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Analytical approximations of non-linear SDEs

of McKean-Vlasov type

Emmanuel Gobet ∗ Stefano Pagliarani †

November 11, 2016

Abstract

We provide analytical approximations for the law of the solutions to a certain class of scalar McKean-

Vlasov stochastic differential equations (MKV-SDEs) with random initial datum. “Propagation of

chaos” results ([Szn91]) connect this class of SDEs with the macroscopic limiting behavior of a particle,

evolving within a mean-field interaction particle system, as the total number of particles tends to infin-

ity. Here we assume the mean-field interaction only acting on the drift of each particle, this giving rise

to a MKV-SDE where the drift coefficient depends on the law of the unknown solution. By perturbing

the non-linear forward Kolmogorov equation associated to the MKV-SDE, we perform a two-steps ap-

proximating procedure that decouples the McKean-Vlasov interaction from the standard dependence

on the state-variables. The first step yields an expansion for the marginal distribution at a given time,

whereas the second yields an expansion for the transition density. Both the approximating series turn

out to be asymptotically convergent in the limit of short times and small noise, the convergence order

for the latter expansion being higher than for the former. The resulting approximation formulas are

expressed in semi-closed form and can be then regarded as a viable alternative to the numerical simula-

tion of the large-particle system, which can be computationally very expensive. Moreover, these results

pave the way for further extensions of this approach to more general dynamics and to high-dimensional

settings.
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1 INTRODUCTION

1 Introduction

Model. Consider the non-linear diffusiondXt = E[b(x,Xt)]|x=Xtdt+ σdWt, t > 0

X0 = Y.
(1.1)

Here, W is a scalar Brownian motion and Y is a square integrable random variable, independent of W .

Throughout the paper, we assume that there exist two positive constants M, σ̄ > 0 such that the following

standing assumptions hold:

[Hyp-b.0] b : R× R 7→ R is a globally Lipschitz function, and is bounded by Mσ2;

[Hyp-σ] The diffusion coefficient σ is such that 0 < σ ≤ σ̄.

For high order expansions, [Hyp-b.0] will be reinforced by adding the following further assumption, for a

given N ∈ N, N ≥ 1.

[Hyp-b.N ] For any y ∈ R, the function b(·, y) ∈ CN (R) with all the derivatives ∂n1 b(·, ·) up to order N

being measurable and bounded by Mσ2. Moreover, ∂1b(·, ·) is continuous.

Such non-linear SDEs, where the coefficient b of the equation depends not only on the state of the solution

at time t, but also on its whole distribution, is a particular case of a class of SDEs known as McKean-type

non-linear diffusions. It is well known that, under [Hyp-b.0], Eq. (1.1) admits a unique strong solution

(see for instance [Szn91]). The extra assumption [Hyp-σ], along with other additional regularity and

boundedness assumptions on b, will be used to derive expansions for the density of the distribution of Xt.

In particular, the need for the constant σ̄ will be clarified in the sequel. Loosely speaking, it will allow to

prove sharp error estimates not only for small times, but also for small σ.

Background results and main contributions. So far, the study of numerical approximations of

SDEs of McKean-type has been mainly conducted under the point of view of time discretization and

simulation through an interacting particles system. References are numerous and we refer to [Mél96,

BT97, AK02, TV03, Tra08] among others. Recently, an alternative method using cubature formula has

been investigated in [CG15]. Our approach is quite different and relies on analytical expansions; to the

best of our knowledge this is fully novel in this context. We emphasize that during the last decade,

there has been an increasing gain of interest in the study of SDEs of McKean-type, with new applications

ranging from modeling economic interactions and mean-field games [CDL13, CD15], to financial portfolio

[BK10, JR15] and neuroscience [DIRT15]. The first main contribution of the paper is a semi-closed N -th

order approximation ¯̃PN,t for the density Pt of Xt, for which we are able to prove an asymptotic error

bound (Theorem 2.9) that can be roughly summarized as∥∥Pt − ¯̃PN,t
∥∥
L1(R)

= O
(
σ2t
)N+1

2 as σ2t→ 0+.

The second main contribution is a family of semi-closed N -th order approximations p̄ x̄N (s, ξ; t, x) for the

transition density p(s, ξ; t, x) of X (seen as a time-inhomogeneous standard SDE), the latter depending on
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1 INTRODUCTION

the previous approximation ¯̃PN,t in a way that will be specified in Section 2. In this case we are able to

prove an asymptotic result (Theorem 2.16) that roughly reads as∣∣(p− p̄ x̄N)(s, ξ; t, x)
∣∣ = e

− (x−ξ)2

4σ2(t−s)O
(
σ2t
)N+1

2 as σ2t→ 0+,

uniformly w.r.t. x, ξ ∈ R.

We emphasize that, even though such results are carried out here for a scalar Mc-Kean SDE as in (1.1),

our approach can be generalized to multi-dimensional settings allowing for Mc-Kean interactions not only

in the drift but also in the diffusion coefficient. These extensions, as well as numerical tests to illustrate

the accuracy of different approximation formulas, will be handled in a further work.

Organization of the paper. In the rest of this section we introduce extra notations, which will be

used throughout the whole paper. Section 2 is then devoted to present our approximation strategy and

state the main results (approximation formulas and error analysis). Section 3 gathers the proofs about the

expansion of the marginal distribution of the diffusion process. The proofs about approximations of the

transition density are given in Section 4.

Notation 1.1. For any random variable U , we denote by U ′ an independent copy of U , and by E′ the

expectation w.r.t. the distribution of U ′ only, i.e. E′[ϕ(U ′, Z)] = E[ϕ(U, z)]|z=Z for any random variable

Z independent on U . With this notation we can rewrite (1.1) asdXt = E′[b(Xt, X
′
t)]dt+ σdWt, t > 0

X0 = Y.
(1.2)

Notation 1.2. For any measure µ on (R,B), and any function f ∈ L1(R, µ) we define the average

µ[f ] :=

∫
R
f(x)µ(dx).

Moreover, for any functions P ∈ L1(R,Leb) and f such that (fP ) ∈ L1(R,Leb) we set

P [f ] :=

∫
R
f(x)P (x)dx.

In particular, if µ is absolutely continuous w.r.t. the Lebesgue measure with density P , i.e. µ(dx) = P (x)dx,

then we have µ[f ] = P [f ].

Notation 1.3. We will denote by µXt and µY the laws of the random variable Xt and Y respectively.

Sometimes, to shorten notation, we well use µt instead of µXt when the dependence on X is clear from the

context. Moreover, under the standing assumptions [Hyp-b.0] and [Hyp-σ], µt is absolutely continuous

with respect to the Lebesgue measure at any time t > 0 (see the discussion below), and we will denote by

Pt(·) its probability density, i.e. µt(dx) = Pt(x)dx for any t > 0.

Remark 1.4. Under assumptions [Hyp-b.0] and [Hyp-σ], the function (t, x) 7→ µt[b(x, ·)] is bounded and

continuous, and the function x 7→ µt[b(x, ·)] is Lipschitz continuous uniformly w.r.t. t ≥ 0. Therefore, it is

well known (see [Fri64, Chapter 1, p. 23]) that the parabolic operator (∂s + Abs), with Abs given by

Abs =
σ2

2
∂ξξ + µs[b(ξ, ·)]∂ξ, s ≥ 0,
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1 INTRODUCTION

has a fundamental solution p(µ), i.e. a continuous function p(µ)(s, ξ; t, x) defined for any ξ, x ∈ R and

0 ≤ s < t, such that, for any (t, x) ∈ ]0,∞[×R the function p(µ)(·, ·; t, x) solves the backward Cauchy

problem (∂s + Abs)u = 0 on [0, t[×R,

u(t, ·) = δx.
(1.3)

Moreover, if we additionally assume [Hyp-b.2] to be in force, then the function (t, x) 7→ ∂xµt[b(x, ·)] is

bounded and continuous, and the function x 7→ ∂xµt[b(x, ·)] is Lipschitz continuous uniformly w.r.t. t ≥ 0.

Thus p(µ)(s, ξ; t, x) also coincides with the fundamental solution of the linear parabolic operator (−∂t + At)

(see [Fri64, Chapter 1, p. 28]), where At is the so called formal adjoint of Abt , acting as

Atu(x) =
σ2

2
∂xxu(x)− ∂x

(
u(x)µt[b(x, ·)]

)
, t ≥ 0. (1.4)

In particular, for any (s, ξ) ∈ [0,∞[×R the function p(µ)(s, ξ; ·, ·) solves the forward Cauchy problem(−∂t + At)u = 0 on ]s,∞[×R,

u(s, ·) = δξ.

Note that, once existence of the solution X is ensured, the McKean-Vlasov SDE (1.1) can also be

regarded, a fortiori, as an ordinary SDE with random initial condition Y and unknown variable drift-

coefficient µt[b(x, ·)], i.e. dXt = µt[b(Xt, ·)]dt+ σdWt, t > 0

X0 = Y.
(1.5)

Therefore, a simple application of Feynman-Kac representation formulas shows that the Markovian process

X, solution of (1.5), has a transition density kernel that coincides with the fundamental solution p(µ) in

Remark 1.4. Precisely, p(µ)(s, ·; t, ·) is the density of the marginal Xt of the process conditioned to Xs.

Note that the superscript (µ) emphasizes the fact that the transition kernel does depend on the distribution

of X; in particular it depends on the µu(.) for any 0 < u ≤ t, and on the initial distribution µY . This fact

represents a key difference with respect to standard SDEs.

Now, by Chapman-Kolmogorov equation, we can conclude that the distribution µt has a density Pt

given by

Pt(x) =

∫
R
p(µ)(0, ξ; t, x)µY (dξ), t > 0, x ∈ R.

In particular, by changing the notation of p(µ) into p(P ), the density P can be regarded as the solution of

the fixed-point functional equation

Pt(x) =

∫
R
p(P )(0, ξ; t, x)µY (dξ), t > 0, x ∈ R. (1.6)

Hereafter, to simplify the notation, we will suppress the suffix P , or µ, and we will use p(s, ξ; t, x) to denote

the transition density of X. However, the reader should always bear in mind that the transition density p

depends on the law µ (with density P ) of the process X.
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2 ANALYTICAL APPROXIMATIONS

Notation

• N = {0, 1, . . . , n, . . . } denotes the set of non-negative integers.

• N∗ = N\{0} denotes the set of positive integers.

2 Analytical Approximations

In order to expand the density Pt(·) of the solution Xt to the MKV SDE (1.5) we propose a two-steps

(or decoupling) perturbation scheme. Loosely speaking, the main idea is as follows: we obtain a first

approximating expansion ¯̃PN,t of the marginal Pt, then we further approximate the transition density of

the solution to the SDE

dYt = ¯̃PN,t[b(Yt, ·)]dt+ σdWt, t > 0, (2.1)

and finally, we obtain an new approximation of Pt by reintegrating w.r.t. µY (see Eq. (1.6)).

Besides providing with a first approximation for the marginal distributions µt of the solution Xt, the

first step is relevant because it allows to separate (or decouple) the two kinds of interactions in (1.5): the

McKean-Vlasov interaction through the law of the solution, and that through the realization of the solution.

This first step should be regarded as the main element of novelty in this paper. Once the decoupling of the

two interactions is done, the problem boils down to approximating the transition density of a standard SDE

of the type (2.1), where the coefficient only depends on state and time. Thus the second approximation, the

one for the transition density, follows by adapting some previous PDE techniques that allow to expand the

transition density of the solution to a standard SDE (see [LPP15]). Note that the latter techniques admit

a stochastic counterpart that allows to obtain similar results (see [BG12] for a review). It is important

to mention that, however certainly more standard, this second step returns a higher order approximation

compared to the first one. The improvement is relevant because it has a major impact for low values of N ,

which are the only cases when the approximation can be easily computed in practice.

2.1 Expansion of the marginal distributions

We carry out an approximating expansion for the marginal distributions (marginal densities) Pt(·) of Xt.

2.1.1 Approximation strategy

We introduce an interpolation parameter ε. For any ε ∈ [0, 1], let us consider the family of McKean SDEs

given by dX̃ε
t = εE′

[
b
(
Y + ε(X̃ε

t − Y ), X̃ ′εt
)]

dt+ σdWt, t > 0,

X̃ε
0 = Y.

(2.2)

Due to the presence of Y = X̃ε
0 in the b-term, this is a path-dependent McKean SDE: Lemma B.1 justifies

the existence and uniqueness of a strong solution to the above equation under [Hyp-b.0]. Note that, if

ε = 1, then (2.2) reduces to the original McKean equation (1.2). For any t > 0, denote by P̃ εt (·) the density

of X̃ε
t , which exists for the same reason as for Pt (see Remark 1.4 and following discussion). The density
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2.1 Expansion of the marginal distributions 2 ANALYTICAL APPROXIMATIONS

P̃ ε can be given an interpretation within the PDE framework. In fact, even though the process X̃ε in (2.2)

is not Markovian, it becomes Markovian when conditioned to Y . Therefore P̃ ε can be written as

P̃ εt (x) =

∫
R
p̃ε(0, ξ; t, x)µY (dξ), t > 0, x ∈ R,

where p̃ε = p̃ε(0, ξ; t, ·) is the density of the marginal X̃ε
t |Y=ξ, or the fundamental solution of the linear

parabolic operator
(
−∂t + Ãε,ξ

)
, with Ãε,ξ acting as

Ãε,ξu(t, x) =
σ2

2
∂xxu(t, x)− ε∂x

(
u(t, x)P̃ εt

[
b
(
ξ + ε(x− ξ), ·

)])
. (2.3)

In particular, the function p̃ε(0, ξ; ·, ·) satisfies
(
−∂t + Ãε,ξ

)
p̃ε(0, ξ; ·, ·) = 0 on ]0,∞[×R,

p̃ε(0, ξ; 0, ·) = δξ.
(2.4)

For a given N ∈ N∗, consider the N -th order approximations

p̃ε(0, ξ; t, x)|ε=1 ≈ ¯̃pN (0, ξ; t, x) :=

N∑
n=0

1

n!
p̃n(0, ξ; t, x), 0 ≤ s < t, x, ξ ∈ R, (2.5)

P̃ εt (x)|ε=1 ≈ ¯̃PN,t(x) :=

∫
R

¯̃pN (0, ξ; t, x)µY (dξ) =

N∑
n=0

1

n!
P̃n,t(x),

with P̃n,t(x) =

∫
R
p̃n(0, ξ; t, x)µY (dξ), t > 0, x ∈ R, (2.6)

where the rigorous definition of each function p̃n will be given later. Had p̃ε and P̃ ε had a Taylor expansion

in ε, we would have taken naturally

p̃n(s, ξ; t, x) =
dn

dεn
p̃ε(s, ξ; t, x)

∣∣∣
ε=0

, P̃n,t(x) =
dn

dεn
P̃ εt (x)

∣∣∣
ε=0

, 0 ≤ s < t, x, ξ ∈ R. (2.7)

In what follows we will not prove, strictly mathematically speaking, the existence of Taylor expansions in

ε, but this Taylor expansion principle will guide us through the definitions of p̃n (and therefore P̃n,t owing

to (2.6)).

2.1.2 0-th order approximation

Here we will give an explicit representation of the leading term P̃0,t := P̃ 0
t appearing in the expansion (2.6)

of the marginal density P̃ εt .

All the definitions of this subsection are well posed under assumption [Hyp-b.0] and [Hyp-σ]. By

setting ε = 0 in (2.2) we obtain dX̃0
t = σdWt, t > 0,

X̃0
0 = Y,

which clearly yields

P̃0,t(x) :=

∫
R
p̃0(0, ξ; t, x)µY (dξ), t > 0, x ∈ R, (2.8)
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2.1 Expansion of the marginal distributions 2 ANALYTICAL APPROXIMATIONS

p̃0(0, ξ; t, x) := Γσ
(
t, x− ξ

)
, t > 0, ξ, x ∈ R, (2.9)

where Γσ(·, ·) is the Gaussian density with variance proportional to σ2

Γσ(t, x) :=
1

σ
√

2πt
exp

(
− x2

2σ2t

)
, x ∈ R, t > 0.

In order to maintain the parallel with the PDE’s setting, note that, by setting ε = 0 in (2.3), we have that

the kernel p̃0 represents the fundamental solution of the operator
(
−∂t + Ã0

)
, with

Ã0 =
σ2

2
∂xx, (2.10)

i.e. for any ξ ∈ R the function p̃0(0, ξ; ·, ·) solves the forward Cauchy problem(−∂t + Ã0)u = 0 on ]0,∞[×R,

u(0, ·) = δξ.
(2.11)

2.1.3 Higher orders approximations

In order to achieve higher orders expansions for the marginal density Pt = P̃ εt |ε=1, we follow the strategy

explained previously. Hereafter throughout this subsection we fix N ∈ N∗ and we assume the assumptions

[Hyp-b.N − 1] and [Hyp-σ] to be in force.

Formal derivation. We start by freely assuming that all quantities are smooth in ε and that all sub-

sequent PDEs are well posed. It will enable us to formally represent the terms p̃n(s, ξ; t, x) appearing in

(2.5) as the solutions of some nested PDEs. By formally differentiating both sides of (2.4) we obtain(
−∂t + Ã0

)
∂nε p̃

ε(0, ξ; t, x) = ∂x∂
n
ε

(
ε p̃ε(0; ξ; t, x)P̃ εt

[
b
(
ξ + ε(x− ξ), ·

)])
= ε∂x∂

n
ε

(
p̃ε(0; ξ; t, x)P̃ εt

[
b
(
ξ + ε(x− ξ), ·

)])
+ n∂x

n−1∑
h=0

h∑
i=0

(
n− 1

h

)(
h

i

)(
∂n−1−h
ε p̃ε(0; ξ; t, x)

)
· (x− ξ)i

(
∂h−iε P̃ εt

)[
∂i1b
(
ξ + ε(x− ξ), ·

)]
, (2.12)

along with the terminal condition ∂nε p̃
ε(0, ξ; 0, x) = 0. Now, if we were to define p̃n(0, ξ; t, x) as in (2.7),

by shifting the index h, reorganizing the binomial coefficients, and setting now ε = 0 in (2.12) we would

obtain
(
−∂t + Ã0

)
p̃n(0, ξ; ·, ·) =

∑n
h=1

∑h−1
i=0 h

(
n
h

)(
h−1
i

)
B
ξ
h−1,i(·, ·) p̃n−h(0; ξ; ·, ·), on ]0,∞[×R,

p̃n(0, ξ; 0, ·) = 0, on R,
(2.13)

with B
ξ
k,i = B

ξ
k,i(·, ·) being the differential operator acting as(

B
ξ
k,i(t, x)u

)
(t, x) = P̃k−i,t

[
∂i1b(ξ, ·)

]
∂x
(
(x− ξ)iu(t, x)

)
, 0 ≤ i ≤ k. (2.14)
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2.1 Expansion of the marginal distributions 2 ANALYTICAL APPROXIMATIONS

Rigorous definition. Although all the previous computations were only meant to be heuristic, the

Cauchy problems (2.13) lead us through giving rigorous definitions for the expansion terms p̃n entering

in the definition (2.6) of the approximate marginal distribution ¯̃PN,t. Precisely, by applying Duhamel’s

principle we can give integral definitions that are coherent with aforementioned Cauchy problems. A

fortiori, in Section 3.2 (Remark 3.6) it will be shown that p̃n actually solves (2.13), with the terminal

condition meant in the distributional sense.

Definition 2.1. For any n ∈ N∗ with n ≤ N , set

P̃n,t(x) :=

∫
R
p̃n(0, ξ; t, x)µY (dξ), t > 0, x ∈ R, (2.15)

where, for any ξ ∈ R, the functions
(
p̃n(0, ξ; ·, ·)

)
1≤n≤N are defined, recursively, as

p̃n(0, ξ; t, x) := −
n∑
h=1

h−1∑
i=0

h

(
n

h

)(
h− 1

i

)∫ t

0

∫
R

Γσ(t− s;x− y)Bξh−1,i(s, y) p̃n−h(0; ξ; s, y)dyds (2.16)

with p̃0 as defined in (2.9).

As it is stated in Theorem 2.2 below, Definition 2.1 is well posed under assumptions [Hyp-b.N − 1]

and [Hyp-σ], and the function P̃n can be given a representation in terms of differential operators acting

on the leading term P̃0. Such representation can be manipulated, see Corollary 2.5, in order to achieve a

fully explicit characterization.

Theorem 2.2. Under assumptions [Hyp-b.N − 1] and [Hyp-σ], for any n ∈ N∗ with n ≤ N , we have:

(i) the functions P̃n and p̃n as in (2.15)-(2.16) are well defined;

(ii) it holds:

p̃n(0, ξ; t, x) = −L̃ξn(t, x) p̃0(0, ξ; t, x), t > 0, x, ξ ∈ R (2.17)

where L̃ξn = L̃ξn(·, ·) is the differential operator defined as

L̃ξn(t, x) := n!

n∑
h=1

∫ t

0

ds1

∫ s1

0

ds2 · · ·
∫ sh−1

0

dsh
∑
i∈In,h

G̃
ξ
i1

(s1, t, x) · · · G̃ξih(sh, t, x),

where1

In,h = {i = (i1, . . . , ih) ∈ (N∗)h | i1 + · · ·+ ih = n}, 1 ≤ h ≤ n, (2.18)

and the operator G̃
ξ
k = G̃

ξ
k(·, ·, ·) is defined as, for k ≥ 1,

G̃
ξ
k(s, t, x) :=

1

(k − 1)!

k−1∑
j=0

(
k − 1

j

)
B
ξ
k−1,j

(
s, M̃(s, t, x)

)
, M̃(s, t, x) := x+ σ2(t− s) ∂x, (2.19)

In (2.19), Bξk−1,j

(
s, M̃(s, t, x)

)
is a slight abuse of notation for the operator B

ξ
k−1,j acting as in (2.14)

composed with M̃, i.e. B
ξ
k−1,j

(
s, M̃(s, t, x)

)
u = P̃k−1−j,s

[
∂j1b(ξ, ·)

]
∂x
(
(x+ σ2(t− s) ∂x − ξ)ju

)
.

1 For instance, for n = 3 we have I3,3 = {(1, 1, 1)}, I3,2 = {(1, 2), (2, 1)} and I3,1 = {(3)}.
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2.1 Expansion of the marginal distributions 2 ANALYTICAL APPROXIMATIONS

We are now going to re-write the operator L̃ξn(t, x) in a different way that is more explicit, though less

intuitive. Such representation is useful in the practical implementation of the expansion. We state the

next result in terms of the following functions and operators.

Notation 2.3. For any l, j, i,m ∈ Nh and ξ ∈ R, we let the function Fξ0,l,j,i = Fξ0,l,j,i(·) be defined as

Fξ0,l,j,i(t) :=

∫ t

0

ds1 · · ·
∫ sh−1

0

dsh
∏

q=1,··· ,h

P̃iq−jq,sq
[
∂
jq
1 b(ξ, ·)

](
σ2(t− sq)

)lq
, t ≥ 0, (2.20)

the operator H
ξ
j,l = H

ξ
j,l(·) be defined as

H
ξ
j,l(x) :=

(
(x− ξ)j1−l1−1

(
j1 − l1 + (x− ξ)∂x

)
∂l1x

)(
(x− ξ)j2−l2−1

(
j2 − l2 + (x− ξ)∂x

)
∂l2x

)
· · ·

· · ·
(

(x− ξ)jh−lh−1
(
jh − lh + (x− ξ)∂x

)
∂lhx

)
, x ∈ R, (2.21)

and the constant c0,m,l,j,i be defined as

c0,m,l,j,i :=
∏

q=1,··· ,h

(2mq − 1)!!

(
iq
jq

)(
jq

2mq

)(
jq − 2mq

lq

)
.

Remark 2.4. For any l, j ∈ Nh we have

H
ξ
j,l(x) = H

ξ
j1,l1

(x)Hξ
j2,l2

(x) · · ·Hξ
jh,lh

(x), ξ, x ∈ R.

Corollary 2.5. Under assumptions [Hyp-b.N−1] and [Hyp-σ], for any n ∈ N∗ with n ≤ N , the function

p̃n(0, ξ; t, x) is as in (2.17) where

L̃ξn(t, x) := n!

n∑
h=1

∑
i∈In,h

( ∏
q=1,··· ,h

1

(iq − 1)!

) ∑
m,l,j∈Nh
lq≤jq≤iq−1

mq≤b
jq−lq

2 c

c0,m,l,j,i−1 Fξ0,l+m,j,i−1(t)Hξ
j−2m,l(x), (2.22)

with In,h as in (2.18).

Proof. Consider the operator O acting as (Of)(x) =
(
a(x − c) + b∂x

)
f(x). Then, one can prove (proof

made with Mathematica) that

(Ojf)(x) =

j∑
l=0

b j−l2 c∑
m=0

(2m− 1)!!

(
j

2m

)(
j − 2m

l

)
(x− c)j−l−2maj−l−mbl+m∂lxf(x).

Therefore, the operators G̃
ξ
k in (2.19) can be represented in a more explicit, though less compact, fashion

as follows:

G̃
ξ
k = G̃

ξ
k(s, t, x) =

1

(k − 1)!

k−1∑
j=0

j∑
l=0

b j−l2 c∑
m=0

(2m− 1)!!

(
k − 1

j

)(
j

2m

)(
j − 2m

l

)
P̃k−1−j,s

[
∂j1b(ξ, ·)

]
(
σ2(t− s)

)l+m
(x− ξ)j−2m−l−1

(
j − 2m− l + (x− ξ)∂x

)
∂lx.

Finally Corollary 2.5 stems from Theorem 2.2.

9



2.2 Expansion of the transition density 2 ANALYTICAL APPROXIMATIONS

Remark 2.6. It is important to observe that the representation (2.17)-(2.22) for P̃n,t(x) is fully explicit

up to computing the coefficient functions Fξ0,l,j,i(t) defined in (2.20). In fact, the operator H
ξ
j,l(x) can be

easily computed even at high orders, possibly by means of a symbolic computation software.

Example 2.7. For n = 1 we have

L̃
ξ
1(t, x) = Fξ0,0,0,0(t)Hξ

0,0(x), Fξ0,0,0,0(t) =

∫ t

0

P̃0,r

[
b(ξ, ·)

]
dr, H

ξ
0,0(x) = ∂x.

Example 2.8. For n = 2 we have

L̃
ξ
2(t, x) = 2

(
Fξ0,0,0,1(t)Hξ

0,0(x) + Fξ0,0,1,1(t)Hξ
1,0(x) + Fξ0,1,1,1(t)Hξ

1,1(x)

+ Fξ(0,0),(0,0),(0,0),(0,0)(t)H
ξ
(0,0),(0,0)(x)

)
,

with

Fξ0,0,0,1(t) =

∫ t

0

P̃1,s1

[
b(x̄, ·)

]
ds1, Fξ0,0,1,1(t) =

∫ t

0

P̃0,s1

[
∂1b(x̄, ·)

]
ds1,

Fξ0,1,1,1(t) =

∫ t

0

P̃0,s1

[
∂1b(x̄, ·)

]
σ2(t− s1) ds1,

Fξ(0,0),(0,0),(0,0),(0,0)(t) =

∫ t

0

P̃0,s1

[
b(ξ, ·)

]
ds1

∫ s1

0

P̃0,s2

[
b(ξ, ·)

]
ds2,

and

H
ξ
0,0(x) = ∂x, H

ξ
1,0(x) =

(
1 + (x− ξ)∂x

)
, H

ξ
1,1(x) = H

ξ
(0,0),(0,0)(x) = ∂2

x.

2.1.4 Error estimates

In this subsection we provide some rigorous error bounds for the N -th order approximation ¯̃PN,t of the

true marginal density Pt, as it is defined in (2.6).

We are in the position to prove the following result.

Theorem 2.9. Let N̄ ∈ N∗, T > 0, and assume [Hyp-σ], [Hyp-b.0] and [Hyp-b.N̄ + 1] to be in force.

Then, for any N ∈ N with N ≤ N̄ + 1, and for any c > 1, we have∣∣(p− ¯̃pN
)
(0, ξ; t, x)

∣∣ ≤ C(σ2t
)N+1

2 Γcσ
(
t, x− ξ

)
, ξ, x ∈ R, 0 < t ≤ T, (2.23)

where C > 0 only depends on N̄ , T, c, and on the constants M , σ̄ of assumptions [Hyp-σ], [Hyp-b.N̄ + 1].

In particular, we have ∥∥Pt − ¯̃PN,t
∥∥
L1(R)

≤ C
(
σ2t
)N+1

2 , 0 < t ≤ T.

2.2 Expansion of the transition density

We carry out an approximating expansion for the transition densities p(s, ξ; t, x) of X.

10



2.2 Expansion of the transition density 2 ANALYTICAL APPROXIMATIONS

2.2.1 Approximation strategy

We consider the family of standard Markovian non-homogeneous SDEs, indexed by x̄ ∈ R and ε ∈ [0, 1],

given by

dXε,x̄
t = P̃ εt

[
b
(
x̄+ ε(Xε,x̄

t − x̄), ·
)]

dt+ σdWt, t > 0. (2.24)

Recall that P̃ εt represents the marginal distribution of the process X̃ε
t in (2.2). The initial point Xε,x̄

0 is

deterministic; its value is unimportant since we are interested only in the transition density of Xε,x̄. Again,

one can observe that, if ε = 1, then (2.24) with initial point sampled according to µY reduces to the original

McKean SDE (1.5). We now denote by pε,x̄(s, ξ; t, x), s < t, the transition density of Xε,x̄. To ease the

notation we preferred here to use pε,x̄ instead of p(P̃ ε),ε,x̄; however, the reader should bear in mind that

the drift coefficient in (2.24), and thus also the kernel pε,x̄, do depend on the density P̃ ε. From the PDEs

perspective, the kernel pε,x̄ can be interpreted as the fundamental solution of the linear parabolic operator(
− ∂t + Aε,x̄

)
, with Aε,x̄ acting as

Aε,x̄u(t, x) =
σ2

2
∂xxu(t, x)− ∂x

(
u(t, x)P̃ εt

[
b
(
x̄+ ε(x− x̄), ·

)])
.

In particular, the function pε,x̄(s, ξ; ·, ·) satisfies
(
− ∂t + Aε,x̄

)
pε,x̄(s, ξ; ·, ·) = 0 on ]s,∞[×R,

pε,x̄(s, ξ; s, ·) = δξ.
(2.25)

Although (2.2) and (2.24) with µY -random initialization coincide at ε = 1, they differ at ε 6= 1 because

of the different scalings in ε and because of different form of the interpolated drift (involving Y or a fixed

point x̄). This difference is instrumental for our decoupling approach.

For a fixed x̄ ∈ R and given N ∈ N∗, consider the N -th order approximation,

pε,x̄(s, ξ; t, x)|ε=1 ≈ p̄ x̄N (s, ξ; t, x) :=

N∑
n=0

1

n!
px̄n(s, ξ; t, x), 0 ≤ s < t, x, ξ ∈ R, (2.26)

where the rigorous definition of each function px̄n will be provided later. Had pε,x̄ had a Taylor series

expansion in ε, we would take naturally

px̄n(s, ξ; t, x) =
dn

dεn
pε,x̄(s, ξ; t, x)

∣∣∣
ε=0

; (2.27)

this principle will serve as a guide to define px̄n.

Remark 2.10. Instead of considering the parametrization in (2.24), one might prefer to fix N ∈ N and

consider the dynamics

dXε,x̄
t = ¯̃PN,t

[
b
(
x̄+ ε(Xε,x̄

t − x̄), ·
)]

dt+ σdWt, t > 0. (2.28)

Now, an expansion for the transition density would be readily available be simply employing perturbation

methods for standard SDEs and linear PDEs, like those introduced by the authors in [BG12], [LPP15].

Although this way of proceeding would certainly return an approximation with the same order of asymptotic

convergence as the expansion in (2.26)-(2.27), the expansion stemming from (2.28) would contain some extra

terms that lengthen the approximation formulas without improving the order of convergence.

11



2.2 Expansion of the transition density 2 ANALYTICAL APPROXIMATIONS

Now, reintegrating w.r.t. µY , by setting x̄ = ξ or x̄ = x, and in view of (1.6), we obtain two N -th order

approximations for the marginal density Pt(x) of Xt, namely

P start
N,t (x) :=

∫
R
p̄ ξN (0, ξ; t, x)µY (dξ), P end

N,t (x) :=

∫
R
p̄ xN (0, ξ; t, x)µY (dξ), t > 0, x ∈ R.

In general, we will show that it is a sensible choice any x̄ that lies on the segment connecting the initial

point ξ and the terminal point x, which yields the λ-approximation

PλN,t(x) :=

∫
R
p̄ x̄N (0, ξ; t, x)

∣∣
x̄=λx+(1−λ)ξ

µY (dξ), λ ∈ [0, 1]. (2.29)

Note that PλN,t reduces to P start
N,t and P start

N,t for λ = 0 and λ = 1, respectively. Theoretically, all the above

approximations have the same asymptotic accuracy, uniform in λ, in the limit σ2t→ 0 (see Theorem 2.16).

Their actual accuracy for different choices of λ will be compared in a further work.

2.2.2 0-th order approximation

Here we will give an explicit representation of the leading term px̄0(s, ξ; t, x) := p0,x̄(s, ξ; t, x) appearing in

the expansion (2.26)-(2.27) of the transition density pε,x̄(s, ξ; t, x).

All the definitions of this subsection are well posed under assumptions [Hyp-b.0] and [Hyp-σ]. By

setting ε = 0 in (2.24) we obtain

dX0,x̄
t = P̃0,t[b(x̄, ·)]dt+ σ dWt, t > 0,

which yields

px̄0(s, ξ; t, x) := Γσ
(
t− s, x− ξ −mx̄(s, t)

)
, mx̄(s, t) :=

∫ t

s

P̃0,r[b(x̄, ·)]dr, 0 ≤ s < t, ξ, x ∈ R.

(2.30)

Note that, owing to the boundedness of b in assumption [Hyp-b.0], the mean mx̄(s, t) in (2.30) is well

defined. Furthermore, owing to the continuity of b(x̄, ·), again by [Hyp-b.0], the function t → P̃0,t[b(x̄, ·)]
is continuous and bounded and thus px̄0 corresponds to the fundamental solution of the parabolic linear

operator
(
− ∂t + Ax̄0

)
, where

Ax̄0u(t, x) =
σ2

2
∂xxu(t, x)− P̃0,t[b(x̄, ·)]∂xu(t, x),

i.e. for any (s, ξ) ∈ [0,∞[×R the function px̄0(s, ξ; ·, ·) solves the forward Cauchy problem(−∂t + Ax̄0)u = 0 on ]s,∞[×R,

u(s, ·) = δξ.
(2.31)

2.2.3 Higher orders approximations

In order to achieve higher orders expansions for the transition kernel p(s, ξ; t, x) = pε,x̄(s, ξ; t, x)|ε=1, we

follow the strategy explained previously. Hereafter throughout this subsection we fix N ∈ N∗ and we

assume assumptions [Hyp-b.N ] and [Hyp-σ] to be in force.

12



2.2 Expansion of the transition density 2 ANALYTICAL APPROXIMATIONS

Formal derivation. In analogy to what was done in Section 2.1.3, we start by freely assuming that all

quantities are smooth in ε and that all subsequent PDEs are well posed. This will allow us to formally

represent the terms px̄n(s, ξ; t, x) appearing in (2.26) as the solutions of some nested PDEs.

By formally differentiating both the left and the right-hand sides of (2.25) we obtain(
− ∂t + A0

)
∂nε p

ε,x̄(s, ξ; t, x) = ∂x∂
n
ε

(
pε,x̄(s; ξ; t, x)P̃ εt

[
b
(
x̄+ ε(x− x̄), ·

)])
= ∂x

n∑
h=0

h∑
i=0

(
n

h

)(
h

i

)(
∂n−hε pε,x̄(s; ξ; t, x)

)
· (x− x̄)i

(
∂h−iε P̃ εt

)[
∂i1b
(
x̄+ ε(x− x̄), ·

)]
,

along with the terminal condition ∂nε p
ε,x̄(s, ξ; s, x) = 0. Once again, setting ε = 0 yields

(
− ∂t + Ax̄0

)
px̄n(s, ξ; ·, ·) =

∑n
h=1

∑h
i=0

(
n
h

)(
h
i

)
Bx̄h,i(·, ·) px̄n−h(s; ξ; ·, ·), on ]s,∞[×R,

px̄n(s, ξ; s, ·) = 0, on R.
(2.32)

with the operators Bx̄h,i acting as in (2.14).

Rigorous definition. Proceeding as we did in Section 2.1.3, we use the previous heuristic computations,

in particular the Cauchy problems (2.32), in order to give rigorous definitions for the correcting terms

px̄n. Precisely, by applying Duhamel’s principle we can give integral definitions that are coherent with

aforementioned Cauchy problems. A fortiori, in Section 4.2, it will be shown that px̄n actually solves (2.32),

with the terminal condition meant in the distributional sense.

Definition 2.11. For any n ∈ N∗ with n ≤ N , and x̄, ξ ∈ R, the functions
(
px̄n(s, ξ; ·, ·)

)
n≤N are recursively

defined as

px̄n(s, ξ; t, x) = −
n∑
h=1

h∑
i=0

(
n

h

)(
h

i

)∫ t

s

∫
R

Γσ
(
t− r;x− y −mx̄(r, t)

)
Bx̄h,i(r, y) px̄n−h(s; ξ; r, y)dydr, (2.33)

for any 0 ≤ s < t and x ∈ R.

As it is stated in Theorem 2.12 below, Definition 2.11 is well posed under assumptions [Hyp-b.N ] and

[Hyp-σ], and the function px̄n can be given a representation in terms of differential operators acting on the

leading term px̄0 . Such representation can be manipulated, see Corollary 2.14 in order to achieve a fully

explicit characterization.

Theorem 2.12. Under assumptions [Hyp-b.N ] and [Hyp-σ], for any n ∈ N∗ with n ≤ N and x̄ ∈ R, we

have:

(i) the functions px̄n as in (2.33) are well defined;

(ii) it holds:

px̄n(s, ξ; t, x) = −Lx̄n(s, t, x) px̄0(s, ξ; t, x), 0 ≤ s < t, x, ξ ∈ R, (2.34)

where Lx̄n = Lx̄n(·, ·, ·) is the differential operator defined as

Lx̄n(s, t, x) := n!

n∑
h=1

∫ t

s

ds1

∫ s1

s

ds2 · · ·
∫ sh−1

s

dsh
∑
i∈In,h

Gx̄i1(s1, t, x) · · ·Gx̄ih(sh, t, x),

13



2.2 Expansion of the transition density 2 ANALYTICAL APPROXIMATIONS

where the set In,h is defined in (2.18), and the operator Gx̄k = Gx̄k(·, ·, ·) is defined as

Gx̄k(s, t, x) :=
1

k!

k∑
j=0

(
k

j

)
Bx̄k,j

(
s, t,Mx̄(s, t, x)

)
, Mx̄(s, t, x) := x−mx̄(s, t) + σ2(t− s) ∂x, (2.35)

with mx̄(s, t) as in (2.30). In (2.35), Bx̄k,j
(
s, t,Mx̄(s, t, x)

)
is a slight abuse of notation for the operator

Bx̄k,j acting as in (2.14) composed with Mx̄, i.e. Bx̄k,j
(
s, t,Mx̄(s, t, x)

)
u = P̃k−j,s

[
∂j1b(x̄, ·)

]
∂x
(
(x −

mx̄(s, t) + σ2(t− s) ∂x − x̄)ju
)
.

In analogy to Corollary 2.5, we are now going to re-write the operator Lx̄n(s, t, x) in a more explicit way,

which is useful in order to implement the expansion. We generalize Notation 2.3.

Notation 2.13. For any γ, l, j, i,m ∈ Nh and x̄ ∈ R, we let the function Fx̄γ,l,j,i = Fx̄γ,l,j,i(·, ·) be defined

as

Fx̄γ,l,j,i(s, t) :=

∫ t

s

ds1 · · ·
∫ sh−1

s

dsh
∏

q=1,··· ,h

P̃iq−jq,sq
[
∂
jq
1 b(x̄, ·)

] (
−mx̄(sq, t)

)γq (
σ2(t−sq)

)lq
, 0 ≤ s < t,

with mx̄(·, ·) as in (2.30), and the constant cγ,m,l,j,i be defined as

cγ,m,l,j,i :=
∏

q=1,··· ,h

(2mq − 1)!!

(
iq
jq

)(
jq

2mq

)(
jq − 2mq

lq

)(
jq − 2mq − lq

γq

)
.

Corollary 2.14. Under assumptions [Hyp-b.N ] and [Hyp-σ], for any n ∈ N∗ with n ≤ N , the function

px̄n(s, ξ; t, x) is as in (2.34), where

Lx̄n(s, t, x) := n!

n∑
h=1

∑
i∈In,h

∑
γ,m,l,j∈Nh
lq≤jq≤iq

mq≤b
jq−lq

2 c
γq≤jq−2mq−lq

( ∏
q=1,··· ,h

1

iq!

)
cγ,m,l,j,i F

x̄
γ,l+m,j,i(s, t)H

x̄
j−2m−γ,l(x)

where In,h and Hx̄
j,l(x) are respectively defined in (2.18) and (2.21).

Proof. Analogous to that of Corollary 2.5.

Example 2.15. For n = 1 we have

Lx̄1(s, t, x) := Fx̄0,1,1,1(s, t)Hx̄
1,1(x) + Fx̄0,0,1,1(s, t)Hx̄

1,0(x) +
(
Fx̄0,0,0,1(s, t) + Fx̄1,0,1,1(s, t)

)
Hx̄

0,0(x),

with

Fx̄0,0,0,1(s, t) =

∫ t

s

P̃1,s1

[
b(x̄, ·)

]
ds1, Fx̄0,1,1,1(s, t) =

∫ t

s

P̃0,s1

[
∂1b(x̄, ·)

]
σ2(t− s1) ds1,

Fx̄1,0,1,1(s, t) = −
∫ t

s

P̃0,s1

[
∂1b(x̄, ·)

]
mx̄(s1, t) ds1, Fx̄0,0,1,1(s, t) =

∫ t

s

P̃0,s1

[
∂1b(x̄, ·)

]
ds1,

and

Hx̄
0,0(x) = ∂x, Hx̄

1,0(x) =
(
1 + (x− x̄)∂x

)
, Hx̄

1,1(x) = ∂2
x.
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3 PROOF OF THEOREMS 2.2 AND 2.9

2.2.4 Error estimates

In this subsection we provide some rigorous error bounds for the N -th order approximation p̄ x̄N (s, ξ; t, x)

with x̄ = λx+ (1− λ)ξ and λ ∈ [0, 1], as defined in (2.26), of the transition density p(s, ξ; t, x) of X; such

bounds in turn imply analogous error bounds for the approximation PλN,t(x), as defined in (2.29), of the

density Pt(x) of Xt. We are in the position to prove the following result.

Theorem 2.16. Let N̄ ∈ N∗, T > 0, and assume assumptions [Hyp-σ], [Hyp-b.0] and [Hyp-b.N̄ + 1]

to be in force. Then, for any N ∈ N with N ≤ N̄ , λ ∈ [0, 1], and for any c > 1, we have∣∣∣(p− p̄ x̄N)(s, ξ; t, x)
∣∣
x̄=λx+(1−λ)ξ

∣∣∣ ≤ C(σ2t
)N+1

2
(
σ2(t− s)

) 1
2 Γcσ

(
t− s, x− ξ

)
(2.36)

for any ξ, x ∈ R and 0 ≤ s < t ≤ T , where C > 0 only depends on N̄ , T, c, and on the constants M and σ̄

of assumptions [Hyp-σ], [Hyp-b.N̄ + 1]. In particular, we have∥∥(Pt − PλN,t)∥∥L1(R)
≤ C

(
σ2t
)N+2

2 , 0 < t ≤ T.

Note that the factor
(
σ2(t− s)

) 1
2 brings extra accuracy when the transition densities are computed on

a small time interval.

3 Proof of Theorems 2.2 and 2.9

3.1 Proof of Theorem 2.2

Hereafter, throughout this subsection, we assume assumptions [Hyp-b.N − 1] and [Hyp-σ] to be in force

for a fixed N ∈ N∗. We start by stating the following a priori estimates on the functions ∂kx p̃n(0, ξ; t, x)

and P̃n,t[∂
j
1b(x, ·)], which will be employed recursively in order to prove Theorem 2.2, in particular to prove

wellposedness of Definitions 2.1.

Lemma 3.1. Assume Corollary 2.5 to hold. Then, for any c > 1, and for any n, k, j ∈ N with n ≤ N and

j ≤ N − 1, we have ∣∣∂kx p̃n(0, ξ; t, x)
∣∣ ≤ Cc(σ2t

)n−k
2 Γcσ

(
t, x− ξ

)
, (3.1)∣∣P̃n,t[∂j1b(x, ·)]∣∣ ≤ Cc σ2

(
σ2t
)n

2 , (3.2)

for any 0 < t ≤ T and x, ξ,∈ R, where Cc > 0 depends at most on N , k, T and on the constants M and σ̄

of assumptions [Hyp-σ] and [Hyp-b.N − 1]

Proof. We proceed by induction on n. First consider the case n = 0. Then, (3.1) follows by definition (2.9)

and by Lemma A.2. Consequently, (3.2) stems from definition (2.8), since by assumption |∂j1b| ≤Mσ2.

Fix now n̄ ∈ N with n̄ < N , assume (3.1) and (3.2) to hold true for any n ≤ n̄, and prove it true for

n = n̄+ 1. By Corollary 2.5 we have

∣∣∂kx p̃n̄+1(0, ξ; t, x)
∣∣ ≤ Cc n∑

h=1

∑
i∈In̄+1,h

∑
m,l,j∈Nh
lq≤jq≤iq−1

mq≤b
jq−lq

2 c

∣∣Fξ0,l+m,j,i−1(t)
∣∣ ∣∣∂kxHξ

j−2m,l(x)p̃0(0, ξ; t, x)
∣∣, (3.3)

15



3.1 Proof of Theorem 2.2 3 PROOF OF THEOREMS 2.2 AND 2.9

and by definition (2.20), we obtain

∣∣Fξ0,l+m,j,i−1(t)
∣∣ ≤ Cc ∫ t

0

ds1 · · ·
∫ sh−1

0

dsh
∏

q=1,··· ,h

∣∣P̃iq−1−jq,sq
[
∂
jq
1 b(ξ, ·)

]∣∣ (σ2(t− sq)
)lq+mq

(by inductive hypothesis, since iq − 1− jq ≤ n̄)

≤ Ccσ2(
∑h
q=1

iq+1−jq
2 +lq+mq)

∫ t

0

ds1 · · ·
∫ sh−1

0

dsh
∏

q=1,··· ,h

s(iq−1−jq)/2
q (t− sq)lq+mq

(by solving the time integrals)

≤ Cc(σ2t)

∑h
q=1(iq+1−jq+2lq+2mq)

2 . (3.4)

On the other hand, by employing the Gaussian estimates of Lemmas A.1 and A.2, along with definition

(2.21), we obtain

∣∣∂kxHξ
j−2m,l(x)p̃0(0, ξ; t, x)

∣∣ ≤ Cc(σ2t)
−k+

∑h
q=1(jq−2mq−2lq−1)

2 Γcσ
(
t, x− ξ

)
.

Therefore, by (3.3)-(3.4) and since
∑h
q=1 iq = n̄+ 1, we get (3.1) with n = n̄+ 1. By integrating (3.1), and

by using (2.15) and that |∂j1b| ≤Mσ2, we also obtain (3.2).

The rest of the section is devoted to the proof of Theorem 2.2, which is based on the a priori estimates

in Lemma 3.1 combined with following lemmas. Hereafter, throughout the rest of this section, we denote

by S(Rn) the Schwartz space of rapidly decreasing functions on Rn.

Lemma 3.2. For any t0 < s < t, x, y, ξ ∈ R, and k ∈ N∗ with k ≤ N , we have

1

(k − 1)!

k−1∑
j=0

(
k − 1

j

)∫
R

Γσ(t− s;x− y)Bξk−1,j

(
s, y)f(y)dy = G̃

ξ
k(s, t, x)

∫
R

Γσ(t− s;x− η)f(η)dη,

(3.5)

1

(k − 1)!

k−1∑
j=0

(
k − 1

j

)∫
R
f(x)Bξk−1,j

(
s, x)Γσ(s− t0;x− y)dx =

¯̃
G
ξ
k(t0, s, y)

∫
R

Γσ(s− t0; η − y)f(η)dη,

(3.6)

for any f ∈ S(R), where
¯̃
G
ξ
k =

¯̃
G
ξ
k(t0, s, y) is the differential operator acting as

¯̃
G
ξ
k(t0, s, y)u(y) = − 1

(k − 1)!

k−1∑
j=0

(
k − 1

j

)
P̃k−1−j,s

[
∂j1b(ξ, ·)

](
M̃(t0, s, y)− ξ

)j
∂yu(y), (3.7)

and the operator M̃ = M̃(t0, s, y) is as defined in (2.19). Moreover, the following relation holds:

G̃
ξ
k(s, t, x)Γσ(t− t0;x− y) =

¯̃
G
ξ
k(t0, s, y)Γσ(t− t0;x− y). (3.8)

Proof. We start by observing that

∂xΓσ(t− s;x− y) = −∂yΓσ(t− s;x− y), (3.9)

16



3.1 Proof of Theorem 2.2 3 PROOF OF THEOREMS 2.2 AND 2.9

and, for any j ∈ N∗,

yj Γσ(t− s;x− y) = M̃j(s, t, x)Γσ(t− s;x− y), xj Γσ(t− s;x− y) = M̃j(s, t, y)Γσ(t− s;x− y). (3.10)

Actually the above identity is clear for j = 1 thanks to (3.9) and the case j > 1 is obtained by simple

iteration. Therefore, for any ξ ∈ R and j ∈ N∗, by (3.10) we also have

(x− ξ)jΓσ(t− s;x− y) =
(
M̃(s, t, y)− ξ

)j
Γσ(t− s;x− y), (3.11)

(y − ξ)jΓσ(t− s;x− y) =
(
M̃(s, t, x)− ξ

)j
Γσ(t− s;x− y), (3.12)

for any 0 ≤ i ≤ k. We now prove (3.5). By (2.14), for any j ≤ k − 1 we get∫
R

Γσ(t− s;x− y)Bξk−1,j

(
s, y)f(y)dy = P̃k−1−j,s

[
∂j1b(ξ, ·)

] ∫
R

Γσ(t− s;x− y) ∂y
(
(y − ξ)jf(y)

)
dy

(integrating by parts, and applying (3.9))

= P̃k−1−j,s
[
∂j1b(ξ, ·)

]
∂x

∫
R

Γσ(t− s;x− y)(y − ξ)jf(y)dy

(by (3.12))

= P̃k−1−j,s
[
∂j1b(ξ, ·)

]
∂x

((
M̃(s, t, x)− ξ

)j ∫
R

Γσ(t− s;x− y)f(y)dy
)

= B
ξ
k−1,j

(
s, M̃(s, t, x)

) ∫
R

Γσ(t− s;x− y)f(y)dy.

Now (3.5) stems from (2.19). We proceed analogously to prove (3.6). For any j ≤ k − 1 we have∫
R
f(x)Bξk−1,j

(
s, x)Γσ(s− t0;x− y)dx = P̃k−1−j,s

[
∂j1b(ξ, ·)

] ∫
R
f(x) ∂x

(
(x− ξ)jΓσ(s− t0;x− y)

)
dx

(by (3.11))

= P̃k−1−j,s
[
∂j1b(ξ, ·)

](
M̃(t0, s, y)− ξ

)j ∫
R
f(x)∂xΓσ(s− t0;x− y)dx

= −P̃k−1−j,s
[
∂j1b(ξ, ·)

](
M̃(t0, s, y)− ξ

)j
∂y

∫
R
f(x)Γσ(s− t0;x− y)dx,

where we used (3.9) in the last equality. Now (3.6) stems from (3.7). Eventually, identity (3.8) follows by

combining (3.5) with f(η) = Γσ(s − t0; η − y) and (3.6) with f(η) = Γσ(t − s;x − η), together with the

Chapman-Kolmogorov identity∫
R

Γσ(s− t0, η − y)Γσ(t− s, x− η)dη = Γσ(t− t0, x− y), t0 < s < t, x, y ∈ R.

In the next statement we denote by C : S(R2)× S(R2)→ S(R2) the operator acting as

C(f, g)(ξ, x) = f(·, x)[g(ξ, ·)], ξ, x ∈ R.
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3.1 Proof of Theorem 2.2 3 PROOF OF THEOREMS 2.2 AND 2.9

Lemma 3.3. Let
(
ϕs,t

)
0≤s<t be a family of functions in S(R2), such that

ϕt0,t = C(ϕs,t, ϕt0,s), 0 ≤ t0 < s < t. (3.13)

Let also
(
Ph,s,t,z

)
h∈N∗,0≤s<t,z∈R,

(
P̄h,s,t,z

)
h∈N∗,0≤s<t,z∈R be two families of operators from S(R2) onto itself

that can be represented as finite sums of the form

Ph,s,t,zf(ξ, x) =
∑

i≥0,j≥1

a
(h,z)
i,j (s, t)xi∂jxf(ξ, x), (3.14)

P̄h,s,t,zf(ξ, x) =
∑

i≥0,j≥1

ā
(h,z)
i,j (s, t)ξi∂jξf(ξ, x), ξ, x ∈ R,

where a
(h,z)
i,j (·, t) and ā

(h,z)
i,j (·, t) are bounded measurable functions on [0, t], and such that

Ph,s,t,zϕt0,t = P̄h,t0,s,zϕt0,t, 0 ≤ t0 < s < t. (3.15)

Then,
(
fn,t0,t,z

)
n∈N,0≤t0<t,z∈R

given by

f0,t0,t,z := ϕt0,t, (3.16)

fn,t0,t,z := n!

n∑
h=1

∫ t

t0

ds1 · · ·
∫ sh−1

t0

dsh
∑
i∈In,h

Pi1,s1,t,z · · · Pih,sh,t,z ϕt0,t, n ∈ N∗, (3.17)

is well defined as a family of functions in S(R2). Here, the set In,h is as defined in (2.18). Moreover, for

any n ∈ N∗, z ∈ R and 0 ≤ t0 < t we have

fn,t0,t,z =

n∑
h=1

n!

(n− h)!

∫ t

t0

Ph,s,t,z C(ϕs,t, fn−h,t0,s,z)ds. (3.18)

Proof. The first part of the statement easily follows from (3.14) (note that we mainly use that a
(h,z)
i,j are

bounded in time). Now note that for any f, g ∈ S(R2), we have the following commutation properties:

C(f, P̄h,s,t,z g) = P̄h,s,t,zC(f, g), Ph1,s1,t1,zP̄h2,s2,t2,zf = P̄h2,s2,t2,zPh1,s1,t1,zf. (3.19)

In order to prove (3.18) we first need to prove that, for any h ∈ N∗, 0 ≤ t0 < s < t and z ∈ R, we have

Pi1,s1,t,z · · · Pih,sh,t,z ϕt0,t = C
(
ϕs,t,Pi1,s1,s,z · · · Pih,sh,s,z ϕt0,s

)
, (3.20)

for any i ∈ (N∗)h and t0 < s1 < · · · < sh < s. We proceed by induction on h. If h = 1, by using (3.15),

(3.13), (3.19) and then again (3.15), exactly in this order, one has

Pi1,s1,t,zϕt0,t = P̄i1,t0,s1,zϕt0,t = P̄i1,t0,s1,zC(ϕs,t, ϕt0,s) = C(ϕs,t, P̄i1,t0,s1,zϕt0,s) = C(ϕs,t,Pi1,s1,s,zϕt0,s).

We now assume (3.20) to hold for h ∈ N∗ and we prove it true for h+ 1. We get

C
(
ϕs,t,Pi1,s1,s,z · · · Pih,sh,s,zPih+1,sh+1,s,z ϕt0,s

)
= C

(
ϕs,t,Pi1,s1,s,z · · · Pih,sh,s,zP̄ih+1,t0,sh+1,z ϕt0,s

)
(by (3.15))

= P̄ih+1,t0,sh+1,zC
(
ϕs,t,Pi1,s1,s,z · · · Pih,sh,s,z ϕt0,s

)
(by (3.19))
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3.1 Proof of Theorem 2.2 3 PROOF OF THEOREMS 2.2 AND 2.9

= P̄ih+1,t0,sh+1,zPi1,s1,t,z · · · Pih,sh,t,z ϕt0,t (by inductive hypothesis)

= Pi1,s1,t,z · · · Pih,sh,t,zP̄ih+1,t0,sh+1,z ϕt0,t (by (3.19))

= Pi1,s1,t,z · · · Pih,sh,t,zPih+1,sh+1,t,z ϕt0,t (by (3.15)),

which is (3.20) for h+ 1.

We are now ready to conclude the proof of (3.18). For n = 1, (3.18) directly stems from (3.13) For

n ≥ 2, by definition (3.17) we have

fn,t0,t,z
n!

=

n∑
l=1

∫ t

t0

dr1

∫ r1

t0

dr2 · · ·
∫ rl−1

t0

drl
∑
i∈In,l

Pi1,r1,t,zPi2,r2,t,z · · · Pil,rl,t,z ϕt0,t

(by (2.18))

=

∫ t

t0

dr1Pn,r1,t,zϕt0,t

+

n∑
l=2

n+1−l∑
h=1

∫ t

t0

dr1

∫ r1

t0

dr2 · · ·
∫ rl−1

t0

drl
∑

i∈In−h,l−1

Ph,r1,t,zPi1,r2,t,z · · · Pil−1,rl,t,z ϕt0,t

(by replacing the integration variables: (dr1, · · · ,drl)→ (ds, · · · ,dsl−1))

=

∫ t

t0

dsPn,s,t,zϕt0,t

+

n∑
l=2

n+1−l∑
h=1

∫ t

t0

ds

∫ s

t0

ds1 · · ·
∫ sl−2

t0

dsl−1

∑
i∈In−h,l−1

Ph,s,t,zPi1,s1,t,z · · · Pil−1,sl−1,t,z ϕt0,t

(by setting j = l − 1)

=

∫ t

t0

dsPn,s,t,zϕt0,t

+

n−1∑
j=1

n−j∑
h=1

∫ t

t0

ds

∫ s

t0

ds1 · · ·
∫ sj−1

t0

dsj
∑

i∈In−h,j

Ph,s,t,zPi1,s1,t,z · · · Pij ,sj ,t,z ϕt0,t

(by exchanging summation and integration, using again that a
(h,z)
i,j are bounded)

=

∫ t

t0

dsPn,s,t,zϕt0,t

+

n−1∑
h=1

∫ t

t0

dsPh,s,t,z
n−h∑
j=1

∫ s

t0

ds1 · · ·
∫ sj−1

t0

dsj
∑

i∈In−h,j

Pi1,s1,t,z · · · Pij ,sj ,t,z ϕt0,t︸ ︷︷ ︸
:=Ψh,s,t0,t,z

.

Observe that, under the assumptions on the operator Ph,s,t,z, Ψh,s,t0,t,z is a function in S(R2) uniformly in

s, in the sense that derivatives of a given order are rapidly decreasing uniformly in s. The resulting function

Ph,s,t,zΨh,s,t0,t,z is also in S(R2), uniformly in s. We now give another representation of this function: by

(3.20), we have for a given s ∈ (t0, t)

Ψh,s,t0,t,z =

n−h∑
j=1

∫ s

t0

ds1 · · ·
∫ sj−1

t0

dsj
∑

i∈In−h,j

C
(
ϕs,t,Pi1,s1,s,z · · · Pij ,sj ,s,z ϕt0,s

)
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(by Fubini’s Theorem)

= C

(
ϕs,t,

n−h∑
j=1

∫ s

t0

ds1 · · ·
∫ sj−1

t0

dsj
∑

i∈In−h,j

Pi1,s1,s,z · · · Pij ,sj ,s,z ϕt0,s
)

(finally, by (3.16)-(3.17))

=
1

(n− h)!
C

(
ϕs,t, fn−h,t0,s,z

)
.

Therefore, we obtain

fn,t0,t,z
n!

=

∫ t

t0

dsPn,s,t,zϕt0,t +
1

(n− h)!

n−1∑
h=1

∫ t

t0

dsPh,s,t,zC
(
ϕs,t, fn−h,t0,s,z

)
,

which proves (3.18) and concludes the proof.

We are now ready to prove Theorems 2.2, which will be proved by induction on n.

Proof of Theorem 2.2. The result will follow by applying Lemma 3.3 with:

ϕs,t(ξ, x) = Γσ(t− s, x− ξ), ξ, x ∈ R.

We first prove the statement for n = 1. Set

P1,s,t,z = G̃z1(s, t, x) = P̃0,s[b(z, ·)]∂x, P̄1,s,t,z =
¯̃
Gz1(s, t, ξ) = −P̃0,s[b(z, ·)]∂ξ,

which are operators from S(R2) onto itself of the form (3.14). Moreover, by definition (2.8)-(2.9), as-

sumption [Hyp-b.N − 1], and by estimate (3.2) with n = 0, the function s 7→ P̃0,s[b(z, ·)] are measurable

and bounded on [0, t]. Finally, (3.8) implies (3.15) for h = 1. Therefore, by Lemma 3.3 we have that

(f1,t0,t,z)0≤t0<t,z∈R as in (3.17) is well defined as a family of functions in S(R2), and

f1,t0,t,z(ξ, x) =

∫ t

t0

G̃z1(s, t, x)

∫
R

Γσ(t− s, x− y)ϕt0,s(ξ, y)dyds

(by (3.5))

=

∫ t

0

∫
R

Γσ(t− s, x− y)Bz0,0
(
s, y)ϕt0,s(ξ, y)dyds.

This proves that the function p̃1(0, ξ; t, x) := −f1,0,t,ξ(ξ, x) is well defined, satisfies (2.16), and also

p̃1(0, ξ; t, x) = −L̃ξ1(t, x) p̃0(0, ξ; t, x).

Eventually, the wellposedness of definition (2.15) for P̃1,t stems directly from estimate (3.1) with n = 1,

which is integrable w.r.t. µY (dξ).

Set now n̄ ∈ N∗, n̄ < N , assume the statement true for any n ≤ n̄, and prove it true for n = n̄+ 1. Set

Ph,s,t,z = G̃zh(s, t, x), P̄h,s,t,z =
¯̃
Gzh(s, t, ξ), h ≤ n̄+ 1,

with G̃zh and
¯̃
Gzh as in (2.19) and (3.7), respectively. In particular, by inductive hypothesis, the functions

P̃n,t, n ≤ n̄, are well defined and satisfy the a priori estimates (3.2). Therefore, it follows by (2.19) and (3.7)
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that Ph,s,t,z and P̄h,s,t,z are well defined as operators from S(R2) onto itself, and they admit a representation

of the form (3.14) where s 7→ a
(h,z)
i,j (s, t) and s 7→ ā

(h,z)
i,j (s, t) are bounded and measurable (by assumption

[Hyp-b.N − 1] and estimate (3.2)) functions on [0, t]. Moreover, (3.8) implies the symmetry property

(3.15). Therefore, by Lemma 3.3 we have that (fn,t0,t,z)n≤n̄+1,0≤t0<t,z∈R as in (3.17) is well defined as a

family of functions in S(R2), and that in particular

fn̄+1,t0,t,z(ξ, x) =

n̄+1∑
h=1

(n̄+ 1)!

(n̄+ 1− h)!

∫ t

t0

G̃zh(s, t, x)

∫
R

Γσ(t− s, x− y)fn̄+1−h,t0,s,z(ξ, y)dyds

(by (3.5))

=

n̄+1∑
h=1

h

(
n̄+ 1

h

) h−1∑
j=0

(
h− 1

j

)∫ t

0

∫
R

Γσ(t− s, x− y)Bzh−1,j

(
s, y)fn̄+1−h,t0,s,z(ξ, y)dyds.

This proves that the function p̃n̄+1(0, ξ; t, x) := −fn̄+1,0,t,ξ(ξ, x) is well defined, satisfies (2.16), and also

p̃n̄+1(0, ξ; t, x) = −L̃ξn̄+1(t, x) p̃0(0, ξ; t, x).

Eventually, the wellposedness of definition (2.15) for P̃n̄+1,t stems directly from estimate (3.1) with n =

n̄+ 1, as before. This concludes the proof.

3.2 Proof of Theorem 2.9

Throughout this section we fix a time T > 0 and we consider assumptions [Hyp-σ], [Hyp-b.0] and [Hyp-

b.N̄ + 1] to be in force for a fixed N̄ ∈ N∗.

Notation 3.4. Throughout the rest of this section, unless explicitly stated, we will denote by (Cc)c>0

any family of positive constants that depend at most on N̄ , T and on the constants M, σ̄ of assumptions

[Hyp-σ], [Hyp-b.0] and [Hyp-b.N̄ + 1]. Note that, in particular, Cc is independent of σ.

In light of Remark 1.4, we have the following classical Gaussian upper bounds for p(s, ξ; t, x) and

∂ξp(s, ξ; t, x) (see [Fri64, Chapter 1, p. 28]) that will be used here below.

Lemma 3.5. For any m,n ∈ N with m ≤ N̄ + 1 and n ≤ 1 and for any c > 1, we have

|x− ξ|m
∣∣∂nξ p(s, ξ; t, x)

∣∣ ≤ Cc(σ2(t− s)
)m−n

2 Γcσ
(
t− s, x− ξ

)
,

for any ξ, x ∈ R and 0 ≤ s < t ≤ T .

Remark 3.6. Under assumptions [Hyp-b.N̄ + 1] and [Hyp-σ], the functions p̃n(0, ξ; ·, ·), 1 ≤ n ≤ N̄ + 1,

are solutions of the Cauchy problems (2.13) , meaning that the PDE is satisfied on the internal domain

]0,∞[×R, and that the initial condition is fulfilled in the distributional sense, i.e.

lim
(t,ξ)→(0,ξ̄)

t>0

∫
R
p̃n(0, ξ; t, x)ϕ(t, x)dx = 0, ξ̄ ∈ R, ϕ ∈ Cb([0, T̄ [×R), T̄ ∈]0,∞[. (3.21)

In fact, the initial condition above is a straightforward consequence of the upper bound (3.1), whereas the

fact that p̃n(0, ξ; ·, ·) solves the PDE in (2.13) follows by differentiating (2.16), and by using again estimate

(3.1) and integrating by parts to deal with the time-integral in (2.16), which is singular near 0 and t.
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Before to continue, let the family of operators
( ¯̃
Aξn,s

)
n≤N̄+1,0≤s≤T,ξ∈R be defined as

¯̃
Aξn,s := Ã0 +

n∑
h=1

Ã
ξ
h,s, with Ã

ξ
h,s := − 1

(h− 1)!

h−1∑
i=0

(
h− 1

i

)
B
ξ
h−1,i(s, ·), (3.22)

where the family of operators
(
B
ξ
k,i

)
0≤i≤k,ξ∈R is as defined in (2.14). We also recall to the reader the

definitions of ¯̃pN , ¯̃PN given in (2.5)-(2.6).

Lemma 3.7. For any N ∈ N with N ≤ N̄ + 1, the following identity holds:

(
p− ¯̃pN

)
(0, ξ; t, x) =

N∑
n=0

1

(N − n)!

∫ t

0

∫
R
p(s, y; t, x)

(
As(y)− ¯̃

Aξn,s(y)
)
p̃N−n(0, ξ; s, y)dyds, (3.23)

for any t > 0 and x, ξ ∈ R.

Proof. By induction on N . We first prove the statement for N = 0. We set

ψ0(s) := −
∫
R
p(s, y; t, x)p̃0(0, ξ; s, y)dy, 0 < s < t, ξ, x ∈ R.

By the continuity of p(·, ·; t, x) and p̃0(0, ξ; ·, ·) along with the terminal condition in (1.3) and the initial

condition in (2.11), one readily has

lim
s→0+

ψ0(s) = −p(0, ξ; t, x), lim
s→t−

ψ0(s) = −p̃0(0, ξ; t, x).

On the other hand, for any s ∈]0, t[ we obtain

∂sψ0(s) = −
∫
R

((
∂sp(s, y; t, x)

)
p̃0(0, ξ; s, y) + p(s, y; t, x)

(
∂sp̃0(0, ξ; s, y)

))
dy

(by the PDEs in (1.3) and (2.11))

=

∫
R

((
Abs(y)p(s, y; t, x)

)
p̃0(0, ξ; s, y)− p(s, y; t, x)

(
Ã0(y)p̃0(0, ξ; s, y)

))
dy

(as As is the adjoint of Abs)

=

∫
R
p(s, y; t, x)

(
As(y)− Ã0(y)

)
p̃0(0, ξ; s, y)dy.

Now, by employing the estimates in Lemmas 3.1 and 3.5, it is straightforward to see that ∂sψ0 is integrable

on the interval [0, t]. Therefore, by Newton-Leibniz axiom along with definition (2.5) we get

(p− ¯̃p0)(0, ξ; t, x) =

∫ t

0

∫
R
p(s, y; t, x)

(
As(y)− Ã0(y)

)
p̃0(0, ξ; s, y)dyds,

which, by (3.22), yields (3.23) for N = 0.

Fix now Ñ ≤ N̄ , assume that (3.23) holds true for N = Ñ , and prove it true for N = Ñ + 1. We set

ψÑ+1(s) :=

∫
R
p(s, y; t, x)p̃Ñ+1(0, ξ; s, y)dy, 0 < s < t, ξ, x ∈ R.

By the continuity of p(·, ·; t, x) and p̃Ñ+1(0, ξ; ·, ·) along with the terminal condition in (1.3) and the initial

condition (3.21), one readily has

lim
s→0+

ψÑ+1(s) = 0, lim
s→t−

ψÑ+1(s) = p̃Ñ+1(0, ξ; t, x).
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On the other hand, for any s ∈]0, t[ we get

∂sψÑ+1(s) =

∫
R

((
∂sp(s, y; t, x)

)
p̃Ñ+1(0, ξ; s, y) + p(s, y; t, x)

(
∂sp̃Ñ+1(0, ξ; s, y)

))
dy

(by the PDE in (1.3) and since Abs is the adjoint of As)

=

∫
R
p(s, y; t, x)

(
∂s − Ã0(y) + Ã0(y)−As(y)

)
p̃Ñ+1(0, ξ; s, y)dy

(by the PDE in (2.13) (see Remark 3.6) and by definition (3.22))

=

∫
R
p(s, y; t, x)

(
Ã0(y)−As(y)

)
p̃Ñ+1(0, ξ; s, y)dy

+

Ñ+1∑
n=1

(Ñ + 1)!

(Ñ + 1− n)!

∫
R
p(s, y; t, x) Ãξn,s(y) p̃Ñ+1−n(0, ξ; s, y)dy.

Now, by employing again the estimates in Lemmas 3.1 and 3.5, it is straightforward to see that ∂sψÑ+1 is

integrable on the interval [0, t]. Therefore, it holds

1

(Ñ + 1)!
p̃Ñ+1(0, ξ; t, x) =

1

(Ñ + 1)!

∫ t

0

∫
R
p(s, y; t, x)

(
Ã0(y)−As(y)

)
p̃Ñ+1(0, ξ; s, y)dyds

+

Ñ+1∑
n=1

1

(Ñ + 1− n)!

∫ t

0

∫
R
p(s, y; t, x) Ãξn,s(y) p̃Ñ+1−n(0, ξ; s, y)dyds. (3.24)

Now, by definition (2.5) we finally obtain(
p− ¯̃pÑ+1

)
(0, ξ; t, x) =

(
p− ¯̃pÑ −

1

(Ñ + 1)!
p̃Ñ+1

)
(0, ξ; t, x)

(by inductive hypothesis, and shifting the index n, and by (3.24))

=

Ñ+1∑
n=1

1

(Ñ + 1− n)!

∫ t

0

∫
R
p(s, y; t, x)

(
As(y)− ¯̃

A
ξ
n−1(y)

)
p̃Ñ+1−n(0, ξ; s, y)dyds

+
1

(Ñ + 1)!

∫ t

0

∫
R
p(s, y; t, x)

(
As(y)− Ã0(y)

)
p̃Ñ+1(0, ξ; s, y)dyds

−
Ñ+1∑
n=1

1

(Ñ + 1− n)!

∫ t

0

∫
R
p(s, y; t, x) Ãξn,s(y) p̃Ñ+1−n(0, ξ; s, y)dyds,

which, by (3.22), yields (3.23) with N = Ñ + 1 and concludes the proof.

Lemma 3.8. For any n ∈ N with n ≤ N̄ + 1 we have

(
As(y)− ¯̃

Aξn,s(y)
)

= ∂y

(
Ps
[
T

(ξ)
n−1b(y, ·)− b(y, ·)

]
+

n−1∑
i=0

1

i!

(
¯̃Pn−1−i,s

[
∂i1b(ξ, ·)

]
− Ps

[
∂i1b(ξ, ·)

])
(y − ξ)i

)
,

(3.25)

where T
(ξ)
k b(y, ·) represents the k-th order Taylor expansion of b(y, ·) centered at ξ, i.e.

T
(ξ)
−1 b(y, ·) ≡ 0, T

(ξ)
k b(y, ·) =

k∑
i=0

∂i1b(ξ, ·)
i!

(y − ξ)i, k ≥ 0. (3.26)
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Proof. We prove the statement by induction on N . For N = 0, it directly stems from (3.22), and from the

definition of As and Ã0 in (1.4) and (2.10), respectively.

Fix now ñ ≤ N̄ , assume that (3.25) holds true for any n = ñ, and we prove it true for n = ñ + 1. By

(3.22) and by induction hypothesis, we get

(
As(y)− ¯̃

A
ξ
ñ+1,s(y)

)
= ∂y

(
Ps
[
T

(ξ)
ñ−1b(y, ·)− b(y, ·)

]
+

ñ−1∑
i=0

1

i!

(
¯̃Pñ−1−i,s[∂

i
1b(ξ, ·)]− Ps[∂i1b(ξ, ·)]

)
(y − ξ)i

)

+
1

ñ!

ñ∑
i=0

(
ñ

i

)
B
ξ
ñ,i(s, y)

(by (2.14))

= ∂y

(
Ps
[
T

(ξ)
ñ−1b(y, ·)− b(y, ·)

]
+

ñ−1∑
i=0

1

i!

(
¯̃Pñ−1−i,s[∂

i
1b(ξ, ·)]− Ps[∂i1b(ξ, ·)]

)
(y − ξ)i

)

+ ∂y

( ñ∑
i=0

1

(ñ− i)!i!
P̃ñ−i,s

[
∂i1b(ξ, ·)

]
(y − ξ)i

)

(by definition of ¯̃Pñ−i in (2.6))

= ∂y

(
Ps
[
T

(ξ)
ñ−1b(y, ·)− b(y, ·)

]
+

ñ−1∑
i=0

1

i!

(
¯̃Pñ−i,s[∂

i
1b(ξ, ·)]− Ps[∂i1b(ξ, ·)]

)
(y − ξ)i

)
+ ∂y

(
1

ñ!
P̃0,s

[
∂ñ1 b(ξ, ·)

]
(y − ξ)ñ

)
= ∂y

(
Ps
[
T

(ξ)
ñ−1b(y, ·)− b(y, ·)

]
+

ñ−1∑
i=0

1

i!

(
¯̃Pñ−i,s[∂

i
1b(ξ, ·)]− Ps[∂i1b(ξ, ·)]

)
(y − ξ)i

)
+ ∂y

(
1

ñ!

(
P̃0,s

[
∂ñ1 b(ξ, ·)

]
− Ps

[
∂ñ1 b(ξ, ·)

]
+ Ps

[
∂ñ1 b(ξ, ·)

])
(y − ξ)ñ

)
= ∂y

(
Ps
[
T

(ξ)
ñ b(y, ·)− b(y, ·)

]
+

ñ∑
i=0

1

i!

(
¯̃Pñ−i,s[∂

i
1b(ξ, ·)]− Ps[∂i1b(ξ, ·)]

)
(y − ξ)i

)
,

which is (3.25) with n = ñ+ 1.

We are now in the position to prove Theorem 2.9.

Proof of Theorem 2.9. We proceed by induction on N . For N = 0, by (3.23)-(3.25) we have

(
p− ¯̃p0

)
(0, ξ; t, x) = −

∫ t

0

∫
R
p(s, y; t, x)∂y

(
Ps[b(y, ·)]p̃0(0, ξ; s, y)

)
dyds

(integrating by parts)

= −
∫ t

0

∫
R

(
∂yp(s, y; t, x)

)
Ps[b(y, ·)] p̃0(0, ξ; s, y)dyds.

By applying Lemma 3.5, Lemma 3.1 and Lemma A.1 on ∂yp(s, y; t, x), Pt[b(y, ·)] and p̃0(0, ξ; s, y), respec-

tively, we get ∣∣(p− ¯̃p0

)
(0, ξ; t, x)

∣∣ ≤ Ccσ ∫ t

0

(t− s)− 1
2

∫
R

Γcσ
(
t− s, x− y

)
Γcσ(s, y − ξ)dyds
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(by Chapman-Kolmogorov identity)

≤ Ccσ
∫ t

0

(t− s)− 1
2 dsΓcσ(t, x− ξ) = Cc σt

1
2 Γcσ(t, x− ξ),

which is (2.23) for N = 1.

Fix now Ñ ≤ N̄ , assume that (2.23) holds true for any N ≤ Ñ , and prove it true for N = Ñ + 1. By

(3.23)-(3.25) we obtain (
p− ¯̃pÑ+1

)
(0, ξ; t, x) =

Ñ+1∑
n=0

1

(Ñ + 1− n)!
In,

where

In =

∫ t

0

∫
R
p(s, y; t, x)∂y

(
Ps
[
T

(ξ)
n−1b(y, ·)− b(y, ·)

]
p̃Ñ+1−n(0, ξ; s, y)

)
dyds

+

n−1∑
i=0

1

i!

∫ t

0

∫
R
p(s, y; t, x)∂y

(( ¯̃Pn−1−i,s[∂
i
1b(ξ, ·)]− Ps[∂i1b(ξ, ·)]

)
(y − ξ)ip̃Ñ+1−n(0, ξ; s, y)

)
dyds,

(integrating by parts)

=

∫ t

0

∫
R

(
∂yp(s, y; t, x)

)
Ps
[
T

(ξ)
n−1b(y, ·)− b(y, ·)

]
p̃Ñ+1−n(0, ξ; s, y)dyds

+

n−1∑
i=0

1

i!

∫ t

0

∫
R

(
∂yp(s, y; t, x)

)( ¯̃Pn−1−i,s[∂
i
1b(ξ, ·)]− Ps[∂i1b(ξ, ·)]

)
(y − ξ)ip̃Ñ+1−n(0, ξ; s, y)dyds.

Now, by Taylor Theorem with Lagrange remainder along with assumption [Hyp-b.N̄ + 1], we get∣∣Ps[T (ξ)
n−1b(y, ·)− b(y, ·)

]∣∣ ≤Mσ2|y − ξ|n,

whereas, by induction hypothesis, we have∣∣ ¯̃Pn−1−i,s[∂
i
1b(ξ, ·)]− Ps[∂i1b(ξ, ·)]

∣∣ ≤ Cc σ2
(
σ2s
)n−i

2

as a corollary of (2.23) with N = n− 1− i. Therefore, one has

|In| ≤Mσ2

∫ t

0

∫
R

∣∣∂yp(s, y; t, x)
∣∣ |y − ξ|n∣∣p̃Ñ+1−n(0, ξ; s, y)

∣∣dyds

+ Cc σ
2
n−1∑
i=0

∫ t

0

(
σ2s
)n−i

2

∫
R

∣∣∂yp(s, y; t, x)
∣∣ |y − ξ|i∣∣p̃Ñ+1−n(0, ξ; s, y)

∣∣dyds.

Eventually, by applying Lemma 3.5 on
∣∣∂yp(s, y; t, x)

∣∣, and by applying Lemma 3.1 with Lemma A.1 on

|y − ξ|i
∣∣p̃Ñ+1−n(0, ξ; s, y)

∣∣, we obtain

|In| ≤ Cc σÑ+2

∫ t

0

(t− s)− 1
2 s

Ñ+1
2

∫
R

Γcσ
(
t− s, x− y

)
Γcσ(s, y − ξ)dyds

(by Chapman-Kolmogorov identity)

≤ Cc σÑ+2

∫ t

0

(t− s)− 1
2 s

Ñ+1
2 dsΓcσ(t, x− ξ) = Cc

(
σ2t
) Ñ+2

2 Γcσ(t, x− ξ),

which yields (2.23) with N = Ñ + 1.
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4 Proof of Theorems 2.12 and 2.16

4.1 Proof of Theorem 2.12

Hereafter, throughout this subsection, we assume the hypotheses [Hyp-b.N ] and [Hyp-σ] to be in force

for a fixed N ∈ N∗. Recall that S(Rn) denotes the Schwartz space of rapidly decreasing functions on Rn.

The proof of Theorem 2.12, which is based on Lemma 3.3 combined with the following

Lemma 4.1. For any t0 < s < t, x, y, x̄ ∈ R, and k ∈ N∗ with k ≤ N , we have

1

k!

k∑
j=0

(
k

j

)∫
R

Γσ
(
t− s;x− y −mx̄(s, t)

)
Bx̄k,j

(
s, y)f(y)dy

= Gx̄k(s, t, x)

∫
R

Γσ
(
t− s;x− y −mx̄(s, t)

)
f(y)dy, (4.1)

and

1

k!

k∑
j=0

(
k

j

)∫
R
f(x)Bx̄k,j

(
s, x)Γσ

(
s− t0;x− y −mx̄(t0, s)

)
dx

= Ḡx̄k(t0, s, y)

∫
R

Γσ
(
s− t0;x− y −mx̄(t0, s)

)
f(x)dx, (4.2)

for any f ∈ S(R), where Ḡx̄k = Ḡx̄k(t0, s, y) is the differential operator acting as

Ḡx̄k(t0, s, y)u(y) = − 1

k!

k∑
j=0

(
k

j

)
P̃k−j,s

[
∂j1b(x̄, ·)

](
M̄x̄(t0, s, y)− x̄

)j
∂yu(y), (4.3)

and the operator M̄x̄ = M̄x̄(t0, s, y) acts as

M̄x̄(t0, s, y) = y + mx̄(t0, s) + σ2(s− t0) ∂y.

Moreover, the following relation holds:

Gx̄k(s, t, x)Γσ(t− t0;x− y) = Ḡx̄k(t0, s, y)Γσ(t− t0;x− y). (4.4)

Proof. Similarly to (3.9) and (3.10), we have

∂xΓσ
(
t− s;x− y −mx̄(s, t)

)
= −∂yΓσ

(
t− s;x− y −mx̄(s, t)

)
,

y Γσ
(
t− s;x− y −mx̄(s, t)

)
= Mx̄(s, t, x)Γσ

(
t− s;x− y −mx̄(s, t)

)
,

xΓσ
(
t− s;x− y −mx̄(s, t)

)
= M̄x̄(s, t, y)Γσ

(
t− s;x− y −mx̄(s, t)

)
.

Now the proof of (4.1)-(4.2) is completely analogous to that of (3.5)-(3.6), and thus we omit the details for

brevity. Eventually, identity (4.4) is a consequence of (4.1)-(4.2) combined with the Chapman-Kolmogorov

equation:∫
R

Γσ
(
t− s, x− η −mx̄(s, t)

)
Γσ
(
s− t0, η − y −mx̄(t0, s)

)
dη = Γσ

(
t− t0, x− y −mx̄(t0, t)

)
,

for any t0 < s < t and x, y, x̄ ∈ R.
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We are now ready to prove Theorem 2.12.

Proof of Theorem 2.12. The proof is a straightforward application of Lemma 3.3 with the kernel

ϕs,t(ξ, x) = Γσ
(
t− s;x− ξ −mx̄(s, t)

)
, ξ, x ∈ R,

and the operators

Ph,s,t,x̄ = Gx̄h(s, t, x), P̄h,s,t,x̄ = Ḡx̄h(s, t, ξ), h ∈ N∗, h ≤ N,

with Gx̄h and Ḡx̄h as in (2.35) and (4.3), respectively. In particular, under assumption [Hyp-b.N ], the

functions (P̃n,t)n≤N appearing in (2.35)-(4.3) are well defined and satisfy the estimates (3.2). It follows

that Ph,s,t,x̄ and P̄h,s,t,x̄ are well defined as operators from S(R2) onto itself, and they admit a representation

of the form (3.14) where s 7→ a
(h,x̄)
i,j (s, t) and s 7→ ā

(h,x̄)
i,j (s, t) are bounded and measurable (by assumption

[Hyp-b.N ]) functions on [0, t]. Moreover, (4.4) implies the symmetry property (3.15). Therefore, by

Lemma 3.3 we have that (fn,t0,t,x̄)n≤N,0≤t0<t,x̄∈R as in (3.17) is well defined as a family of functions in

S(R2), and in particular

fn,t0,t,x̄(ξ, x) =

n∑
h=1

n!

(n− h)!

∫ t

t0

Gx̄h(s, t, x)

∫
R

Γσ
(
t− s, x− y −mx̄(s, t)

)
fn−h,t0,s,x̄(ξ, y)dyds

(by (4.1))

=

n∑
h=1

(
n

h

) h∑
j=0

(
h

j

)∫ t

0

∫
R

Γσ
(
t− s, x− y −mx̄(s, t)

)
Bx̄h,j

(
s, y)fn−h,t0,s,x̄(ξ, y)dyds.

This proves that the function px̄n(s, ξ; t, x) := −fn,s,t,x̄(ξ, x) is well defined, satisfies (2.33), and also

px̄n(s, ξ; t, x) = −Lx̄n(s, t, x) px̄0(s, ξ; t, x).

This concludes the proof.

4.2 Proof of Theorem 2.16

Throughout this section we fix a time T > 0 and we consider assumptions [Hyp-σ], [Hyp-b.0] and [Hyp-

b.N̄ + 1] to be in force for a fixed N̄ ∈ N∗.

Notation 4.2. Throughout the rest of this section, unless explicitly stated, we will denote by (Cc)c>0

any family of positive constants that depend at most on N̄ , T and on the constants M, σ̄ of assumptions

[Hyp-σ], [Hyp-b.0] and [Hyp-b.N̄ + 1]. Note that, in particular, Cc is independent of σ.

We start with the following upper bounds for the functions px̄n(s, ξ; t, x).

Lemma 4.3. For any c > 1, k ∈ N, and n ∈ N∗ with n ≤ N̄ , we have∣∣∂kxpx̄0(s, ξ; t, x)
∣∣ ≤ Cc(σ2(t− s)

)− k2 Γcσ
(
t− s, x− ξ

)
, (4.5)∣∣∂kxpx̄n(s, ξ; t, x)

∣∣ ≤ Cc(σ2(t− s)
)n+1−k

2

( n∑
j=0

|x− x̄|j
(
σ2(t− s)

)− j2)Γcσ
(
t− s, x− ξ

)
, (4.6)

for any 0 < t ≤ T and x, ξ, x̄ ∈ R.
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Proof. Note that (2.30) and (3.2) yield |mx̄(s, t)| ≤ Cc σ
2(t − s). Therefore, (4.5) follows by applying

Lemma A.2 and A.3. Now, for n ∈ N∗ with n ≤ N̄ , by Corollary 2.14 we have

∣∣∂kxpx̄n(s, ξ; t, x)
∣∣ ≤ Cc n∑

h=1

∑
i∈In,h

∑
γ,m,l,j∈Nh
lq≤jq≤iq

mq≤b
jq−lq

2 c
γq≤jq−2mq−lq

∣∣Fx̄γ,l+m,j,i(s, t)∣∣ ∣∣∂kxHx̄
j−2m−γ,l(x)px̄0(s, ξ; t, x)

∣∣.

Now, proceeding as we did before to prove (3.4), one easily gets

∣∣Fx̄γ,l+m,j,i(s, t)∣∣ ≤ Cc(σ2(t− s)
)∑h

q=1(iq+2−jq+2lq+2mq+2γq)

2 ≤ Cc
(
σ2(t− s)

)n+2h+
∑h
q=1(2lq+2mq+2γq−jq)

2

≤ Cc
(
σ2(t− s)

)n+1+h+
∑h
q=1(2lq+2mq+γq−jq)

2 . (4.7)

On the other hand, definition (2.21) yields∣∣∂kxHx̄
j−2m−γ,l(x)px̄0(s, ξ; t, x)

∣∣ ≤ Cc ∑
0≤ρ1≤n, 0≤ρ2≤2n

ρ1−ρ2=−h−k+
∑h
q=1(jq−2mq−γq−2lq)

|x− x̄|ρ1
∣∣∂ρ2
x p

x̄
0(s, ξ; t, x)

∣∣
(by Lemma A.2)

≤ Cc
∑

0≤ρ1≤n, 0≤ρ2≤2n

ρ1−ρ2=−h−k+
∑h
q=1(jq−2mq−γq−2lq)

|x− x̄|ρ1
(
σ2(t− s)

)− ρ22 Γcσ
(
t− s, x− ξ

)
,

which in turn, combined with (4.7), yields∣∣Fx̄γ,l+m,j,i(s, t)∣∣ ∣∣∂kxHx̄
j−2m−γ,l(x)px̄0(s, ξ; t, x)

∣∣
≤ Cc

(
σ2(t− s)

)n+1
2

( n∑
ρ1=0

|x− x̄|ρ1
(
σ2(t− s)

)− ρ1+k
2

)
Γcσ
(
t− s, x− ξ

)
,

and this concludes the proof.

Remark 4.4. Under assumptions [Hyp-b.N̄ + 1] and [Hyp-σ], the functions px̄n(s, ξ; ·, ·), 1 ≤ n ≤ N̄ ,

are solutions of the Cauchy problems (2.32) , meaning that the PDE is satisfied on the internal domain

]s,∞[×R, and that the initial condition is fulfilled in the distributional sense, i.e.

lim
(t,ξ)→(s,ξ̄)

t>0

∫
R
px̄n(s, ξ; t, x)ϕ(t, x)dx = 0, ξ̄ ∈ R, ϕ ∈ Cb([s, T̄ [×R), T̄ ∈]s,∞[.

In fact, the initial condition above is a straightforward consequence of the upper bound (4.6), whereas the

fact that px̄n(s, ξ; ·, ·) solves the PDE in (2.32) follows by differentiating (2.33), after using again estimate

(4.6) and integrating by parts to deal with the time-integral in (2.33), which is singular near 0 and t.

In order to continue, let us introduce the family of operators
(
Āx̄n,s

)
n≤N̄,0≤s≤T,x̄∈R

Ax̄n,s := Ax̄0 +

n∑
h=1

Ax̄h,s, with Ax̄h,s := − 1

h!

h∑
i=0

(
h

i

)
Bx̄h,i(s, ·),
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where the family of operators
(
Bx̄h,i

)
0≤i≤h,x̄∈R is as defined in (2.14). We also recall to the reader the

definition of p̄ x̄N given in (2.26).

The proof of Theorem 2.16 is preceded by the following two Lemmas.

Lemma 4.5. For any N ∈ N with N ≤ N̄ , and x̄ ∈ R, the following identity holds:

(
p− p̄ x̄N

)
(s, ξ; t, x) =

N∑
n=0

1

(N − n)!

∫ t

s

∫
R
p(r, y; t, x)

(
Ar(y)− Āx̄n,r(y)

)
px̄N−n(s, ξ; r, y)dydr, (4.8)

for any 0 ≤ s < t and x, ξ ∈ R.

Lemma 4.6. For any n ∈ N with n ≤ N̄ we have

(
Ar(y)− Āx̄n,r(y)

)
= ∂y

(
Pr
[
T (x̄)
n b(y, ·)− b(y, ·)

]
+

n∑
i=0

1

i!

(
¯̃Pn−i,r

[
∂i1b(x̄, ·)

]
−Pr

[
∂i1b(x̄, ·)

])
(y− x̄)i

)
, (4.9)

where T
(x̄)
k b(y, ·) represents the k-th order Taylor expansion of b(y, ·) centered at x̄, see (3.26).

The proofs of Lemmas 4.5 and 4.6 are totally analogous to those of Lemmas 3.7 and 3.8 respectively,

and they are based on Remark 4.4 along with the upper bounds in Lemma 4.3, and the Cauchy problems

(1.3)-(2.31). For brevity, we leave the detailed proofs to the reader.

We are now in the position to prove Theorem 4.2.

Proof of Theorem 2.16. Let N ∈ N with N ≤ N̄ . By (4.8)-(4.9) we get

(
p− p̄ x̄N

)
(s, ξ; t, x) =

N∑
n=0

1

(N − n)!
I x̄n , (4.10)

where

I x̄n =

∫ t

s

∫
R
p(r, y; t, x)∂y

(
Pr
[
T (x̄)
n b(y, ·)− b(y, ·)

]
px̄N−n(s, ξ; r, y)

)
dydr

+

n∑
i=0

1

i!

∫ t

s

∫
R
p(r, y; t, x)∂y

(( ¯̃Pn−i,r[∂
i
1b(x̄, ·)]− Pr[∂i1b(x̄, ·)]

)
(y − x̄)ipx̄N−n(s, ξ; r, y)

)
dydr,

(integrating by parts)

=

∫ t

s

∫
R

(
∂yp(r, y; t, x)

)
Pr
[
T (x̄)
n b(y, ·)− b(y, ·)

]
px̄N−n(s, ξ; r, y)dydr

+

n∑
i=0

1

i!

∫ t

s

∫
R

(
∂yp(r, y; t, x)

)( ¯̃Pn−i,r[∂
i
1b(x̄, ·)]− Pr[∂i1b(x̄, ·)]

)
(y − x̄)ipx̄N−n(s, ξ; r, y)dydr.

Now, by Taylor Theorem with Lagrange remainder along with assumption [Hyp-b.N̄ + 1], we get∣∣Pr[T (x̄)
n b(y, ·)− b(y, ·)

]∣∣ ≤Mσ2|y − x̄|n+1,

whereas, by Theorem 2.9, we have∣∣ ¯̃Pn−i,r[∂
i
1b(x̄, ·)]− Pr[∂i1b(x̄, ·)]

∣∣ ≤ Cc σ2
(
σ2r
)n−i+1

2
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as a corollary of (2.23) with N = n− i. Therefore, one has

∣∣I x̄n∣∣ ≤ Cc σ2
n+1∑
i=0

∫ t

s

(
σ2r
)n−i+1

2

∫
R

∣∣∂yp(r, y; t, x)
∣∣ |y − x̄|i∣∣px̄N−n(s, ξ; r, y)

∣∣dydr. (4.11)

Consider now the case 0 ≤ n < N . By applying Lemma 4.3 we obtain

|y − x̄|i
∣∣px̄N−n(s, ξ; r, y)

∣∣ ≤ Cc(σ2(r − s)
) 1

2 |y − x̄|i
(
|y − x̄|N−n +

(
σ2(r − s)

)N−n
2

)
Γ√cσ

(
r − s, y − ξ

)
,

which combined with the identity∣∣y − (λx+ (1− λ)ξ
)∣∣ ≤ λ|y − x|+ (1− λ)|y − ξ| ≤ max

(
|y − x|, |y − ξ|

)
, λ ∈ [0, 1]

yields

|y − x̄|i
∣∣px̄N−n(s, ξ; r, y)

∣∣∣∣∣
x̄=λx+(1−λ)ξ

≤ Cc
(
σ2(r − s)

) 1
2 |y − ξ|i

(
|y − ξ|N−n +

(
σ2(r − s)

)N−n
2

)
Γ√cσ

(
r − s, y − ξ

)
+ Cc

(
σ2(r − s)

) 1
2 |y − x|i

(
|y − x|N−n +

(
σ2(r − s)

)N−n
2

)
Γ√cσ

(
r − s, y − ξ

)
(by applying Lemma A.1)

≤ Cc
(
σ2(r − s)

) 1
2
(
σ2(r − s)

)N−n+i
2 Γcσ

(
r − s, y − ξ

)
+ Cc

(
σ2(r − s)

) 1
2 |y − x|i

(
|y − x|N−n +

(
σ2(r − s)

)N−n
2

)
Γcσ
(
r − s, y − ξ

)
.(4.12)

Now, replacing (4.12) into (4.11), and applying Lemma 3.5 along with Chapman-Kolmogorov equation, we

finally obtain∣∣∣I x̄n∣∣x̄=λx+(1−λ)ξ

∣∣∣ ≤ Cc σN+3

∫ t

s

(t− r)− 1
2

( n+1∑
i=0

r
n−i+1

2 (r − s)
N−n+1+i

2

)
dr Γcσ

(
t− s, x− ξ

)
+ Cc σ

N+3

∫ t

s

(r − s) 1
2

(
|t− r|

N−n
2 + (r − s)

N−n
2

)( n+1∑
i=0

r
n−i+1

2 (t− r)
i−1

2

)
dr Γcσ

(
t− s, x− ξ

)
(by using 0 ≤ s < t ≤ T )

≤ Cc
(
σ2t
)N

2
(
σ2(t− s)

) 3
2 Γcσ

(
t− s, x− ξ

)
. (4.13)

Similar computations give a bound for IN :∣∣∣I x̄N ∣∣x̄=λx+(1−λ)ξ

∣∣∣ ≤ Cc σN+2

∫ t

s

(t− r)− 1
2

(N+1∑
i=0

r
N−i+1

2 (r − s) i2
)

dr Γcσ
(
t− s, x− ξ

)
+ Cc σ

N+2

∫ t

s

(N+1∑
i=0

r
N−i+1

2 (r − s)
i−1

2

)
dr Γcσ

(
t− s, x− ξ

)
(by using 0 ≤ s < t ≤ T )

≤ Cc
(
σ2t
)N+1

2
(
σ2(t− s)

) 1
2 Γcσ

(
t− s, x− ξ

)
. (4.14)

Combining (4.13)-(4.14) with (4.10) yields (2.36).
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A Gaussian Estimates

We recall here some standard estimate for the Gaussian density

Γσ(t, x) :=
1

σ
√

2πt
exp

(
− x2

2σ2t

)
, x ∈ R, t > 0. (A.1)

In the following, σ > 0 is fixed.

Lemma A.1. For any n ∈ N and c > 1 we have(
|x|
σ
√
t

)n
Γσ(t, x) ≤ c

(
c2n

(c2 − 1)e

)n
2

Γcσ(t, x), x ∈ R, t > 0.

Proof. Set z = |x|
σ
√
t
. For any c > 1 we have(

|x|
σ
√
t

)n
Γσ(t, x) =

zn

σ
√

2πt
exp

(
−z

2

2

)
= cG(z)Γcσ(t, x),

with

G(z) = zn exp

(
−z

2

2

(
1− 1

c2

))
, z ≥ 0.

The statement now follows by observing that G attains a global maximum at z∗n =
√

c2n
c2−1 and that

G(z∗n) = e−
n
2

(
c2n

c2 − 1

)n/2
.

Lemma A.2. For any n ∈ N and c > 1 we have

|∂nxΓσ(t, x)| ≤ C
(
σ
√
t
)−n

Γcσ(t, x), x ∈ R, t > 0,

where C is a positive constant only dependent on n and c.

Proof. Let us define the n-th order Hermite polynomial as Hn(z) := e
1
2 z

2

∂nz e
− 1

2 z
2

. Then, by definition

(A.1) we have

∂nxΓσ(t, x) = (σ2t)
−n2 Hn

(
x

σ
√
t

)
Γσ(t, x),

and thus the statement easily stems from Lemma A.1.

Lemma A.3. For any c > 1 we have

Γσ(t, x+ µ) ≤ c exp

(
µ2

2σ2t(c2 − 1)

)
Γcσ(t, x), x, µ ∈ R, t > 0.

Proof. This is straightforward using the inequality x2 ≤ (x + µ)2(1 + δ) + µ2(1 + 1/δ) (available for any

δ > 0), with 1 + δ = c2.
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B Path-dependent McKean SDE

Lemma B.1. Assume that F = (F (t, x, x′) : 0 ≤ t ≤ T, x, x′ ∈ C0([0, T ],Rd)) is a family of bounded

continuous functional valued in Rd, globally Lipschitz in the paths x and x′, i.e. there exists a finite

constant LF such that

|F (t, x, x′)− F (t, y, y′)| ≤ LF
(

sup
0≤s≤t

|xs − x′s|+ sup
0≤s≤t

|ys − y′s|
)
, ∀t ∈ [0, T ],

for any continuous functions x, y, x′, y′ : C0([0, T ],Rd) 7→ Rd. Let σ ∈ R; consider the equationdZt = E′[F (t, Z, Z ′)
]
dt+ σdWt, t > 0,

Z0 = Y,
(B.1)

where Y is a square integrable random variable, independent of the Brownian motion W . Then there exists

an unique solution to (B.1), continuous in time and square integrable uniformly in time.

Proof. This is a sort of extension of [Pro04, Theorem 7, Chapter V] to the McKean-Vlasov case. We closely

follow the proof of [Szn91] by constructing the solution using a fixed point argument. For this, we introduce

the Wasserstein distance DT (·, ·), defined on the setM(CT ) of the probability measures on the continuous

trajectories CT := C0([0, T ],Rd):

DT (ν1, ν2) := inf
ν∈M(CT×CT ) with marginals ν1 and ν2

{∫
(sup
s≤T
|ω1,s − ω2,s| ∧ 1)ν(dω1,dω2)

}
.

This defines a complete metric on M(CT ), whose topology is that of weak convergence. For ν in M(CT ),

let us denote by Φ(ν) the distribution of the solution defined as

Zt = Y +

∫ t

0

(∫
Cs
F (s, Z, ω′)ν(dω′)

)
ds+ σWt.

Note that this path-dependent stochastic differential equation has a unique strong solution [Pro04, Theorem

7, Chapter V] since x ∈ C0([0, T ],Rd) 7→
∫
Cs F (s, x, ω)ν(dω) is Lipschitz, uniformly in s ∈ [0, T ]. Given

two probability measures ν1 and ν2 in M(CT ), compare the two SDEs corresponding to Z1 and Z2: for

any coupling ν on Ct with marginal distributions ν1 and ν2, we have

sup
s≤t
|Z1,s − Z2,s| ≤

∫ t

0

∣∣ ∫
Ct
F (s, Z1, ω1)ν1(dω1)−

∫
Ct
F (s, Z2, ω2)ν2(dω2)

∣∣ds
≤
∫ t

0

[
LF sup

r≤s
|Z1,r − Z2,r|+

∫
Ct×Ct

(
[LF sup

r≤s
|ω1,r − ω2,r|] ∧ [2|F |∞]

)
ν(dω1,dω2)

]
ds.

Set K = max(LF , 2|F |∞); then, taking the infimum over the couplings ν and using the Gronwall lemma,

we get

sup
s≤t
|Z1,s − Z2,s| ≤ K

∫ t

0

[
sup
r≤s
|Z1,r − Z2,r|+Ds(ν1, ν2)

]
ds ≤ KeKT

∫ t

0

Ds(ν1, ν2)ds.

From this we deduce a precise control of Dt(Φ(ν1),Φ(ν2)) ≤ KeKT
∫ t

0
Ds(ν1, ν2)ds. We can easily con-

clude to the result: we take ν ∈ M(CT ) and iterating this procedure, we get DT (Φk(ν),Φk+1(ν)) ≤
(KTeKT )k

k! DT (ν,Φ(ν)), which allows us to prove easily that (Φk(ν))k is a Cauchy sequence, converging to

the fixed point of Φ. This implies existence and uniqueness as announced.

32



REFERENCES REFERENCES

References

[AK02] F. Antonelli and A. Kohatsu-Higa. Rate of convergence of a particle method to the solution of

the McKean-Vlasov equation. Ann. Appl. Probab., 12(2):423–476, 2002.

[BG12] R. Bompis and E. Gobet. Asymptotic and non asymptotic approximations for option valua-

tion. In T. Gerstner and P. Kloeden, editors, Recent Developments in Computational Finance:

Foundations, Algorithms and Applications, chapter 4, pages 159–241. World Scientific Publishing

Company, 2012.

[BK10] V.S. Borkar and K.S. Kumar. McKean-Vlasov limit in portfolio optimization. Stoch. Anal.

Appl., 28(5):884–906, 2010.

[BT97] M. Bossy and D. Talay. A stochastic particle method for the McKean-Vlasov and the Burgers

equation. Math. Comp., 66(217):157–192, 1997.

[CD15] R. Carmona and F. Delarue. Forward-backward stochastic differential equations and controlled

McKean-Vlasov dynamics. Ann. Probab., 43(5):2647–2700, 2015.

[CDL13] R. Carmona, F. Delarue, and A. Lachapelle. Control of McKean-Vlasov dynamics versus mean

field games. Math. Financ. Econ., 7(2):131–166, 2013.

[CG15] P.E. Chaudru de Raynal and C.A. Garcia Trillos. A cubature based algorithm to solve decoupled

McKean-Vlasov forward-backward stochastic differential equations. Stochastic Process. Appl.,

125(6):2206–2255, 2015.

[DIRT15] F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré. Global solvability of a networked integrate-
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