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Unilateral problems of dynamics

F. Pfeiffer

Summary Contact processes may be described by local discretizations, by rigid representation
or by mixed methods incorporating both ideas. A rigid body approach is proposed for the
dynamics of mechanical systems, achieving good results also for multiple-contact problems.
Contacts in multibody systems are mainly considered, with the corresponding contact con-
straints varying with time, thus generating structure-variant systems. The equations of motion
for dynamical systems with such unilateral behavior are discussed, solution methods and
applications are presented.
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Introduction

A large variety of contact configurations is encountered in mechanical and biomechanical
systems. Contacts may be closed, and the colliding bodies may detach again. Within a closed
contact we may have sliding or stiction, both features connected with local friction. If two bodies
come into contact, they usually penetrate into each other which leads to local deformations. If
contacts are accompanied by tangential forces and by tangential relative velocities within the
contact plane, we obtain not only normal but also tangential deformations. De- pending on the
dynamical (or statical) environment, contacts may change their state: from closure to
detachment, from sliding to stiction, and vice versa. We call a contact active if it is closed or if
there is stiction, otherwise we call a contact passive.

Active contacts always exhibit contact forces which, in the general case of normal and
tangential deformations, follow from the local material properties of the colliding bodies, from
the external (with respect to the contact) dynamics (statics) and from external forces. Con-
sidering contacts from this perspective leads to complicated problems of continuum me-
chanics which, as a rule, must be solved by numerical algorithms like FEM or BEM. This
approach is too costly for the treatment of dynamical problems and, in many cases, also
inadequate. The rigid-body approach gives quicker results, and it applies better to large dy-
namical systems.

Under the rigid-body approach we understand a contact behavior characterized, at least in
the local contact zone, by lack of deformations and, thus, by rigid-body properties. The contact
process is then governed by certain contact laws, like those of Newton and Poisson, and
appropriate extensions of them. A fundamental law with respect to the rigid-body model is the
complementarity rule, sometimes called corner law or Signorini’s law. It states that in contact
dynamics either relative kinematical quantities are zero, and their accompanying constraint
forces (or constraint force combinations) are not zero, or vice versa. For a closed contact, the
relative normal distance and normal velocity of the colliding bodies are zero, and the constraint
force in normal direction is not zero, or vice versa. For stiction, the tangential relative velocity is
zero, and the constraint force is located within the friction cone, which means that the difference
of the static friction force and constraint force is not zero, or vice versa. The resulting
inequalities are indispensable for an evaluation of the transitions between the various contact
states.



From these properties follows a well-defined indicator yielding the transition phases. For
normal passive contacts, the normal relative distance (or velocity) of the colliding bodies
indicates the contact state. If it becomes zero, the contact will be active; the indicator “relative
distance” becomes a constraint accompanied by a constraint force. The end of an active contact
is then indicated by the constraint force. If it changes sign, indicating a change from pressure to
tension, we get detachment, and the contact again transits to a passive state.

In the case of friction, we have in the passive state a nonvanishing tangential relative velocity
as an indicator. If it becomes zero, there might be a transition from sliding to stiction, depending
on the force balance within or on the friction cone. The indicator “relative tangential velocity”
becomes then a constraint, leading to tangential constraint forces. The contact remains active as
long as the maximum static friction force is larger than the constraint force, which means that
there is a force balance within the friction cone. If this “friction saturation” becomes zero, the
contact again might go into a passive state with nonzero tangential relative velocity.

If we deal with multibody systems including unilateral constraints there arises the problem of
multiple contacts and their interdependences. A straightforward solution of these processes
would result in a combinatiorial problem of a huge dimension. Therefore, a formulation ap-
plying complementarity rules and the resulting inequalities is a must. The mathematical
methods developed in this area in the last twenty years assure nearly always an unambiguous
solution, even in the cases of mutually dependent contacts.

The field of multibody dynamics with unilateral contacts should be seen before the back-
ground of various research activities: in the area of variational inequalities, in connection with
convex energy functions on the one side, [20], [21], [27], [36], and in the area of hemivaria-
tional inequalities, in connection with non-convex energy functions, [28]. Both areas are young,
the first one being some 35 years and the second only 15 years old. The two scientists who are
the most connected with this development were Moreau in Montpellier, France, and Pan-
agiotopoulos in Thessaloniki, Greece. Moreau started already in the seventies to formulate the
discontinuous properties of nonsmooth mechanics, [21-23]; not much later, Panagiotopoulos
considered inequality problems, [27], which led him consistently to the development of
hemivariational inequalities, [28]. Most nonsmooth mechanical problems possess nonconvex
features. Nearly all applications, at that time, were of statical or quasi-statical nature.

In Sweden, Lotstedt considered a series of practical examples, [15], [16], and established a
school, which in more recent time has been continued very successfully by Klarbring and his
group, [11], [12]. Klarbring also treats statical and quasistatical problems with applications to
FEM.

The sphere of influence of these scientists extends, since the significance of the area has been
noticed. Especially [10] gives an excellent contribution to dry friction, also in connection with
frictional impacts. The book [20] presents a proof with respect to the existence of Jean-Moreau
impact theory. A very good survey on this topic may be found in [5]. In the meantime, the
literature on the subject is increasing considerably, therefore only a few examples are given
below.

Papers [13], [14] deal with two-dimensional contacts including dry friction. The resulting
linear complementarity problem is solved by a modified simplex-algorithm. The authors of [18],
[25] study self-excitations of frictional vibrations. Frictional constraints are described by
variational inequalities and evaluated on the basis of measured friction characteristics. The
paper [1] discusses, among other topics, also the existence of unambiguous solutions for
generalized accelerations concerning frictional contact problems, a question, by the way, which
also has been regarded in [15], [16].

Nonsmooth mechanics allows a general theoretical description, but relevant problems must
be solved numerically. In spite of many valuable contributions to the numerics of discontin-
uous systems, [24], the existing algorithms are still extremely time-consuming. As it was
indicated above, for plane contacts we get a linear and for spatial contacts a nonlinear com-
plementarity problem. For linear complementarity problems there exist solution procedures,
[24], on the basis of extended linear programming theories, and the existence of a solution is
assured. This is not the case for nonlinear complementarity. At the time being, various ap-
proximations have been suggested, [11], [12], [17], and applied to practical problems, [38]
through [44]. The algorithms work, in most cases, convincingly, but the computing times
explode because of the iterative character of nearly all solution methods. Therefore, numerical
solution of all kinds of complementarity problems is still a topic of current research.

The author’s Institute pursues the research in applied and engineering mechanics, and has
been involved in unilateral problems since more than fifteen years, exclusively in connection



with multibody dynamics. The fundamentals of the area may be found in books [3], [4], which
present the multibody theory on the basis of the projection method, yielding a most efficient
theory for multibody applications. In the course of the years, and very much due to practical
requirements, this type of multibody theory has been combined with inequality formulations to
describe the unilateral behavior of multiple contacts, [29-31]. Especially the complementarity
properties, in combination with the kinematics and kinetics of the appropriate indicators, have
become the main key to a consistent description of multibody systems with multiple unilateral
contacts, [31]. An extension to impact, with the background of Moreau’s work, became then
straightforward, [8], [9]. The corresponding theory has recently and successfully been
confirmed by extensive measurements, [2].

Based on these fundamentals, a variety of industrial applications has been considered. The
paper [6] and the dissertation [7] deal with roller chains used often in the automotive industry.
Roller chains typically possess some hundred degrees of freedom and hundreds of chain-wheel
contacts, where also stick-slip processes take place. Continuous Variable Transmissions (CVT)
chains do not have such large amount of degrees of freedom, but they are particularly difficult
due to spatial contacts within the conic wheel discs. Their efficiencies have been evaluated, with
an excellent agreement between theory and measurements, [33], [39], [40].

Another area of application is the field of manufacturing assembly processes. Here, during a
mating process, contacts are closed and detached, and stick-slip phenomena up to jamming
occur. Efforts have been made to describe, in a general way, the relative kinematics of colliding
bodies in terms of differential geometry, [19]. The results are convincing, and they are used now
in other applications. Another example of manufacturing concerns vibration conveyors, often
used to transport, to orient and to select small parts: screws, bolts, electronic components, and
the like. Without the theory of multibody systems with unilateral contacts, a treatment of such a
system would have been impossible. In the dissertation [44] a theoretical solution of this
problem is given and experimentally proven.

In the following, we shall give a survey of the theory including impacts with friction, and we
shall present some of its typical applications.

2

Models

By a model, we mean the description of the mechanical, especially dynamical, behavior of the
system under consideration, expressed by laws of kinematics and kinetics. It leads to a
mathematical description in the form of (nonlinear) differential equations with inequality
constraints, which, as a rule, have to be solved numerically. As we treat multibody systems with
unilateral contacts, we shall start with a short presentation of elastic multibody dynamics,
proceed to contact kinematics in terms of differential geometry, and explain special features of
unilateral contact behavior. Then, equations of motion will be formulated, including the
nonsmoothness of the system, and, finally, a survey on impact with friction will be given
described by a newly developed theory.

2.1
Multibody dynamics
The theory of multibody dynamics of interconnected rigid and/or elastic bodies is nowadays
well established, and commercialized to a large extend. Most of the existing computer codes are
based on the so-called projection method, which considers free motion within hyper-spaces
tangential to the constraint surfaces. The Jacobians performing these projections are deriva-
tions with respect to the constraint equations, usually formulated on a velocity level, [3], [4],
[31]. Since equations of motion for multibody systems represent the basis for all further
unilateral considerations, we shall give their short survey here.

We consider a multibody system with f degrees of freedom, which we later shall subdivide
into “rigid” and “elastic” degrees of freedom. Applying the principle of virtual power
(Jourdain) we get

Z/ (aa_q) (k2 = f); dm; =0 . (1)

where gv; € R?, ra; € R’ are the absolute velocity, acceleration of body i in a body-fixed reference
system, gf; € R*are all forces applied to body i and 'q € ¥/ are the generalized
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velocities; m; is the mass of body i. The velocity and acceleration vectors must be evaluated in a
body-fixed frame which yields, see Fig. 1,

RV = RVA + ROR(rRXg + RTer) + RTel,
RA = pay + RORRORRX) + RORRX) + RORRORRT, (2)

+ RORRTe; + 2RORRYe; + REe -

The following abbreviations are used (index i always omitted): v = rv,, a = ra, — absolute
velocity, acceleration of the reference base R, expressed in the R-system, ® = rop - angular
velocity of the reference system expressed in the R-system, Xy = gX, — vector from R to the
mass element dm, in the undeformed configuration, ¥ = g¥,; — displacement vector,
Jr = ((0rv4)/0q) - Jacobian of translation, J; € R*/, Jz = ((0rm;r)/3q) - Jacobian of rotation,
Jr € R*, @r = o x r - definition of tilde tensor.

Combining Egs. (1), (2) and the above abbreviations, we come out with the following set of
equations of motion:

Z/mi I+ Th (% + 1) + (%)T]

x (a+ ®@@X) + @X) + OOF + OF + 20F + 1 — f)dm =0 |, (3)

where elastic influences are regarded as shown in Fig. 1. The radius-vector r from an inertial
frame (I) to a mass element dm; of the deformed body B; can be written as

r=rpR+Xy+7rg, (4)

where rjg is the vector from (I) to (R), xo - the vector to the mass element in the undeformed
configuration and r,; - the displacement vector. As in most cases of technical relevancy, we
assume that the elastic displacements of the components are very small compared to their
geometric dimensions.

This allows the introduction of a Ritz approach for the elastic deformation, [4],

=T

rx

Fi(Xo, 1) = Wi(X0)qu;(), Wi=(wi,...,w;,...;= [T, | . (5)
:T
I, /i
with (q,; € R™), and (W € R>").. This well-known superposition of ansatz or shape functions
wji(Xo) requires their completeness, [4]. The shape functions may be evaluated by measure-
ments, by FEM-calculations, by analytic approach, or they may be approximated by cubic-
spline systems. In any case, they should be chosen in accordance with the elastic behavior of
the system.
Combining Eqs. (3-5) we have to consider the dependencies a(q), ®(q), q,;;(q), which says
that all absolute and elastic accelerations depend on the generalized accelerations q. This
property can be expressed by

Elastically
deformed
body B;

Undeformed
body B; ) .
Fig. 1. Coordinates for a de-

M formed body B;



a= ]Tq + g(qa q7 t)7
0= IRq + Q(qv q? t) :
. aqel,i . aqel,i

qel,i_ aq q-= aq

q=1Jgq - (7)
Equations (3) to (7) can now be put into the form

Z{ J7Jr — ROJg + Wlgldm + | Jx(%0 + 1) [Jr — (%0 + D)Jg + W] dm

i m; mi

+ [ TEWT [ — (%o + D)Jr + W] dm}q +/ U7 +Jx (%o +5) +JEW']

mj

x [a+ @6(% + ) + 0(X + F) + 20 — f]|dm =0 . (8)

After lengthy and tedious calculations, it is always possible to bring Egs. (8) into a standard
form which we need for all further considerations. It writes

M(q7 t)q - h(q? Q7 t) = 07 qc Rf; h e Rf, M e Rﬂf . (9)

Equations (9) include all bilateral constraints. They represent the maximum number of
minimal (generalized) coordinates, and from this all unilateral contacts are in a state that they
do not block any further degree of freedom. If some of the unilateral constraints become active,
then the remaining number of degrees of freedom is smaller than f.

2.2

Contact kinematics

Geometry and kinematics are the fundaments in establishing models of dynamical systems. In
the case of unilateral contacts, this is especially important because magnitudes of relative
kinematics serve as indicators for passive contacts and as constraints for active contacts, see
Sec. 1. As most of the applications require more or less arbitrary body contours, it makes sense
to derive the kinematical contact equations in a general form applying well-known rules of the
differential geometry of surfaces, [8], [19], [31].

In practice we find two types of contacts, two- and three-dimensional ones. For the two-
dimensional case, the contacting bodies lie in a plane thus defining a contact line with given
direction. Only the sense of direction has to be determined. Problems of that kind are con-
nected with linear complementarity.

For the three-dimensional case, the contacting bodies have a spatial form, and the contact
takes place in a plane allowing two tangential directions. The resulting direction for the contact
process is not known beforehand, and usually has to be determined iteratively. Problems of that
kind are connected with nonlinear complementarity.

2.2.1

Plane contact kinematics

Plane contact kinematics has been presented in the dissertation [8], and since then applied to
many practical problems, see also [31]. We start with the geometry of a single body in motion
as indicated in Fig. 2. We assume a convex contour, and describe it by a parameter s. Con-
necting with s a moving trihedral (t,n,b) and introducing a body-fixed frame B we write

d
st = plpy;  Kpn=jprhy (1) = PR

)
g = Bb X gt; Bb =gt X pn; gt =jpn X Bb- <10)
Bn/ = gb X Bt/ = gb X pnk = —Kpt, Bt' = Kgn .

For planar contours the binormal zb is constant. Therefore

ph = pn's = —ksépt, pt = pt's = +xspn . (11)



Fig. 2. Planar contour geometry
On the other hand, the absolute changes of n and t are given by the Coriolis equation
B(Il) = Bl:l + BQBII, B(t) = Biﬁ + BQBt 5 (12)

where we must keep in mind that @z = 5 for body-fixed frames B. Putting (11) into (12) we
get a coordinate-free representation of the overall changes n,t

n=Qn—Kst, t=Qt+xén , (13)
which we can evaluate in any basis. The main advantage of (13) consists of the eliminated,

frame-dependent differentiations gn and pt.
In the same manner we proceed with the contour vector rpy. According to (11), (12) we write

Bipy = ppy$ = $pt,  p(Eps) = pipy + sQples (14)
and eliminate prpy. Then we get the absolute changes of rpy,
tpy = Qrpy + st . (15)

Due to vy = vp + Ipx, the absolute velocity of the moving contour point is given by

vy = vp + Qrps + it , (16)
where
Ve i=vp + Qrpy . (17)

The velocity v¢ results from rigid-body kinematics, and corresponds to the velocity of a body-
fixed point at the contour. From (16) and (17) we see that

Vs = Ve + st . (18)

Next, we want to derive the absolute acceleration of C by differentiating (17) with respect to
time

\"(; = Vp + Ql‘pz + Qi‘pz . (19)
With v¢ = ac, vp = ap and 1py5, from Eq. (14) we get

ac = ap + Qrpy + QQrpy + Q5 | (20)
which is not the acceleration of a body-fixed point on the contour. Only the part

ag:=ap+ Qrps + QQrps , (21)



corresponds to such an acceleration, so we can write
ac = ag + Qts . (22)

Later we have to determine the relative velocities of contact points in the normal and tangential
directions and their time derivatives. For this purpose we introduce the scalars

Ve =nlve; v =thve (23)

and state their derivatives as

TVC + nT\'/C, f/t = iITVC + tTVC . (24)

V,=n
With n, t from (13), v¢ = ac from (22), and noting n7Qt = bTQ, tTQt = 0, we derive
V, = n’ (aQ — QVC) — K?S.tTVC -+ ébTQ,

o e T (25)
V=1t (aQ — ch) + KSn've .
With this basis, we are able to derive the relative kinematics of two bodies such as relative
distances, relative velocities and accelerations. Without going into details and refering espe-

cially to [31], we summarize the following relationships, see Fig. 3.
Potential contact points can be characterized by

l’l{(Sl) . tz(Sz) =0 & ng(Sz) . tl(Sl) =0, (26)
1'17;(51,52) ‘4 (Sl) = 07 rg(sl,sz) . tz(Sz) =0 . (27)
From each set we need only one equation. The relative distance gy is

gn(q,t) =rpny = —rpn; (28)
Since the normal vectors always point inward, gy is positive for separation and negative for
overlapping. Therefore, a changing sign of gy from positive to negative indicates a transition
from initially separated bodies to contact.

With these equations, and considering Fig. 3, we derive the relative velocities in normal and
tangential direction

gy =MVa +0,Ver; g =tva +4Hve (29)

where v¢;, V¢, are the absolute velocities of the potential contact points C;, C,. These velocities
may be expressed by the generalized velocities q and some Jacobians J¢;,Jc, to give

ver = Jaq +jc1§ ver = Je2q +jc2 . (30)

Fig. 3. General orientation of
two bodies




Putting (29) into (30) yields
gy =WNd+WN;  gr =wid +wr (31)
with

wy =J&m 50, wr =I5t + 5, (32)
WN = jom kM, Wr =joti gt

which we use in the following as a representation of the relative velocities. It may be noticed
here that a negative value of g,, corresponds to an approaching process of the bodies and
coincides at vanishing distance gy = 0 with the relative velocity in the normal direction before
an impact. In the case of a continuous contact (gy = ¢, = 0), the term g, shows the relative
sliding velocity of the bodies, which we can use to determine the time points of transitions from
sliding (¢, # 0) to sticking or rolling (¢, = 0).

The relevant accelerations follow from a further time differentiation. We get
. T _ . T _
Ev =WNa+wN; gr=wrd+wr (33)
where wy, wr are given by (32), and w,,, wr are

_ - ~ . . T Ty ~ . . T

WN = n{(le — 91VC1) — Klslt{VCl + Slblzgl + nzT(qu — QzVCz) — KzSzth(;z + 52b12927
wr = t1TGQ1 — Q) + K151n1TVc1 + tzT(]TQz — Qyvey) + Kzs'zllgvcz ) (34)
with

1ot (v, — Vi) — 12gnb1, Q1 + b, (R — Q)

S1 = y
! K1 + K; +gNK1K2 35
T T T (35)
o = fat (Ver — ver) — Kigbi, @ — by, (€2 — )
, =

K1 + Kj +gNK1K2
The angular velocities €, , relate to the two contacting bodies, Figs. 2, 3.

2.2.2

Spatial contact kinematics

Spatial contact kinematics has been presented in the dissertation [19], and since then also
has been applied to many practical problems. The situation in this case is, of course, more
complex. We still assume that the two approaching bodies are convex, Fig. 4, at least in

Fig. 4. Contact geometry of two surfaces



that area where contact points might occur. The two bodies are moving with v;, &;, i =1,2.
For the description of a surface X we need two parameters sand ¢ : ry = rx(s, t). The tangents s
and t, which span the tangent plane at a point of the surface, are defined as

. al‘z t— 61‘2

§ =—— =— . 36
Os ’ ot (36)

From these basic vectors, the fundamental magnitudes of the first order are calculated

E=s"s, F=s"t, G=t"t. (37)

The normalized normal vector n is perpendicular to the tangent plane and pointing outwards

X t
n=-—“° (38)

VEG — F?

We further need the fundamental magnitudes of the second order

621'2 621‘2 621‘2
L=nT—2= M=nT—">2 N = r——= 39
N N asor’ " e (39)

For a contact point we demand that the normal vector of body 1 (n;) and the distance
vector rp are perpendicular to the tangent vectors of body 2 (s, and t,). Thus we obtain
four nonlinear equations

ansz =0, rgsz =0, antz =0, rgtz =0 . (40)

This nonlinear problem has to be solved at every time step of the numerical integration.
After the solution is found, the distance gy between the possible contact points can be
calculated as

T T
gy =N, Ip = —N,Ip . (41)

Here, gy is used as an indicator for the contact state. Its value is positive for ‘no contact’,
and negative for penetration. The constraints are again formulated on the velocity level, where
in the spatial case we have three of them, one in the normal direction g, and two in the
tangential directions g, g,

. . T

gN(qa q, t) =n (VZZ - VZI)7

. . T

gS(qa q, t) =8 (VZZ - VZI): (42)

. . T

gr(q,q,t) =t (V2 —vx1) ,

with vy; and vy, being defined in an analoguous way as in (30). Differentiating these equations
with respect to time leads to the constraints on the acceleration level

R . . T

gy =1 (Vx2 — Vy1) + 10y (Vx2 — V1),

.. T /- . .T

g5 =8, (Vx2 — Vz1) + 8] (Vz2 — vs1), (43)

T /- . T
§r =t (Vx2 — vs1) + t) (Vs — v51) .
The time derivatives of the contact point velocities vy, and vy, can be written in the form

v =Js1(q, )4 + 5, (4,9, 1), Ve2 =Js(q, )4 +js,(q,9,1) - (44)

The vectors ny, $; and t;, are determined by the formulas of Weingarten and Gauss, which
express the derivatives of the normal vector and of the tangent vectors in terms of the basic
vectors

. anl, anl.
=Q — —t 45
n; 1><n1+65151+at11, (45)



where

anl N MlFl — L1G1 L1F1 — MlEl anl o NlFl — M1G1 MlFl — NlEl ¢

— = S — = s ,
651 E1G1 — ! E1G1 — F% b 61‘1 E1G1 — ! E1G1 — !
—— ~ ~~ ~~
o1 B % By
0s; Os
S1—91><S1+a—1+6—1t1 ) (46)
S1 3]
where
0s 0s
—1 - Fi] 151 + F%thl +L1n17 —1 - F}21sl + F%z ltl +M1nl )
651 ’ ’ 6t1 ’ ’
ot; ot; .
t, =Q;, xt —1t 47
1 1 1+ 35, +6t1 1 (47)
where
oty ot
——F}21s+F121t+M1n1, —1:F§21s+F§2’1t+N1n1 .
651 61‘1 ’ ’

The definition of the Christoffel symbols I fﬁ, o, f,0 = 1,2, can be found in standard textbooks.
Inserting Eqgs. (45)-(47) in (43) yields the constraint equations

gy = 0] g2 =)@ + 0] (G, =) + (V2 = V1) (@1 x ) + (viz — va)'

X [(06131 + fit1)s: + (06,181 + ﬁ,ltl)ilL
gs =1 (Jx2 = Jx1)d 451 Gixp —is1) + (vz2 = v5) (@1 X s1) + (V2 — V1)

. . 48

X |:(F}17181 + F%thl + L1n1)51 + (F127lsl + F%271t1 +M11’11)t1:|, ( )
gr =1 Ux2 = Je)q+ 1 Gz, —Jz1) + (va2 = Vo) (1 X 6) + (V2 — Vi)

X |:<F}2,181 + F%thl + Mlnl).él —+ (F22 181 + F22 1t1 + Nlnl)i‘l] .
As can be seen, these equations depend only on the Jacobians with respect to the contact points
Js15 Iz the basic vectors of the surfaces and the time derivatives of the contour parameters
$1, £1,$2, b The Jacobians are known from the rigid body algorithm, the basic vectors from the

surface description. The time derivatives of the contour parameters can be calculated by
deriving Eq. (40) with respect to time

(ansz).z 0, (rgsz).: 0, (antz)': 0, (rIT,tz).: 0, (49)
which means, that the conditions for the contact point should not change while the two bodies

are moving. Evaluating Eq. (49), we obtain a system of equations which are linear in the
derivatives of the contour parameters

szT(oclsl + ﬁltl) SZ 06181 + ﬁ/ltl) L, M, 31 (82 X nl)T(Qz — Ql)

(s + Bity) 6 (o8 + pt) My N | [6 ] | (hxn) (@)
—ST82 _Sl S SgSZ Sgtz 52 N Sg(VZl — sz)
—$; t2 —STt2 Sgtz tgtz iz tZT(Vn — sz)

(50)

This linear problem has to be solved at every time step of numerical integration. Let us
summarize the constraint equations in the well known form, by rewriting Eq. (48) as

gN:wIEq+WNa gs:Wqu4’WS7 gT:W:%i‘FWT- (51)
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The terms in Eq. (48), which are linearly dependent on q, are collected in the constraint vectors
wy, Ws and wr, all the rest is included in the scalars wy, ws, wr.

2.3

Multiple unilateral contacts

Multiple contacts in multibody systems include a combinatorial problem of large dimensions.
If the state in one contact changes, for example from contact to detachment or from slip to
stick, all other contacts are also influenced, which makes a search for a new set of contact
configurations necessary. In order to not pursue the combinatorial process, we need extended
contact laws which describe unambiguously the transitions for the possible contact states, and
which generate only consistent contact configurations. In a first step, we define all contact sets,
which can be found in a multibody system, [31]

Ih, ={1,2,...,n4} with ny elements,
Ic={i€ly:gni =0} with nc elements,

52
Iy={iclc:gy,; =0} with ny elements, (52)

Ir={i€ly:|gy =0} with ny elements

These sets describe the kinematic state of each contact point. The set I4 consists of 1, indices of
all contact points. As an example we consider Eq. (9). It belongs to the set combination
I4\{Ic, Iy, Ir}. The elements of the set I are nc indices of the unilateral constraints with
vanishing normal distance gy; = 0, but an arbitrary relative velocity in the normal direction. In
the index set Iy there are ny indices of the potentially active normal constraints, which fulfill
the necessary conditions for a continuous contact (vanishing normal distance gy; = 0, and no
relative velocity g, in the normal direction). The index set Iy includes, for example, all contact
states with slipping. The ny elements of the set I7 are the indices of the potentially active
tangential constraints. The corresponding normal constraints are closed, and the relative ve-
locities ¢;; in the tangential direction are zero. The numbers of elements of the index sets I¢, Iy
and Ir are not constant because there are variable states of constraints due to separation and
stick-slip phenomena.

As a next step, we must organize all transitions from contact to detachment and from stick to
slip and the corresponding reversed transitions. In the normal direction of a contact we find the
following situation, [31]:

e passive contact i

gni(g,t) >0, Jyi =0, indicator gy,
e transition to contact
e active contact i

gni(g,t) =0, Jy; > 0, indicator Jy;, constraint gy; = 0,
e transition to detachment

gNi(qa t) Z 07 )LNi =0 .
The kinematical magnitudes gui, gy, &y; are given with Egs. (28), (31), (33) and (41), (42),
(51), where g, gy; are needed when we go to a velocity or an acceleration level. The
constraint forces Ay; must be compressive forces. If they change sign, we get separation.

The properties Eq. (53) establish a complementarity behavior which may be expressed by
ny (set Iy) complementarity conditions (put on an acceleration level)

gy >0; by >0; gxAy =0 . (54)
The variational inequality

—gL (M —hy) <0; Ay €Cy; VAL ECy , (55)

is equivalent to the complementary conditions (54). The convex set

11



Cy = {A}, : 4} > 0} (56)

contains all admissible contact forces iy; in the normal direction, [31], [41].

The complementarity problem defined in Eq. (54) may be interpreted as a corner law, which
requires for each contact g; > 0, Ay; >0, g;Ani = 0. Figure 5 illustrates this property.

With respect to the tangential direction of a contact, we shall confine our considerations to
the application of Coulomb’s friction law, which in no way means a loss of generality. The
complementary behavior is a characteristic feature of all contact phenomena, independent of
the specific physical law of contact. Furthermore, we assume that within the infinitesimal small
time step for a transition from stick to slip, and vice versa, the coefficients of static and sliding
friction are the same, which may be expressed by

lim Hi(gTi) = Ho; - (57)
&ri—0

For g,; # 0, any friction law may be applied, see Fig. 6. With this property, Coulomb’s friction
law distinguishes between the two cases

stiction: |Api| < poiAni = |8r| =0 (set Ir), (58)
sliding: |Ari| = poidni = 8| > 0 (set Iy\Ir) .

Equation (58) formulates the mechanical property that we are for a frictional contact within
the friction cone, if the relative tangential velocity is zero, and the tangential constraint
force |hr;| is smaller than the maximum static friction force (p;Ay;). Then we have stiction.
We are on the friction cone, if we slide with |g,,| > 0. At a transition point, the friction force
is (toi/Ani)> see Eq. (57). In addition, we must regard the fact that in the tangential contact
plane we may get one or two directions, according to a plane or a spatial contact. From this
we summarize in the following way:

e passive contact i (sliding, set Iy\Ir)
87l =0, |uoiznil — [Ari| = 0, indicator |gr,],
e transition slip to stick

&ri] =0, |pgiAni| — |Ari| >0,

aniA
IniZ 0 AAy;=0
ONi=0AAN20
Fig. 5. Corner law for normal contacts (Signor-
» ini’s law)
0 Ani
Hi(9mi)
Hoi
O » Fig. 6. Typical friction characteristic
0 o
gTi
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e active contact i (sticking, set Ir)
18r:] =0, |woitni| — |hril > 0, indicator |ug;Ani| — |Ari|, constraint |g .| =0,
e transition stick to slip
187l >0, [uoidnil — [Aril =0 . (59)

From a numerical standpoint of view, we have to check the indicator for a change of
sign, which then requires a subsequent interpolation. For a transition from stick to slip
one must examine the possible development of a nonzero relative tangential acceleration
as a start for sliding.

Equation (58) put on an acceleration level can then be written in a more detailed form

Aril < Hoi/ni N\ &r; = 0 (i € It sticking),
Ari = +UoiAni N\ §r; < 0 (i € Iy\Ir negative sliding), (60)
Ari = —HoiAni N\ §p; > 0 (i € Iy\Ir positive sliding) .

This contact law may be represented by a double corner law as indicated in Fig. 7. To transform
the law (60) for tangential constraints into a complementarity condition, we must decompose
the double corner into single ones. A decomposition into four elementary laws is given in [8], a
decomposition into two elements in [37], [38]. In any case, we come out with a com-
plementarity problem of the form, [31],

y=Ax+b, y>0, x>0, y'’x=0, y,xcR"™ , (61)

where n* = ny + 4nr in the case of decomposition into four and n* = ny + 2nr for a de-
composition into two elementary corners. The quantity x includes the contact forces and one
part of the decomposed accelerations, the quantity y the relative accelerations and, in addition,
the friction saturation defined as the difference of static friction force and tangential constraint
force (pgiAni — |A1i|). Equation (61) describes a linear complementarity problem thus being
adequate for plane contacts. In the case of spatial contacts, the friction saturation contains the
geometric sum of two possible friction directions, leading to a nonlinearity which cannot be
solved in a straightforward way. Solution procedures are discussed in [11], [12], [38], [42],
[44].

Similar as in the normal case, we can represent the contact law Eq. (60) by a variational
inequality of the form, [8], [42],

--T
gTi( ;"i - )\sz') >0; Mg € Cry, V)J‘}i € Cri . (62}
ATi = -Moitni
gt >0 .
il grik
+UgiANi
-HoiAni 0 Ari
~HoiAni < A1i € +Ugikni
gri=0

Ati = *+Uoitni
gri<0

Fig. 7. Corner law for tangential constraints
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The convex set Cy; contains all admissible contact forces A7; in tangential direction
Cri = {;\.EH)\,TJ < ,uolNi; Vie IT} . (63)

For a derivation of the equations of motion including unilateral effects, we must combine the
multibody equations (9) with the unilateral constraints (33) or (51) and (60). In a first step, we
include the constraint forces into Eq. (9) keeping in mind that, in a system with additional
unilateral constraints, the number of degrees of freedom is variable. To avoid difficulties with
many different sets of minimal coordinates, we take one set of generalized coordinates (Eq. (9)
for the combinations (I4\I.), (Is\In), (I4\I1), see Eq. (52)), and consider the active unilateral
constraints as additional constraints which necessarily are accompanied by constraint forces.
We include these constraint forces, which are in fact the contact forces, into the equations of
motion (9) by a Lagrange multiplier technique.

The constraint vectors wy; and wr; in Egs. (33), (51) are arranged as columns in the con-
straint matrices

WN:[...,WNi,...]ERf’nN; iGIN,

(64)
WT:[...,WTi,...]ERf’znT; ielr
for all active constraints. The constraint matrices are transformation matrices from the space of
constraints to the configuration space. The transposed matrices are used for the transition from
the configuration space to the space of constraints. The contact forces have the amounts Ay;
(normal forces) and the components Ar; and Arj, (tangential forces). These elements are
combined in the vectors of constraint forces

;»N(t) = }yNi(t) € RnN; S IN7

Ar(t) = | hp(e) | eR™; ielr

with A7;(t) = [A7i1 (), A1i2(¢)]”. In general, the contact forces are time-varying quantities. By the
constraint vectors and matrices in Eq. (51), the contact forces can be expressed in the con-
figuration space. These forces are then added to Eq. (9) to give

M —h =) (Wyiky + Wrikg) =0 . (66)

i€ly

For the index sets, see Eq. (52). The contact forces Ar; in Eq. (66) can be passive forces of
sticking contacts or active forces of sliding contacts. We express the tangential forces of the
ny — nr sliding contacts by the corresponding normal forces, using Coulomb’s friction law, by

8ri.

’iNz’; icIy\Ir , (67)
Ti

Ari = —.Ui(|gTz'|)

where the coefficients 1;(|g;|) of sliding friction may depend on time. The negative sign
relates to the opposite direction of relative velocity and friction force. The sliding forces of
Eq. (66) in the configuration space are then

Wrikri = _“i(‘gTtiTi%}“Ni; i€ IN\Ir . (68)
Ti
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A substitution of these forces into Eq. (66) yields the equations of motion

MIq.3(0)  hia,d.1) ~ Wy -+ Ha, Wl (3500 ) =0, (69

with the additional contact forces as Lagrange multipliers. The matrices Wy and Wt contain
components from Egs. (33) or (51). The matrix Hg € RS™ of the sliding contacts has the same
dimension as the constraint matrix Wy. For nr < ny, Hg consists of ny — nr columns
8ri . .
—uWri——; i€Iy\Ir ,
[:24
while the other nr columns contain only zero elements.
The relative accelerations of the active normal and tangential constraints in Eqgs. (33) or (51)

can be combined by means of the constraint matrices (64) in the matrix notation. Together
with Eq. (69), we get the system of equations

N
M{ —h — [Wy + Hg, wT]<xN) —0e R,
T

.. . 70
gy = W};q + Wy € [RnN, ( )

The unknown quantities are the generalized accelerations § € R/, the contact forces in the
normal direction Ay € R™ and in the tangential direction A; € R*"’, as well as the corre-
sponding relative accelerations g, € R™ and g, € R*'". For the determination of the
f + 2(ny + 2nr) quantities, we have up to now f + ny + 2ny equations. In the following,
Egs. (70) will be completed by including the missing ny + 2nr contact laws. In general, the
kinematic equations are dependent on each other, if there is more than one contact point per
rigid body. The situation results in linearly dependent columns of the constraint matrices
Wy, Wr in Egs. (70). Such constraints are called dependent constraints.

Before including the contact laws we shall evaluate Eqgs. (70) a bit further. Introducing the
magnitudes

() () e (@) e

we can write Eq. (70) as
Mg —h— (WH+No)A=0, g=W/Gg+w. (72)

Outside the transition events and, thus, for a not changing contact configuration, the relative
accelerations g are zero. In this case, Egs. (72) have a solution for g and A, which writes

b= —[WIM (W +Ng)] (WM 'h+w),§ =M '[h+ (W+Ng)A| . (73)
The first equation of (73) may also be expressed in the form AA + b = 0 with A and b following
from (73).

We combine now the equations of motion in the form (70) with the contact Egs. (55) and

(62), which results in the following set containing all unilateral processes in the contacts under
consideration:

. A .
Mq_ [WN+HR; WT]()VN> _h(qa q, t) - 07
T

g wl w

(5) - (et)as(50) 2
8r WT wr

—gn(Ay —hy) <0; hy€Cy; ViyeCy; I€ly

—81(My — i) <0; hpi € Cri(Ani); VAL € Cri(Ani); i€ Ir .
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The system (74) is not solvable in this form. Therefore the variational inequalities are trans-
formed into equalities. From this we get a nonlinear system of equations, which represent linear
or nonlinear complementarity problems, depending on the type of contact, i.e. plane or spatial
contacts. Linear complementarity problem can be solved by algorithms related to linear pro-
gramming methods, for example Lemke’s algorithm, nonlinear complementarity problems
require iterative algorithms, [11], [12], [24].

24

Impact with friction

Impacts with and without friction play an important role in many machines and mechanisms.
They have been a research topic at the author’s institute since many years, starting with
impacts without friction, [29], and proceeding to a theory which describes impacts with friction
in a rather general way, [8]. The new theory has been convincingly verified by a large variety of
experiments, [2], and will be shortly presented in the following.

We assume, as usual, that an impact takes place in an infinitesimal short time and without
any change of position, orientation and all nonimpulsive forces. Nevertheless, we zoom vir-
tually the impact time, establish the equations for a compression and for an expansion phase,
and apply these equations again to an infinitesimal short time interval. The evaluation has to be
performed on a velocity level, which we realize by formal integration of the equations of
motion, the constraints and the contact laws, Eqs. (74). Denoting the beginning of an impact,
the end of compression and the end of expansion by the indices A, C, E, respectively, we get for
At == tE - tA

M - 4,) — (Wawa) () <o,

Mids — a0) - (wwn) (1) <o 75

g

A; = lim A dt .
tE—1ty ta

Here, Anc, Arc are the impulses in the normal and tangential direction which are transferred
during compression, and Ayg, Arg those of expansion. Defining q, = q(ta), qc = q(tc),
qz = q(tg), we express the relative velocities as

) (e (3)
. - + ~ 9
(gTA wi 4 wr

e wy ) - <WN )

. = + 1 - , 76
( 8r1E ) ( W% s wr 76)
gNC WIY\;) . <WN>

N ) = +(
( 8rc ) ( W% e wr

Considering in a first step the compression phase, and combining Egs. (75) and (76), we come
out with

. T .
B )= (e (W) (R) +(82) 7
( 8rc ) \( w7 Wr )\ Arc * 8ra /)’ (77)

G

where G is called the matrix of projected inertia. It consists of four blocks Gyy . . . Grr. Equation
(77) allows to calculate the relative velocities gy and g at the end of the compression
phase, depending on the velocities at the beginning of the impact g,, and g, under the
influence of the contact impulses Ayc and Azc. To calculate these impulses, two impact laws in
normal and tangential direction are necessary. As already indicated, magnitudes of relative
kinematics and constraint forces (here: impulses) are complementary quantities. In the normal
direction these are g, and Ayc. In the tangential direction, we have the relative tangential
velocity vector g, and the friction saturation Ar¢ — (diagu;) Anc. Decomposing the tangential
behavior we obtain, [2],
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Arcvi = Arci + AN i
ch,i = gJTrc,i - g;C,i’ ( )

78
Aoy i = Arevi

A(TE)VI = —Arcv,i+ 2u;Anc,i -

Together with Eq. (77) this results in a Linear Complementary Problem (LCP) in a standard
form y = Ax +b with x > 0,y > 0 and x'y =0

ch Gy — Gyt Gar O Anc 8N4

grc | = Gow—Grrn Grr E A(TJE)V +| 8 | > (79)
AR/ 2p —E 0/ \ g1 0

v A x b

where p is a diagonal matrix, containing the friction coefficients of the contacts. The problem
can be solved numerically. The velocities g, g, and the impulses Ayc, Arc are either part

of the result or can be obtained by transformation (78) and by Ar¢c = A(TJE)V — pAnc.

In the compression phase, the kinetic energy of the colliding bodies is transformed into
potential energy. During the expansion phase parts of this energy are transformed back. This
recovery process is governed by two coefficients of restitution in normal and tangential di-
rections ¢y and &g, respectively.

In the case of multiple impacts, Poisson’s hypothesis does not guarantee impenetrability of
bodies, [8]. Therefore, the impact law is enhanced by an additional condition. The normal
impulse during the phase of restitution /Ayg is, at the minimum, eg/Ayc in each contact, but can
be arbitrary high to avoid penetration. In this case, the bodies remain in contact after the
impact. This impact law with a complementary character is drawn in Fig. 8.

In the tangential direction, the impact law is ruled by three effects: at first, a minimum
impulse e7A7c must be transferred. On the other hand, the impulse must not exceed the
friction limit. Between these limits, a tangential relative velocity g, is prescribed. This velocity
allows a restitution of the stored energy, if during the phase of restitution sticking occurs, [2].
The existence of g, was not introduced in [8], and also not in Moreau’s impact model [10],
but from the measurements, [2], it could be derived as a necessary correction. With

8rmo = GrvenAnc + GrrenArc (80)

one can calculate g, for all contacts, and the tangential impact law looks like the one drawn
in Fig. 9. Here, €y and &7 are diagonal matrices containing the different coefficients for all
contacts.

To formulate the equation for the phase of restitution as an LCP, similar to that for the
compression phase, the two matrices

St = diag{i [1 + sign(Arc;)]}, S = diag{[1 —sign(Arc,)]} , (81)
are introduced. After some transformations similar to those of the compression phase, the LCP

writes

Ine A

eNANG

Fig. 8. Impact law for the phase of expansion in
» normal direction

ANE
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Case A1c>0

A
Y

eNETATC

dre0T N

- 1 1L =A

AteD NETTER Fig. 9. Impact law for the phase of resti-
» tution in tangential direction
0 AteL Atg
'g_il_\IE Guy —GnrS™R Gar O A(JJ\Ir
g]("EX)/ =| Grw—GrrS™p Grr E Ay | +b (82)
Argy n —E 0 8rev
with

GanvenAnc + GarSTenerArc — GyrS™penAnc + 8yc
b = GTT(S+ — E)SNSTATC — GTTS_}lé‘NANC + ch . (83)
nenAnc — ener|Arc|

After solution, the velocities g, 8- and the impulses Ayc, Arc are either part of the result or
can be obtained by the transformations

8rr = g—ltEV — 8rev T 81r0 (84)
Ane = Anp + enAnc, Arp = A(TB, + Arpr = A(TE)V + STenerArc — STRANE - (85)

If the impulses during the two phases of the impact are known, one can calculate the motion q,
of the multibody system at the end of the impact

qE = (L\M_1 [WN(ANC + ANE) + WT(ATC + ATE)] (86)

The above impact theory has been verified in [2]. More than 600 impact measurements have
been performed. Figure 10 depicts a typical result for the material pair PVC/PVC. The com-
parison with measurements is excellent, as in many other cases.

3

Applications

From a large variety of industrial applications, we shall present in the following three typical
examples, namely chains, vibration conveyors and chimney dampers. We do not go into
details, because all applications have been published elsewhere. Therefore we shall give only a
short summary for each case. In all cases, the theoretical methods are based on those of Sec. 2.

1.0
0.5 s
e
-
o
0 3 P e .
= e y=Sm
05t &;g‘“ ] INA
i YTE = Jre
-1.0 mp%é PVC —— | “ONA Fig. 10. Dimensionless tan-
s Theory ----- gential relative velocity after
. . . versus before the impact
-1.5 -1.0 -0.5 0 0.5 1.0
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3.1

CVT chains, [40]

The dynamics of chains has been investigated in [6], [7], [39], [40]. The dissertation [7]
considers roller chains, where the main problem lies in the many degrees of freedom, usually
some hundred, on one side, from which follows a large number of contacts with guides and
sprocket wheels, on the other side. An additional problem arises due to the dynamical behavior
of the tension devices which requires detailed and complicated models.

Another type of chains are the CVT chains applied in continuous variable transmissions,
where they transmit power by friction. At the time being, there exist three different chain
configurations, the rocker pin chains by PIV in Germany, the metal-pushed V-belt chain by van
Doorne in the Netherlands and the Borg-Warner chain in the US. We shall focus here on the
PIV chain, which was investigated in all details in [40]. Figure 11 represents a typical CVT
configuration. A complete CVT gear consists of two discs with hydraulically shifted sheaves as
indicated in Fig. 11. One can change the gear ratio continuously, by opening the discs in one
pulley and, at the same time, closing it in the second pulley. Therefore, the continuous variable
properties are achieved by axially moving sheaves that are shifted hydraulically. This device
also applies to the chain the necessary forces.

The mechanical model for the plane motion of the chain includes altogether 63 links with
189 degrees of freedom. Each pulley possesses two translational and one rotational degree of
freedom with respect to rigid body motion. Pitching effects of the axially movable pulley are
regarded by additional degrees of freedom. Both pulleys are additionally modeled as elastic
bodies, applying a Ritz approach within the context of elastic multibody theory, [3], [4], [40].
Special care has been taken to solve the problem of unilateral contacts in connection with
elastically deformed surfaces.

The results have been computed for stationary operation with constant driving speed and an
output torque on geared level. Computing time for this case amounts to about eight hours on a
SUN workstation. Figure 12 shows the contact forces acting on a pair of rocker pins during one
revolution and the tensile force in the related chain link.

As long as the chain link is part of a strand, no contact forces work on its rocker pins. When
it comes into contact with one of the pulleys, the pins are pressed between the two sheaves, and
hence the normal force increases. Its amplitude depends on the geometry of the sheaves and the
transmitted power. The frictional force is a function of this normal force and the relative
velocity between the pulley and the pins. It is split into one radial and one circumferential
component. The radial contact force coincides with a radial movement of the chain link that
equals a power dissipation. In contrast, the circumferential contact force causes the changes of
the tensile force in the corresponding chain link, which leads to different tensile force levels in
the two strands that agree with the transmitted torque.

Axially moving sheave

Axially fixed sheave
Hydraulic chamber

Fig. 11. Typical rocker pin

Rocker pin : .
chain configuration
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Fig. 12. Forces acting on the rocker pins and in a chain link

Due to the mechanical model, the simulation provides an integrated value of the tensile force
in the plates of a chain link, whereas measurements (by G. Sauer and K.T. Renius, Lehrstuhl fiir
Landmaschinen, Technische Universitdt Miinchen) were performed for the tensile force in a
clasp plate, s. left-hand side of Fig. 13. Therefore, it was necessary to determine the distribution
of the tensile force on the plates of the chain links. Using the results of the dynamic simulation
shown in Fig. 12, and modeling the pair of rocker pins as bending beams and the plates as
linear springs, we obtained the graph of the clasp plate, s. in the right-hand side of Fig. 13. The
comparison of simulation and measurement confirms the mechanical model.

3.2

Vibration conveyor, [44]

Vibratory feeders are used in automatic assembly to feed small parts. They are capable to store,
transport, orient and isolate the parts. An oscillating track with frequencies up to 100 Hz
excites the transportation process, which is mainly based on impact and friction phenomena
between the parts and the track. Vibratory feeders are applied for a wide variety of parts and
for lots of different tasks. In the majority of cases, the parts are available as a sort of bulk
material that is stored in a container. The transportation process, starting in this reservoir,
is often combined with orienting devices that orient parts, or select only the parts having
already the right orientation. Figure 14 shows an example of a vibratory bowl feeder with an
orienting device. Each kind of parts, with its special geometry and mechanical properties,
requires an individual adaption of the feeder. This individual tuning comprises the develop-
ment of suitable track and orienting device geometries and the adjustment of the excitation

Measurement
F T T T ]
' ' : t Simulation
1 1 1
1 1 1 ! Free ! Driven ! Pulling! Driving !
FEu I I
| | [, 1 . strand | pulley pulley |
I I 1 —
} -1 1 I 1
: I [[Meet” | N : L1 1 1 1 1
1 N | 2N C ! ! ! ! !
A N\ // ! \ly ! ! ! ! !
\v’: " :\“‘ - : w I 1 1 I
T T y : T 1 1 1
. . 1 [ T T T T Iy |
t

Fig. 13. Tensile force in the clasp plate
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Track Orienting device Orienting device

Base
device

D

Fig. 14. Vibratory bowl feeder and mechanical model

parameters frequency and amplitude. Due to the complex mechanics of the feeding process this
design is usually done by trial and error, without any theoretical background. A complete
dynamical model of the transportation process allows a theoretical investigation and, conse-
quently, an improvement in the properties of the feeder.

Friction and impact phenomena between the parts and the track are the most important
mechanical properties of transportation processes. Consequently, the required dynamical
model has to deal with unilateral constraints, dry friction and multiple impacts. The me-
chanical model of the vibratory feeder can be split in two parts: the transportation process and
the base device. The dissertation [44] focuses on modeling and simulation of the transportation
process. The modeling of the base device can be done with well-known standard techniques for
multibody systems. Friction and impact effects have a fundamental importance for the
transportation of parts. Changing contact configurations between the parts and the track and
also between the parts itself are characteristic for the feeding process. The contacts appear
either continuously for a certain time interval, or for a discrete time at impact. A structure-
varying multibody system with unilateral constraints with friction is an ideal technique for
modeling the feeding process. Its formulation results in a set of differential equations with
inequality constraints requiring special mathematical and numerical methods, see Sec. 2.

For the verification of the developed model of the transportation process an experimental
vibratory feeder was built, allowing different measurements concerning the impact model and
the average transportation rates. Figure 15 shows the principle of the device. The track, fixed on
leaf springs, is excited with an electro-magnetic shaker with a frequency of about 50 Hz. The
eigenfrequency of the system is at 52 Hz. The resulting vibration amplitude reaches a maxi-
mum value of about 2 mm. The track has an inclination angle « = 3°, the angle between the
track and the direction of the vibration is f = 15°. For accurate contactless measurement of the
motion of the transported part, six laser distance sensors were applied. An eddy current sensor
was used for the vibration measurement of the track.

For a comparison of the theory and the measurements, the averaged transportation rate was
used. Figure 16 presents the result, which looks good before the background of the complexity
of the problem. An interesting finding is the fact that the averaged transportation velocity
does not depend very much on the number of parts and also not on the type of modeling, plane
or spatial, [44]. Therefore, the design of vibration conveyors can be carried through con-
sidering one part only. For the layout of orienting devices we need, of course, a spatial theory.

Laser- . : L
Vibration aser
measurement bratio

Shaker Eddy current

sensor

Leaf springs T Vibrating
Transported S track

AR NN N R R RN part
AU

Fig. 15. Test setup and part measurement
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Fig. 16. Simulation and measurement of the average transportation rate with ¢ = 0.84, u = 0.23

3.3

Chimney dampers, [34]

Towerlike structures, like steel chimneys, may be excited to vibrations by wind vortex streets.
Such a mechanism becomes dangerous if the first eigenfrequency of the structure is small
enough to be exited by not-too-large wind velocities which appear quite frequently. Oscillations
of that type can be significantly damped by application of a simple idea. A pendulum is
attached to the chimney top. Its mass and length are tuned to the chimneys first eigenfrequency
by classical analysis, and, additionally, optimal viscous damping is also evaluated by classical
formulas, given for example by Den Hartog’s method. In a second step, the determined optimal
damping behavior is not realized by viscous means but by arranging a package of circular
plates, which are moved by the end of the pendulum rod through internal circular holes of the
plates. The approximate realization of viscous damping by dry friction is accompanied by
impacts of the pendulum rod in the plate holes and by stick-slip transitions between the plates.
To achieve a best fit to the optimal viscous case, an optimization of the complete pendulum-
plate-system is carried through, applying multibody theory with unilateral contacts.

Figure 17 illustrates the basic principle. At the top of the chimney, a pendulum is arranged
which damps the oscillations. To achieve best damping efficiency, the damper is optimized in
two steps. In a first step, a classical damper is assumed working with viscous damping. For the
resonance frequency area such a damper can be optimized with respect to length, mass and
viscous damping of the pendulum. As damping will be realized by dry friction within a plate
package, the plates must be selected in such a way that they perform a damping effect coming
as nearest as possible to the optimal viscous damping. Therefore, in a second step the plate
package will be optimized with respect to damping efficiency.

To verify the theory, two types of experiments have been performed. In a first test, a
pendulum-plate configuration has been arranged in a car-like frame with wheels, which could
be excited periodically, Fig. 18. The results compare well with the theory.

A second test has been performed with a real steel chimney, which was bent by a steel rope.
By releasing suddenly this rope, the chimney starts to vibrate. This process has been measured
and compared with the corresponding theory based on the equations of Sec. 2. Figure 19

Pendulum hinge

Pendulum mass
Plate package
Towerlike
structure
chimne
(chimney) 2 777 2
A e
g
mp, Jp
TT707077777

Fig. 17. Principal configuration, viscous and plate model, [34]
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illustrates the comparison between the experiment and simulation, which also confirms the
method presented.

If we approximate the optimal viscous system of Fig. 17 (middle) by a package of plates, we
can do that in a best way by optimizing the number of plates, their radii and thicknesses. We
find that the number of plates affects the damping efficiency only partly. On the left side of
Fig. 20, the total mass of the plates was kept constant, also the radius of the top at the ground
damper plate. The number of plates was varied from one to eight. When doing so, the dis-
tribution of the plate holes was kept linear. In the case of one plate, the diameter of the plate
hole was half as big as the largest one in all other cases.

Figure 20 shows that the damping mechanism works best with one plate and worst with
two plates. The reason lies in the fact, that in the case of two plates only the upper one is
moved effectively. The ground plate is ineffective, and hence its damping is too small. As an
important result it should be noticed, that the application of a large number of plates does
not make sense. Obviously the damping characteristic cannot be improved by using more
than five or six plates.

- E L 5,
[s2l
B 51001 _ A
B = | 1. Small graduation of the plate hole JEA
B > | 2-4: Intermediate graduations /,'3 \‘\
B o . ; 2.
L E: | 5: Large graduation //'/‘ \}\\
L a - 52y
T E 50__ {I/ \\\
- N Ay N
s * vWN
L g B Z4 1 '\\.\\
- £ e LN
B £ | L ___’/ N
© T Y
250 300 350 250 300 350
Frequency (x10‘3 Hz) Frequency (x‘IO'3 Hz)

Fig. 20. Variation of plate number (left) and of graduation (right) of the plate hole diameters
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A further sensitive parameter is the distribution of the hole diameters over all plates, called
graduation. The right graph of Fig. 20 shows with number 1 the behavior of the system with
small, and with graph number 5-with large graduation. The other curves correspond to some
intermediate graduations. Keeping the total mass of the plates constant and increasing grad-
uation from 1 to 5 leads to a decrease of damping and to rising chimney displacements for the
considered configuration.

4

Summary

Classical theory of rigid or elastic multibody system dynamics may be characterized by
d’Alembert’s principle in the form of Lagrange and extended by Jourdain principle, allowing to
project the equations of motion of all interconnected bodies into their free directions according
to their individual constraints. These constraints are bilateral in the classical theory and do not
include contact phenomena.

If we want to consider dynamical problems with unilateral contacts, especially multibody
systems with multiple contacts, and if we further want to model such contacts by unilateral
constraints, we must enlarge the multibody theory by certain rules describing unilateral fea-
tures. One fundamental property, sometimes addressed to as Signorini’s law, consists in the
fact, that for each contact either quantities of relative kinematics are zero, and the corre-
sponding constraint forces are not zero, or vice versa. This establishes a linear or nonlinear
complementarity problem for each of the contacts, which has to be added to the classical
multibody formalism. In a more mathematical sense, the nonsmooth character of contact
dynamics may be formulated in terms of variational or hemivariational inequalities, depending
on the convex or non-convex features of the related energies. Representations of that kind allow
for elegant mathematical developments, which however have again to be decomposed for
practical applications.
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