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Abstract—The primary aim of the study was to investigate the
optimal scaling of a simple generic wave absorber for a range
of operation sites characterized by their level of incoming wave
power, annually averaged. The first step is to to answer the simple
question: “What is the optimal size of my device in a sea state
characterized by a wave height and peak spectrum period?”.
It is shown how to find the optimum scale starting from the
power response operator of the reference device at unity scale.
From this primary result, the method is extended to answer the
same question but now considering an installation site with its
own set of sea states given as a scatter diagram. In each case
the answer could seem rather counterintuitive refering to the
common practise in this matter.

Index Terms—Wave Energy Converter, WEC, point absorber,
hydrodynamic optimal scaling

I. INTRODUCTION

Basically the design of a wave energy converter (WEC)

begins by the choice of a working principle among the tenth

of proposals which can be found in the literature or in patents

data bases, or simply from the imagination of an inventor.

Immediately after, the second step is the choice of the length

of the device, which in turn will determine the size, then the

choice of all the sub-systems. A lot of criteria and constraints

must be accounted for is this optimization process, including:

efficiency (i.e mean annual energy production), building costs,

availability of components and sub-systems, transportation and

installation costs, CAPEX and OPEX, and some more. But one

of the most important is certainly the hydrodynamic efficiency,

which is certainly the main driver for lowering the Levelized

Cost of Energy (LCOE). For the most populated familly of

devices consisting in large body(ies) moving in response to

the excitation of the waves, it is well known that the optimal

sizing in terms of hydrodynamics is ”decided by the sea”

itself, not by the developper ! At a given installation site, the

energy production is not a monotically increasing function of

the length as in the case of wind or tidal turbines. In other

word, the maximization of the energy by the maximization

of the body response results from a process which tunes

the impedance of the WEC system to the oscillatory wave

excitation. In this paper, we will illustrate this process by

working the very simple and basic example of the uncontrolled

”heaving can” generic WEC. This will permit to point out that

the results of a rational approach eventually results in a scaling

different from the intuitive approach generally adopted by

developpers. Starting from the hydrodynamic characteristics

and energetic efficiency (production matrix) of a heaving

cylinder (fig.1 given as the scale 1/1 basis, we will show how

to find the optimal scaling of the device working: (i) in a

two parameters sea state, then (ii) at a site characterized by

its scatter diagram derived from the mean power level as a

unique parameter.

Fig. 1: the 1DoF generic wave absorber

II. THE ”HEAVING CAN” AS A GENERIC WAVE ABSORBER

A. Basic results in frequency domain

We will consider here a floating cylinder free to move in

heave only, and idealy restrained on all the other degree of

freedom. The restoring force opposing the displacement is

solely the hydrostatic vertical force KHζ. The external Power

Take Off (PTO) force is a linear damper proportional to the

velocity ζ̇. This system constitutes one of the most simple one
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Fig. 2: Hydrodynamic coefficients of the WEC cylinder

degree-of-freedom (1DoF) wave absorber; it is used here just

to exemplify the concept of hydrodynamical optimal scale on

the simplest exemple.

The WEC data defining the scale 1/1 reference device are:

Diameter = 5m

Draft = 5m

Mass =98174 kg (with ρ = 1000 kg / m3)

KH=192619 N / m
Let ζ measure the response of the cylinder to the incoming

waves along the vertical axis �z (positive upwards). In the

present study, we will use the frequency domain approach,

assuming the dynamic model of the WEC as fully linearized.

Under this assumption, the equation of motion of the WEC

derived from Newton’s law can be written in the usual form:

(M + MR(ω)) ζ̈ + BR(ω)ζ̇ + KHζ = Fex(t)−BPTO ζ̇ (1)

In this classical frequency domain approach, all time-

varying variables are supposed being harmonic, of the form:

x(t) = �e
[
X(iω)eiωt

]
ζ̇(t) = �e

[ .
ζ̃(iω)eiωt

]
; ζ(t) = �e

[
1

iω

.

ζ̃(iω)eiωt
]

(2)

ζ̈(t) = �e

[
iω
.

ζ̃(iω)eiωt
]

; Fex(t) = �e
[
F̃ex(iω)eiωt

]
(3)

leading to the frequency domain mechanical response equa-

tion:[
iω (M + MR(ω)) + (BR(ω) + BPTO) + KH

iω

] .
ζ̃

= F̃ex(iω)
(4)

Here MR and BR are respectively the wave radiation added

mass and the wave radiation damping coefficients of the

floating cylinder under investigation herein. For such a simple

truncated cylinder, semi-analytical expressions for MR and

BR are available in litterature, and have been used in this

study. They are plotted in fig.2. From this later equation one

Fig. 3: Response Amplitude Operator (RAO) and Power

Response Operator (PRO) of the WEC ar scale 1/1.

derives the complex transfer function
.

ζ̃/F̃ex(iω) linking the

output (vertical velocity) to the input (wave excitation force)

of this 1DoF WEC system :

.

ζ̃(ω) =
F̃ex(ω)[

(BR(ω) + BPTO) + iω
(
M + MR(ω)− KH

ω2

)]
(5)

In this simplified linear approach, the mean power recovered

by the heaving WEC on regular waves at angular frequency

ω and amplitude of 1m is given by

P̃PTO(ω) =
1

2
BPTO

∣∣∣∣ .ζ̃(ω)

∣∣∣∣
2

(6)

Without any added restoring force, the natural frequency of

the WEC defined above is calculated as

ω0 =

√
KH

M + MR(ω)
(7)

giving ω0 = 1.18 rad / s as angular frequency, or T0 =
5.32 s as natural period.

In all this study we shall consider the problem of an

uncontrolled WEC, implying that the value of BPTO will be

held fixed with regard to the wave frequency, but will vary

only in the scaling process as all other parameters; refering

to the classical results for control of WECs (see e.g [5]),

it will be chosen as the value of the damping coefficient at

resonance: BPTO = BR(ω0) , namely, at reference scale 1/1:

BPTO = BR(1.18) = 3862.45 N s / m

Applying these parameters to (5) and (6) gives the amplitude

of the heave response (per meter of incident wave ampli-

tude), and the related extracted power through the PTO (per

square meter of incident wave amplitude), named respectively

Response Amplitude Operator (RAO) and Power Response

Operator (PRO), plotted here on fig.3.
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B. Power absorbed by the reference WEC in an irregular sea
state

From the result above, primarily from the PRO curve,

and the assumptions of the linear theory which permit the

modelling of the response in monodirectional irregular waves

by combination of several regular plane wave, we will now

look at the energy recovered in such a system of irregular

plane waves.

The system of irregular wave is characterized here by its

energy density spectrum. A Bretschneider form is chosen here

for reasons of coherence with the work of Burger et al. [2]

that will be used later on in this paper. The Bretschneider law

[6] give the spectral density as a function of the wave angular

frequency ω, a significant wave height Hs and a peak period

Tp:

SB(ω) =
5

16
H2
s

ω4
m

ω5
e−

5
4 (
ωm
ω )

4

(8)

with [6]

ωm =

(
3

5

) 1
4 2π

Tp
= 5.530

1

Tp
(9)

where the total energy is obtained from the first moment of

the spectrum: m0 =
∫∞
0

SB(ω)dω = H2
s /16, leading to:

Hs = 4
√

m0 (10)

The computation of the power absorbed by a WEC on a sea

state defined by its Bretchneider spectrum as defined above is

then computed as:

P (Hs, Tp) = 4

∫ ∞

0

P̃PTO(ω)SB(Hs, Tp, ω)dω (11)

After discretization of the continuous spectrum into a set

of N regular waves of circular frequency ωi and amplitude

Ai , each of them carrying the equivalent energy contained in

the band δω = ωi − ωi−1 , the total absorbed power is then

computed as:

P (Hs, Tp) = 4
N∑
i=1

P̃PTO(ωi)SB(ωi)δω (12)

with the amplitude of the ith component Ai = 2
√

SB(ωi)δω.

With the heaving cylinder defined above as our unity scale

reference WEC , the power matrix fig.4 can be established by

using these formulas for a large range of irregular sea states

defined by the bin (Hs, Tp). On this figure one can notice that

the productivity of the device is at its best when the peak

period coincide with its natural period (T0 = 5.32s), which is

logical for such a narrow banded device. (see PRO curve in

fig.3).

With this basic stuff in hand, we are now able to answer

the first question developpers are faced to: ”for a given sea

state (Hs, Tp), and a given reference device, what is the

optimal length scaling which will maximize the production”, at

first considering only hydrodynamics properties to answer the

question, and regardles all other constraints (PTO efficiency,

construction cost, maintenance cost, etc..).

Fig. 4: Power matrix of the reference WEC at scale 1/1.

III. FROUDE SCALING LAWS

From the reference device, we will now vary systematically

the length scale, while keeping constant the physical param-

eters of the problem: ρ, g. Let σ denotes the scale of the

transformation (i.e Lσ = σL1 , if L1 denotes for the reference

length at scale 1). In this scaling, the ratio of the device length

over the wavelength must indeed be kept constant, as being a

non dimensonal quantity. The wavelength is derived from the

dispersion relation of free surface hydrodynamics:

λ = 2πg
1

ω2
(13)

where l is the wavelength. From this relation, the scaling law

for time-like quantities is derived:

Tσ
T1

= σ
1
2 (14)

Once time and length ratio hes been defined , all ratio for

physical quantities of interest may be readily deduced; let us

summarize them in a table:

Variable unit Scaling law

Angular displacement rad θσ
θ1

= 1

Angular velocity (frequency) rad . s−1 ωσ
ω1

= σ−
1
2

Angular acceleration rad . s−2 ασ
α1

= σ−1

Area m2 Aσ
A1

= σ2

Force N Fσ
F1

= σ3

Linear displacement m Lσ
L1

= σ

Linear velocity m . s−1 Uσ
U1

= σ
1
2

Linear acceleration m . s−2 γσ
γ1

= 1

Mass kg mσ
m1

= σ3

Moment N . m Mσ
M1

= σ4

Power W = N . m . s−1 Pσ
P1

= σ
7
2

Pressure Pa pσ
p1

= σ

Time s Tσ
T1

= σ
1
2

Volume m3 Vσ
V1

= σ3
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Fig. 5: Power Response Operator curve of the device at

various scales: σ = 1, 2, 4, 6.

Now, from the Power Response Operator P̃1 (ω) at scale 1

(= P̃PTO(ω) in eq.6) , we can derive the PRO curve of the

device at any scale σ directly with P̃σ (ωσ) = σ
3
2 P̃1 (ω).

Figure fig.5 shows the resulting Power Response Operators

P̃2 , P̃4 , P̃6 for a short set of scales: σ = 2, 4, 6. From any of

them we can establish a new scaled power matrix following

the same steps as before for the reference scale 1/1 case.

Four examples of upscaled power matrix are shown in fig.6.

One can easily check here that the wave period of optimal

efficiency matches the natural period of the WEC as it grows

in size (x σ) and volume (x σ3).

Once this data base established, it is very easy to extract

the best scaling of the WEC for a given sea state (Hs, Tp)
by a one dimensional sweeping over the variable σ. Here,

as an example, a table is drawn with the optimal scaling

corresponding to several values of Tp , while keeping constant

Hs = 2m.

Hs Tp σopt P (σopt) D T0

m s kW m s

2 7 2.550 50 12.8 8.50

2 9 4.279 109 21.4 11.00

2 11 6.386 200 31.9 13.44

2 13 8.890 331 44.5 15.86

2 15 11.880 510 59.4 18.34

Now, for any given sea state (Hs, Tp), we are able to

determine the optimal scale of the WEC, and from it by fol-

lowing the scaling rules recalled in section above, its diameter,

volume, natural period and optimal power corresponding to

this scale. Considering now the table above, and fig.7 where

the natural period of the optimally scaled WEC is plotted

against the peak period Tp of the Bretchneider spectrum, one

can answer the question posed at the beginning and derive

the first conclusion of this study as: the natural period of the

optimally scaled WEC is not equal but always larger (22% in

the present case) than the peak period of the spectrum.

This could be attributed to the fact that none of the functions

involved in eq.11 is symmetric with respect to its apex.

This partial conclusion is however rather counter-intuitive,

and should be known by WEC developpers at the very first

stage of design. Conversely, a lot of examples can be found

in the related literature where authors base the sizing of their

WEC precisely on the matching of these two periods.

Nevertheless, although the interest of the warning, this

conclusion remains partial as long as we have considered only

one sea state, given that a WEC is never optimized for a single

sea state, but rather for a large set of sea states weighted by

their probability of occurence during the lifetime of the device

at a given site.

IV. OPTIMAL SCALING FOR A GIVEN INSTALLATION SITE

A. From the sea state to the scatter diagram

This set of probability of occurence of sea states (Hs, Tp)
at a given site is generally called the scatter diagram. It is

established by analysing the statistics of wave measurements

by buoys moored at the site, if any, and require several years

of data to reach an sufficient operational accuracy. When these

data are required at a site where no data from measurement

buoy is available, scatter diagrams are established by exploit-

ing sea states hindcast data bases which are computed by

running metocean wave computer models like Wave Watch

III which compute these parameters on a grid from the long

history of recorded meteorological conditions [7].

Whatever the method used to obtain it, let us consider from

now on that we know a function f of Hs and Tp giving the

density of probability of occurence of the associated sea state

(Hs, Tp). From it, the number of hours with such a sea state

in a year h(Hs, Tp) will be obtained by multiplying fdHdT
by 8766 which is the number of hours a year (here corrected

to account for leap years). Finally the production of energy

Fig. 7: natural period T0 of optimaly scaled WECs versus

peak period of the Bretchneider spectrum.
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Fig. 6: Evolution of the power matrix with upscaling : σ = 2, 4, 6, 8

for a WEC over one year on the site will be simply given by:

Eσ = 8766

∫ ∞

0

dH

∫ ∞

0

Pσ(H, T )f(H, T )dT (15)

where σ is to indicate that the device and then its production

matrix is dependent on the scaling, here considered as a

parameter.

So the second question we’ll try to answer now is: given a

site with a known scatter diagram, what is the scaling which

will optimize the yearly averaged energy production? As pre-

viously, the optimum is to be understood in a hydrodynamical

sense only, and still in the framework of linear modelling

without other constraints.

B. The Ochi’s bivariate probability function

In this methodology study, we did not seek answering this

question for a particular site (with a particular scatter diagram),

but rather find a way to generate as many scatter diagram as

necessary from an analytical model. We choose the model

proposed by Ochi [1] and applied by Burger et al. [2], giving

the joint probability density function for Hs and Tp as a

bivariate log-normal model:

fO(Hs, Tp) =
1

2πHsTpδHsδTp
√

1− ρ2
exp

(
− 1

2 (1− ρ2)
q

)
(16)

with

q = q1 + q2 + q3
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and

q1 =

(
log Tp − λTp

δTp

)2

q2 = −2ρ

(
log Tp − λTp

)
(log Hs − λHs)

δHsδTp

q3 =

(
log Hs − λHs

δHs

)2

The parameter ρ here is the linear correlation coefficient

between the two variables, and is given by:

ρ =
cov (log Tp, log Hs)

δHsδTp
(17)

Fig. 8: Ochi’s joint probability density function pO(Hs, Tp)
for an average power level of κ = 50kW/m.

In this Ochi’s model, fO(Hs, Tp) is a function of two

variables and five parameters: λTp , λHs , δTp , δHs and ρ. In

their approach to define a synthetic joint PDF for a large

oceanic region, Burger et al. [2] established, by regressive opti-

mization, several sets of the parameters for four different areas

of the near Atlantic Ocean. They used all scatter diagrams

available in the WERATLAS database in each delimited area,

and proceeded by error minimization. The five parameters

λTp , λHs , δTp , δHs and ρ valid for the near coastal Atlantic

area from Spain, France, Ireland to Iceland are given as linear

functions of the yearly average power level κ (in kW/m) con-

sidered as the continuous input variable. The ten coefficients

(one slope and one offset for each of the five parameter) are

given in [2]. So, with this set of coefficients, we implemented a

routine giving analytically the joint probability pO(κ, Hs, Tp),
derived with κ the mean power level as a single input variable.

There is a great advantage for future optimization to have such

a mean to generate continuous joint probability function from

a single continous variable. An example is plotted in fig.8 for

κ = 50 kW / m.

From it , the number of hours a year featuring a sea state in

a given range (δHs, δTp) around (Hs, Tp) will be given as :

8766pO(κ, Hs, Tp)δHsδTp, and the annual production of the

WEC at scale σ, at this site by summing:

E(σ, κ) = 8766

nH∑
i=1

nT∑
j=1

Pσ(Hi, Tj)pO(κ, Hi, Tj)δHsδTp

(18)

Fig. 9: Annual energy recovered as a function of scale σ for

different site power levels κ = 10, ..., 70.

A set of curves E(σ, κ) is plotted here in fig.9, for σ =
1, .., 15 (or in other words for a WEC diameter from 5 m to

75 m) and power levels ranging from 10 kW / m (mild wave

climate) to 70 kW / m (very severe wave climate). One can

observe that, as expected, for a given site the energy recovered

begins as an increasing function of scale, reaches a maximum,

then decreases for oversized wave absorbers. This is simply

a confirmation that, as was said in introduction, the optimal

scale of a device is ”decided by the sea” itself, not by the

developper; too small means too few power density due to

small applied forces, when too big means no motion, then

no energy linked to the response amplitude of the floating

body. It can be oberved also that the optimal scale is a midly

decreasing function of the power level. The table below gives

the coordinates of the square dots which mark the maximum

of each curve in fig.9. An exponential fitting for the locus of

these maxima, shown as a solid curve in the figure is provided

by the function:

Ẽ = exp (−4.896 ln (σ) + 31.16) (19)

Power level opt. scale annual energ. diameter mass

kW/m - GW m T
10 7.923 1.33 39.6 48827

20 7.615 1.63 38.0 43351

30 7.307 1.99 36.5 38301

40 7.077 2.42 35.4 34797

50 6.769 2.93 33.8 30448

60 6.538 3.53 32.7 27436

70 6.231 4.22 31.2 23750
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