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PROPAGATION OF THE EXPONENTIAL MOMENTS FOR THE KAC EQUATION AND THE BOLTZMANN EQUATION FOR MAXWELL MOLECULES

We study the spatially homogeneous Boltzmann equation for Maxwell molecules, and its 1-dimensional model, the Kac equation. We prove propagation in time of stretched exponential moments of their weak solutions, both for the angular cutoff and the angular non-cutoff case. When the angular kernel is integrable (i.e. the cutoff case), the weight of the stretched exponential moments which propagate in time can be of any order s ∈ [0, 2]. When the angular cross section of the Boltzmann equation has non-integrable singularity described by the parameter β ∈ (0, 2] (with β = 0 corresponding to the cutoff case), then the order of the stretched exponential moments that propagate in time has an upper bound s ≤ 4 2+β . Similarly, if the angular kernel of the Kac equation is described by rate κ ∈ (0, 2] (with κ = 0 corresponding to the cutoff case), then the order of the stretched exponential moments that propagate in time has an upper bound s ≤ 4 2+κ . One of the main tools we use are Mittag-Leffler moments, which generalize the exponential ones.

Introduction

In this paper we study exponential tails (exponentially weighted L 1 norms) of weak solutions to the Kac equation and the spatially homogeneous Boltzmann equation for Maxwell molecules. We show propagation in time of such tails, both in the so-called cutoff and the non-cutoff case.

Both the Kac equation and the Boltzmann equation model the evolution of a probability distribution of particles inside a gas interacting via binary collisions. The models we consider are spatially homogeneous, which means that the probability distribution f (t, v) depends only on time t, velocity v, but not of the spatial variable x. The Kac equation is a model for a 1-dimensional spatially homogeneous gas in which collisions conserve the mass and the energy, but not the momentum. On the other hand, the spatially homogeneous Boltzmann equation describes a gas in a d-dimensional space, with d ≥ 2, in which particles collisions are elastic, meaning they conserve the mass, momentum and energy.

The probability distribution function f (t, v), for time t ∈ R + and velocity v ∈ R d (with d = 1 for the Kac equation and d ≥ 2 for the Boltzmann equation), changes due to the free transport and collisions. In the case of the Kac equation its evolution is modeled by the following equation

∂ t f (t, v) = R π -π (f f * -f f * ) b K (|θ|) dθ dv * . (1) 
The spatially homogeneous Boltzmann equation on the other hand reads

∂ t f (t, v) = R d S d-1 (f f * -f f * ) |v -v * | γ b B v-v * |v-v * | • σ dσ dv * , (2) 
which in the case of Maxwell molecules (γ = 0) reduces to

∂ t f (t, v) = R d S d-1 (f f * -f f * ) b B v-v * |v-v * | • σ dσ dv * . (3) 
Details about the notation employed in these equations are contained in Section 2. For now we only remark that for both equations we consider angular kernels b K and b B that may of may not be integrable. When the angular singularity is non-integrable, our results depend on the singularity rate of the kernels.

The Kac equation ( 1) and the corresponding Boltzmann equation for Maxwell molecules (3) share many properties (one notable difference is that the Kac equation does not conserve the momentum). In particular, both equations propagate polynomial and exponential moments, whose definitions we now recall.

Definition 1.1. The polynomial moment of order q of the distribution function f is defined by

m q (t) := R d f (t, v) v q dv. ( 4 
)
Definition 1.2. The stretched exponential moment of order s and rate α of the distribution function f is defined by

M α,s (t) := R d f (t, v)e α v s dv, α > 0. (5) 
When f solves the Kac equation, the dimension d in these formulas is one. We also remark that we use the following notation

x := 1 + x 2 1 + . . . x 2 d , for any x = (x 1 , . . . , x d ) ∈ R d , d ≥ 1.
The results presented in this paper are also valid when the moments are defined with absolute values |v| in place of v .

In the case of the Kac equation, the study of stretched exponential moments goes back to the work of Desvillettes [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF]. There, the constant angular kernel is considered, and the propagation of stretched exponential moments of orders s = 1 and s = 2 is proved.

The study of stretched exponential moments for the Boltzmann equation with kernels corresponding to Maxwell molecules γ = 0 has been first studied in [START_REF] Bobylëv | Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwell gas[END_REF][START_REF] Bobylëv | The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules[END_REF] via Fourier transform techniques. The theory was later developed for hard potentials γ ∈ (0, 1] in [START_REF] Bobylëv | Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems[END_REF][START_REF] Bobylëv | Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions[END_REF][START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF][START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF][START_REF] Alonso | A new approach to the creation and propagation of exponential moments in the Boltzmann equation[END_REF] and for the non-integrable angular kernels in [START_REF] Lu | On measure solutions of the Boltzmann equation, part I: moment production and stability estimates[END_REF][START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF].

In this paper, we generalize the work of Desvillettes [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF] to include more general orders of stretched exponentials, namely s ∈ (0, 2]. The angular kernels b K too are more general and may or may not be integrable. In the case of non-integrable angular kernels, the singularity rate affects the order of moments that propagate in time. In addition, we apply same technique to prove propagation of stretched exponential moments for the Boltzmann equation with γ = 0, thus extending the result of [START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF].

We point out that the method we employ in this paper differs from the approach in [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF]. Elegant calculations for exponential moments (5) of order s = 1 and s = 2 in [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF] are done directly at the level of exponential moments. In this manuscript, we take a different route and express exponential moments as infinite sums of polynomial moments and then strive to show that such infinite sums are finite. Such approach has been first developed in the context of the Boltzmann equation by Bobylev [START_REF] Bobylëv | Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems[END_REF], where the following fundamental relation was noted

M α,s (t) = R d f (t, v) ∞ q=0 α q v sq q! = ∞ q=0 α q m sq (t) Γ(q + 1) . ( 6 
)
Finiteness of such sums can be studied by proving term-by-term geometric decay, or by showing that partial sums are uniformly bounded.

Our proof is inspired by the works [START_REF] Alonso | A new approach to the creation and propagation of exponential moments in the Boltzmann equation[END_REF][START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF], where the partial sum approach is developed. Moreover, motivated by [START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF], we exploit the notion of Mittag-Leffler moments, which serve as a generalization of stretched exponential moments that is very flexible for the calculations at hand. We recall the definition and the motivation for Mittag-Leffler moments in Section 5.

The paper is organized as follows. A brief review of the Kac equation in provided in Section 2, while the review of the Boltzmann equation is contained in Section 3. In Section 4 we state our main result. Section 5 recalls the notion of Mittag-Leffler functions and moments, one of the main tools in the proof of the main theorem. Section 6 contains another key tool -an angular averaging lemma with cancellation. In Section 7, the angular averaging lemma is used to derive differential inequalities satisfied by polynomial moments of the solution to the Cauchy problem under the consideration. Finally, in Section 8 we provide the proof of the main theorem. The Appendix lists auxiliary Lemmas.

The spatially homogeneous Kac equation

The Kac model statistically describes the state of the gas in one dimension. The main object is the distribution function f (t, x, v) ≥ 0 which depends on time t ≥ 0, space position x ∈ R and velocity v ∈ R, and which changes in time due to the free transport and collisions between gas particles. Assuming that collisions are binary and that they conserve mass and energy, but not momentum, the evolution of the distribution function is determined by the Kac equation.

In this paper we assume that the distribution function does not depend on the space position x, i.e. f := f (t, v). In that case, f satisfies the spatially homogeneous Kac equation

∂ t f (t, v) = K(f, f )(t, v), (7) 
where the collision operator K(f, f ) is defined by

K(f, f )(t, v) = R π -π (f f * -f f * ) b K (|θ|) dθ dv * , (8) 
with the standard abbreviations

f * := f (t, v * ), f := f (t, v ), f * := f (t, v * ).
The velocities v , v * and v, v * denote the pre and post-collisional velocities for the pair of colliding particles, respectively. A collision conserves the energy of the two particles

v 2 + v 2 * = v 2 + v 2 * ,
so by introducing a parameter θ ∈ [-π, π], the collision rules read

v = v cos θ -v * sin θ, (9) 
v * = v sin θ + v * cos θ.
Note that a 2-dimensional vector (v , v * ) can be viewed as a rotation of the 2dimensional vector (v, v * ) by the angle θ.

In this paper we assume that the angular kernel b K (|θ|) ≥ 0 satisfies the following assumption

π -π b K (|θ|) sin κ θ dθ < ∞, for some κ ∈ [0, 2]. ( 10 
)
The case κ = 0 corresponds to the so called Grad's cutoff case, when the angular kernel is integrable on [-π, π]. Otherwise, when κ is strictly positive, i.e. the non-cutoff case, b K (|θ|) is allowed to have κ more degrees of singularity at θ = 0.

2.1. Weak formulation of the collision operator. Since the Jacobian of the transformation ( 9) is unit, for a test function φ(v), the weak formulation of the collision operator

K(f, f ) reads R K(f, f ) φ(v) dv = 1 2 R R π -π f f * (φ(v ) + φ(v * ) -φ(v) -φ(v * )) b K (|θ|) dθ dv * dv. (11) 
2.2. Weak solutions of the Kac equation. We recall the definition of a weak solution to the Cauchy problem for the Kac equation

∂ t f (t, v) = K(f, f )(t, v) t ∈ R + , v ∈ R, f (0, v) = f 0 (v), (12) 
whose existence was proved by Desvillettes in [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF] for the cutoff case, i.e. κ = 0, and by Desvillettes in [START_REF] Desvillettes | About the regularizing properties of the non-cut-off Kac equation[END_REF] for the non-cutoff case, i.e. κ ∈ (0, 2].

Definition 2.1. Let f 0 ≥ 0 be a function defined on R d with finite mass, energy and entropy, i.e.

R f 0 (v) v 2 + |log f 0 (v)| dv < ∞. (13) 
Then we say f ≥ 0 is a weak solution to the Cauchy problem [START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF] with

K(f, f ) given by (8) if f (t, v) ∈ L ∞ [0, +∞) ; L 1 2 , and for all test functions φ ∈ W 2,∞ (R v ) we have ∂ t R f φ(v)dv = R R K φ (v, v * )f f * dvdv * , where K φ (v, v * ) = π -π (φ(v ) -φ(v)) b K (|θ|)dθ.
For these solutions conservation of mass holds

R f (t, v) dv = R f 0 (v) dv. ( 14 
)
while the energy decreases in time. However, the energy is conserved, that is

R f (t, v) v 2 dv = R f 0 (v) v 2 dv, if there exists C > 0 such that R f 0 (v) 1 + |v| 2p dv < C,
for some p ≥ 2. For details, see [START_REF] Desvillettes | About the regularizing properties of the non-cut-off Kac equation[END_REF].

The spatially homogeneous Boltzmann equation

The state of gas particles which at a time

t ∈ R + have a position x ∈ R d and velocity v ∈ R d , d ≥ 2, is statistically described by the distribution function f = f (t, x, v) ≥ 0.
The evolution of such distribution function is modeled by the Boltzmann equation, which takes into account the effects of the free transport and collisions on f . The collisions are assumed to be binary and elastic, that is, they conserve mass, momentum and energy for any pair of colliding particles.

When the distribution function is independent of the spatial variable x, that is f := f (t, v) ≥ 0, which is the so called spatially homogeneous case, the Boltzmann equation reads

∂ t f (t, v) = Q(f, f )(t, v). ( 15 
)
The collision operator Q(f, f ) is defined by

Q(f, f )(t, v) = R d S d -1 (f f * -f f * ) |v -v * | γ b B (û • σ) dσ dv * , (16) 
with the standard abbreviations

f * := f (t, v * ), f := f (t, v ), f * := f (t, v * ).
For a pair of particles, vectors v , v * denote pre-collisional velocities, while vectors v, v * denote their post-collisional velocities. Local momentum and energy are conserved, i.e.

v + v * = v + v * |v | 2 + |v * | 2 = |v| 2 + |v| 2 * .
Thus by introducing a parameter σ ∈ S d-1 , the collision laws can be expressed as

v = v + v * 2 + |v -v * | 2 σ, (17) 
v * = v + v * 2 - |v -v * | 2 σ.
The unit vector σ ∈ S d-1 has the direction of the relative velocity u = v -v * , while the normalization of the relative velocity u = v -v * is denoted by û := u |u| . The angle between these two directions, denoted by θ, is called the scattering angle and it satisfies û • σ = cos θ.

Due to physical considerations, the parameter γ is a number in the range (-d, 1]. In this paper we consider the Maxwell molecules model, which corresponds to

γ = 0. ( 18 
)
The angular kernel b B (û • σ) = b B (cos θ) is a non-negative function that encodes the likelihood of collisions between particles. It has a singularity for σ that satisfies û • σ = 1, i.e. θ = 0, which may or may not be integrable in σ ∈ S d-1 . Its integrability is often referred to as the angular cutoff, while its non-integrability is referred to as the non-cutoff case. In this paper we assume that

π 0 b B (cos θ) sin β θ sin d-2 θ dθ < ∞, for some β ∈ [0, 2]. ( 19 
)
The case β = 0 corresponds to b B (û • σ) being integrable in σ ∈ S d-1 , i.e. it corresponds to the cutoff case. When β > 0, then the angular kernel b B is allowed to have β more degrees of singularity compared to the cutoff case.

In particular, in the case of inverse power-law potentials for the Maxwell molecules, the interaction potential in 3 dimensions is of the form V (r) = r -4 . Then a nonintegrable singularity of the function b B is known

b B (cos θ) sin θ ∼ θ -3 2 , θ → 0.
Therefore, β should satisfy β > 1 2 .

3.1. Weak formulation of the collision operator. Since the Jacobian of the pre to post collision transformation is unit and due to the symmetries of the kernel, for any sufficiently smooth test function φ(v), the weak formulation of the collision operator Q(f, f ) reads

R d Q(f, f ) φ(v) dv = 1 2 R 2d f f * |v -v * | γ S d-1 (φ(v ) + φ(v * ) -φ(v) -φ(v * )) b B (û • σ) dσ dv * dv. (20) 
3.2. Weak solutions to the Boltzmann equation. We recall the definition of a weak solution to the Cauchy problem for the Boltzmann equation

∂ t f (t, v) = Q(f, f )(t, v) t ∈ R + , v ∈ R d , f (0, v) = f 0 (v), (21) 
whose existence in three dimensions and for the angular kernel (19) with β ∈ [0, 2] is proved in [START_REF] Arkeryd | Intermolecular forces of infnite range and the Boltzmann equation[END_REF][START_REF] Villani | On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations[END_REF].

Definition 3.1. Let f 0 ≥ 0 be a function defined in R d with finite mass, energy and entropy

R d f 0 (v) 1 + |v| 2 + log(1 + f 0 (v)) dv < +∞. ( 22 
)
Then we say f is a weak solution to the Cauchy problem (21) if it satisfies the following conditions

• f ≥ 0, f ∈ C(R + ; D (R d )) ∩ f ∈ L 1 ([0, T ]; L 1 2+γ ) • f (0, v) = f 0 (v) • ∀t ≥ 0: f (t, v)ψ(v)dv = f 0 (v)ψ(v)dv, for ψ(v) = 1, v 1 , ..., v d , |v| 2 • f (t, •) ∈ L log L and ∀t ≥ 0 : f (t, v) log f (t, v)dv ≤ f 0 (v) log f 0 dv • ∀φ(t, v) ∈ C 1 (R + , C ∞ 0 (R 3 )), ∀t ≥ 0 we have that R d f (t, v)φ(t, v)dv - R d f 0 (v)φ(0, v)dv - t 0 dτ R d f (τ, v)∂ τ φ(τ, v)dv = t 0 dτ R d Q(f, f )(τ, v)φ(τ, v)dv.

The main results

Our main result establishes propagation of stretched exponential moments for the Kac equation and for the Boltzmann equation corresponding to Maxwell molecules. 

s ≤ 4 2 + κ , (23) 
then for every α 0 > 0 there exists 0 < α ≤ α 0 and a constant C > 0 (depending only on the initial data and κ) so that if 

R f 0 (v)e α0 v s dv ≤ M 0 < ∞, then R f (t, v)e α v s dv ≤ C, ∀t ≥ 0. ( 24 
with β ∈ [0, 2]. If s ≤ 4 2 + β , (25) 
then for every α 0 > 0 there exists 0 < α ≤ α 0 and a constant C > 0 (depending only on the initial data and β) so that if

R d f 0 (v)e α0 v s dv ≤ M 0 < ∞, then R d f (t, v)e α v s dv ≤ C, ∀t ≥ 0. ( 26 
)
Remark 1. We make several remarks about this result.

(i) The order s of the stretched exponential moment that propagates in time depends on the singularity rate of the angular kernel. According to ( 23) and ( 25), the more singular the kernel is, the smaller the s is. (ii) The Gaussian order s = 2 can be reached only in the cutoff case i.e. κ = 0 for the Kac equation or β = 0 for the Boltzmann equation. (iii) The cutoff Kac equation was studied in [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF], where propagation of moments of order s = 1 and s = 2 was proved. We extend this result by allowing s ∈ [0, 2], and by considering the non-cutoff kernels too. (iv) The cutoff Boltzmann equation for Maxwell molecules was studied in [START_REF] Bobylëv | Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwell gas[END_REF][START_REF] Bobylëv | The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules[END_REF],

where propagation of Gaussian moments (s = 2) is proved. We extend this result by allowing s ∈ [0, 2]. (v) The non-cutoff Boltzmann equation for hard potentials γ > 0 was studied in [START_REF] Lu | On measure solutions of the Boltzmann equation, part I: moment production and stability estimates[END_REF] where generation of stretched exponential moments of order s = γ was proved, and [START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF] where propagation of stretched exponential moments was proved depending on the singularity rate of the angular kernel. We extend the work of [START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF] to include the case γ = 0.

Mittag-Leffler moments

In this section, we recall the definition of Mittag-Leffler moments, first introduced in [START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF]. They are a generalization of stretched exponential moments, and they are convenient for the study of exponential decay properties of a function f . Namely, these moments are the L 1 norms weighted with Mittag-Leffler functions which asymptotically behave like exponentials. More precisely, a Mittag-Leffler function with parameter a > 0 is defined by

E a (x) := ∞ q=0 x q Γ(aq + 1) , a > 0, x ∈ R.
Note that E 1 (x) is simply the Maclaurin series of e x , while it is well-known that for a > 0 E a (x) ∼ e x 1/a , as x → +∞. Therefore,

e α v s ∼ E 2/s (α 2/s v 2 ) = ∞ q=0 α 2q s Γ( 2 s q + 1) v 2q , when v → +∞.
This motivated the definition of Mittag-Leffler moment [START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF] Definition 5.1. The Mittag-Leffler moment of a rate α > 0 and an order s > 0 is defined via

M α,s (t) := R d f (t, v) E 2/s (α 2/s v s ) dv = ∞ q=0 α 2q s Γ( 2 s q + 1) m 2q (t)
for any t ≥ 0.

Remark 2. Due to the asymptotic behavior of Mittag-Leffler functions, the finiteness of the stretched exponential moment M α,s (t) at any time t > 0 is equivalent to the finiteness of the corresponding Mittag-Leffler moment M α,s (t).

Angular averaging lemmas with cancellation

Before proving Theorem 4.1, we provide an estimate of the angular part of the weak formulation [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] and (20) when the test function is a monomial φ(v) = v 2q . These bounds will be later used to derive a differential inequality for polynomial moment in Lemma 7.1. Lemma 6.1. Let q ≥ 2.

(a) Kac equation: Suppose that the angular kernel of the Kac equation b K satisfies the assumption [START_REF] Lu | On measure solutions of the Boltzmann equation, part I: moment production and stability estimates[END_REF].

Then π -π v 2q + v * 2q -v 2q -v * 2q b K (|θ|) dθ ≤ - C 1 2 v 2q + v * 2q + C 1 2 v 2 v * 2q-2 + v 2q-2 v * 2 + C 1 q(q -1)ε κ,q v 2 v * 2 v 2 + v * 2 q-2 ,
where

C 1 = π -π sin 2 (2θ) b K (|θ|) dθ < ∞ (27) 
and

ε κ,q = 2 C 1 π -π sin 2 (2θ) b K (|θ|) 1 0 t 1 - t 4 sin 2 2θ q-2 dt dθ ≤ 1. ( 28 
)
(b) Boltzmann equation for Maxwell molecules: Suppose that the angular kernel b B satisfies the assumption (19).

S d-1 v 2q + v * 2q -v 2q -v * 2q b B (û • σ) dσ ≤ -C 2 v 2q + v * 2q + C 2 v 2 v * 2q-2 + v 2q-2 v * 2 + C 2 q(q -1)ε β,q v 2 v * 2 v 2 + v * 2 q-2 ,
where

C 2 = |S d-2 | π 0 b B (cos θ) sin d θ dθ < ∞ (29) 
and

ε β,q = 2 C 2 |S d-2 | π 0 sin d (θ) b B (cos θ) 1 0 t 1 - t 2 sin 2 θ q-2 dt dθ ≤ 1. ( 30 
)
Remark 3. The sequences {ε κ,q } q and {ε β,q } q are decreasing to zero with a certain decay rate depending on the angular singularity rate κ ∈ [0, 2] in the case of the Kac equation and β ∈ [0, 2] in the case of the Boltzmann equation, [START_REF] Lu | On measure solutions of the Boltzmann equation, part I: moment production and stability estimates[END_REF],

ε κ,q q 1-κ 2 → 0, as q → ∞, (31) 
ε β,q q 1-β 2 → 0, as q → ∞. ( 32 
)
Proof of Lemma 6.1. The proof of part (b) can be found in [START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF]Lemma 2.3]. Thus, here we provide only the proof of part (a).

If E(θ) denotes the following convex combination of particle energies

E(θ) := v 2 cos 2 θ + v * 2 sin 2 θ, (33) 
then, using the collision rules (9), we obtain

v 2 = E(θ) -2vv * sin θ cos θ, v * 2 = E(π -θ) + 2vv * sin θ cos θ. ( 34 
)
Taylor expansion of v 2q around E(θ) up to the second order yields

v 2q = (E(θ) -2vv * sin θ cos θ) q = E(θ) q -2qE(θ) q-1 vv * sin θ cos θ + 4q(q -1)v 2 v 2 * sin 2 θ cos 2 θ 1 0 (1 -t) (E(θ) -2 t vv * sin θ cos θ) q-2 dt.
Analogous expression can be written for v * as well.

The first order term in the above expression is an odd function in θ, which nullifies by integration over the even domain [-π, π]. Therefore, we can write

π -π v 2q + v * 2q -v 2q -v * 2q b K (|θ|) dθ = I 1 + I 2 ,
where

I 1 = π -π E(θ) q + E(π -θ) q -v 2q -v * 2q b K (|θ|) dθ, I 2 = 4q(q -1)v 2 v 2 * π -π sin 2 θ cos 2 θ b K (|θ|) × 1 0 (1 -t) (E(θ) -2 t vv * sin θ cos θ) q-2 + (E(π -θ) + 2 t vv * sin θ cos θ) q-2 dt dθ.
We now proceed to estimate the terms I 1 and I 2 separately.

Term I 1 . The term I 1 is estimated by an application of Lemma A.1. Indeed, for t = cos 2 θ, so that 1 -t = sin 2 θ, and a = v 2 , b = v * 2 , recalling (33) we obtain:

I 1 ≤ -2 π -π cos 2 θ sin 2 θ v 2q + v * 2q b K (|θ|) dθ + 2 π -π cos 2 θ sin 2 θ v 2 v * 2q-2 + v 2q-2 v * 2 b K (|θ|) dθ = - 1 2 v 2q + v * 2q π -π sin 2 2θ b K (|θ|) dθ + 1 2 v 2 v * 2q-2 + v 2q-2 v * 2 π -π sin 2 2θ b K (|θ|) dθ.
Therefore, recalling (27), we have

I 1 ≤ - C 1 2 v 2q + v * 2q + C 1 2 v 2 v * 2q-2 + v 2q-2 v * 2 .
Term I 2 . By Cauchy-Schwartz inequality, -2 t vv * sin θ cos θ ≤ t E(π -θ). Thus,

E(θ) -2 t vv * sin θ cos θ ≤ E(θ) + t E(π -θ) = v 2 + v * 2 -(1 -t)E(π -θ) ≤ v 2 + v * 2 1 -(1 -t) sin 2 2θ 4 ,
where the last inequality follows from

E(π -θ) = v 2 sin 2 θ + v * 2 cos 2 θ ≥ v 2 + v * 2 min sin 2 θ, cos 2 θ ≥ v 2 + v * 2 sin 2 2θ 4 .
The same estimate holds for E(π -θ) + 2tvv * sin θ cos θ. Therefore, recalling (28) the definition of ε κ,q , we have

I 2 ≤ 2q(q -1)v 2 v 2 * v 2 + v * 2 q-2 ε κ,q .
Adding estimates for terms I 1 and I 2 completes the proof of lemma. 

m 2q ≤ -C 1 m 0 m 2q + C 1 m 2 m 2q-2 + C 1 q(q -1) ε κ,q q+1 2 k=1 q -2 k -1 m 2k m 2q-2k . ( 35 
)
(b) In the case of the Boltzmann equation for Maxwell molecules,

m 2q ≤ -C 2 m 0 m 2q +C 2 m 2 m 2q-2 +C 2 q(q -1) ε β,q q+1 2 k=1 q -2 k -1 m 2k m 2q-2k . ( 36 
)
Proof. Multiplying the Kac equation ( 7) with v 2q and integrating with respect to v, we obtain an equation for the polynomial moment m 2q

m 2q = R v 2q K(f, f )(t, v) dv.
Using the weak formulation [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] one has

m 2q = R R f f * π -π v 2q + v * 2q -v 2q -v * 2q b K (|θ|) dθ dv * dv. (37) 
Applying Lemma 6.1 and Lemma A.2 yields

m 2q ≤ R R f f * - C 1 2 v 2q + v * 2q + C 1 2 v 2 v * 2q-2 + v 2q-2 v * 2 + C 1 2 q(q -1) ε κ,q v 2 v 2 * v 2 + v * 2 q-2 dv * dv ≤ R R f f * - C 1 2 v 2q + v * 2q + C 1 2 v 2 v * 2q-2 + v 2q-2 v * 2 + C 1 2 q(q -1) ε κ,q v 2 v * 2 ×   kq-2 k=0 q -2 k v 2k v * 2(q-2-k) + v 2(q-2-k) v * 2k     dv * dv = -C 1 m 0 m 2q + C 1 m 2 m 2q-2 + C 1 q(q -1) ε κ,q kq-2 k=0 q -2 k m 2k+2 m 2q-2k-2 .
It remains to change index k in the sum and the part (a) is proven. The proof of the part (b) can be done in an analogous way.

Lemma 7.2 (Propagation of polynomial moments ). Suppose f is a weak solution to the Cauchy problem of either Kac equation [START_REF] Tasković | On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff[END_REF] or the Boltzmann equation for Maxwell molecules (21). Then for every q ≥ 0, we have

m 2q (0) < ∞ ⇒ m 2q (t) ≤ C * q , (38) 
where the constant C * q > 0, is uniform in time, and depends on q and the first q moments of the initial data.

Proof. Applying the inequality (57) to the differential inequality (35) yields

m 2q ≤ -C 1 m 0 m 2q + C q m 2q-2 , (39) 
where C q = C 1 m 2 (0) + C 1 q(q -1) 2 q-2 . Therefore,

m 2q (t) ≤ max m 2q (0), C q C 1 m 0 (0) m 2q-2 (t) . (40) 
Applying this inequality inductively, for an integer q ∈ N, we have

m 2q (t) ≤ max m 2q (0), C q C 1 m 0 (0) m 2q-2 (0), C q C 1 m 0 (0) C q-1 C 1 m 0 (0) m 2q-4 (t) .... ≤ max m 2q (0), C q m 2q-2 (0) C 1 m 0 (0) , C q C q-1 m 2q-4 (0) (C 1 m 0 (0)) 2 , . . . , C q C q-1 . . . C 2 m 2 (t) (C 1 m 0 (0)) q-1 ≤ max m 2q (0), C q m 2q-2 (0) C 1 m 0 (0) , C q C q-1 m 2q-4 (0) (C 1 m 0 (0)) 2 , . . . , C q C q-1 . . . C 2 m 2 (0) (C 1 m 0 (0)) q-1 .
Therefore, every even moment is bounded uniformly in time. Moments whose order is not an even integer can be interpolated by even moments. For example, if 0 < 2q -2 ≤ p ≤ 2q, then

m p ≤ m 2q-p 2 2q-2 m p-2q+2 2 2q 
.

Hence, polynomial moments of non-even orders are bounded uniformly in time as well.

Remark 4. We also note that derivatives of polynomial moments are uniformly bounded in time. Namely, applying the inequality (57) to the differential inequality (35) yields

m 2q (t) ≤ C q m 2q-2 (t), (41) 
where C q = C 1 m 2 (0) + 4q(q -1) ε κ,q 2 q-2 . Lemma 7.2 implies that m 2q-2 (t) is bounded uniformly in time by a constant C * q-1 . Thus,

m 2q (t) ≤ C q C * q-1 . (42) 
8. Proof of Theorem 4.1

Proof of Theorem 4.1 (a). Recall from Remark 2 that finiteness of the stretched exponential moment M α,s (t) is equivalent to finiteness of the Mittag-Leffler moment of the same rate and order. Therefore, we set out to prove finiteness of Mittag-Leffler moment of order s and rate α that will be determined later:

M α, 2 a (t) = ∞ q=0 α aq Γ(aq + 1) m 2q (t), (43) 
where a = 2 s > 1.

The case a = 1 corresponds to s = 2 i.e. Gaussian moments. Propagation of such moments can be esablished according to (23) only in the cutoff case κ = 0. This result (propagation of Gaussian moments in the cutoff case) was alrady established in [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF]. Thus, we here focus on the case when a > 1.

The goal is to prove that partial sums of (43)

E n (t) := q(q -1) ε κ,q α aq Γ(aq + 1)

kq k=1 q -2 k -1 m 2k m 2q-2k ,
for any q 0 ≥ 3, we obtain the following differential inequality for the partial sum

E n : d dt E n ≤ S 0 -A 2 m 0 S 1 + A 2 m 2 S 2 + 4S 3 . (44) 
We proceed to estimate each S i , i = 0, 1, 2, 3 separately.

For later purposes, we introduce a constant which will be an upper bound for the first q 0 -1 polynomial moments and their derivatives. Let,

c q0 = max q=1,...,q0-1 C * q , C q C * q-1 , (45) 
where C * q is the constant from Lemma 7.2, and C q C * q-1 is from Remark 4. Then m 2q (t) ≤ c q0 and m 2q (t) ≤ c q0 for q = 1, 2, ..., q 0 -1.

(46)

Term S 0 . Since the mass is conserved (14), i.e. m 0 = 0, the first term in the sum S 0 is equal to zero. Hence, by (46) we have

S 0 = α a q0-1 q=1 m 2q α a(q-1) Γ(aq + 1) ≤ c q0 α a q0-1 q=1
α a(q-1) Γ(aq + 1) .

Reindexing the sum and using the monotonicity of the Gamma function Γ(aq + a + 1) ≥ Γ(q + 1), for a > 1, q = 0, 1, 2, . . . , we obtain

S 0 ≤ c q0 α a q0-2 q=0 α aq Γ(aq + a + 1) ≤ c q0 α a q0-2 q=0 (α a ) q Γ(q + 1) ≤ c q0 α a e α a ≤ 2c q0 α a , (47) 
for α small enough so that

e α a ≤ 2, or α ≤ (ln2) 1/a . (48) 
Term S 1 . Using the bound (46) and parameter α chosen so that (48) holds, we have

S 1 = E n -m 0 - q0-1 q=1 m 2q α aq Γ(aq + 1) ≥ E n -m 0 -2c q0 α a . (49) 
Term S 2 . Using again the monotonicity of the Gamma function, we obtain

S 2 = α a n q=q0 m 2q-2 α a(q-1) Γ(aq + 1) ≤ α a n q=q0
m 2(q-1) α a(q-1) Γ(a(q -1) + 1)

≤ α a E n-1 ≤ α a E n . ( 50 
)
Term S 3 . Using the property of the Beta function B(x, y) = Γ(x)Γ(y) Γ(x+y) , the term S 3 can be rearranged where the last estimate follows by an application of Lemma A.4.

S 3 = n q=q0 q(q -1) ε κ,q α aq Γ(aq + 1) kq k=1 q -2 k -1 m 2k α ak Γ(ak + 1) m 2q-2k α aq-ak Γ(aq -ak + 1) × B(ak + 1, aq -ak + 1)Γ(aq + 2) ≤ n q=q0 q(q -1)(aq + 1) ε κ,q   kq k=1 q -2 k -1 B(ak + 
Since by (23) we have

2 -a = 2 - 2 s ≤ 1 - κ 2 ,
Remark 3 implies that q 2-a ε κ,q q is a decreasing sequence and q 2-a ε κ,q → 0, as q → ∞.

If we denote c a = aC a , then the monotonicity of q 2-a ε κ,q q yields

S 3 ≤ c a q 2-a 0 ε κ,q0 n q=q0 q+1 2 k=1 m 2k α ak Γ(ak + 1) m 2q-2k α aq-ak Γ(aq -ak + 1) ≤ c a q 2-a 0 ε κ,q0   n+1 2 k=1 m 2k α ak Γ(ak + 1)   n-1 =1 m 2 α a Γ(a + 1) ≤ c a q 2-a 0 ε κ,q0 E n E n (52) 
Going back to (44) and applying the bounds (47), ( 49), (50), (52) we obtain a differential inequality for the partial sum

E n d dt E n (t) ≤ -A 2 m 0 (t)E n (t) + c q0 α a + A 2 m 0 (t) 2 + A 2 m 0 (t)c q0 α a + A 2 m 2 (t)α a E n (t) + 4c a q 2-a 0 ε κ,q0 (E n (t)) 2 .
Due to the conservation of mass, i.e. m 0 (t) = m 0 (0), and the dissipation of energy, i.e. m 2 (t) ≤ m 2 (0) for the weak solution f , we have

d dt E n (t) ≤ -A 2 m 0 (0)E n (t) + c q0 α a + A 2 m 0 (0) 2 + A 2 m 0 (0)c q0 α a + A 2 m 2 (0)α a E n (t) + 4c a q 2-a 0 ε κ,q0 (E n (t)) 2 . ( 53 
)
To show that such E n (t) is uniformly bounded in time and n, we define

T n := sup {t ≥ 0 : E n (τ ) < 4M 0 , ∀τ ∈ [0, t)} ,
where M 0 is the bound on the initial data in (4.1), with the goal of proving that T n = ∞ for all n ∈ N.

The number T n is well-defined and positive. Indeed, since α < α 0 , at time t = 0 we have = M α0, 2 a (0) < 4M 0 , uniformly in n, by (4.1). Since E n (t) are continuous functions of t, E n (t) < 4M 0 for t on some positive time interval [0, t n ), t n > 0. Therefore, T n > 0.

E n (0) =
Also, since E n (t) ≤ M 0 holds on the time interval [0, T n ], from (53) we obtain the following differential inequality d dt E n (t) ≤ -A 2 m 0 (0)E n (t) + c q0 α a + A 2 m 0 (0) 2 + A 2 m 0 (0)c q0 α a + A 2 m 2 (0)α a M 0 + 4c a q 2-a 0 ε κ,q0 (M 0 ) 2 .

We conclude that E n (t) ≤ M 0 + c q0 α a + A 2 m 0 (0) 2 + A 2 m 0 (0)c q0 α a + A 2 m 2 (0)α a M 0 + 4c a q 2-a 0 ε κ,q0 (M 0 ) 2 A 2 m 0 (0) = M 0 + m 0 (0) + α a c q0 A 2 m 0 (0) + c q0 + m 2 (0)M 0 m 0 (0) + 4c a q 2-a 0 ε κ,q0 (M 0 ) 2 A 2 m 0 (0) .

(54)

First, since q 2-a 0 ε κ,q0 converges to zero as q 0 tends to infinity, we can choose q 0 large enough so that 4c a q 2-a 0

ε κ,q0 (M 0 ) 2 A 2 m 0 (0) ≤ M 0 2 . ( 55 
)
Then, we choose α sufficiently small so that

α a c q0 A 2 m 0 (0) + c q0 + m 2 (0)M 0 m 0 (0) ≤ M 0 2 . ( 56 
)
Therefore, applying estimates (55), (56) and m 0 (0) ≤ M 0 to the differential inequality (54) yields E n (t) ≤ 3M 0 < 4M 0 , for any t ∈ [0, T n ]. Therefore, the strict inequality E n < 4M 0 holds on the closed interval [0, T n ] for each n. But, since E n (t) is continuous function in t, the inequality E n (t) < 4M 0 holds on a slightly larger interval [0, T n + µ), µ > 0. This contradicts definition of T n unless T n = +∞ for all n. Therefore, E n (t) < 4M 0 for any t ∈ [0, +∞) and for all n ∈ N.

Hence, letting n → ∞, we conclude that M α,s (t) < 4M 0 for all t ≥ 0.

Part (b) of Theorem (4.1) can be proved completely analogously to the proof of part (a). This is due to the similarity of the differential inequalities for polynomial moments (35) and (36). In addition, according to (31) the decay rate of the sequences ε k , q and ε β , q depends in the exact same way on the the singularity rate of the angular kernel (κ for the Kac equation and β for the Boltzmann equation).
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 41 Suppose initial datum f 0 ≥ 0 has finite mass, energy and entropy, i.e. (13) in case of the Kac equation and (22) in the case of the Boltzmann equation. (a) Kac equation: Let f (t, v) be an associated weak solution to the Cauchy problem (12), with (8) and with the angular kernel satisfying (10) with κ ∈ [0, 2]. If

  ) (b) Boltzmann equation for Maxwell molecules: Let f (t, v) be an associated weak solution to the Cauchy problem (21) with the angular kernel satisfying (19)
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 771 Bounds on polynomial momentsLemma With assumptions and notations of Lemma 6.1, we have the following differential inequalities for a polynomial moment m 2q (a) In the case of the Kac equation,

  in time and n. From the differential inequality for polynomial moments (35), and by denoting

1 ,mm

 1 aq -ak + 1) 2k α ak Γ(ak + 1) m 2q-2k α aq-ak Γ(aq -ak + 1) 2k α ak Γ(ak + 1) m 2q-2k α aq-ak Γ(aq -ak + 1) ,
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Appendix A. Auxiliary results

Lemma

Lemma A.2. Assume p > 1 and let k p = p+1

2

. Then, for all x, y > 0 the following inequality holds:

Then for any x, y ≥ 0 x a y p-a + x p-a y a ≤ x b y p-b + x p-b y b . Remark 5. The above lemma is useful for comparing products of moments whose total homogeneity is the same. Namely,

Lemma A.4. Let p ≥ 3 and k p = p+1

2

. Then for any a > 1 we have

where the constant C a depends only on a.