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Abstract

We introduce a new class of methods, denoted as Truncated Conjugate Gradient (TCG)

methods, to solve the many-body polarization energy and its associated forces in molecu-

lar simulations encountered in molecular dynamics (MD) and Monte-Carlo techniques. The

method consists of a fixed number of Conjugate Gradient (CG) iterations. TCG approaches

provide a scalable solution to the polarization problem at a user-chosen cost and a correspond-

ing optimal accuracy. The optimality of the CG-method guarantees that the number of the

required matrix-vector products are reduced to a minimum compared to other iterative meth-

ods. This family of methods is non empirical, fully adaptive and provides analytical gradients,

avoiding therefore any energy drift in MD as compared to popular iterative solvers. Besides

speed, one great advantage of this class of approximate methods is that their accuracy is sys-

tematically improvable. Indeed, as the CG-method is a Krylov subspace method, the associated

error is monotonically reduced at each iteration. On top of that, two improvements can be pro-

posed at virtually no cost: (i) the use of preconditioners can be employed, which leads to the

Truncated Preconditioned Conjugate Gradient (TPCG); (ii) since the residual of the final step

of the CG-method is available, one additional Picard fixed point iteration ("peek"), equivalent

to one step of Jacobi Over Relaxation (JOR) with relaxation parameter ω , can be made at

almost no cost. This method is denoted by TCG-n(ω). Black box adaptive methods to find

good choices of ω are provided and discussed. Results show that TPCG-3(ω) is converged

to high accuracy (a few kcal/mol) for various types of systems including proteins and highly

charged systems at the fixed cost of 4 matrix-vector products: (3 CG iterations plus the initial
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CG descent direction). Alternatively, T(P)CG-2(ω) provides robust results at a reduced cost (3

matrix-vector products) and offers new perspectives for long polarizable MD as a production

algorithm. The T(P)CG-1(ω) level provides less accurate solutions for inhomogeneous sys-

tems, but its applicability to well-conditioned problems such as water is remarkable, with only

two matrix-vector product evaluations.

1 Introduction

In recent years, the development of polarizable force fields has lead to new methodologies incor-

porating more physics. Therefore, higher accuracy in the evaluation of energies can be achieved.1

Indeed, the explicit inclusion of the many-body polarization energy offers a better treatment of

intermolecular interactions, with immediate applications in various fields of application ranging

from biomolecular simulations to material science. However, adding polarization to a force field

is associated to a significant increase of the overall computational cost. In that context, various

strategies have been introduced, including Drude oscillators,2 fluctuating charges,3 Kriging meth-

ods4 and induced dipoles.1,5 Among them, the induced dipole approach has been shown to provide

a good balance between accuracy and computational efficiency, and can be implemented in a scal-

able fashion.6

One issue with this approach is the mandatory resolution of a set of linear equations whose size

depends on the number of atoms (or polarizable sites). In practice, for the large systems of interest

of force fields methods, a direct matrix inversion approach using the LU or Cholesky decompo-

sition is not computationally feasible because of its cubic cost in the number of atoms. Luckily,

iterative methods provide a remedy. We showed in a recent paper6,7 that techniques such as the

Preconditioned Conjugated Gradient (PCG) or the Jacobi/Direct Inversion of the Iterative Subspace

(JI/DIIS) were efficient for large scale simulations as they offer the possibility of a massively paral-

lel implementation coupled to fast summation techniques such as the Smooth Particle Mesh Ewald

(SPME).8 The overall cost is then directly proportional to the number of iterations necessary to

achieve a good convergence. In that context, predictor-corrector strategies have been introduced
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to reduce this number using the information of the previous time-steps.9,10 Extended Lagrangian

formulations inspired by efficient ab initio methods have also been introduced in order to limit

the computational cost but they require additional thermostats.11 In practice, iterative methods are

now the standard but suffer from energy conservation issues due to their non-analytical evaluation

of the forces. Moreover, force fields are optimized to reach a precision for 10−1 to 10−2 kcal/mol

in the polarization energy. Such a precision can easily be reached using a convergence threshold

of 10−3 to 10−4 Debye on the induced dipoles. However, when using iterative schemes, one needs

to enforce the quality of the non-analytical forces in order to guarantee the energy conservation.

Hence, a tighter convergence criterion of 10−5 to 10−7 Debye must be used for its computation.

This leads to a very significant increase of the number of iterations. Overall, this additional compu-

tational cost is not linked to the accuracy of the polarization energy but only ensures the numerical

stability of the MD scheme. In that context, in their 2005 seminal paper12 (see also ref. 13), Wang

and Skeel postulated that another strategy would be possible if one could offer a method allowing

analytical derivatives and therefore avoiding by construction the risk of loss of energy conservation

(i.e. the drift). Such a method would be associated to a fixed number of iterations and could ex-

tend the applicability of polarizable simulations. Wang explored such strategies based on modified

Chebyshev polynomials but noticed that even if the intended analytical expression was obtained,

it offered little accuracy compared to fully converged iterated results. In that context, Simmonett

et al.14,15 recently proposed to revisit this assumption in the context of a perturbation approach

evaluating an approximated polarisation energy denoted as ExPT. They proposed a parametric

equation offering analytical derivatives and a good accuracy for some class of systems. However,

the parametric aspect of the approach limits its global applicability to other types of systems. The

purpose of this paper is to introduce a non-empirical strategy based on the same goals: analytical

derivatives in order to guaranty energy conservation, limited number of iterations and reasonable

accuracy.

We will first present the variational formulation of the polarization energy and the associated

linear system. Then, we will look at iterative methods that are commonly used to solve it and

4



discuss how they can cause problems in molecular simulations. Following this, we will describe

two classes of iterative methods, the fixed point methods and the Krylov methods, and see how

one can compute the polarization energy and its associated forces analytically (therefore avoiding

the energy drift mentioned above). Finally, we will show some numerical results and discuss the

accuracy of the new methods.

2 Context and notations

In the context of force fields, several techniques are used in order to take polarization into account.

Everything that will be presented in this paper concerns the widely used induced dipole model. In

this model, each or some of the atomic sites are associated with a 3× 3 polarizability tensor, so

that induced dipoles appear on these sites because of the electric fields created by the permanent

charge density and by the other induced dipoles.

2.1 Notations

In the rest of the paper, we will assume that the studied system consists of N atoms, each of them

bearing an invertible 3×3 polarizability tensor αi. We will denote by ~Ei the electric field created

by the permanent density of charge on site i, and by~µi the induced dipole on site i. The 3N vectors

collecting these vectors will respectively be noted E and µµµ . Furthermore, for i 6= j, we will denote

by Ti j the 3×3 tensor representing the interaction between the i-th and the j-th induced dipole, so

that Ti j~µ j is the (possibly damped) electric field created by ~µ j on site i. We are now able to define
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by blocks the so-called polarization matrix of the system block by block:

T =



α
−1
1 −T12 −T13 . . . −T1N

−T21 α
−1
2 −T23 . . . −T2N

−T31 −T32
. . .

...
...

...

−TN1 −TN2 . . . α
−1
N


This matrix is clearly symmetric and we assume that it is also positive definite (thanks to the

damping of the electric fields at short range) so that the energy functional defined below has a

minimum and "the polarization catastrophe"16 is avoided.

2.2 Variational formulation of the polarization energy and the associated

linear system

Given these notations, one can express the polarization energy of the studied system in the context

of an induced dipole polarizable force field as follows:

Epol =
1
2

µµµ
T Tµµµ−µµµ

T E (1)

The dipoles µµµ of the quadratic energy functional are determined by the first optimality condition

in form of the following linear system:

Tµµµ = E (2)

so that finally:

Epol =−
1
2

µµµ
T E (3)
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for the minimizing dipoles µµµ . The linear system expressed above has to be solved at each time

step of a MD trajectory, so that a computationally efficient technique has to be used to solve it.

Two kinds of methods exist to solve a linear system, the direct ones and the iterative ones. The

first approaches, such as the LU or Cholesky decomposition, yield exact results (up to round-off

errors) but their computational cost grows proportionally to N3 and their memory requirements

proportionally to N2, making them hardly usable for large systems of biological interest.

3 Iterative methods

In contrast, iterative techniques yield approximate results depending on a convergence criterion,

but their computional cost is proportional to the number of iterations times the cost of one iteration

(dominated by the cost of a matrix-vector product). This implies that the iterative techniques can

be used in conjunction with an efficient matrix-vector multiplication method such as the Smooth

Particle Mesh Ewald or the Fast Multipoles8,17 .

Several issues arise when using an iterative method to solve the polarization energy. The first one is

related to the way the associated forces are computed. Indeed, the polarization energy is a function

of the induced dipoles and of the atomic positions, so that one can rely on the chain rule to express

the total derivative of this energy with respect to the atomic positions. The induced dipoles are

then assumed to be completely minimizing Epol so that ∂Epol
∂ µµµ

is assumed to be zero, yielding the

following expression (that is analogous to the Hellman-Feynman theorem in quantum mechanics):

dEpol

dri
=

∂Epol

∂ µµµ

∂ µµµ

∂ ri
+

∂Epol

∂ ri
=

∂Epol

∂ ri
(4)

As the iterative method for the resolution of the induced dipoles is never perfectly converged, the

previous assumption is never perfectly satisfied. Consequently, the forces calculated using this

method are not exactly the negative of the first derivative of Epol (eq. 3) with respect to the nu-

clear positions, potentially giving rise to an energy drift in a MD simulation. This is illustrated

by the following graph (fig 1) representing the evolution of the total energy for a water box of 27
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molecules, using the (diagonaly) Preconditioned Conjugate Gradient with different convergence

threshold, namely 10−3,10−4,10−5,10−6 and 10−7. An initial guess not issued from the past it-

erations was used, for a short MD simulation of 10 ps, using a time step of 0.25 fs. Such a small

time step was used in order to minimize the numerical error coming from time-integration. One

can directly observe the relation between the convergence threshold and the energy conservation.

Figure 1: Evolution of the total energy of a water box of 27 molecules computed with PCG and dif-
ferent convergence thresholds (AMOEBA), and with the TPCG2(ωfit) method, with P=diag. The
drift on the total energy is fully related to the polarization contribution, the TPCG2(ωfit) converges
to the 10−7 PCG results without any drift.
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The second issue is the computational cost of the iterative methods, proportional to the number of

iterations times the cost of one iteration. Solving the polarization equations costs usually (depend-
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ing on the settings of the simulation) more than 60% of the total cost of an MD step. It has already

been shown that carefully choosing the iterative techique employed and taking an initial guess µµµ0

using information from the past (by using predictor guesses9,10) can yield an important reduction

of the number of iterations required to reach a satisfactory convergence threshold. Nevertheless,

some limitations exist due to the imperfect time reversibilty and volume preservation that they im-

ply. Furthermore, the ability to parallelize the method efficiently also influences the choice of the

optimal method6,7 .

These issues motivate the derivation of a computationaly cheap analytical approximation of

the polarization energy in polarizable MD. We aim also for such an approximation to be as close

as possible to the exact results (or at least within the accuracy of the force field) so that it would

not require a reparametrization of the force fields. In order for the forces to be analytical, the

computation of the induced dipoles have to be history free and should therefore avoid the use of

predictors.

4 Fixed point methods and relation with ExPT

This first class of methods regroups the fixed point methods, also called stationary methods. In this

case, one splits the matrix into two parts in order to reexpress the solution of the linear system as a

fixed point of a mapping associated to the splitting. For the polarization matrix one can reexpress

T as the sum of its (block-)diagonal and off-diagonal part:

T = ααα
−1−T (5)

yielding the following expression of the solution µµµ:

µµµ = ααα(E+T µµµ) (6)
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where µµµ appears as the fixed point of a mapping. Then, Picard’s fixed point theorem18 tells us that

starting from any guess µµµ0 and computing the following sequence of dipoles (denoting by rn the

residual associated to µµµn):

µµµn+1 = αααE+αααT µµµn = µµµn +αααrn (7)

we converge towards the solution if and only if ρ(αααT ) < 1, with ρ(M) denoting the spectral

radius of a given matrix M. The method that was described above is indeed the Jacobi method

and if we had split the matrix between its upper triangular part and the remaining terms, we would

have obtained the Gauss-Seidel method.

A direct refinement of the Jacobi method consists in choosing a "relaxation" parameter ω and the

following (relaxed) scheme:

µµµn+1 = (1−ω)µµµn +ω(µµµn +αααrn) = µµµn +ωαααrn (8)

which is convergent if ρ(Id−ωαααT)< 1. In the rest of the text we will denote this method as JOR

(Jacobi Over Relaxation)19,20 .

One way to get analytical approximations of the polarization energy is to truncate one of these

methods at a fixed order. One could for example choose to truncate the Jacobi method at some

order n to obtain an analytical approximation to the solutions of the induced dipoles:

µµµn = µµµ(0)+µµµ(1)+ ...+µµµ(n) (9)

with

µµµ(n) = ααα(T ααα)nE (10)

which is exactly the formulation of the perturbation theory (PT) method proposed by Simmonett

et al.14 , even if they follow another reasoning related to perturbation theory. The ExPT method-

that they propose is then made by truncating this expansion at order two and by using a linear
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combination of µµµ1 and µµµ3:

µµµExPT = c0µµµ0 + c1µµµ3 (11)

in order to provide then the following expression for the approximation of the polarization energy:

Epol,ExPT =−1
2

µµµ
T
ExPTE (12)

The computational cost of this method is then equivalent to making three matrix-vector multipli-

cation and its accuracy is good in many cases but it has the disadvantage of using two parameters

that need to be fitted. Simmonett and coworkers recently extended the ExPT technique to higher-

orders, giving the OPTn class of methods,15 that lead to improved results but require even more

empirical parameters.

5 Krylov methods: Preconditioned Conjugate Gradient

The point of view of the Krylov methods is completely different.21 It consists in minimizing some

energy functional at each iteration over some growing subspaces.

Starting from some initial guess µµµ0, let us define the associated residual:

r0 = E−Tµµµ0 (13)

We are now able to define the so-called Krylov subspaces of order p ∈ N:

Kp = span(r0,Tr0, ...,Tp−1r0) (14)

We clearly have the following inclusion of spaces:

K1 j K2 j ... (15)
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Then, µn is determined as the minimum of the energy functional over µµµ0 +Kp. As one is mini-

mizing at each iteration the energy functional over some increasing sequence of embedded spaces,

the error (as measured by the functional) is necessarily decreasing. One can show that there exists

a p ≤ 3N such that the exact solution µµµ belongs to µµµ0 +Kp, meaning that these methods always

converge and even provide the exact solution after a finite number of steps, the worst case being

when they converge in 3N iterations. In practice however, only very few iterations are needed to

obtain accurate solutions.

The different Krylov methods are determined by the quantity that is minimized over the Krylov

subspaces: if one minimizes Epol then one obtains the conjugate gradient (given the assump-

tion that T is symmetric definite positive), if ones minimizes ||rn||l2 then one gets the GMRES

method21(which is equivalent to some version of the JI/DIIS22). But many others methods exist,

such as the Minres method23 or the BiCG method21 for non symmetric matrices.

The conjugate gradient algorithm updates 3 vectors at each iteration: a descent direction, a dipole

vector and the associated residual. These vectors are updated using 3 scalars that are obtained by

making some scalar products over these vectors. After the following initialization (using here the

direct field αααE as an initial guess):



µµµ0 = αααE

r0 = E−Tµµµ0

p0 = r0

(16)
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the algorithm reads as follows:



γi =
rT

i ri
pT

i Tpi

µµµ i+1 = µµµ i + γipi

ri+1 = ri− γiTpi

βi+1 =
rT

i+1ri+1

rT
i ri

pi+1 = ri+1 +βi+1pi

(17)

where pi is the descent direction at iteration i, µµµ i the associated dipole vector and ri the associated

residual. The magic of the conjugate gradient algorithm is that this simple recursion scheme still

guarantees µµµ i to be the optimum over the entire Krylov-subspace of order i.

There are several techniques to accelerate the convergence of this algorithm. A widely used strat-

egy is to use preconditioners. Indeed, one can show that the convergence rate of the conjugate

gradient, and more generally of Krylov subspace methods, depends on the condition number of the

matrix that is being inverted: the lower this number (it is always greater than one), the faster the

conjugate gradient will converge. In the case of symmetric positive definite (s. p. d.) matrices as

the polarization matrix, this number can be expressed as:

κ(T) =
λmax

λmin
(18)

where λmax and λmin are the largest and smallest eigenvalues of the polarization matrix. A pre-

conditioner is then a matrix P that is "close" to the inverse of T, such that the matrix P is easily

applied to a vector, κ(PT) ≤ κ(T) and κ(PT) is close to one. The conjugate gradient algorithm

is then applied to the matrix PT with PE as a right hand side. We first chose to use one of the

simplest form of preconditioner: the diagonal or Jacobi preconditioner, where P is equal to the

inverse of the (block-)diagonal part of the polarization matrix. The advantage of this choice in our

context is that multiplying a matrix by a diagonal matrix is computationaly almost free and that
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the diagonal of T does not depend on the positions of the atoms of the system that is studied. As a

consequence, this choice does not complicate the expression of the gradients much. On the down

side, the diagonal of T is of course not a perfect approximation of it, so that we don’t expect the

acceleration of convergence to be the highest among the possible choices of preconditioners. This

is why we also considered a more efficient preconditioner designed for the polarization problem

which we will present below. Wang and Skeel12 start from the expression:

T−1 = ααα(Id−αααT )−1 (19)

giving the first approximation:

T−1 ≈ ααα(Id +αααT ) (20)

which is in fact equivalent to one Jacobi iteration. A second approximation is then made by only

considering the interactions within a certain cutoff in the matrix T . A typical value for this cutoff

is 3 Angstroms, value that we also used for our numerical tests presented below. This precondi-

tioner has a bigger impact on reducing the condition number of the polarization matrix than the

Jacobi one but it also has a higher computational cost per iteration. This cost is typically a bit

less than half a real space matrix-vector product within a Particle Mesh Ewald simulation with

usual settings for the value we chose (7 Angstroms cutoff). The parallel implementation of this

preconditioner would require additional communications before and after the application of this

preconditioner.6 Finally, as it depends on the atoms positions, the expression of the gradients of

the associated dipoles would be very involved.

To illustrate the different rates of convergence of these iterative methods we plotted in figure 2 their

convergence as well as the one of JI/DIIS wich is described in ref. 7 (represented by the norm of

the increment) as a function of the number of iterations in the context of the AMOEBA polarizable

force field for the Ubiquitin protein in water. Note that the Jacobi iterations are not convergent in

this case and that both the JI/DIIS and the Preconditioned Conjugate Gradient converge twice as

fast as the JOR.
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Figure 2: Norm of the increment as a function of the number of iterations for different iterative
methods (AMOEBA), computed on ubiquitin.

0 5 10 15 20 25 30 35 40
Number of iterations

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

N
o
rm

 o
f 
th
e
 i
n
cr
e
m
e
n
t

JOR, ω=0. 75

Jacobi

JI/DIIS

PCG

15



We will now explain how to truncate the preconditioned conjugate gradient to get analytical ex-

pressions that approximate the polarization energy.

6 Truncated Preconditioned Conjugate Gradient

Let us define µµµTCGn, the approximation of the induced dipoles obtained by truncating the conjugate

gradient at order n. We immediately have the result that Epol(µµµ)≤ Epol(µµµTCGn)≤ Epol(µµµTCGm) if

n ≥ m, with Epol written as in equation 1, and µµµ the exact solution of the linear system. In other

words, the quality of the approximation is systematically improvable.

One can then unfold the algorithm at order one and two. Using the following notations:

n0 = rT
0 r0

P1 = Tr0

t1 = rT
0 P1

t2 = n0||P1||2
t2
1

P2 = Tp1

t3 = t1PT
1 P2

t4 = n0
t1

γ1 =
t2
1−n0||P1||2

t3

(21)

one obtains the cumbersome but analytical approximations for the dipoles corresponding to the

conjugate gradient truncated at order one and two, thus allowing the derivation of analytical forces

that are the exact negative of the gradients of the energy:

µµµTCG1 = µµµ0 + t4r0 (22)
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µµµTCG2 = µµµ0 +(t4 + γ1t2)r0− γ1t4P1 (23)

As in the ExPT approach, one can take the following expression as approximation of the polariza-

tion energy:

Epol,TCGn =−
1
2

µµµ
T
TCGnE (24)

Note that both these expressions would be exact if the dipole vectors were exact and that the closer

these vectors are to the fully converged dipoles, the closer these energies will be to the actual

polarization energy.

Indeed, we have the following inequality:

|Epol(µµµ)−ET(P)CGn(µµµ)| = 0.5|µµµT Tµµµ−µµµ
T E+0.5µµµ

T E| (25)

|Epol(µµµ)−ET(P)CGn(µµµ)| = 0.5|µµµT (Tµµµ−E)| (26)

|Epol(µµµ)−ET(P)CGn(µµµ)| ≤ 0.5||µµµ||l2.||rn||l2 (27)

These energies are not the expression minimized over the Krylov subspaces at each iteration of

the conjugate gradient (CG) algorithm (see equation 1), but they coincide at convergence which

should almost be the case if our method is accurate.

These results are naturally extended to the preconditioned conjugate gradient (PCG).

One can of course also choose to truncate the (P)CG at a superior order and still be analytical to

obtain a more accurate approximation, at the price however of additional computational time, and

the analytical expression of the energy and its derivatives will be incrementely more complex, thus

cumbersome to implement. In the following section, where numerical results are presented, we

will limit ourselves to TCG3 as the highest order of truncation.

Moreover, having chosen an order of truncation of the (P)CG, one can exploit the residual (if it is

computed to monitor the accuracy) of the last iteration of the truncated algorithm in order to get

closer to the converged value by computing one step of a fixed point iterative method. As Wang

and Skeel,12 we will call this operation a peek step. Indeed, many fixed point iterative methods
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such as the Jacobi and more generally the Jacobi Over Relaxation (JOR) only require to know

a starting value of the dipoles and the associated residual to be applied at each iteration. Note

that the Jacobi method can be seen as a particular case of the JOR method with ω = 1 and that

this operation is not computationally expensive, as it only requires a matrix-vector product with

a diagonal matrix if the residual is known. As for any fixed-point method of a linear system, the

asymptotic convergence of the JOR method depends on the spectral radius of the iteration matrix.

More precisely, the condition:

ρ(Id−ωαααT)< 1 (28)

guarantees that the JOR method is convergent. Asymptotically, the best convergence rate is ob-

tained with the value of ω that minimizes this spectral radius. One can show that if T is symmetric

positive definite, this value is:

ωopt =
2

λmin +λmax
(29)

λmin and λmax being respectively the smallest and largest eigenvalue of αααT.

As these results are asymptotic, one can not necessarily expect the associated methods to give the

best results if only the so-called peek step is applied, as this depends on the composition of the

current approximation (which is in our case provided by the T(P)CG) in the eigenvector-basis of

T.

Since we can not rely on asymptotic results for one iteration, we also explored another strategy

that can be of use in cases where one is particularly interested in the values of the energies, as

for example in Monte-Carlo simulations for example. The ωopt based on the spectrum intends to

further optimize all the modes of the polarization matrix after the (P)CG steps (independently of the

actual approximation) and should therefore asymptotically improve both the energy and the RMS.

However, other values of ω that take into account the actual approximation can be used to further

improve the accuracy. This explains why we tried, starting from one or two iteration of (P)CG, to

choose the value of ω that gave the closest approximate polarization energy to the fully converged

one. Since the optimal parameter (in this new sense) requires another matrix-vector multiplication,
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we tried to obtain values of this parameter on the fly by fitting one or several energies against the

energies obtained with the fully converged dipoles or a superior truncation of (P)CG. It will be

called ω f it .

Starting for example from µµµTCG2, and noting:

µµµTCG2,peek = µµµTCG2 +ωαααr2 (30)

one can see this procedure as a line search: given the starting point µµµ2, one further tries to optimize

the energies along the parametrized line µµµ2 +ωαααr2 for ω ∈ R.

Once one of these methods is chosen, analytical expressions of the associated forces can be natu-

rally obtained, thus ensuring that the forces are (up to round off errors) the opposite of the exact

gradients of the polarization energy, and thus avoiding an energy drift. Gradients of the energies

have been derived and are presented in a technical appendix at the end of the manuscript.

7 Numerical Results

7.1 Energy conservation of the T(P)CGn approaches

We first emphasize that figure 1 already displays an important result: the TCGn methods ensure

total energy conservation as they use analytical evaluation of the forces. All further refinements

discussed in section 6 lead to the same behaviour, incremently closer to the reference energy.

7.2 Stability of the spectrum

Before presenting the complete numerical tests, we analyze here the spectrum of the polarization

matrix during a MD simulation. Indeed, as pointed out in the theory section, some refinements of

the TCG rely on the extreme eigenvalues of T and αααT. We followed the evolution of these eigen-

values during 100 picoseconds of MD. Those tests were made with a home version of the Lanczos

method since all the matrices we are interested in are symmetric. Indeed, one great advantage of
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the Lanczos method is that it reduces the computational cost compared to direct methods (such

as the one available in the Lapack library). That way, if direct eigenvalue solvers force the user

to compute the full spectrum (i.e all the eigenvalues), Lanczos method allows rapid access to the

extreme eigenvalues by constructing a much smaller tridiagonal matrix whose spectrum is really

close to the one of the original matrix, leading to almost identical extreme eigenvalues that can

then be obtained in a few iterations. We observed that in all cases these values are stable over the

100 picoseconds of the MD trajectories as pointed out by Skeel. This can be seen for S3 and the

ubiquitin system in figures 3 and 4. This result motivated our choice to compute ωopt and ωfit for

the first geometry of our equilibrated systems and to keep this value for all the others geometries.

Both our Lanczos home version and the energy fitting procedure are fast enough to be used on

the fly while being negligeable over a 100 picosecond MD simulation. In our tests, the adaptive

reevaluation of the ω’s was nevertheless never required.

Figure 3: Evolution of the extreme eigenvalues of αααT for S3 and ubiquitin.
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Figure 4: Evolution of ωopt for S3 and ubiquitin.
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7.3 Computational Details and Notations

In this section, we will present some numerical results about the methods presented above. All

the tests presented here were made using the AMOEBA polarizable force field24,25 implemented

in our Tinker-HP code.26 The proposed benchmarks deal with homogeneous and inhomogeneous

systems: water clusters, protein in water droplets as well as an ionic liquid system. The three

water systems will be called S1, S2 and S3 and contain respectively 27 molecules (81 atoms), 216

molecules (648 atoms) and 4000 molecules (12000 atoms). We chose difficult systems ranging

from usual proteins to metalloproteins and highly charged ionic liquids.27 The protein droplets

are respectively: a metalloprotein containing two Zn(II) cations (nucleocapsid protein ncp7) with

water (18515 atoms including counter ions), the ubiquitin protein with water (9737 atoms) and
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the dhfr protein with water (23558 atoms). The ionic liquid system is made of [dmim+][Cl-] (1-3

dimethylimidazolium) ions, making it a highly charged system of 3672 atoms with a very different

regime of polarization interactions. All the results presented in this section were averaged over

100 geometries that were extracted from a 100 picoseconds MD NVT trajectory (one geometry

was saved every picosecond) at 300K for all systems, except the [dmim+][CL-] at 425K. The re-

sults, that will give indications about the accuracy of the approximate methods compared to the

fully converged iterative results, will give two different and complementary aspects of this accu-

racy. We will first compare the polarization energies (in kcal/mol) obtained with dipoles converged

with a very tight criterion (RMS of the residual under 10−9) to the ones obtained with T(P)CG.

We will then present the RMS of the difference between the fully converged dipole vectors and the

approximate methods. This RMS is a good indicator of the quality of T(P)CG forces compared to

the reference: the smaller this RMS is, the closer the approximated but analytical forces will be to

the reference force.

Table 1 to 4 describe the water systems and table 5 to 8 describe the protein droplets and ionic

liquid. We will denote by "Ref" the results obtained with dipoles converged up to 10−9 in the RMS

of the residual; by ExPT the results obtained with the method of Simmonnet et al. presented in

section 3; by TCGn (with n=1,2 and 3) the results obtained with the CG truncated at order 1,2 and

3; by TPCGn (P=diag) (with n=1,2 and 3) the results obtained with the preconditioned (with the

diagonal) CG truncated at order 1,2 and 3; by TPCGn (P=Skeel) (with n=1,2 and 3) the results

obtained with the preconditioned (using Wang and Skeel’s preconditioner) CG truncated at order

1,2 and 3.

Furthermore, we will present results obtained with different kinds of peek steps. We will first de-

note by TCGn(ω = 1) (with n=1,2 and 3) the results obtained with the CG truncated at different

orders when a Jacobi peek step is made after the last conjugate gradient iteration. We will also

denote by TPCGn (P=diag) the results where the same peek step is made after different numbers

of iterations of the PCG with a diagonal preconditioner.

We will also denote by TPCGn(P=diag)(ωopt) (with n=1 and 2) the results obtained with 1 and
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2 iterations of diagonally preconditioned CG and a JOR peek step with an "optimal" ωopt in the

sense of section 4.2 (that depend whether a preconditioner is used or not).

As explained in the previous section we also explored a strategy where the damping parameter of

the JOR step is fitted to reproduce energy values. In the following tables, the damping parameter

will be denoted by ωfit.

7.4 Numerical results

Table 1: Polarization Energies of water systems.

Water Box S1 S2 S3

Ref -81.03 -803.33 -15229.87

ExPT -69.54 -660.95 -12822.79

TCG1 -73.50 -728.73 -13814.35

TCG2 -80.69 -800.32 -15173.15

TCG3 -81.24 -805.20 -15265.65

TPCG1 (P=diag) -74.98 -741.91 -14028.18

TPCG2 (P=diag) -80.81 -801.61 -15194.87

TPCG3 (P=diag) -81.20 -805.26 -15268.43

TPCG1 (P=Skeel) -78.63 -779.17 -14743.48

TPCG2 (P=Skeel) -81.03 -803.11 -15222.53

TPCG3 (P=Skeel) -81.06 -803.64 -15236.03
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Table 2: Polarization Energies of water systems, using a peek-step.

Water Box S1 S2 S3

Ref -81.03 -803.33 -15229.87

TCG1(ω = 1) -81.41 -806.83 -15315.13

TCG2(ω = 1) -80.23 -794.49 -15061.22

TCG3(ω = 1) -80.78 -800.83 -15181.55

TPCG1 (P=diag)(ω = 1) -79.88 -791.51 -15001.40

TPCG2 (P=diag)(ω = 1) -80.98 -802.74 -15218.27

TPCG3 (P=diag)(ω = 1) -81.03 -803.27 -15228.74

TPCG1 (P=diag)(ωopt) -78.98 -780.94 -14789.04

TPCG2 (P=diag)(ωopt) -80.95 -802.50 -15213.17

TPCG1 (P=diag)(ωfit) -81.06 -803.42 -15230.10

TPCG2 (P=diag)(ωfit) -81.02 -803.06 -15231.14

Table 3: RMS of the dipole vector compared to the reference for water systems.

Water Box S1 S2 S3

ExPT 1.4×10−2 2.5×10−2 2.6×10−2

TCG1 6.3×10−3 7.0×10−3 7.1×10−3

TCG2 1.7×10−3 1.9×10−3 1.9×10−3

TCG3 4.7×10−4 5.4×10−4 5.5×10−4

TPCG1 (P=diag) 4.9×10−3 5.6×10−3 5.8×10−3

TPCG2 (P=diag) 9.2×10−4 1.1×10−3 1.1×10−3

TPCG3 (P=diag) 3.8×10−4 3.8×10−4 3.9×10−4

TPCG1(P=Skeel) 2.2×10−3 2.6×10−3 2.7×10−3

TPCG2 (P=Skeel) 3.0×10−4 3.9×10−4 4.2×10−4

TPCG3 (P=Skeel) 6.6×10−5 9.5×10−5 1.0×10−4
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Table 4: RMS of the dipole vector compared to the reference for water systems, using a peek-step.

Water Box S1 S2 S3

TCG1(ω = 1) 3.6×10−3 3.9×10−3 3.7×10−3

TCG2(ω = 1) 1.5×10−3 1.7×10−3 1.8×10−3

TCG3(ω = 1) 4.6×10−4 4.9×10−4 4.8×10−4

TPCG1(P=diag)(ω = 1) 2.2×10−3 2.6×10−3 2.7×10−3

TPCG2 (P=diag)(ω = 1) 4.1×10−4 5.0×10−4 5.2×10−4

TPCG3 (P=diag)(ω = 1) 1.3×10−4 1.5×10−4 1.6×10−4

TPCG1 (P=diag)(ωopt) 2.3×10−3 2.7×10−3 2.8×10−3

TPCG2 (P=diag)(ωopt) 3.9×10−4 4.6×10−4 4.7×10−4

TPCG1 (P=diag)(ωfit) 2.6×10−3 3.0×10−3 3.0×10−3

TPCG2 (P=diag)(ωfit) 5.3×10−4 7.0×10−4 1.0×10−3

Table 5: Polarization Energies of protein droplet and ionic liquids.

System ncp7 ubiquitin dhfr [dmim+][Cl-]

Ref -24202.54 -11154.87 -28759.01 -1476.79

ExPT -27362.70 -10919.77 -28076.62 -5841.73

TCG1 -21733.63 -9897.22 -25583.50 -1428.35

TCG2 -23922.79 -11031.67 -28463.51 -1420.00

TCG3 -24262.87 -11174.93 -28812.99 -1450.22

TPCG1 (P=diag) -21438.14 -9907.09 -25588.07 -1465.66

TPCG2 (P=diag) -23613.31 -10948.32 -28206.73 -1462.22

TPCG3 (P=diag) -24219.49 -11164.62 -28775.53 -1469.89

TPCG1 (P=Skeel) -22489.55 -10458.44 -27030.86 -1424.49

TPCG2 (P=Skeel) -24056.53 -11090.36 -28637.35 -1469.05

TPCG3 (P=Skeel) -24208.22 -11144.53 -28763.55 -1477.02
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Table 6: Polarization Energies of protein droplet and ionic liquids, using a peek-step.

System ncp7 ubiquitin dhfr [dmim+][Cl-]

Ref -24202.54 -11154.87 -28759.01 -1476.79

TCG1(ω = 1) -24481.14 -11231.35 -28986.08 -1477.08

TCG2(ω = 1) -23965.96 -11009.06 -28384.49 -1465.73

TCG3(ω = 1) -24121.02 -11105.78 -28635.73 -1441.95

TPCG1 (P=diag)(ω = 1) -23532.73 -10829.84 -27972.41 -1493.58

TPCG2 (P=diag)(ω = 1) -24123.65 -11128.14 -28683.52 -1471.34

TPCG3 (P=diag)(ω = 1) -24194.37 -11150.95 -28749.68 -1478.83

TPCG1 (P=diag)(ωopt) -22773.65 -10513.24 -27079.47 -1484.24

TPCG2 (P=diag)(ωopt) -23938.70 -11066.44 -28504.96 -1468.29

TPCG1 (P=diag)(ωfit) -24161.11 -11162.02 -28766.40 -1479.06

TPCG2 (P=diag)(ωfit) -24205.30 -11154.21 -28753.60 -1475.08

Table 7: RMS of the dipole vector compared to the reference for protein droplets and ionic liquids.

Water Box ncp7 ubiquitin dhfr [dmim+][Cl-]

ExPT 8.1×10−2 5.2×10−2 5.4×10−2 1.3×10−1

TCG1 8.9×10−3 8.8×10−3 8.8×10−3 1.1×10−2

TCG2 3.5×10−3 3.2×10−3 3.2×10−3 7.2×10−3

TCG3 2.1×10−3 1.7×10−3 1.7×10−3 5.3×10−3

TPCG1 (P=diag) 8.6×10−3 8.0×10−3 8.1×10−3 6.9×10−3

TPCG2 (P=diag) 2.5×10−3 2.0×10−3 2.2×10−3 3.4×10−3

TPCG3 (P=diag) 7.1×10−4 6.5×10−4 7.2×10−4 7.9×10−4

TPCG1 (P=Skeel) 5.5×10−3 4.4×10−3 4.5×10−3 5.6×10−3

TPCG2 (P=Skeel) 9.0×10−4 7.7×10−4 7.8×10−4 1.5×10−3

TPCG3 (P=Skeel) 2.1×10−4 1.8×10−4 1.9×10−4 3.2×10−4
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Table 8: RMS of the dipole vector compared to the reference for protein droplets and ionic liquids,
using a peek-step.

Water Box ncp7 ubiquitin dhfr [dmim+][Cl-]

TCG1(ω = 1) 4.6×10−3 4.4×10−3 4.5×10−3 7.0×10−3

TCG2(ω = 1) 2.9×10−3 2.5×10−3 2.5×10−3 5.5×10−3

TCG3(ω = 1) 1.6×10−3 1.1×10−3 1.1×10−3 4.1×10−3

TPCG1 (P=diag)(ω = 1) 4.4×10−3 3.9×10−3 4.1×10−3 3.2×10−3

TPCG2 (P=diag)(ω = 1) 1.7×10−3 1.4×10−3 1.7×10−3 1.6×10−3

TPCG3 (P=diag)(ω = 1) 4.3×10−4 3.8×10−4 4.8×10−4 4.5×10−4

TPCG1 (P=diag)(ωopt) 5.1×10−3 4.7×10−3 4.8×10−3 3.8×10−3

TPCG2 (P=diag)(ωopt) 1.3×10−3 1.0×10−3 1.1×10−3 1.9×10−3

TPCG1 (Jacobi)(ωfit) 4.9×10−3 4.5×10−3 4.6×10−3 4.5×10−3

TPCG2 (Jacobi)(ωfit) 2.2×10−3 1.7×10−3 2.1×10−3 2.0×10−3

A first observation to make is that given a particular matrix (preconditioned or not) and with or

whithout a JOR peek step, the results are always better in terms of energy and RMS when one

performs more matrix-vector products, i.e. going to a higher order of truncation. This is naturally

explained in the context of the Krylov methods: an additional matrix-vector product increases

the dimension of the Krylov subspace on which the polarization functional (see equation 1) is

minimized, and thus systematically improves the associated results. We should also recall here

that the functional that is minimized over growing subspaces is not exactly the same as the one

we are taking as the polarization energy and that this explains the non variationality of some of

our results: there are many cases where the energy associated TCG3 is slightly lower than the one

associated with the fully converged dipoles (see discussion in section 6).

We can also see on the numerical tests that using a preconditioner systematically reduces the

associated RMS. Concerning the energy, the improvement is less systematic and depends on the

type of preconditioner: the diagonal is less accurate than the one described by Wang et al.,12 a

result that was anticipated.

Nevertheless, preconditioning is important when coupled with a peek step: a combination of

any preconditioner with the peek is better than the peek alone. However, concerning the peek itself,
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one observes a systematic improvement of both RMS and energy with and without precondition-

ing. In particular this is the case when ω = 1 (Jacobi peek step).

As the spectrum is stable (see section 7.2), one can use an adaptive ωopt coefficient computed on

one geometry using a few iterations of the Lanczos method. In that case, the energies are slighlty

less accurate than the ones obtained with ω = 1. Concerning the RMS, we observe a systematic

reduction by a factor 2 for TPCG2 and TPCG3 but not for TPCG1. This is due to the fact that if

the asymptotic coefficient ωopt is the same, the starting point of the peek step is different and is

significantely better for TPCG2 and TPCG3 as additional matrix-vector products have been com-

puted.

The results obtained with ωfit after 1,2 or 3 iterations of PCG show that it is possible to stay close

to the converged value of the polarization energy with only one or two matrix-vector products and

a ω parameter that is only fitted once during a 100 picoseconds dynamic. But we can also see that

this is made at the cost of slightly degrading the RMS compared to the results obtained with ωopt

or with ω = 1. Overall, these RMS are of the same order of magnitude than the ones obtained

with ωopt and ω = 1. This balance between RMS and energy depending on the choice of ω as

the relaxation parameter for a JOR peek step can be seen as the choice to favor the minimization

of the error along some modes of the polarization matrix: the energy is more sensitive to modes

corresponding to large eigenvalues whereas the RMS is sensitive to all of them. Overall, a ω = 1

Jacobi peek step tends to improve both RMS and the energy whereas ωopt favors RMS and ωfit

favors energies. As we showed, TPCG1 should not be used with a ωopt peek step but with one

corresponding to ω = 1 and ωfit, but all options are open for TPCG2 and TPCG3.

A choice can then be made depending on the simulation that one wants to run. For a Monte-Carlo

simulation it is essential to have accurate energies: the strategy of using an adaptative parameter

(refittable at a negligeable cost) that allows to reproduce correctly the energies with only one or

two iterations of the (P)CG would hence produce excellent results. On the other side, during a MD

simulation, one wants to get the dynamics right; in this case, choosing the method that minimizes

the RMS and thus the error made on the forces may produce improved results. For example, using
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TPCG2(P=diag)(ωopt) is a good strategy to fulfill this purpose. However, the procedure leading to

ωfit only slightly degrades the RMS and provides RMS far beyond the usual values for which the

force field models are parametrized. One has also to keep in mind that other source of errors exist

in MD, such as the ones due to the PME discretization or van der Waals cutoffs, that are larger

than the error discussed in this section. Nevertheless, none of the refinements will compete with a

full additional matrix-vector product because an additional CG step is optimal. We see clearly that

TPCG3(ωfit) reaches high accuracy on both RMS and energies.

Concerning preconditioning, we confirm the very good behavior of the Skeel preconditioner. How-

ever, its cost is non negligible in terms of computations, in terms of necessary communications

arising when running in parallel and in terms of complexity of implementation. We recommend

therefore the use of the simpler yet efficient diagonal preconditioner. Overall, possibilities of tay-

loring TCG approaches are infinite. In practice, one could design more adapted preconditioners

combining accuracy and low computational cost.

To conclude, a striking result is obtained for well conditioned systems such as water: computations

show that they will require a smaller order of truncation than the proteins to obtain the same level

of accuracy.

8 Conclusion

We proposed a general way to derive an analytical expression of the many-body polarization en-

ergy that approximates the inverse of T using a truncated preconditioned conjugated gradient ap-

proach. The general method gives analytical forces, guaranteeing that they are the opposite of the

exact gradients of the energies, parameter free, and can replace the usual many-body polarization

solvers in popular codes with little effort. The proposed technique allows by construction a true

energy conservation as it is based on analytical derivatives. The method minimizes the energy

over the (preconditioned) Krylov space which leads to superior accuracy than fixedpoint inspired

methods such as ExPT and associated methods. It is not using any history of the previous steps
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and is therefore fully time reversible and is compatible with multi-timestep integrators.28 The best

compromise between accuracy and speed appears to be the TPCG-2 approach that consists in 2

iterations of PCG with a computational cost of 3 matrix vector multiplications for the energy (one

for the descent direction plus 2 for the iterations). The analytical derivatives have a cost equivalent

to an additional matrix vector product. The overall computational cost is therefore identical to the

ExPT’s one. We showed that the method allows computing of potential energy surfaces very close

to the exact ones and that it is systematically improvable using a final peek step. Strategies for

adaptative JOR coefficients have been discussed and allows improving the desired quantities at a

negligeable cost. Overall, among all the derived methods, TPCG3(ωfit) provides high accuracy in

both energy and RMS. Concerning the future improvements of the accuracy of the method, one

could find dedicated preconditionners improving the efficiency of the CG steps. Nevertheless, the

final choice of ingredients will be a tradeoff between accuracy, computational cost and commu-

nication cost when running in parallel. We will address this issue in the context of the Tinker-

HP package. The TPCG-n approaches will be coupled to a domain decomposition infrastructure

with linear scaling capabilities, thanks to a SPME8 implementation, which is straightforward in

link with our previous work on PCG. Future work will then include validation of the methods by

comparing condensed-phase properties obtained using different orders of TCG. Given the level

of accuracy already obtained on induced dipoles and energies, we expect the majority of these

properties to be conserved by using T(P)CG2 and higher-order methods.

9 Technical Appendix

9.1 Analytical gradients and polarization energies for TCG

In this section, we will present the analytical derivatives of the polarization energies associated

with the polarization energies Epol,TCG1 and Epol,TCG2 with respect to the positions of the atoms of

the system. The extension to Epol,(P=diag)TCG1 and Epol,(P=diag)TCG2 is straightforward, as well as the

expressions including a final JOR peek step. We don’t report here the expression of the analytical
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gradients of Epol,TCG3 as it follows the same logic but is just incrementely complex.

These gradients have been validated against the ones obtained with finite differences of the energies

and an implementation of these equations will be accessible through the Tinker-HP software public

distribution.

Since we are in the context of the AMOEBA force field, we will consider that each atom site

embodies a permanent multipole expansion up to quadrupoles. For site i, the components of this

expansion will be denoted by qi,~µp,i,θi.

Furthermore, since the permanent dipoles and quadrupoles are expressed in a local frame that

depends on the positions of neighboring atoms, they are rotated in the lab frame with rotation

matrices depending on these positions, so that we now have to deal with partial derivatives of the

dipole and quadrupole components: the "torques". Therefore, the derivative of the polarization

energy ε , written as 1
2 µµµT E for µµµ = µµµTCG1 or µµµTCG2, with respect to the β -component of the k-th

site is given by:

dε

drβ

k

=
∂ε

∂ rβ

k

+ ∑
i=1,N

∑
α=1,3

∑
γ=1,3

∂ε

∂θ
α,γ
p,i

∂θ
α,γ
p,i

∂ rβ

k

+ ∑
i=1,N

∑
α=1,3

∂ε

∂ µα
p,i

∂ µα
p,i

∂ rkβ

(31)

Formally, these derivatives can be written:

ε
′ =−1

2
(µµµ ′T E+µµµ

T E′) (32)

Hence different types of derivatives are involved:

• the derivatives of the rotated permanent multipoles;

• the derivatives of the permanent electric field with respect to the spatial components of the

different atoms;

• the derivatives of the permanent electric field with respect to the permanent multipoles;

• the derivatives of the induced dipole vector (µµµ) with respect to spatial components;
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• the derivatives of the induced dipole vector with respect to the permanent multipole compo-

nents.

As these quantities are standard except for the ones concerning the approximate dipole vector,

these are the only one we will express here.

Using the same notation as before we have:

r0 = E−Tµµµ0

p0 = r0

n0 = rT
0 r0

P1 = Tr0

t1 = rT
0 P1

t2 = n0||P1||2
t2
1

P2 = Tp1

t3 = t1PT
1 P2

t4 = n0
t1

γ1 =
t2
1−n0||P1||2

t3

t5 = PT
1 P2

β2 =
n0+t2

4 ||P1||2+γ2
1 ||P2||2−2t1t4−2γ1t4||P1||2+2γ1t4t5

(t2−1)n0

P3 = (1+β2t2)Tr0− (t4 +β2t4)TP1− γ1TP2

γ2 =
n0+t2

4 ||P1||2+γ2
1 ||P2||2−2t1t4−2γ1t4||P1||2+2γ1t4t5

(1+β2t2)rT
0 P3−(t4+β2t4)PT

1 P3+γ1PT
2 P3

(33)

So that:

µµµTCG1 = µµµ0 + t4r0 (34)
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µµµTCG2 = µµµ0 +(γ1t2 + t4)r0− γ1t4P1 (35)

µµµTCG3 = µµµ0 +(t4 + γ1t2 + γ2 + γ2β2t2)r0− (γ1t4 + γ2t4 + γ2β2t4)P1− γ1γ2P2 (36)

We then need to differentiate these expressions with respect to space and multipole components

respectively. Using the following formal development for the spatial derivative:

r′0 = E′−T′µµµ0−Tµµµ ′0

n′0 = 2rT
0 r′0

P′1 = T′r0 +Tr′0

(||P1||2)′ = 2PT
1 P1

t ′1 = rT
0 P′1 +PT

1 r′0

t ′2 =
(n′0||P1||2+n0(||P1||2)′)t2

1−(n0||P1||2)2t1t ′1
t4
1

P′2 = T′P1 +TP′1

t ′3 = t ′1PT
1 P2 + t1PT

2 P′1 + t1PT
1 P′2

t ′4 =
n′0t1−n0t ′1

t2
1

γ ′1 = 1
t2
3

(
(2t1t ′1−n′0||P1||2−n0(||P1||2)′)t3− (t2

1 −n0||P1||2)t ′3
)

(37)

we obtain

µµµ
′
TCG1 = µµµ

′
0 + t4r′0 + t ′4r0 (38)

µµµ
′
TCG2 = µµµ

′
0 +(t4 + γ1t2)r′0 +(t ′4 + γ

′
1t2 + γ1t ′2)r0 + γ

′
1t4P1 + γ1t ′4P1 + γ1t4P′1 (39)
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