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ABSTRACT: Within the framework given by the homogenisation method with multiple scale asymptotic
expansions, a theoretical and numerical analysis is proposed in order to study the mesoscale behaviour of
hyperelastic thin membranes exhibiting geometrical or material heterogeneities at the microscale. Results
deduced from this multiscale approach are then used to analyse the mechanical behaviour of a crenellated
thin membrane made up of a compressible Neo-Hookean material.

1 INTRODUCTION

Many structures and materials such as thin hetero-
geneous and/or fibre-reinforced elastomers struc-
tures, thin living tissues, manufactured woven or
non-woven 2D textiles, behave as a first and rea-
sonable approximation as elastic and anisotropic
membranes undergoing finite strains.

In this work, we propose to estimate, from a
theoretical and numerical multiscale approach,
the mesoscale effective mechanical properties of
such membranes, (i) starting from the description
of both the microstructure and the mechanical
equilibrium of the membranes at the microscale,
and (ii) assuming that the involved materials at the
microscale behave as hyperelastic bodies.

Firstly, the above micromechanical problem
at the heterogeneity scale is upscaled by using
the homogenisation method with multiple scale
asymptotic expansions for periodic structures
(Bensoussan et al. 1978; Sanchez-Palencia 1980;
Caillerie 1984; Auriault 1991; Pruchnicki 1998).
The homogenisation also provides suitable locali-
sation problems to be solved within the Repre-
sentative Elementary Volumes (REV) in order to
compute the effective hyperelastic responses of the
membranes.

Secondly, these boundary values problems are
implemented into a Finite Elements software and
the effective mesoscale properties of heterogene-
ous membranes are investigated quantitatively.
The considered membrane is rather simple: it is
made up of hyperelastic materials and it exhibits
crenellated cross sections. Hence, its associated
REV is subjected to meso-scopic in plane load-
ings (uniaxial/biaxial tensions, pure shear) and

their resulting mesoscopic behaviours (stress levels,
evolving anisotropy) are analysed and discussed.

2 PROBLEM STATEMENT

We consider a thin heterogeneous plate, e.g. that
shown in figure 1(a), with an initial average thick-
ness e, along the e, direction and with a charac-
teristic in-plane initial macroscopic dimension L,
(in(e,, e,)). The plateis made up of a periodic assem-
bly of Representative Elementary Volumes (REV)
with a characteristic in-plane initial dimension /,.
It is supposed that the thickness ¢, and the REV
in-plane length /, are of the same order of magni-
tude, i.e e/l,= O(1), and that they are very small
with respect to the in-plane size L, of the plate, i.e
e/L,= I/L,= O(¢), the scale separation param-
eter € being very small. A typical example of such
REV's is shown in figure 1(b).

For a sake of simplicity, we assume here that
the plate is only subjected to in quasi-static and
in-plane mechanical loadings without volumetric
forces. With the example shown in figure 1(b), this
means that the upper I'* and lower I'™ surfaces of
the REV are not loaded.

By noting respectively X and x the initial and
current position vectors of materials points
and u(X) = x —X the displacement vector, the first
momentum balance equation corresponding to
this problem and to be solved in the initial con-
figuration is:

Div, =0, (1)

where Div, is the divergence operator with respect
to the initial configuration and position vectors X.



Figure 1. Typical plate which is here considered
(a), geometry with av=65° (b) and P2 tetrahedral FE
mesh (= 50000 degrees of freedom) (c) of the Representa-
tive Elementary Volume of the considered membrane
(dimensions in mm).

From the second momentum balance equation, the
first Piola-Kirchhoff stress tensor * must verify:

nF=Fr 2

In the last equation, F is the transformation gradi-
ent defined as:

E=§+Gradxg, 3)

2 and %x being the identity tensor and the gra-
dient operator with respect to X, respectively.

Besides, the plate is supposed to be made up of
compressible hyperelastic materials, the character-
istic stiffness of which being of the same order of
magnitude. Their stress tensors T can therefore be
written as:

_IW(F)
= T

=

@

The local strain energy function W per unit of
unde-formed volume is supposed to be positive
and such that W (3 )= 0. For example, let us assume
that the membrane is made up of compressible

Neo-Hookean materials. In this situation, W is
expressed as:

1 _2
W=E[/I(I'J 3—3)+k(1—J)], (5)
where
J=DetF, I,= Tr(E’ ‘F) (6)

and where «(X)and k(X) are the shear modulus
and the compressibility Modulus, respectively.

3 UPSCALING

3.1 Introduction

In order to obtain the equivalent mesoscopic
mechanical behaviour of the as-described problem,
the homogenisation method with multiple scale
asymptotic expansions is now used (Bensoussan
et al. 1978; Sanchez-Palencia 1980; Caillerie 1984,
Auriault 1991). Hence, provided a good scale sepa-
ration between L, and /,, the problem can be tack-
led by mtroducmg two distinct and_independent
dimensionless space variables, i.c. Y andZ (the
symbol “= denotes quantltles which are defined
in (€.€)) The mesoscoplc in-plane space vari-
able Y=X/L, is defined in the (€.€;) plane
(Y, = 0) and characterises the membrane geometry
at the mesoscopic scale. The microscopic one, i.e.
Z.=X/l,, characterises the membrane geomet
in the REV’s. Thus, any scalar function @X ?’
isnow writtenas a function of YandZ ie. (o(Y 7).
Therefrom, it is further assumed that the dls;71'£1ce-
ment field u(Y Z) can be expressed as an asymp-
totic expansion in powers of &

u=1"¥.2)+ aa’X.2)+ L X2)+... ()

where the displacement fields !(') are supposed to
be Z -periodic on the lateral surface I of the REV
(see figure 1(b)).

Accounting for this last assumption, the homog-
enisation method consists (i) in introducing the
new set of space variables YandZ together with
the above asymptotic expansion (7) in the problem
(1-6) and (ii) in identifying and solving the prob-
lems arising at the different e-orders.

3.2  Main results

Theoretical developments are very similar to
what was achieved by Pruchnicki (Pruchnicki
1998) for Saint Venant-Kirchhoff materials. We
have here extended his work to a larger class of



hyperelastic materials and we have also avoided
any a priori assumption on the first order displace-
ment field u'®. The reader is referred to his work
(Pruchnicki 1998) and to that of Meunier (Meunier
2009) for details about the theoretical develop-
ments. We briefly summarise hereafter the main
results deduced from the approach:

e From the assumptions stated for W, it can be
shown that the first order displacement field
only depends on the in-plane mesoscopic space
variable, i.e. u 0 g(o)(i).

e The mesoscopic equivalent continuum is a 2D
membrane. In the (e, e,) plane, its first momen-
tum balance equation in the initial configuration
is expressed as:

Div (5] =0, ®

where the mesoscopic first order Piola-Kirchhoff
stress tensor <ﬁ;(0)§ is defined as

Ogy, )

(=1

- 1
<§(0)>:70J90

such a volume averaging being performed on the
initial solid domain Q, of the REV, of initial vol-
ume V. The local first order stress tensor 7t
involved in the last equation is defined from:”

o _ ow (E” +HY)

I (0) My’ (10)
a(F +H")

where

F” =5+Grad _a® (11)

and

H?Y = Grad _eu®” (12)

= X

From (2), it also follows that < © )> verifies:

<ﬁ<0)> ' E(mf _ E(O) '<i(0)>l .

(13)

e The mesoscopic first order Piola-Kirchhoff
stress tensor <§(0)> is defined as the partial
derivative of the mesoscopic strain energy
function <W(F microstructure)> with respect

to the first order 2D transformation gradient F

B<W(E(O) , microstructure)>
S . L a4

8F

~(0
e The first order stress tensor <£( )> can be
obtained by solving in the REV the following
boundary value problem:

Div, 1" =0
(0)

8W(F

)
0 _ +H)
T ©

= 9F +HY)
Grad su(l)
O.N= 00nr T

aﬂ

inQ, (15)

L

where the first order per10d1c fluctuation of the
dlsplacement field gu( ) is the unknown field,
N is the unit vector normal to the external
surfaces I' and I, and where f?(o) is given and

constant within the entire REV,

4 APPLICATION TO A SIMPLE
MEMBRANE

By following the previous theoretical framework, it
is now possible to compute the effective properties
of hyperelastic membranes.

4.1 Considered membrane geometry and material

For that purpose, we consider a thin plate made up
of upper and lower crenellated profiles. It is shown
in figure 1(a). The corresponding REV and its
dimensions are given in figure 1(b). As shown from
this figure, the upper and lower crenellated profiles
are identical but they are not parallel: they respec-
tively make an angle #0/2 = £32.5° with respect to
the e, direction.

For the sake of simplicity, the membrane is
assumed to be made up of a unique material,
the mechanical behaviour of which is defined
from the compressible Neo-Hookean hyperelas-
tic strain energy function (5). The constitutive
parameters associated with this function, i.e. g and
k, are assumed to be constant in the whole REV,
they were set to 1 and 1000 MPa, respectively.
Hence, the considered material can be regarded as
quasi-incompressible.

In order to study the mesoscopic mechanical
behaviour of such an heterogeneous membrane, i.e.

- = (0)
to analyse the relationship between <§(0)>’F
and the membrane microstructure (see (14)), the



boundtary values problem (15) was solved on the
considered REV for given values of the 2D mes-
oscopic transformation gradient F ) This allows
to estimate the displacement fluctiation & !(0)’ then
the local stress tensor & (from (15b), and finally
the mesoscopic stress ténsor <1"c(°)> (from (9)).

For that purpose, the weak form of this
problem was implemented into the Finite Elements
(FE) code Comsol Multiphysics, and the REV was
meshed using FE elements with second order poly-
nomial form functions (P2, see figure 1(c)). Such
a highly nonlinear formulation was solved incre-
mentally, with an iterative Newton’s like algorithm
at each time step.

4.2 Anisotropy

A first type of numerical experiments was achieved
in order to analyse the mechanical anisotropy of
the considered membrane. Hence, the REV was
subjected to a plane strain tension along the e,
direction:

E(O) =8 ®g (16)

up to an axial elongation A, = 2. Then, the REV
was rotated by an angle 8in the (e,.,e,) plane, and
the same numerical experiment was achieved. This
was repeated for various values of 6 ranging from
0° to 180°. Therefrom, the dimensionless stresses
components:

(17)

O

were built and analysed as functions of the ori-
entation angle 6. This is illustrated in figure 2,
in which these dimensionless stress ratios were
plotted as functions of 6, for two values of the
imposed mesoscopic elongation A,,:

e Even if the membrane is made up of a unique
material, the architecture of the REV induces
noticeable anisotropy: stresses components
depend on 6 For example the dimensionless

stress component <Tcﬁ) )‘ is approximately 25%
higher when 6= 90° than when 6= 0°. This trend
is reversed but less pronounced for the second
dimensionless stress component <Tt502)>*.

e The anisotropy magnitude evolves as the
imposed mesoscopic elongation is increased.
For example, it is approximately twice higher
for (7} " when A, goes from 1.25 to 2. This is
much less emphasised and this trend is reversed
for <1~Cﬁ) , as evident from figure 2.
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Figure 2. Evolution of the dimensionless stresses ( 7t{?
and (7)) as functions of the angle & the REV is
rotated from its initial configuration shown in figure 1(b).

These stresses have been estimated for two imposed
mesoscopic elongations A,,.

e Whatever the considered elongation A,,, figure 2
proves that the mesoscopic mechanical in-plane
behaviour of the membrane exhibits orthot-
ropy: stress ratios exhibit two symmetries along
two orthogonal directions, i.e. for € = 0° and
6=90°.

4.3 Biaxial loadings

We now return to the REV given in figure 1(b) in
order to analyse the effect of the mechanical load-
ing type on its behaviour. For this reason the REV
was here subjected to in plane and radial biaxial
loadings corresponding to the following in plane
mesoscopic transformation gradient:
E(0)=111(21®£1+ﬁ£z ®e,) (18)

When it was possible, the elongation A,, along the
e, wasincreased until avalue of 2. The positive biaxial
ratio = A/, was kept constant during each load-
ing. Various numerical experiments were achieved
with the following S values : —1 (corresponding to an
in-plane pure shear test), —0.5, 0 (corresponding to a
plane strain tension test), 0.5 and 1 (corresponding
to an equibiaxial tension test).

Numerical results have been summarised
in figure 3, in which the stress-elongation diagrams

(ﬁf‘?)—lu and (1'5(220)>—M| have been reported
forthe different tested values of /3 together with
the deformed shapes of the REV at the end of
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Figure 3. Biaxial loadings achieved with various elongation ratios 8 = A,/A,,. The two graphs represent the
evolution of the mesoscopicstress components (‘7:&”) (upper graph)and < Tt(zg) ) (lower graph) as functions of the imposed

mesoscopic elongation A,,. We have also reported the initial mesh of the REV, as well as its deformed meshes at the end
of the different mechanical loadings. Colormaps shown on the deformed meshed represent the values of the Von Mises
stress, ranging from its lowest value (blue) to its maximal one (red).

the mechanical loadings. This figure brings up the trend is much more pronounced with the stress

following comments: component (ﬁg%)) than with (ﬁ}?’).

e The two stress-elongation graphs emphasise e The anisotropy of the membrane, which was
the key role of the mechanical loading on the emphasised in the previous subsection, can also
mechanical response of the membrane. Whatever be observed when looking at stress-elongation
the considered stress component, an increase of curves in the case of the equibiaxial test, i.e. for
B yields to an increase of stress levels. Such a S = 1. Indeed, the two graphs of figure 3, show



that (%) is higher than (%)) (20% higher
when A,, =2).

e Stress-elongation curves for > 0 exhibit a cur-
vature with a constant sign: this is directly due
to the Neo-Hookean nature of the membrane
material.

e Such an expected behaviour is not observed at
all for stress elongation curves obtained with
p=-1and f=-0.5.1Indeed, for these two mechan-
ical loadings which involve compression stress

components <ﬁ:(202)>, the sign of the curvature

suddenly change around A, = 1.25and A, =1.75
when = -1 and f=-0.5, respectively (see the
circles sketched in the graphs of figure 3). This
change results in an anomalous increase of the

. . ~(0) .
strain hardening of \™1/ and in an anomalous
strain softening of fc(zg) By closely looking at

the deformed shapes of the REV just after these
transition zones (see figure 3), one can clearly
see that the REV has been subjected to a local
buckling along the €2 direction, such a buckling
being induced by the imposed meso-scopic com-
pression elongation along this direction.

5 CONCLUSIONS

Within the framework proposed by the homog-
eni-sation method with multiple scale asymptotic
expansions, and more precisely by pursuing the
work of Pruchnicki (Pruchnicki 1998), we have
proposed a method to analyse from numerical
simulation the mesoscopic mechanical behaviour
of heterogeneous hyperelastic membranes.

In particular, it has been shown that a mem-
brane made up of a unique homogeneous material
but with geometrical heterogeneities at the REV
scale could exhibit significant anisotropy and pos-
sible microstructure instabilities such as buckling.

A deeper analysis of these phenomena as functions
of both the membrane geometry (e.g the inclina-
tion angle o) and the imposed mesoscopic loading
should be required.

The method also permits to analyse the
mechanical behaviour under various mechani-
cal loadings, thus allowing to constitute a pre-
cious and exhaustive database in order to propose
relevant analytical forms of the mesoscopic law
(14). This work is planned.

Before, its relevance must be proved. For that
purpose, its prediction could be compared to what
could be observed experimentally on similar heter-
ogeneous membranes with a homogeneous hyper-
elastic material such as silicone rubber (Meunier
et al. 2008). This work is also planned.
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