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Hyperbolic 4-manifolds, colourings and mutations

Alexander Kolpakov & Leone Slavich

Résumé

Nous proposons une nouvelle approche à construire des variétés hyperboliques M en dimension quatre,
par moyens d’un polyèdre de Coxeter P ⊂ H4 munit avec un coloriage de ses faces. Aussi, nous utilisons
notre méthode pour obtenir des sous-surfaces totalement géodésiques plongées dans M, et pour décrire
le résultat de mutations par rapport à ses surfaces. Comme application, nous construisons une variété
complète hyperbolique non-compacte X avec un bout cuspide non-torique, et une variété complète
hyperbolique non-compacte Y avec un bout cuspide torique. Elles sont des nouveaux exemples de
variétés hyperboliques complètes non-compactes en dimension quatre avec un seul bout cuspide et
volume relativement petit.

Abstract

We develop a way of seeing a complete orientable hyperbolic 4-manifold M as an orbifold cover of
a Coxeter polytope P ⊂ H4 that has a facet colouring. We also develop a way of finding a totally
geodesic sub-manifold N in M, and describing the result of mutations along N . As an application of
our method, we construct an example of a complete orientable hyperbolic 4-manifold X with a single
non-toric cusp and a complete orientable hyperbolic 4-manifold Y with a single toric cusp. Both X
and Y have twice the minimal volume among all complete orientable hyperbolic 4-manifolds.

1 Introduction

By Margulis’ Lemma, a finite-volume complete hyperbolic n-manifold Mn has a finite number of ends
called cusps, each of which is homeomorphic to Nn−1×[0,+∞) for some closed Euclidean (n−1)-manifold
Nn−1. In dimension three many knot complements provide an example of a hyperbolic manifold with a
single cusp [19]. In this setting the resulting manifolds are necessarily orientable, and since the torus T 2

is the only example of a closed Euclidean surface, the cusp is homeomorphic to T 2 × [0,+∞).
In higher dimensions, where there is no direct analogue to geometrisation, constructing hyperbolic

manifolds is a harder task. The goal is usually achieved by using either arithmetic methods, or producing
direct constructions based on Poincaré’s fundamental polytope theorem.

It is also known that the cusp section of a single-cusped hyperbolic 4-manifold cannot have any
possible homeomorphism type of a closed Euclidean 3-manifold [12]. In fact, a necessary condition for
such a manifold to be the cusp section of a single-cusped hyperbolic 4-manifold is that its η-invariant be
an integer, and such a condition is met by only four out of the six possible orientable homeomorphism
types. The first example of a single-cusped hyperbolic 4-manifold whose cusp section is a 3-torus was
given in [9]. To the best of our knowledge, no example of single cusped hyperbolic 4-manifold with
cusp section non-homeomorphic to the 3-torus has been constructed before. In this paper, we provide
an example of such an object (Theorem 1.1). The cusp section of our example is homeomorphic to the
unique Euclidean orientable S1-bundle over the Klein bottle K (see [17]).

It would also be interesting to generalise to dimension four the well-known 3-dimensional examples of
hyperbolic knot complements. A reasonable model would be the complement of a 2-dimensional torus T
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in S4. The boundary ∂(U(T )) of a regular neighbourhood U(T ) of T will necessarily be homeomorphic to
the 3-torus T 3. Therefore ∂(U(T )) will admit a Euclidean structure, and we can hope to find a complete,
finite volume hyperbolic structure on the complement of S where ∂(U(T )) corresponds to a cross-section
of the cusp.

However we have to be careful: since a manifold M of dimension n ≥ 4 can admit a variety of
non-equivalent smooth structures, there is a sharp difference in saying that M is homeomorphic or
diffeomorphic to some preferred model of a smooth manifold. First examples of hyperbolic 4-manifolds
which are homeomorphic to complements of collections of 2-dimensional tori in S4 were given in [8]. All
the examples constructed there have more than one cusp, and each of these cusps is homeomorphic to
T 3×[0,+∞), where T 3 denotes the three-dimensional torus. In [16], one of these manifolds (equipped with
the smooth structure induced by its hyperbolic metric) is shown to be diffeomorphic to the complement
of a collection of five tori in S4 with its standard smooth structure.

For a hyperbolic manifoldM , being the complement of a collection of tori or Klein bottles in S4 implies
strong restrictions on the geometry and topology of M itself. A classical result due to H.C. Wang states
that, in all dimensions n ≥ 2, the volumes of finite-volume hyperbolic n-manifolds form a well-ordered
subset of R, which is discrete if n 6= 3 [22, Theorem 3.1]. Moreover, in even dimensions, the volume of
a hyperbolic n-manifold M turns out to be proportional to the Euler characteristic χ(M) through the
Gauß–Bonnet formula ([18], see also [7, 24])

VolM = cn · χ(M), with cn = (−2π)
n

2 /(n − 1)!!.

The Euler characteristic of a four-dimensional hyperbolic manifold M (in general, non-compact,
though finite-volume) can take any positive integer value [14]. However, if such a manifold is the
complement of a collection of tori in S4, an easy excision property argument shows that necessarily
χ(M) = χ(S4) = 2, and therefore Vol M = 8π2/3.

In this setting, combining several properties of a manifold in a single example may become a difficult
task (e.g. we want to construct a complete hyperbolic finite-volume 4-manifold with a single cusp, and a
small volume). In the present paper we use the technique of colourings (see [2, 6, 10, 20, 21]) in order to
produce examples of single-cusped hyperbolic manifolds of Euler characteristic 2. The main results are
the following:

Theorem 1.1. There exists an orientable, complete, finite-volume hyperbolic 4-manifold X such that
χ(X ) = 2 with a single cusp whose cross-section is homeomorphic to the Euclidean orientable S1-bundle
over the Klein bottle.

Theorem 1.2. There exists an orientable, complete, finite-volume hyperbolic 4-manifold Y such that
χ(Y) = 2 with a single cusp whose cross-section is homeomorphic to a 3-torus.

We point out the fact that the examples constructed in this work have minimal volume amongst
known examples of orientable, single cusped, hyperbolic 4-manifolds. Finally, we point out that the
techniques introduced in this paper allow us to produce many non-compact hyperbolic 4-manifolds of
Euler characteristic 2. It is reasonable to wonder if some of these are new examples of complements of
tori and/or Klein bottles in S4.

Also, our examples of hyperbolic manifolds with toric cusps may be used to produce new instances of
Einstein manifolds, c.f. [1], or integer homology spheres with non-vanishing simplicial volume, c.f. [5, 15].

The paper is organised as follows: in Section 2, we recall basic properties of colourings and prove some
auxiliary statements. Then, in Section 3, we classify all possible colouring of a cube, up to homeomorphism
of the resulting manifolds. In Section 4 we study the properties of colourings of a particular polytope: the
4-dimensional Potyagăılo-Vinberg polytope first introduced in [13]. In Section 5 we produce a colouring
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of P 4 that we use in order to construct our examples. Finally, in Section 6, we use mutations along
3-dimensional hyper-surfaces in 4-dimensional multi-cusped hyperbolic 4-manifolds to construct single-
cusped hyperbolic 4-manifolds with toric and non-toric cusp sections.

2 Properties of colourings

In this section we review the construction of manifolds from colourings of right-angled polytopes, with
particular attention to the case of non-compact hyperbolic polytopes. We also discuss the relations
between the algebraic properties of the colouring and the topological properties of the resulting manifold.

Let Xn with X = S,E, or H denote, respectively, the n-sphere, n-dimensional Euclidean space, or
n-dimensional hyperbolic (or Lobachevskĭı) space. Let P ⊂ Xn be a convex polytope, and let F(P ) be
the set of its co-dimension one faces (or facets). A polytope P ⊂ Xn is called simple if each of its vertices
belongs to exactly n facets.

A colouring of a simple polytope P according to [2, 6, 20, 21] is a map λ : F(P ) → (Z/2Z)n. A
colouring is called proper if the colours of facets around each vertex of P are linearly independent vectors
of V = (Z/2Z)n.

One of most remarkable cases is a colouring of a compact right-angled polytope P ⊂ Hn, with a proper
colouring1. Polytopes of this type give rise to interesting families of hyperbolic manifolds [6, 10, 20, 21].

In [10] the notion of a colouring is extended to let V be any finite-dimensional vector space over Z/2Z.
Below we shall use the notion of colouring in a wider context of right-angled polytopes P , which are not
simple. A polytope P ⊂ Xn is called simple at edges if each edge belongs to exactly (n − 1) facets. In
the case of a right-angled polytope P ⊂ H4, this means that vertex figures of P are either 3-dimensional
tetrahedra or cubes [3, Proposition 1].

A colouring of a polytope P ⊂ Xn which is simple at edges is a map λ : F(P ) → V , where V is a
finite-dimensional vector space over Z/2Z. A colouring λ is proper if the following two conditions are
satisfied:

1. Properness at vertices: if v is a simple vertex of P , then the n colours of facets around it are linearly
independent vectors of V ;

2. Properness at edges: if e is an ideal edge (i.e. an edge having an ideal vertex, or both ideal vertices)
of P , then the (n− 1) colours of facets around e are linearly independent.

Let P be a right-angled polytope in Xn, with X = S, E, or H. In the latter case, we allow some (not
necessarily all) of the vertices of P to lie on the ideal boundary2. Let λ : F(P ) → V be a colouring
on the facets of P , with values in a finite-dimensional vector space V over Z/2Z, which satisfies all the
properness conditions.

The colouring defines a homomorphism from G to V which we continue to denote by λ, where
G = G(P ) is the right-angled Coxeter group generated by reflections in the facets of P . The following
key result holds:

Proposition 2.1. Let λ be a coloring of a right-angled polytope which satisfies all the properness condi-
tions at hyperbolic vertices and at the ideal edges. The kernel of the associated homomorphism λ : G→ V
is a torsion-free subgroup of G. To this subgroup, there corresponds an orbifold cover

π : Mλ → P,

where Mλ is a manifold.

1by a result of L. Potyagăılo and È. Vinberg [13], 2 ≤ n ≤ 4
2by a result of G. Dufour [3] right-angled polytopes exist in Hn for 2 ≤ n ≤ 12. Examples are known up to dimension 8

[13]
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Proof. Consider the tessellation of Hn obtained by reflecting the polytope P in its facets. The group
G acts on Hn preserving such tessellation. A torsion element in G necessarily fixes a face F of the
tessellation. Up to conjugation, we can suppose that F is a face of P . The stabilizer of F is generated by
the reflections in the facets of P which contain F . By the properness condition, we see that the stabilizer
of F is mapped injectively in V by λ and the proposition follows.

Let us suppose that the homomorphism λ is surjective. The automorphism group of the covering is
isomorphic to V . To visualise the automorphism, consider the manifold Mλ, together with its tessellation
into copies of the polytope P . Consider any copy of P1 of P in the tessellation of Mλ. The polytope
P1 will be adjacent to another copy P2 of P along a facet F . The automorphism corresponding to λ(F )
permutes P1 and P2 by reflection in their common facet F .

Let Γλ be a rooted graph defined as follows:

• the root of Γλ is a vertex p corresponding to a copy of P , and labelled with λ(p) = 0 ∈ V ,

• if two copies P1 and P2 of P in the tessellation of Mλ corresponding to the vertices p1 and p2 of
Γλ are adjacent through a facet F , then the edge {p1, p2} is labelled λ(F ),

• if two copies P1 and P2 of P in the tessellation of Mλ are adjacent through a facet F , then the
labels λ(p1), λ(p2) ∈ V of the respective vertices p1 and p2 of Γλ satisfy λ(p1) + λ(p2) = λ(F ).

We call Γλ the developing graph of λ. If a vertex p of Γλ has label v, its root can be shifted into p by
adding the vector v to all the vertex labels and declaring p the new root. Thus, the choice of the root
and the vertex labelling is not canonical, while the choice of the edge labels is canonical. Therefore, the
vertices of the graph Γλ, can be interpreted as points of an affine space A over V .

Now, let F be a facet of P . The facet F lifts to a finite collection of totally geodesic hyper-surfaces in
Mλ. To the facet F , there corresponds a subgroup W (F ) ⊂ V generated by λ(F ) and the colours λ(F ′)
of all the facets F ′ of P adjacent to F .

Proposition 2.2. The following properties hold:

(1) The number of totally geodesic hyper-surfaces in Mλ corresponding to the facet F is equal to the
index of W (F ) in V .

(2) Cutting along all the hyper-surfaces associated with the facets F1 . . . , Fn which share a common
colour λ(F1) = · · · = λ(Fn) separates Mλ if and only if the colour λ(Fi) does not lie in the subspace
U generated by all other colours.

(3) The hyper-surfaces associated with a facet F are two-sided if and only if the colour λ(F ) does not
lie in the subspace generated by the colours of all the facets adjacent to F .

(4) If two hyper-surfaces H1 and H2 are lifts of two non-intersecting facets of P , then they do not
intersect in the manifold Mλ.

(5) The manifold Mλ is orientable if and only if, for some isomorphism V ∼= (Z/2Z)s, each colour
λ(Fi) has an odd amount of 1’s.

Proof. (1) The number of lifts of a facet F is the order of the orbit of a single lift F̃ of F to Mλ under
the action of the deck transformation group. It equals the index of Stab(F̃ ), the stabiliser of F̃ under
this action. Obviously, Stab(F̃) =W (F ).

(2) Let Mλ := Mλ//{π
−1(F1), . . . , π

−1(Fn)} be the manifold Mλ cut along all the lift of Fi’s.
Remove from the developing graph for the colouring λ all the edges with label λ(Fi) to obtain the
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developing graph Γλ for the manifold Mλ. It is clear that the graph Γλ is connected if and only if the
colour λ(Fi) lies in the subspace generated by all other colours, therefore the same property holds for the
manifold Mλ.

(3) Let F1, . . . , Fk be the faces of P adjacent to a given facet F . Let us choose as a root for the
developing graph Γλ a vertex v adjacent to an edge with label λ(F ), and consider the connected sub-
graph ΓF

λ ⊂ Γλ given by the vertices of Γλ which can be joined to the root v by edges with labels λ(F ),
or λ(Fi), i = 1 . . . k.

The graph ΓF
λ is the developing graph of a small tubular neighbourhood Tube(HF ) of a lift HF of a

facet F in Mλ, where each vertex corresponds to the intersection of a copy of the polytope P with the
neighbourhood Tube(HF ). The hyper-surface HF is two-sided in Mλ if and only if Tube(HF ) \ HF is
disconnected. By applying an argument analogous to that of (2), we see that this holds if and only if
λ(F ) does not lie in the subspace generated by the colours λ(Fi), i = 1 . . . k.

(4) Consider the manifold Mλ, together with its tessellation into copies of the polytope P . The
hyper-surfaces associated with a facet F of P are naturally tessellated by copies of the facet F . If
two hyper-surfaces H1 and H2 intersect, they do so in the boundary of some copy of P , and therefore
correspond to two facets F1, F2 of P such that F1 ∩ F2 6= ∅.

(5) See [10, Lemma 2.4].

Definition 2.3. A coloring λ : F(P ) → V is orientable if it satisfies condition (5) of Proposition 2.2.

2.1 Equivalent colourings and coloured isometries

Given a colouring λ : G → V (from now on, we shall systematically denote the colouring and the
associated homomorphism by the same letter), there are a number of equivalent colourings, that give
rise to manifolds isometric to Mλ. We can compose the homomorphism λ : G → V with any injective
linear automorphism φ ∈ GL(V ) in order to obtain a new colouring, which we denote by φ∗(λ). Formally
speaking, we change each colour λ(F ) ∈ V associated with a facet F of P to the colour φ(λ(F )). It
is clear that the kernel of the homomorphism φ ◦ λ coincides with the kernel of λ, and therefore the
manifolds Mλ and Mφ∗(λ) are isometric. However this operation changes the correspondence between
the group of automorphisms of the colouring, which is generated by reflections in the facets of P , and
the vector space V .

Notice that every symmetry of the polytope P induces a natural permutation of its facet colours.

Definition 2.4. Let λ : G(P ) → V be a colouring. A symmetry ψ of P is admissible with respect to
the colouring λ if the naturally associated map on the facet colours is realised by a linear automorphism
φ ∈ GL(V ) of V . Admissible symmetries form a subgroup Admλ(P ) of Symm(P ), and there is a naturally
defined homomorphism from Admλ(P ) to GL(V ). We denote by GL(λ) the image of this homomorphism.

Now let Admλ(P ) < Symm(P ) be the group of admissible symmetries of P with respect to a colouring
λ : G(P ) → V . Each symmetry ψ ∈ Admλ(P ) lifts to an isometry of Mλ, and obviously any two lifts
differ by composition with an element of Autπ ∼= V .

Definition 2.5. The group of lifts of admissible symmetries of P to Mλ is called the coloured isometry
group of Mλ, and is denoted by Isomc(Mλ).

There is a short exact sequence

0 → Autπ ∼= V → Isomc(Mλ) → Admλ(P ) → 0.
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This sequence naturally splits: it is sufficient to choose a copy P0 of P in the tessellation of Mλ, and
lift every ψ ∈ Admλ(P ) to the unique element of Isomc(Mλ) which maps P0 to itself. Therefore we write

Isomc(Mλ) ∼= V ⋊Admλ(P ),

where the action of Admλ(P ) on V is induced by the natural action of GL(λ) on V .
Therefore, given a colouring λ : F(P ) → V , the group Isomc(Mλ) acts on the developing graph Γλ

through affine isomorphisms of its vertex set A. The elements of Aut π correspond to translations in A,
while elements of Admλ(P ) induce linear maps in GL(λ) of the underlying vector space V .

Moreover, to each stratum S in the cell decomposition of the manifold Mλ, there corresponds an
affine subspace WS ⊂ A. Notice that each such n-stratum S corresponds to a unique n-face F (S) of the
polytope P . The elements of WS correspond to the copies of the polytope P which are adjacent to the
stratum S. These form an affine subspace of A whose dimension is equal to the co-dimension of S. The
underlying linear subspace of V is trivial in the case of strata of co-dimension 0 (copies of the polytope P ),
and, for strata corresponding to a co-dimension one face F , it coincides with the subspace generated by
the colour λ(F ). In all other cases, the underlying linear subspace coincides with the subspace generated
by the colours of the facets of P adjacent to F (S).

Remark 2.6. In order to check if an element ψ ∈ Isomc(Mλ) acts on the manifold Mλ without fixed
points, it is sufficient to check if no affine subspace of the form WS ⊂ A is preserved by ψ.

Remark 2.7. Notice that the discussion above also applies to the cusps of Mλ. Each of these will be
associated with an ideal vertex v of the polytope P , and with each cusp we can associate an affine
subspace of A, generated by the colours carried over to the vertex figure of v from the respective facets
of P adjacent to v (i.e. a restriction of λ to the vertex figure of v).

3 Colourings of a three-dimensional cube

In this section we discuss an example of colouring on the faces of a 3-dimensional Euclidean cube, in order
to show how to compute the topology and the geometry of the manifolds associated with such colourings.
Moreover, we derive a criterion to determine the topology of a Euclidean manifold Mλ associated with
a colouring λ on the faces of a cube in terms of the intersections of the vector spaces generated by the
colours on opposite faces.

Example 3.1. Here we exhibit an example of colouring λ on the faces of a unit cube C which produces
a non-toric flat manifold Mλ, namely, the one which which fibres over S1 with a torus as fibre and
monodromy given by a hyper-elliptic involution. This manifold can be described also as the Euclidean
orientable S1-bundle over the Klein bottle K, and it is of topological type G2 in Wolf’s census of closed
Euclidean 3-manifolds [23].

Consider a Euclidean unit cube with its three pairs of opposite square faces. We assign colours from
V = (Z/2Z)3 to them in the following way (see Figure 1):

1. Assign the colour (1, 0, 0) to a pair of opposite faces,

2. Assign the colour (0, 1, 0) to the second pair of opposite faces,

3. Assign the colours (0, 0, 1) and (1, 1, 1) to the remaining two faces.

The third pair of opposite faces is parallel to the fibres of the fibration. We may check that the
monodromy is a hyper-elliptic involution by performing the following computation.

Let us start with a cube C0 = C, labelled with 0 ∈ V and keep reflecting in its faces. We also
translate the face colours from each copy of C to its reflected counterpart accordingly. If two copies
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Figure 1: The colouring λ of the cube C, faces are labelled with vectors from V

of C, say C1 and C2, share a face S, then their labels sum up to λ(S). Once we reach another cube
CN labelled 0, we determine an isometry ψ ∈ IsomE3 that brings CN back to C0 respecting their face
colourings. This isometry is exactly the composition of the chosen reflections, and it belongs to the group
of automorphisms of the covering E3 → Mλ, since C0 and CN correspond to the same vertex in the
developing graph Γλ.

We repeat this process until we are able to find three linearly independent isometries ψi ∈ IsomE3,
i = 1, 2, 3, which generate a manifold of the correct volume, namely the order, as a set, of the image of
the colouring λ in the vector space V , since these guarantees that the isometries ψi, i = 1, 2, 3, generate
the automorphism group of the covering E3 → Mλ.

Figure 2: Moving through copies of C by reflections in their faces, from C0 to CN . The isometry ψ is a
translation + half-turn rotation that brings us back from CN to C0

In the case of the above described colouring of a cube (see Figure 1) we apply this process to obtain
a sequence of five cubes depicted in Figure 2, where the first C0 and the last CN = C4 cubes are labelled
0 and the isometry identifying them is

ψ1((x, y, z)
T ) =




1 0 0
0 −1 0
0 0 −1







x
y
z


+




2
0
0
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Here, we start by reflecting the cubes in the (1, 1, 1)–face. Analogously, we obtain the respective isometries
ψ2 and ψ3 by reflecting first in the (0, 1, 0)– or (1, 0, 0)–face. We get

ψ2((x, y, z)
T ) = (x, y + 2, z)T , ψ3((x, y, z)

T ) = (x, y, z + 2)T .

Then, the translation lattice of Mλ is generated by ψi’s, and its volume equals VolMλ = 8. Thus, the
manifold Mλ has type G2 according to [23].

The geometry and topology of the manifold Mλ are determined only by the equivalence class of the
colouring λ. Therefore, understanding the topology of the cusp sections starting from a colouring of a
cube, depends only on the equivalence class of the colouring. This allows us to describe the topology of
the resulting cusp shape by understanding the intersections between the different subspaces generated by
the colours of pairs of opposite faces of that cube.

Let us denote by C the unit cube in the Euclidean 3-space E3 = {(x, y, z) |x, y, z ∈ R}, and let G
be the associated reflection group. The group G is generated by reflections in the planes of the form
x = c, y = c, z = c, with c ∈ N, and is a right-angled Coxeter group. Reflections in parallel planes form
three subgroups Gx, Gy , Gz ⊂ G.

An orientable, proper V -colouring λ of the square faces of a unit cube C defines three linear subspaces
of V , that we call Vx, Vy, Vz ⊂ V , respectively, each generated by the colours assigned to a pair of
opposite facets of C. The colouring also defines three homomorphisms λx : Gx → Vx, λy : Gy → Vy and
λz : Gz → Vz.

In order to understand the topology of the manifold Mλ obtained from the colouring λ of the cube
C, we shall consider the restriction of λ to a section of C by the plane x = c, 0 < c < 1. This section is
a unit square S, whose edges inherit their colours from the respective faces of C. Indeed, each edge of S
arises at the intersection of the plane x = c with a face F of C, orthogonal to x = c.

The restriction of λ to S is an orientable colouring, with values in the vector space of the form Vy+Vz,
and, by the orientability assumption, it produces a torus Tx with volume 2dim(Vy+Vz). The vector space
Vy + Vz acts on the torus Tx by automorphisms of the covering Tx → S. Clearly, all sections of C by the
planes x = c, 0 < c < 1, lift to tori in Mλ, which constitute the fibres of the fibration of Mλ over the
circle S1.

We note, that in the exposition below the variables x, y and z are interchangeable: no direction along
which we may fibre Mλ is preferred. The intersection properties of the subspaces Vx, Vy and Vz that we
are interested in remain intact under a permutation of x, y and z.

We shall determine the monodromy map Tx → Tx of the torus fibration over S1 that represents Mλ.
Any orientation-preserving automorphism of Tx is expressible as a sum of an even number of face colours
assigned to the faces parallel to the planes y = 0 and z = 0, and is necessarily isotopic to the identity
or to a hyper-elliptic involution. The elements of Vy + Vz that induce maps isotopic to the identity form
a subgroup of Vy + Vz, which has index two in the group of orientation-preserving isometries of Tx. It
consists of elements which are expressed as a sum of an even number of face colours in both Vy and Vz.

The torus Tx is obtained as a quotient of E2 by translations along certain two vectors v1 and v2. By
embedding E2 into E3 = R × E2, we see that the vectors (0, v1), (0, v2) belong to the translation lattice
associated with the Euclidean 3-manifold Mλ. We can add a third translation in Gx along a vector of
the form v3 = (n, 0), generated by reflections in the square faces parallel to x = 0, in order to define a
lattice L. The volume of E3/L equals

2dim (Vx)+dim (Vy+Vz).

The length of the vector v3 equals 2 if the subspace Vx is one-dimensional (in other words, if the
colours of the respective pair of opposite facets are the same), and it equals 4 if Vx has dimension 2 (in
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this case, the colours of opposite faces corresponding to Vx are distinct). Notice, that the lattice defined
above does not necessarily coincide with the maximal translation lattice associated with the manifold
Mλ.

If the intersection Vx ∩ (Vy + Vz) is trivial, the lattice L is indeed the full group of isometries which
defines the cover E3 → Mλ. To see this, it suffices to notice that

dimV = dim (Vx + Vy + Vz) = dim(Vx) + dim(Vy + Vz).

This means that the torus defined by the lattice L has the same volume as the manifold Mλ, and therefore
the covering E3/L→ Mλ is trivial.

If the intersection Vx ∩ (Vy + Vz) is non-trivial, we have to consider all possible cases separately.

(1) Suppose that Vx has dimension 1, and pick the unique vector w ∈ Vx ∩ (Vy + Vz). Clearly, the
reflection in any of the two square faces of the cube C parallel to x = 0 gives an isometry ψ ∈ Gx

of E3 such that λx(ψ) = w.

Moreover, since w ∈ Vy + Vz = Aut(Tx → S) we can find a (necessarily orientation-reversing)
isometry φ of E3 (belonging to the group generated by Gy and Gz), such that λx(φ) = w. The
isometry φ induces an index two covering Tx → K, where K is a Klein bottle. Moreover

φ ◦ ψ ∈ ker λ = π1(Mλ).

The quotient of E3/L under this isometry is the manifold Mλ, since

dimV = dim (Vx + Vy + Vz) = dim(Vx) + dim(Vy + Vz)− 1

and Vol (E3/L) = 2 ·Vol (Mλ). The resulting manifold can be described as the orientable Euclidean
S1-bundle over the Klein bottle K, which is also a torus bundle over S1, with a hyper-elliptic
involution acting on its fibres.

(2) Now, suppose that Vx has dimension 2 (i.e. the colours of the faces of C parallel to x = 0 are
different). There are two possible cases:

(2.a) If Vx ∩ (Vy + Vz) has dimension 1, it contains a unique non-zero vector w. If w is one of the
face colours which generate Vx, then we can proceed as in the previous case and verify that
the resulting manifold is a torus bundle over the circle, with the hyper-elliptic involution as
monodromy map.

If w is the sum of the face colours which generate Vx, then the isometry ψ ∈ Gx given by the
translation along the vector (0, 0, 2) (which is generated by reflections in the faces of C that
are parallel to x = 0), satisfies λx(ψ) = w. As before, we can find an orientation-preserving
isometry φ ∈ 〈Gy, Gz〉 of E3 such that λx(φ) = w. We need to check whether φ induces the
identity or a hyper-elliptic involution on the torus Tx, i.e. whether the vector w is the sum of
an even or an odd number of the face colours in Vx and Vz. By proceeding as in the previous
steps, we see that in the first case the resulting manifold is a torus. Otherwise, it is a torus
bundle with a hyper-elliptic involution as monodromy.

(2.b) If Vx ⊂ (Vy + Vz), the resulting manifold is non-toric. We deduce, in analogy to (1), that it is
a torus bundle with a hyper-elliptic involution as monodromy.

We summarise the discussion above in the following way:
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Proposition 3.2. Let λ be a proper, orientable colouring on the faces of a Euclidean cube. The Euclidean
manifold Mλ is either a 3-torus, or a torus bundle over S1 with monodromy given by a hyper-elliptic
involution.

The manifold is a 3-torus if and only if one of the following two conditions in fulfilled:

1. One of the vector spaces Vx, Vy, Vz ⊂ V has trivial intersection with the sum of the other two.

2. One of the vector spaces Vx, Vy, Vz ⊂ V (without loss of generality, we can suppose that it is Vx),
has a one-dimensional intersection with the sum of the other two, and the unique non-trivial vector
w = wy +wz, wy ∈ Vy, wz ∈ Vz, in this intersection is expressed as the sum of the two face colours
that generate Vx, while the vectors wy and wz are expressed as the sum of an even number of each
of the face colours that generate Vy and Vz, respectively.

4 Colourings of the polytope P
4

Here we shall discuss general properties of colourings of the right-angled hyperbolic polytope P 4 intro-
duced by L. Potyagăılo and È. Vinberg in [13], discuss an example and use it to build single cusped
manifolds whose cusp section is either a 3-torus, or an orientable S1-bundle over the Klein bottle.

We begin by describing the combinatorial dual of the polytope P 4: the rectified 5-cell, which we denote
by R. The polytope R is obtained by considering the convex hull in R5 of the set of ten points obtained
by permuting the coordinates of the vector (1, 1, 1, 0, 0). Alternatively, one can obtain the rectified 5-cell
starting from a 4-dimensional Euclidean simplex S4, and considering the convex hull of the midpoints of
its edges.

As a consequence of the latter construction for R, we see that there is the following sequence of
one-to-one correspondences:

{Facets of P 4} ↔ {Vertices of R} ↔ {Edges of S4} (1)

and defining a colouring on the facets of P 4 is equivalent to defining a colouring on the edges of a 4-simplex
S4, i.e. an edge colouring of the complete graph K5.

The polytope P 4 has a hyperbolic realisation as a right-angled polytope with ten facets which are
copies of the polyhedron P 3 [13], depicted in Figure 3. Each copy is labelled as a vertex of the rectified
5-cell, i.e. by a permutation of the coordinates of the vector (1, 1, 1, 0, 0). Moreover, the polytope P 4 has
10 vertices in total. Of these, 5 are ideal and the other 5 are compact and lie inside the hyperbolic space.
By marking the vertices of S4 with the integers in the set {1, 2, 3, 4, 5}, each ideal (resp. compact) vertex
of P 4 receives a natural label: opposite to each ideal vertex, there is a compact vertex with the same
label. To an edge of S4 connecting vertices with labels i and j, there corresponds a facet of P 4 whose
label has 0’s in the i-th and j-th entries, and 1’s in all other entries. For instance, to the edge connecting
the vertices 4 and 5 of S4, there corresponds a facet of P 4 with label (1, 1, 1, 0, 0).

The vertex figure of an ideal vertex is a Euclidean cube. The hyperbolic volume of P 4 is equal to
(1/16) · vm [4], where vm = 4π2/3 is the minimal volume of a hyperbolic 4-manifold.

Observe that each facet of P 4 corresponds to an edge of the complete graph K5, and that two edges
of K5 share a vertex if and only if the corresponding facets of P 4 are incident. Given an edge e of K5,
there are exactly 3 other edges which do not share a vertex with e, and these edges form a complete
sub-graph K3 ⊂ K5. As a consequence we see that, given a facet F of P 4, there are exactly 3 other
(pairwise intersecting) facets of P 4 which are disjoint from F .

In order to obtain a manifold, we need to make sure that the colouring of P 4 is proper at both the
compact vertices and the ideal edges. This is equivalent to the following two conditions imposed on the
edge colouring of the graph K5:
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Figure 3: The P 3-facet of P 4 labelled (1, 1, 1, 0, 0), together with labels on its vertices. The vertices 1, 2, 3
are ideal, while 4 and 5 lie in hyperbolic space.

1. Properness at vertices: The colours associated with the edges emanating from a vertex v of K5 are
linearly independent vectors. There are 5 vertices to check.

2. Properness at edges: The colours associated with every complete sub-graph K3 ⊂ K5 (built by
removing any two vertices and the edges incident to these vertices) are linearly independent vectors.
There are 10 such sub-graphs to check.

4.1 Induced colourings

Now let F(P 4) be the set of facets of P 4, and V a finite dimensional vector space over Z/2Z. Let us call
Mλ the manifold associated with a colouring λ : F(P 4) → V satisfying the properness conditions. Notice
that, by the condition on the volume of P 4, the dimension of V has to be at least 4. We want to study
the induced colourings.

For each edge e of K5, we have a sub-graph of K5 (called a dart) formed by the edge e and all other
edges which share a vertex with e. It has 7 edges in total, 2 vertices of valence 4, and 3 vertices of valence
2, as shown in Figure 4. The edges of the dart associated with an edge e correspond to the facets of P4

which are adjacent to the facet associated with e.
Given an edge e of K5, the colouring on its corresponding dart graph naturally induces a VF -colouring

on the P 3-facet F of P 4 corresponding to e, where VF = V/〈λ(F )〉, and therefore defines an embedded,
totally geodesic sub-manifold of the manifold Mλ.

Each ideal vertex w of P 4 naturally corresponds to a sub-graph K4 ⊂ K5. The colouring on the edges
of K4, which correspond to the facets of P 4 that meet at w, naturally induces a colouring on the cubical
vertex figure of w, with values in the vector space Vw ⊂ V generated by the colours of the facets adjacent
to w. The index of Vw in V determines the number of cusps that correspond to the vertex w.
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Figure 4: The dart graph associated with an edge e of K5.

5 A highly symmetric example

5.1 Defining the colouring

Consider a colouring of the complete graph K5 with values in V = (Z/2Z)5 obtained in the following
way:

1. Label the vertices of K5 with the numbers {1, 2, 3, 4, 5}.

2. Assign to the edge connecting vertices i and j the element of V which has 0’s in the entries i and
j, and 1’s in all other entries. For instance, the edge connecting vertices 1 and 2 will be coloured
with (0, 0, 1, 1, 1).

This edge colouring of K5 defines a facet colouring λ of the polytope P 4. It is easy to check that
the properness conditions are satisfied, and therefore this colouring defines an orientable hyperbolic four-
manifold M := Mλ, tessellated by 25 = 32 copies of the polytope P 4.

The group Admλ(P
4) of admissible symmetries of P 4 coincides with its full isometry group Symm(P 4) ∼=

S5, where the action on V is given by permutation of the coordinates. Therefore we have a short exact
sequence

0 → V → Isomc(M) → S5 → 0 (2)

5.2 Identifying hyper-surfaces

By applying Proposition 2.2, we see that:

Remark 5.1. To each facet F of P 4 there corresponds a unique, non-separating, two-sided totally geodesic
hyper-surface HF in M.

Moreover, since the group of admissible symmetries of the colouring acts transitively on the facets of
P 4, the hyper-surfaces defined by the induced colourings on the facets are isometric to each other.

The colouring of the dart graphs associated with the edges having colours (1, 1, 1, 0, 0) and (0, 0, 1, 1, 1)
are represented in Figure 5. The induced colouring λ on a facet F takes its values in the vector space
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Figure 5: The induced colouring on the dart graphs associated with the edges (1, 1, 1, 0, 0) (left) and
(0, 0, 1, 1, 1) (right).

VF = V/〈λ(F )〉, which is a vector space over Z/2Z of dimension 4. A basis for this vector space is given
by the colours associated with the three edges which have a common endpoint at the vertex S (resp. N),
together with the colour associated with any other edge which has N (resp. S) as a vertex, for instance
(1, 1, 0, 1, 0), (1, 0, 1, 1, 0), (0, 1, 1, 1, 0) and (0, 1, 1, 0, 1).

Let us denote by H the hyperbolic 3-manifold defined by the induced colouring λ on the facets of
P 4. Once again, the group of admissible symmetries Admλ(F ) coincides with the full symmetry group
Symm(F ) ∼= Z/2Z×S3, and the action is given by permutation of the coordinates.

We have a short exact sequence

0 → V ′ → Isomc(H) → Symm(F ) → 0, (3)

where Symm(F ) ∼= Z/2Z×S3 is the symmetry group of F .

5.3 Cusps

By a symmetry argument, it is clear that all the cusps of the manifold M are isometric to each other.
The colours on each complete sub-graph K4 ⊂ K5 generate a 4-dimensional subspace V ′′ of V = (Z/2Z)5.
Therefore, to each ideal vertex v of P 4 there correspond two cusps of the manifold M, for a total of ten
cusps. Each cusp is tessellated by 24 = 16 copies of a unit Euclidean cube.

Recall that the colours on the vertex figure of P 4 correspond to the colours associated with a complete
sub-graphK4 ⊂ K5. A basis for V ′′ is given by the colours associated with any set of three edges spanning
a complete sub-graph K3 ⊂ K4, together with the colour associated with one of the remaining edges.
The choice of such a basis allows us to identify V ′′ with (Z/2Z)4.

In Figure 6, we choose such a basis and represent the induced colouring directly on the cubical vertex
figure of P 4.

By applying Proposition 3.2, we conclude that the resulting cusps are all 3-dimensional tori. An
explicit computation, analogous to that of Example 3.2 shows that the associated translation lattice is
generated by translations along the vectors (2, 2, 0), (2, 0, 2) and (0, 2, 2).
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Figure 6: The induced colouring on the cubical vertex figure of P 4, up to a suitable choice of a basis for
the vector space V ′′ ∼= (Z/2Z)4.

To conclude, we discuss the cusp shapes of the hyper-surfaces associated with the facets of P 4, and
how these intersect the cusps of M. Recall that each P 3-facet F of the polytope P 4 has an induced
colouring in the 4-dimensional vector space V ′ = V/〈λ(F )〉, where λ(F ) is the colour assigned to the
facet F . The vertex figures of the polyhedron P 3 are unit Euclidean squares. It turns out that the
induced V ′–colouring on the edges of each square generate a subspace V ′′′ of V ′ of dimension 3. A basis
for V ′′′ is given by the colours c1, c2, c3 assigned to any three edges of K4 ⊂ K5 representing F , and the
colour of the remaining edge is given by c1 + c2 + c3, as in Figure 7.

Figure 7: The induced colouring on the square vertex figure of P 3, up to a suitable choice of a basis for
the vector space V ′′′ ∼= (Z/2Z)3.

Again, to each ideal vertex of a facet F ∼= P 3 there correspond two cusps in the hyper-surface HF

associated with F , for a total of six cusps. Each cusp is tessellated by 8 unit squares. The Euclidean cusp
shape is that of a flat torus T , generated by translations along the vectors (2, 2) and (2,−2) represented
in Figure 8.
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Figure 8: The cusp shape of the hyper-surface HF , together with its tessellation by unit squares (dashed).

Notice that the cusp sections of the ambient four-manifold M can also be generated by translations
along the vectors (2, 2, 0), (2,−2, 0) and (2, 0, 2). In other words, the cusp is obtained by identifying
opposite faces of a slanted parallelepiped over a square base. Parallel copies of the base square correspond
to cusp sections of the hyper-surface HF . Each cusp section of M is intersected by six cusp sections of
the hyper-surfaces HF , F ∈ F(P 4), arranged in three parallel pairs, as shown in Figure 9.

It is useful to write down the equations for the linear subspaces which are naturally associated with
the ideal vertices of P 4. Given such a vertex v, the labels on the facets which are adjacent to v generate
a co-dimension one linear subspace of V . Recall that each of these vertices is naturally labelled with an
integer i ∈ {1, 2, 3, 4, 5}. The linear subspace associated to the vertex labelled i is defined by the equation

∑

j 6=i

xj = 0. (4)

6 Mutations

In this section, we shall show how to use mutations along hyper-surfaces in the manifold M in order
to obtain new manifolds which are not isometric to the original one and have interesting cusp sections.
Namely, we shall construct two singled cusped hyperbolic manifolds X and Y whose cusp sections are,
respectively, an orientable S1-bundle over the Klein bottle and a three-torus.

A mutation consists in cutting M open along a two-sided, totally geodesic hyper-surface H, choosing
an isometry φ : H −→ H from one of the resulting totally geodesic boundary components to the other,
and glueing back the two boundary components using the isometry φ. Clearly, this operation can be
performed more than once as long as we pick a collection of mutually disjoint hyper-surfaces.

In the case of the manifold M constructed in Section 5, we can pick at most two disjoint totally
geodesic hyper-surfaces corresponding to the facets of the polytope P 4 since, by Proposition 2.2, each
such a facet F lifts to a unique hyper-surface in the orbifold cover M → P 4, and there are at most two
mutually disjoint facets in P 4.
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Figure 9: A fundamental domain D for the cusps of the manifold M, together with its tessellation into
copies of the unit cube C (shaded). The associated lattice is generated by translations along the vectors
(2, 2, 0), (2,−2, 0) and (2, 0, 2). A cusp of a hyper-surface HF corresponds to the intersection of D with
an affine hyperplane of the form z = c, with c integer.

It is useful to introduce labels on the cusps of M. In order to do so, we choose one of the copies,
named P0, of the polytope P

4 that tessellates the manifold M. We label its ideal vertices, which naturally
correspond to distinct sub-graphs K4 ⊂ K5, with the numbers {1, 2, 3, 4, 5}.

The ideal vertices of P0 determine the five cusps of M, which we label (1,+), (2,+), . . . , (5,+). Each
other cusp of M is the image of exactly one of the cusps (1,+), (2,+), . . . , (5,+) under the action of
the group V < Isomc(M), c.f. the short exact sequence (5.1). We label these remaining five cusps
(1,−), (2,−), . . . , (5,−), respectively.

6.1 An orientable manifold with a single non-toric cusp

Let us pick two disjoint hyper-surfaces H1 and H2 in M, for instance those associated with the facets
F1 and F2 having colours (1, 1, 1, 0, 0) and (0, 0, 1, 1, 1). To these two hyper-surfaces, there correspond
a total of twelve square cusp sections (six to each). Each of the cusps of Hi intersects exactly one cusp
section of M. In particular, the cusps of H1 (resp. H2) lie in the cusps of M with labels (1±, 2±, 3±)
(resp. (3±, 4±, 5±)). Each cusp section of the ambient manifold M intersects exactly one of the cusp
sections of H1 ∪ H2, with the exception of the cusps labelled (3,+) and (3,−), each of which intersects
two cusp sections of H1 ∪H2.

We shall use mutations along the hyper-surfaces Hi in order to build an orientable manifold X with
one non-toric cusp and volume 2 ·vm = 8π2/3. Let us cut the manifold M along H1 and H2 to produce a
manifold M with four totally geodesic boundary components H±

i , i = 1, 2. The result of this operation is
cutting open the cusp sections of M along the cusp sections of the hyper-surfaces Hi that produces a total
of twelve cusp sections. Each of these sections is a Euclidean manifold with totally geodesic boundary,
homeomorphic to T × [0, 1], where T is the flat torus represented in Figure 8.
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Recall that we have chosen a priori a root for the developing graph of the colouring, i.e. a copy
P0 of the polytope P 4 in the tessellation of M. We label by H+

i the boundary components of M that
intersects the polytope P0 in the facet Fi, i = 1, 2, respectively, and by H−

i the other one. The cusps
(1,±), (2,±), (4,±), (5,±), are cut open producing eight of the cusps of M. The cusps coming from (1,±)
and (2,±) (resp. (4,±) and (5,±)) are bounded by the hyper-surface H+

1 (resp. H+
2 ) on one side and by

H−
1 (resp. H−

2 ) on the other. These cusps are isometric to the product T × [0, 2]. The cusps of M labelled
(3,+) and (3,−) are cut open to produce a total of four cusp sections, isometric to the product T × [0, 1]
labelled (3a,±) and (3b,±). Here, the letter a corresponds to the cusp carried by H1, and the letter b
corresponds to the cusp carried by H2. We call these the short cusps of M. Each of them is bounded by
H+

1 (resp., H−
1 ) on one side, and by H+

2 (resp., H−
2 ) on the other. All other cusps are referred to as long

ones.
The T -fibres of the short cusps are naturally tessellated by copies of the unit square. Notice that the

colouring assigned to the sides of this square is obtained by considering the restriction of the colouring
on the cubic vertex figure of P 4 labelled 3 to the four faces with colours different from (1, 1, 1, 0, 0) and
(0, 0, 1, 1, 1), as in Figure 10.

Figure 10: The restricition of the V -colouring on the vertex figure of the ideal vertex labelled 3 to a
square section parallel to the hyper-surfaces H1 and H2

These colours generate a co-dimension 2 subspace W of V , defined by the equations:

x1 + x2 + x4 + x5 = 0, x1 + x2 + x3 = 0. (5)

Then the four affine subspaces of A (see Section 2, Remark 2.7) associated with the subspace W
correspond to the cusps labelled (3a,±) and (3b,±) of M. They are given by the following equations:

• The cusp (3a,+) corresponds to

x1 + x2 + x4 + x5 = 0, x1 + x2 + x3 = 0. (6)

• The cusp (3b,+) corresponds to

x1 + x2 + x4 + x5 = 0, x1 + x2 + x3 = 1. (7)

• The cusp (3a,−) corresponds to

x1 + x2 + x4 + x5 = 1, x1 + x2 + x3 = 0. (8)

• The cusp (3b,−) corresponds to

x1 + x2 + x4 + x5 = 1, x1 + x2 + x3 = 1. (9)
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Notice that this labelling is coherent with the one expressed in (4): the cusps of M with labels (3.+) and
(3,−) correspond to different affine subspaces over x1 + x2 + x4 + x5 = 0.

An isometry of M induced by summation with a vector v from V is a covering transformation, and
restricts to an isometry acting on the lifts of each Fi. Since Hi is the unique lift of Fi, it follows that the
isometry induced by v restricts to an isometry of Hi. Thus, the orientation-reversing isometry α of M
defined by summation with the vector (0, 0, 1, 0, 0) naturally induces an isometry of M which maps the
cusp (3a,±) to (3b,±). The isometry β : M → M defined by summation with the vector (1, 1, 0, 1, 0)
induces an isometry of M, mapping the cusp (3a,+) to (3a,−) and (3b,+) to (3b,−).

In order to understand which boundary components of M bound each of the short cusps, we notice
that the isometry α is an orientation reversing isometry of M which is orientation-preserving on the
hyper-surfaces Hi. Indeed, α is induced by the vector

(0, 0, 1, 0, 0) = (1, 1, 0, 0, 1)︸ ︷︷ ︸
v1

+(1, 1, 0, 1, 0)︸ ︷︷ ︸
v2

+(0, 1, 1, 0, 1)︸ ︷︷ ︸
v3

+(1, 0, 1, 1, 0)︸ ︷︷ ︸
v4

+(1, 1, 1, 0, 0)︸ ︷︷ ︸
w

,

where vi’s belong to the colours of the neighbours of F1 (as shown in Figure 5 on the left), and w is the
colour of F1 itself. Thus, in the induced colouring of F1 we have a sum of four colours from V�〈w〉, and
the isometry α of H1 can be expressed as a composition of four reflections, which is orientation preserving
on H1.

We can apply an analogous argument to show that α is orientation-preserving on H2, as well. Here,
we use the fact that

(0, 0, 1, 0, 0) = (1, 0, 0, 1, 1)︸ ︷︷ ︸
v1

+(0, 1, 0, 1, 1)︸ ︷︷ ︸
v2

+(1, 0, 1, 1, 0)︸ ︷︷ ︸
v3

+(0, 1, 1, 0, 1)︸ ︷︷ ︸
v4

+(0, 0, 1, 1, 1)︸ ︷︷ ︸
w

,

where vi’s belong to the colours of the neighbours of F2 (as shown in Figure 5 on the right), and w is the
colour of F2 itself.

Therefore, the induced isometry of M permutes the boundary components H+
i and H−

i .
The map β instead, is an orientation-reversing isometry of M which is orientation-reversing on H1

and orientation-preserving on H2. Indeed

(1, 1, 0, 1, 0) = (1, 0, 0, 1, 1)︸ ︷︷ ︸
v1

+(0, 1, 1, 1, 0)︸ ︷︷ ︸
v2

+(0, 0, 1, 1, 1)︸ ︷︷ ︸
w

where all the vectors on the right-hand side belong to the colours of the neighbours of F1 (see Figure 5,
left), on one hand, and the vi’s belong to the colours of the neighbours of F2 (see Figure 5, right), on the
other, while w is the colour of F2 itself.

The colour w is the colour of F2 itself. Therefore the induced map on M fixes the boundary com-
ponents H±

1 and permutes H+
2 and H−

2 . As a consequence, the short cusps of M have the following
boundary components

• The cusp (3a,+) is bounded by H+
1 on one side and by H+

2 on the other.

• The cusp (3b,+) is bounded by H−
1 on one side and by H−

2 on the other.

• The cusp (3a,−) is bounded by H+
1 on one side and by H−

2 on the other.

• The cusp (3b,−) is bounded by H−
1 on one side and by H+

2 on the other.
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Let us define a self-isometry of H1 that we shall use in our construction. Consider the short exact
sequence (5.2). Pick the isometry φ1 = v ◦ σ1, where σ1 ∈ Symm(P 3) exchanges the hyperbolic vertices
labelled 4 and 5 and induces the cycle (1, 2, 3) on the ideal vertices of Figure 3, and v = [(0, 1, 1, 0, 1)] ∈ V ′.
The translation by v corresponds to a reflection in the facet corresponding to the complete sub-graph
K3 ⊂ K5 spanned by the vertices labelled 2, 3, and 4 in Figure 3.

Similarly, let us define a self-isometry of H2 by φ2 = σ2, where σ2 ∈ Symm(P 3) fixes the hyperbolic
vertices labelled 1 and 2, and induces the cycle (3, 4, 5) on the ideal ones. Notice that both φ1 and φ2
are orientation-preserving isometries of H1 and H2, respectively. Moreover, the maps φ1 and φ2 induce
the following cycles on the cusps of M:

φ1 : (1,+) → (2,+) → (3,+) → (1,−) → (2,−) → (3,−) → (1,+); (10)

φ2 : (3,±) → (4,±) → (5,±) → (3±). (11)

We glue isometrically in pairs the boundary components of M using the induced maps φi : H
+
i → H−

i

to produce a manifold X .

Proposition 6.1. The manifold X is an orientable, finite-volume, single-cusped hyperbolic manifold.
The cusp shape is a torus-bundle over S1, with the monodromy map given by a hyper-elliptic involution.

Proof. We prove that the cusp sections of M are glued together along their boundaries as in Figure 11
to produce a unique cycle of maximal length:

(3a,+)
φ1

−→ (1,−)
φ1

−→ (2,−)
φ1

−→ (3b,−)
φ2

−→ (4,−)
φ2

−→ (5,−)
φ2

−→ (3a,−)
φ1

−→ (1,+)
φ1

−→ . . .

. . .
φ1

−→ (2,+)
φ1

−→ (3b,+)
φ−1

2−−→ (5,+)
φ−1

2−−→ (4,+)
φ−1

2−−→ (3a,+).

corresponding to the unique cusp C of the manifold X .

Figure 11: The local cusp structure of the manifold X , as a result of cusp sections glueing in M. Coloured
regions represent intersections with the hyper-surfaces H1 and H2, and are each isometric to the torus
T in Figure 8. Notice that the cusps with labels (3a,±) and (3b,±) are shorter than others, and are
bounded by different hyper-surfaces on the sides. This property is crucial, because it allows us to “mix”
the cycles induced on the cusps by the maps φ1 and φ2.

It is clear a priori that, no matter how many cusps the manifold X has, the corresponding cusp
sections decompose into a union of 20 copies of the product T × [0, 1], glued along their boundaries in
cycles to form a certain amount of closed Euclidean manifolds. Each such a cycle corresponds to a single
cusp of X , and the shape of each cusp section is a torus bundle over S1. In order to compute the cycles,
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we choose a copy of T × [0, 1], and perform a sequence of reflections in parallel copies of the torus T of
the form T × {0} and T × {1} at unit distance one from the other. All these reflections are induced by
coloured isometries of the manifold M. In fact, there are two kinds of toric fibres in the cusp C: those
which separate different cusps of the manifold M, and the central slices of the form T × {1} of the long
cusps with labels (1±), (2,±), (4±), (5,±). Each of the latter cusps is isometric to T × [0, 2].

Each of the maps φi : Hi → Hi admits a unique orientation-reversing extension φ̃i to an isometry in
Isomc(M) ∼= V ⋊S5 as follows:

φ̃1 :




a
b
c
d
e




→




c+ 1
a
b
e

d+ 1



, φ̃2 :




a
b
c
d
e




→




a
b

e+ 1
c+ 1
d+ 1




(12)

Here we use the affine coordinates on the vertex set A of the developing graph Γ(M). These isometries
of M induce reflections along the copies of T which separate different cusps of M.

The corresponding reflections along the central sections of the long cusps of M labelled i ∈ {1, 2, 4, 5},
can be expressed by the maps Ri defined, in the affine coordinates on A, as follows:

R1 :




a
b
c
d
e




→




a+ 1
b
c

d+ 1
e+ 1



, R2 :




a
b
c
d
e




→




a
b+ 1
c

d+ 1
e+ 1




(13)

R4 :




a
b
c
d
e




→




a+ 1
b+ 1
c

d+ 1
e



, R5 :




a
b
c
d
e




→




a+ 1
b+ 1
c
d

e+ 1




(14)

Notice that the map Ri is simply a reflection in the hyper-surface which intersect the cusps of M labelled
i ∈ {1, 2, 4, 5} and is parallel to H1 ∪ H2. To each copy of T × [0, 2], there corresponds a co-dimension
two affine subspace of A, determined by the eight copies of the polytope P 4 that tessellate the former.

Since each reflection acts on the affine space A, the cycles induced on the 20 copies of T × [0, 1]
naturally correspond to the cycles induced on the corresponding affine subspaces. Moreover, to each
cycle C there corresponds naturally an element φC in the coloured isometry group of the torus T , which
can be described by the following short exact sequence:

0 →W → Isomc(T ) → D4 → 0. (15)

The isometry defined by φC corresponds to the monodromy of the fibration

0 → T → C → S1 → 0.

We define the isometries ψ1, ψ2 : M → M as follows:

ψ1 = φ̃1 ◦R2 ◦ φ̃1 ◦R1 ◦ φ̃1 (16)

ψ2 = φ̃2 ◦R5 ◦ φ̃2 ◦R4 ◦ φ̃2 (17)
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By substituting the respective affine expressions for each factor in the composition of maps given by
(12) – (13), we represent ψ1 and ψ2 as

ψ1 :




a
b
c
d
e




→




a+ 1
b+ 1
c+ 1
e+ 1
d



, ψ2 :




a
b
c
d
e




→




a
b

c+ 1
d+ 1
e+ 1




(18)

Let us choose a cusp of M, e.g. labelled (3a,+). The map ψ1 corresponds to a composition of five
subsequent reflections along parallel copies of the torus T in the cusp C of X , where the first reflection
is along the boundary component of (3a,+) corresponding to the hyper-surface H+

1 . Note that ψ1 maps
the cusp (3a,+) to (3b,−), and it does so by sending H+

1 to H−
1 and fixing H+

2 .
Now we apply the map ψ2, i.e. we perform other five subsequent reflections, starting from the

boundary component of (3b,−) corresponding to H+
2 . This maps (3b,−) to (3a,−), H−

1 to H+
1 and H−

2

to H+
2 . Again, we apply ψ1, mapping (3a,−) to (3b,+), H+

1 to H−
1 and fixing H−

2 .
This time, we arrive at a cusp which is bounded by H−

2 on one side. Therefore we need to consider
the pairing map φ−1

2 : H−
2 → H+

2 to start with. Thus, the last five reflection correspond to applying ψ−1
2

in order to return back to (3a,+) and close up the cycle.
The monodromy map φ : T → T can therefore be expressed as the following composition of maps in

Autc(M):

φ = ψ−1
2 ◦ ψ1 ◦ ψ2 ◦ ψ1 (19)

By substituting the corresponding expressions in the affine coordinates from (18), we get

φ :




a
b
c
d
e




→




a
b
c

d+ 1
e+ 1



. (20)

As expected, this affine map fixes the affine space W associated with the slice T , defined by formula
(5). In fact, in the affine coordinates, φ is a translation by vector (0, 0, 0, 1, 1). Notice that this vector is
expressed as a sum of the colours assigned to the sides of the square in Figure 10 adjacent to its upper
left vertex. Therefore, the resulting monodromy map is realised by a composition of two reflections along
two orthogonal axes: it is a hyper-elliptic involution of the torus T . The lattice associated with the cusp
C is generated by the translations along the vectors (2, 2, 0) and (2,−2, 0) together with the Euclidean
isometry

ψ : (x, y, z) → (−x,−y, z + 20).

6.2 An orientable manifold of small volume with a single toric cusp

Let us step back for a moment, and look once more at the symmetric manifold M defined in Section
5.1. There is an orientation-preserving involution i, exchanging the hyper-surfaces H1 and H2 associated
with the facets having colours (1, 1, 1, 0, 0) and (0, 0, 1, 1, 1). In terms of the short exact sequence (5.1),
it is given by i = σ, where σ = (1, 4)(2, 5) ∈ S5.
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Again, we use mutations along the hyper-surfaces H1 and H2 in order to pair all the cusps of M. For
the hyper-surface H1, we choose the isometry φ1 : H+

1 → H−
1 introduced in Section 6.1. For the hyper-

surface H2, we notice that the involution i sends H+
1 (resp., H−

1 ) to H+
2 (resp., H−

2 ), and we conjugate
the map φ1 by the involution i. Finally, the mutations φ1 and φ2 produce a hyperbolic manifold which
we denote by Y.

Proposition 6.2. The manifold Y is an orientable finite-volume hyperbolic 4-manifold with a single cusp,
whose cross-section is a three-dimensional torus.

Proof. In order to determine the homeomorphism type of the cusp of Y, we follow the same procedure
as in the proof of Proposition 6.1. The affine expression for the orientation-reversing lift φ̃1 of φ1 is the
same as before, and is given in (12). The affine expression for the orientation-reversing lift of the second
mutation φ2 is

φ̃2 :




a
b
c
d
e




→




b
a+ 1
e

c+ 1
d



. (21)

One can check that these pairing maps arrange the cusps of M in a single cycle:

(3a,+)
φ1

−→ (1,−)
φ1

−→ (2,−)
φ1

−→ (3a,−)
φ2

−→ (4,+)
φ2

−→ (5,+)
φ2

−→ (3b,+)
φ−1

1−−→ (2,+)
φ−1

1−−→ . . . (22)

. . .
φ−1

1−−→ (1,+)
φ−1

1−−→ (3b,−)
φ−1

2−−→ (5,−)
φ−1

2−−→ (4,−)
φ−1

2−−→ (3a,+). (23)

Let us define the maps ψ1 and ψ2 as the following compositions:

ψ1 = φ̃1 ◦R2 ◦ φ̃1 ◦R1 ◦ φ̃1, (24)

ψ2 = φ̃2 ◦R5 ◦ φ̃2 ◦R4 ◦ φ̃2, (25)

The affine expression for ψ1 coincides with the one given by formula (18) in Section 6.1. The affine
expression for ψ2 is given below

ψ2 :




a
b
c
d
e




→




b+ 1
a

c+ 1
d+ 1
e+ 1



. (26)

Then the monodromy map φ of the cusp section of Y equals

φ = ψ−1
2 ◦ ψ−1

1 ◦ ψ2 ◦ ψ1. (27)

By substituting the affine expressions for ψ1 and ψ2 given in (18) and (26), we see that φ is actually the
identity map of the torus T . As a consequence, the manifold Y has a single toric cusp C. The Euclidean
cusp shape is determined by translations along the vectors (2, 2, 0), (2,−2, 0) and (0, 0, 20).

Remark 6.3. The examples above answer affirmatively, in the orientable case, to Question 4.15 from [11].
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[13] L. Potyagăılo, È. Vinberg: On right-angled reflection groups in hyperbolic space, Comment. Math.
Helv. 80 (2005), 1–12.

[14] J.G. Ratcliffe, S.T. Tschantz: The volume spectrum of hyperbolic 4-manifolds, Experimental Math.
9 (2000), 101–125.

[15] J.G. Ratcliffe, S.T. Tschantz: Some examples of aspherical 4-manifolds that are homology 4-spheres,
Topology 44 (2005), 341–350.

[16] H. Saratchandran: A four dimensional hyperbolic link complement in a standard S4, preprint available
at http://arxiv.org/abs/1503.07778.

[17] G.P. Scott: The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401–487.

[18] J.P. Serre: Cohomologie des groupes discrets, Ann. of Math. Stud. 70 (1971), 77–169.

23



[19] W.P. Thurston: Geometry and Topology of 3-Manifolds, mimeographed notes, Princeton University,
1979; available from www.msri.org/publications/books/gt3m/

[20] A.Yu. Vesnin: Three-dimensional hyperbolic manifolds of Löbell type, Siberian Math. J. 28 (1987),
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