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INTRODUCTION

Many structures and materials such as thin heterogeneous and/or fibre-reinforced elastomers structures, thin living tissues, manufactured woven or non-woven 2D textiles, behave as a first and reasonable approximation as elastic and anisotropic membranes undergoing finite strains.

In this work, we propose to estimate, from a theoretical and numerical multiscale approach, the mesoscale effective mechanical properties of such membranes, (i) starting from the description of both the microstructure and the mechanical equilibrium of the membranes at the microscale, and (ii) assuming that the involved materials at the microscale behave as hyperelastic bodies.

Firstly, the above micromechanical problem at the heterogeneity scale is upscaled by using the homogenisation method with multiple scale asymptotic expansions for periodic structures [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF][START_REF] Sanchez-Palencia | Non-Homogeneous Media and Vibration Theory[END_REF][START_REF] Caillerie | Thin elastic and periodic plates[END_REF][START_REF] Auriault | Heterogeneous medium. is an equivalent macroscopic description possible?[END_REF][START_REF] Pruchnicki | Overal properties of thin hyperelastic plate at finite strain with edge effects using asymptotic method[END_REF].

The homogenisation also provides suitable localisation problems to be solved within the Representative Elementary Volumes (REV) in order to compute the effective hyperelastic responses of the membranes.

Secondly, these boundary values problems are implemented into a Finite Elements software and the effective mesoscale properties of heterogeneous membranes are investigated quantitatively. The considered membrane is rather simple: it is made up of hyperelastic materials and it exhibits crenellated cross sections. Hence, its associated REV is subjected to meso-scopic in plane loadings ( uniaxial/biaxial tensions, pure shear) and A multiscale approach to model the mechanical behaviour of heterogeneous hyperelastic membranes L. Meunier, L. Orgéas, G. Chagnon & D. Favier In memory of Luc Meunier CNRS/Université de Grenoble, Laboratoire Sols-Solides-Structures-Risques (3S-R), Grenoble Cedex, France ABSTRACT: Within the framework given by the homogenisation method with multiple scale asymptotic expansions, a theoretical and numerical analysis is proposed in order to study the mesoscale behaviour of hyperelastic thin membranes exhibiting geometrical or material heterogeneities at the microscale. Results deduced from this multiscale approach are then used to analyse the mechanical behaviour of a crenellated thin membrane made up of a compressible Neo-Hookean material. their resulting mesoscopic behaviours (stress levels, evolving anisotropy) are analysed and discussed.

PROBLEM STATEMENT

We consider a thin heterogeneous plate, e.g. that shown in figure 1(a), with an initial average thickness e 0 along the e 3 direction and with a characteristic in-plane initial macroscopic dimension L 0 (in (e 1 , e 2 )). The plate is made up of a periodic assembly of Representative Elementary Volumes (REV) with a characteristic in-plane initial dimension l 0 . It is supposed that the thickness e 0 and the REV in-plane length l 0 are of the same order of magnitude, i.e e 0 /l 0 ≈ O(1), and that they are very small with respect to the in-plane size L 0 of the plate, i.e e 0 /L 0 ≈ l 0 /L 0 ≈ O(ε), the scale separation parameter ε being very small. A typical example of such REV's is shown in figure 1(b).

For a sake of simplicity, we assume here that the plate is only subjected to in quasi-static and in-plane mechanical loadings without volumetric forces. With the example shown in figure 1(b), this means that the upper Γ + and lower Γ -surfaces of the REV are not loaded.

By noting respectively X _ and _ x the initial and current position vectors of materials points and u _(_ X) = _

x -X _ the displacement vector, the first momentum balance equation corresponding to this problem and to be solved in the initial configuration is:

Div X π = 0, (1) 
where Div X is the divergence operator with respect to the initial configuration and position vectors _ X.

hyperelastic materials and we have also avoided any a priori assumption on the first order displacement field u ( ) . 0 The reader is referred to his work (P ruchnicki 1998) and to that of Meunier [START_REF] Meunier | Etude Du Comportement Mécanique de Membranes de Silicone Á Anisotropie Contrôlée: Application À la Conception de Muscles Artificiels[END_REF]) for details about the theoretical developments. We briefly summarise hereafter the main results deduced from the approach:

• From the assumptions stated for W, it can be shown that the first order displacement field only depends on the in-plane mesoscopic space variable, i.e. u u Y

( ) ( ) ( ). 0 0 = • The mesoscopic equivalent continuum is a 2D
membrane. In the ( , ) e e 1 2 plane, its first momentum balance equation in the initial configuration is expressed as:

Div X π ( ) 0 = 0 , ( 8 
)
where the mesoscopic first order Piola-K irchhoff stress tensor π ( ) 0 is defined as

π π ( ) ( ) , 0 0 0 1 0 = ∫ V V d Ω (9) 
such a volume averaging being performed on the initial solid domain Ω 0 of the REV, of initial volume V 0 . The local first order stress tensor π ( ) 0 involved in the last equation is defined from:

π ( ) ( ) ( ) ( ) ( ) ( ) ( ) , 0 0 1 0 1 = + + ∂ ∂ W F H F H (10) 
where

F G r a d u ( ) ( ) 0 0 = + δ X (11)
and

H Grad u (1) = X ε ( ) 1 (12)
From (2), it also follows that π ( ) 0 verifies: 

π π ( ) ( ) ( ) ( ) . 0 0 0 0 ⋅ = ⋅ F F t t ( 13 
: 0 π ( ) ( ) ( ) ( , ) 0 0 0 = ∂ ∂ W F F microstructure , (14) 
• The first order stress tensor π ( ) 0 can be obtained by solving in the REV the following boundary value problem:

Div 0 F H F H H Grad u X X W π π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( ) 0 0 0 1 0 1 1 = = + + = ∂ ∂ (1) ε ( ) , 0 ⋅ = ⎧ ⎨ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎫ ⎬ ⎪ ⎪ ⎪ ⎭ ⎪ ⎪ ⎪ - N 0 on in + 0 Γ Γ Ω ( 15 
)
where the first order periodic fluctuation of the displacement field ε u ( ) 1 is the unknown field, N is the unit vector normal to the external surfaces Γ + and Γ -, and where F ( ) 0 is given and constant within the entire REV.

APPLICATION TO A SIMPLE MEMBRANE

By following the previous theoretical framework, it is now possible to compute the effective properties of hyperelastic membranes.

Considered membrane geometry and material

For that purpose, we consider a thin plate made up of upper and lower crenellated profiles. It is shown in figure 1(a). The corresponding REV and its dimensions are given in figure 1(b). As shown from this figure, the upper and lower crenellated profiles are identical but they are not parallel: they respectively make an angle ±α/2 = ±32.5° with respect to the e 1 direction.

For the sake of simplicity, the membrane is assumed to be made up of a unique material, the mechanical behaviour of which is defined from the compressible Neo-Hookean hyperelastic strain energy function (5). The constitutive parameters associated with this function, i.e. μ and k, are assumed to be constant in the whole REV, they were set to 1 and 1000 MPa, respectively. Hence, the considered material can be regarded as quasi-incompressible.

In order to study the mesoscopic mechanical behaviour of such an heterogeneous membrane, i.e.

to analyse the relationship between π ( ) ( ) , 0 0 F and the membrane microstructure (see ( 14)), the that π 22 (0) is higher than π 11 (0) (20% higher when λ 11 = 2). • Stress-elongation curves for β ≥ 0 exhibit a curvature with a constant sign: this is directly due to the Neo-Hookean nature of the membrane material.

• Such an expected behaviour is not observed at all for stress elongation curves obtained with β = -1 and β = -0.5. Indeed, for these two mechanical loadings which involve compression stress components π 22 (0) , the sign of the curvature suddenly change around λ 11 = 1.25 and λ 11 = 1.75 when β = -1 and β = -0.5, respectively (see the circles sketched in the graphs of figure 3). This change results in an anomalous increase of the strain hardening of π 11 (0)

and in an anomalous strain softening of π 22 (0) By closely looking at the deformed shapes of the REV just after these transition zones (see figure 3), one can clearly see that the REV has been subjected to a local buckling along the e 2 direction, such a buckling being induced by the imposed meso-scopic compression elongation along this direction.

CONCLUSIONS

Within the framework proposed by the homogeni-sation method with multiple scale asymptotic expansions, and more precisely by pursuing the work of Pruchnicki [START_REF] Pruchnicki | Overal properties of thin hyperelastic plate at finite strain with edge effects using asymptotic method[END_REF], we have proposed a method to analyse from numerical simulation the mesoscopic mechanical behaviour of heterogeneous hyperelastic membranes.

In particular, it has been shown that a membrane made up of a unique homogeneous material but with geometrical heterogeneities at the REV scale could exhibit significant anisotropy and possible microstructure instabilities such as buckling.

A deeper analysis of these phenomena as functions of both the membrane geometry (e.g. the inclination angle α) and the imposed mesoscopic loading should be required.

The method also permits to analyse the mechanical behaviour under various mechanical loadings, thus allowing to constitute a precious and exhaustive database in order to propose relevant analytical forms of the mesoscopic law ( 14). This work is planned.

Before, its relevance must be proved. For that purpose, its prediction could be compared to what could be observed experimentally on similar heterogeneous membranes with a homogeneous hyperelastic material such as silicone rubber [START_REF] Meunier | Experimental and numerical study of the mechanical behaviour of an unfilled silicone rubber[END_REF]). This work is also planned.

  with respect to the first order 2D transformation gradient F ( )