕1, γk⊕1; ℓ

′) with ℓ′ > ℓ.
Let ABCD be the top (equiv., bottom) face of Tk, as shown in Fig. 7, and
A′B′C ′D′ be the top (equiv., bottom) face of T ′

k. Since the dihedral angles
accept for µk and µ′

k remain the same, the plane angles of ABCD at A, B,
C and those of A′B′C ′D′ at A′, B′ and C ′ are respectively equal. One sees
easily that we can match then ABCD and A′B′C ′D′ such that B and B′

coincide, the sides AB and A′B′, BC and B′C ′ overlap and the point D′

lies inside the quadrilateral ABCD. Then the area of A′B′C ′D′ is less than
that of ABCD. Equivalently, by the angle defect formula [1, Theorem 1.1.7],
µ′
k > µk. Thus,

∂µk

∂ℓ > 0, k = 1, . . . , n, and the proposition follows. �
However, there is a possibility that, although the common perpendicular
p0pn+1 is entirely inside the prism Πn, one (or several) of the planes Pk

meets the respective Sk partially outside of the face Sk.
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Figure 7: Prisms Tk and T ′
k with top faces marked

First we consider the case when a single plane Pk meets Sk entirely outside,
as depicted in Fig. 8. Like this, we obtain the figure shaded in grey, that
consists of two triangular prisms sharing an edge.
Second we consider the case when a single plane Pk meets Sk partially
outside, as depicted in Fig. 9. Like this, we obtain a more complicated
figure that consists of two tetrahedra sharing an edge (one of which has two
truncated vertices).
Thus the planes S0, Pk, Pk⊕1, Sk, Sk⊕1 and Sn+1 bound a “butterfly” prism.
We put k = 1, for clarity. In the general case, k ≥ 2, one uses induction on
the number of planes Pk meeting Sk outside of Πn. Here, some other cases
of “butterfly” prisms are possible.

Proposition 2 If the common perpendicular p0pn+1 is completely inside the
prism Πn, the plane P1 meets the plane S1 outside of Πn, and all other Pk,
k = 2, . . . , n, meet the respective side faces inside Πn, then the volume of
the prism equals

VolΠn =

n∑

k=1

v(αk, αk⊕1, βk, βk⊕1, γk⊕1; ℓ
⋆),
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Figure 8: The decomposition of Πn (top view, on the left) and the “butterfly”
prism truncated tetrahedron Tk (on the right)

where ℓ⋆ is the unique solution to the equation ∂Φ
∂ℓ (ℓ) = 0, with

Φ(ℓ) := πℓ+

n∑

k=1

v(αk, αk⊕1, βk, βk⊕1, γk; ℓ).

Proof. We start with the case of a “butterfly” prism depicted in Fig. 8. Let
us observe that the “butterfly” prism T1 overlaps with the subsequent prism

truncated tetrahedron T2 exactly on its part T
(o)
1 outside of Πn. The part of

T1 inside Πn, called T
(i)
1 , contributes to the total volume of the prism. The

volume of T
(o)
1 is excessive in the respective volume formula and should be

subtracted. In fact, we prove that

v(α1, α2, β1, β2, γ2; ℓ
⋆) = V := Vol T

(i)
1 −Vol T

(o)
1 ,

which implies that the excess in volume brought by T2 is eliminated by the

term “−VolT
(o)
1 ”.

In order to do so, let us denote by θ the dihedral angle along the common

edge of the triangular prisms T
(o)
1 and T

(i)
1 . Let ℓθ be the length of this edge.

Let γ := γ2 and let ℓγ be the length of the vertical edge with dihedral angle
γ. We know that ∂V

∂γ = −1
2 ℓγ , by the structure of the volume formula for a

prism truncated tetrahedron. Indeed, the function V does not correspond to
the volume of a real prism truncated tetrahedron any more, however all the
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Figure 9: Another “butterfly” prism truncated tetrahedron Tk

metric relations defining the dihedral angles between the respective planes
are preserved. Thus, after computing the derivative ∂V

∂ℓ analogous to [12],
we obtain the latter equality. Now we compute the respective derivatives
for the parts of the “butterfly” prism T1.
Observe that the parameter θ depends on γ, while we vary γ and keep all
other dihedral angles fixed. Let us denote γ̂ = π − γ for brevity. We have
that

∂Vol T
(o)
1

∂γ̂
= −ℓγ

2
− ℓθ

2

∂θ

∂γ̂

and
∂Vol T

(i)
1

∂γ
= −ℓθ

2

∂θ

∂γ
,

by the Schläfli formula [16, Equation 1].
The above identities together with the fact that ∂

∂γ̂ = − ∂
∂γ imply that

∂

∂γ2
v(α1, α2, β1, β2, γ2; ℓ

⋆) =
∂V

∂γ2
.

By analogy, we can prove that

∂

∂ξ
v(α1, α2, β1, β2, γ2; ℓ

⋆) =
∂V

∂ξ
,

for any ξ ∈ {α1, αn, β1, βn, µ1}. The volume formula for a prism truncated
tetrahedron implies that by setting α1 = αn = π/2 and β1 = βn = π/2 we
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Figure 10: Parametrising the “butterfly” prism depicted in Fig. 8

get v(α1, αn, β1, βn, γ2; ℓ
⋆) = 0. In the case of a “butterfly” prism T1, under

the same assignment of dihedral angles, we have that the bases of the two

triangular prisms become orthogonal to their lateral sides. Thus T
(i)
1 and

T
(o)
1 degenerate into Euclidean prisms, which means that their volumes tend

to zero. Thus, we obtain the identity v(α1, αn, β1, βn, γ2; ℓ
⋆) = V .

The proof of the monotonicity for the function ∂Φ
∂ℓ (ℓ) is analogous to that

in Proposition 1. However, since the part T
(o)
1 contributes to the function

v(α1, αn, β1, βn, γ2; ℓ) with the negative sign, we have to replace the edge
lengths ℓ3 and ℓ5 with −ℓ3 and −ℓ5, respectively, as shown in Fig. 10. Then
we recompute the respective derivatives of the lengths of the horizontal edges
according to Theorem 7. We obtain that the lengths ℓ2 and ℓ6 diminish, as
before, while the lengths ℓ3 and ℓ5 increase. This implies that the upper

(resp., lower) triangular base of T
(i)′
1 can be placed entirely inside the upper

(resp. lower) triangular base of T
(i)
1 . By the area comparison argument, we

have that µ′
1 > µ1. The inequality ∂µ1

∂ℓ > 0 follows.
All other cases of “butterfly prisms” (e.g. that in Fig. 9) can be considered
by analogy. �

Remark. In the general case, when the common perpendicular p0pn+1 does
not lie entirely inside the prism Πn, we expect that an analogue to Theorem 8
holds with an exception that the equation ∂Φ

∂ℓ (ℓ) = 0 may have several
solutions. However, one of these solutions is geometric and yields the volume
of Πn.
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7 Modified volume formula

We modify the volume formula for a prism truncated tetrahedron from [12],
in order to reduce it to a simpler form. Indeed, the formula in [12, Theo-
rem 1] uses analytic continuation and accounts for possible branching with
respect to any variable aj = eℓ, with some j ∈ {1, 2, . . . , 6}, and ak = ei θk ,
for any k ∈ {1, 2, . . . , 6}\{j}. Usually, we put j = 4 for simplicity. However,
the formula allows for intense truncation at any edge, since it is invariant
under a permutation of the variables al, l ∈ {1, . . . , 6}.
In our case, given a prism Πn and its decomposition into prism truncated
tetrahedra Ti, i ∈ {1, . . . , n}, we know that only the common perpendicular
p0pn+1 is produced by an intense truncation. Thus, we can always put
j = 4 and, moreover, the variable a4 will be the only one that might cause
branching.
In this case, we suggest a simplified version of the formula from [12, Theorem
1]. This formula also has less numeric discrepancies and performs faster, if
used for an actual computation.
Let us put ak := ei θk , k ∈ {1, 2, 3, 5, 6}, a4 := eℓ, and let U =
U (a1, a2, a3, a4, a5, a6, z) denote

U := Li2(z) + Li2(a1a2a4a5z) + Li2(a1a3a4a6z) + Li2(a2a3a5a6z)

−Li2(−a1a2a3z)− Li2(−a1a5a6z)− Li2(−a2a4a6z)− Li2(−a3a4a5z),

where Li2(◦) is the dilogarithm function.

Let z− and z+ be two solutions to the equation ez
∂U

∂z = 1 in the variable z.
According to [12, 20], these are

z− :=
−q1 −

√

q21 − 4q0q2
2q2

and z+ :=
−q1 +

√

q21 − 4q0q2
2q2

,

where

q0 := 1+a1a2a3+a1a5a6+a2a4a6+a3a4a5+a1a2a4a5+a1a3a4a6+a2a3a5a6,

q1 := −a1a2a3a4a5a6

((

a1 −
1

a1

)(

a4 −
1

a4

)

+

(

a2 −
1

a2

)(

a5 −
1

a5

)

+

(

a3 −
1

a3

)(

a6 −
1

a6

))

,

q2 := a1a2a3a4a5a6(a1a4 + a2a5 + a3a6 + a1a2a6 + a1a3a5 + a2a3a4+

a4a5a6 + a1a2a3a4a5a6).
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Given a function f(x, y, . . . , z), let f(x, y, . . . , z) |z=z−
z=z+ denote the difference

f(x, y, . . . , z−)− f(x, y, . . . , z+). Now we define the following function V =
V (a1, a2, a3, a4, a5, a6, z) by means of the equality

V :=
i

4

(

U (a1, a2, a3, a4, a5, a6, z)− z
∂U

∂z
log z

) ∣
∣
∣
∣

z=z−

z=z+

.

Proposition 3 The volume of a prism truncated tetrahedron T is given by

Vol T = ℜ
(

−V + a4
∂V

∂a4
log a4

)

.

Proof. Let us denote

f(T ) = ℜ
(

−V + a4
∂V

∂a4
log a4

)

,

and compute the derivative

∂

∂ℓ

(

f(T ) +
µ ℓ

2

)

= a4
∂

∂a4

(

f(T ) +
µ log a4

2

)

=

= a4
∂

∂a4

(

ℜ
(

−V +

(

a4
∂V

∂a4
+

µ

2

)

log a4

))

.

The function ℜ
(

a4
∂V

∂a4
+ µ

2

)

has an a.e. vanishing derivative, c.f. the note

in [12] after Theorem 1 saying that µ ≡ −2ℜ(a4 ∂V

∂a4
) mod π. Hence,

∂

∂ℓ

(

f(T ) +
µ ℓ

2

)

= a4
∂

∂a4

(

ℜ
(

−V +

(

a4
∂V

∂a4
+

µ

2

)

log a4

)) (1)
︷︸︸︷
=

(1)
︷︸︸︷
= ℜ

(

−a4
∂V

∂a4
+ a4

∂V

∂a4
+

µ

2

)

=
µ

2
.

The equality (1) holds because of the commutativity of the operations ℜ
and ∂

∂a4
for the function −V +

(

a4
∂V

∂a4
+ µ

2

)

log a4. The latter holds since

a4 = eℓ is a real parameter.
This implies that ∂f(T )

∂µ = − ℓ
2 . By analogy to the proof of [12, Theorem 1],

we can show that ∂f(T )
∂θk

= − ℓk
2 , and that if T degenerates into a right

Euclidean prism, then f(T ) → 0. Thus, VolT = f(T ) and the proposition
follows. �
Also, we have the following way to determine the dihedral angle µ along the
length ℓ edge coming from the intense truncation.
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Proposition 4 The angle µ is given by

µ ≡ −ℜ
(

i a4
2

∂U (a1, . . . , a6, z)

∂a4

∣
∣
∣
∣

z=z−

z=z+

)

mod π.

Proof. We have µ ≡ −2ℜ
(

a4
∂V

∂a4

)

mod π, where 0 < µ < π and has an a.e.

vanishing derivative.
Then we compute

∂U (a1, . . . , a6, z±(a1, . . . , a6))

∂a4
− ∂

∂a4

(

z±
∂U (a1, . . . , a6, z±)

∂z
log z±

)

=

∂U (a1, . . . , a6, z±)

∂a4
+

∂z±
∂a4

∂U (a1, . . . , a6, z±)

∂z

−∂z±
∂a4

∂U (a1, . . . , a6, z±)

∂z
=

∂U (a1, . . . , a6, z±)

∂a4
,

since, for some m ∈ Z,

z±
∂U (a1, . . . , a6, z±)

∂z
= 2π im,

by the definition of z− and z+.
Therefore, we obtain

µ ≡ −2ℜ
(

a4
∂V

∂a4

)

mod π ≡ −ℜ
(

i a4
2

∂U (a1, . . . , a6, z)

∂a4

∣
∣
∣
∣

z=z−

z=z+

)

mod π,

where 0 < µ < π. �

8 Numerical examples

Finally, we produce some numerical examples concerning an n-gonal (n ≥ 5)
prism Πn with the following distribution of dihedral angles: the angles along
the vertical edges are 2π

5 , the angles adjacent to the bottom face are π
3 , and

those adjacent to the top face are π
2 . Indeed, such a prism Πn exists due to

[8, Theorem 1.1]. Then we apply Theorem 8 for the cases n = 5, 6, 7, and
perform all necessary numeric computations with Wolfram MathematicaR©.
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In order to avoid excessive branching in numerical computations, we use the
modified parameters

q′i :=
qi

Π6
k=1 ak

and z± :=
−q′1 −

√

q′21 ± 4q′0q
′
2

2q′2
.

in the formulae for U and V from Section 7.
It follows from the definition of q′i, i = 1, 2, 3, above that the quantity
q′21 −4q′0q

′
2 is a real number, c.f. [20, Section 1.1, Lemma]. This fact prevents

computational discrepancies and simplifies any further numerical analysis of
the volume formula.

n (ℓ⋆, µ) Vol Πn

5 (0.50672, 2π/5) 2.63200
6 (0.38360, π/3) 3.43626
7 (0.312595, 2π/7) 4.19077

Table 1: Left: parameters (ℓ⋆, µ) of Tn, right: volume of Πn

Each of the above prisms Πn can be subdivided into n isometric copies of a
prism truncated tetrahedron Tn. Indeed, Tn is a prism truncated tetrahedron
with angles θ1 = 2π

5 , θ2 = θ3 = π
2 , θ5 = θ6 = π

3 , and µ = 2π
n . By rotating it

along the edge with dihedral angle µ, we compose the desired prism Πn.
The graph of Vol Tn, with n = 5, as a function of ℓ, is shown in Fig. 11 on
the left. The graph of ∂Φ

∂ℓ (ℓ) for the same prism truncated tetrahedron Tn

is depicted in Fig. 11 on the right. We observe that the function ∂Φ
∂ℓ (ℓ) is

indeed monotone and has a single zero ℓ⋆ ≈ 0.50672....

Figure 11: Left: VolT5, right:
∂Φ
∂ℓ , both as functions of ℓ

The volume of T5 with θ1 = 2π
5 , θ2 = θ3 = π

2 , θ5 = θ6 = π
3 and

ℓ⋆ ≈ 0.50672... equals ∼ 0.52639... by Proposition 3. Thus, we can see that
Vol Π5 = 5 · Vol T5 in accordance with Theorem 8, and from Proposition 4
µ = 1.25664... ≈ 2π

5 .
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