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ALMOST SURE INVARIANCE PRINCIPLE FOR RANDOM
PIECEWISE EXPANDING MAPS

D. Dragičević 1, G. Froyland2, C. González-Tokman3, S. Vaienti4

Abstract. We prove a fiberwise almost sure invariance principle for random piecewise
expanding transformations in one and higher dimensions using recent developments on
martingale techniques.

1. Introduction

The objective of this note is to prove the almost sure invariance principle (ASIP) for a
large class of random dynamical systems. The random dynamics is driven by an invertible-
measure preserving transformation σ of (Ω,F ,P) called the base transformation. Trajec-
tories in the phase space X are formed by concatenations fnω := fσn−1ω ◦ · · · ◦ fσω ◦ fω of
maps from a family of maps fω : X → X, ω ∈ Ω. For a systematic treatment of these
systems we refer to [2]. For sufficiently regular bounded observables ψω : X → R, ω ∈ Ω,
an almost sure invariance principle guarantees that the random variables ψσnω ◦ fnω can
be matched with trajectories of a Brownian motion, with the error negligible compared
to the length of the trajectory. In the present paper, we consider observables defined on
some measure space (X,m) which is endowed with a notion of variation. In particular,
we consider examples where the observables are functions of bounded variation or quasi-
Hölder functions on a compact subset X of Rn. We emphasize that our setting is quite
similar to that in [3], where the maps fω are called random Lasota-Yorke maps.

In a more general setting and under suitable assumptions, Kifer proved in [11] central
limit theorems (CLT) and laws of iterated logarithm; we will briefly compare Kifer’s
assumptions with ours in Remark 2 below. In [11, Remark 2.7], Kifer claimed without
proof (see [11, Remark 4.1]) a random functional CLT, i.e. the weak invariance principle
(WIP), and also a strong version of the WIP with almost sure convergence, namely the
almost sure invariance principle (ASIP), referring to techniques of Philip and Stout [13].

Here we present a proof of the ASIP for our class of random transformations, following
a method recently proposed by Cuny and Merlèvede [6]. This method is particularly
powerful when applied to non-stationary dynamical systems; it was successfully used in
[9] for a large class of sequential systems with some expanding features and for which only
the CLT was previously known [5]. We stress that ω-fibered random dynamical systems
discussed above are also non-stationary since we use ω-dependent sample measures (see
below) on the underlying probability space.
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The technique of Cuny and Merlèvede is based on martingale approximation; it was
shown in [9] how to satisfy one of the main assumptions in [6] by using a result of
Sprindzuk [15], which basically consists of getting an almost sure bound when the latter is
known to hold in the L1 norm. To prove such a result we also need two other ingredients:
(i) the error in the martingale approximation must be bounded in a suitable Banach
space; (ii) the quenched correlations with respect to the sample measures must decay
with a summable rate.

We now compare our assumptions and results with those in Kifer’s paper [11]. Kifer
used a martingale approximation, but the martingale approximation error in [11] is given
in terms of an infinite series (see the error gω in equation (4.18) in [11]), which appears
difficult to estimate under general assumptions. Instead, our martingale approximation
error term is explicitly given in terms of a finite sum (see (14)), and as mentioned above
we can bound it easily. Furthermore, Kifer invoked a rate of mixing, but to deal with
it he assumed strong conditions (φ-mixing and α-mixing), which are very hard to check
on concrete examples. We use instead quenched decay of correlations on a space of
regular observables, for example, bounded variation or quasi-Hölder and L∞ functions
(exponential decay was shown by Buzzi [3]), with an addition: the constant that scales
the norm of the observable in the decay rate is independent of the noise ω; we can then
satisfy the hypotheses of Sprindzuk’s result. Further comparisons are deferred to Remark
2.

The rate which we obtain by approximating our process with a sum of i.i.d Gaussian
variables (the content of the ASIP) is of order n1/4, which is, up to logarithmic corrections,
a rate previously obtained for deterministic uniformly expanding systems [8].

2. Preliminaries and statement of the main results

2.1. Preliminaries. We introduce in this section the fiber maps and the associated func-
tion spaces which we will use to form the random concatenations. We will call them
random expanding transformations, or random Lasota-Yorke maps. We will refer to and
use the general assumptions for these maps as proposed by Buzzi [3] in order to use his
results on quenched decay of correlations. However, we will strengthen a few of those
assumptions with the aim of obtaining limit theorems. Our additional conditions are sim-
ilar to those called Dec and Min in the paper [5], and which were used to establish and
recover a property akin to quasi-compactness for the composition of transfer operators.

Let (Ω,F ,P) be a probability space and let σ : Ω → Ω be an invertible P-preserving
transformation. We will assume that P is ergodic. Moreover, let (X,B) be a measurable
space endowed with a probability measurem and a notion of a variation var : L1(X,m)→
[0,∞] which satisfies the following conditions:
(V1) var(th) = |t| var(h);
(V2) var(g + h) ≤ var(g) + var(h);
(V3) ‖h‖∞ ≤ Cvar(‖h‖1 + var(h)) for some constant 1 ≤ Cvar <∞;
(V4) for any C > 0, the set {h : X → R : ‖h‖1 + var(h) ≤ C} is L1(m)-compact;
(V5) var(1X) <∞, where 1X denotes the function equal to 1 on X;
(V6) {h : X → R+ : ‖h‖1 = 1 and var(h) <∞} is L1(m)-dense in {h : X → R+ : ‖h‖1 =

1}.
(V7) there exists Kvar <∞ such that

var(fg) + ‖fg‖1 ≤ Kvar(var(f) + ‖f‖1)(var(g) + ‖g‖1), for every f, g ∈ BV . (1)

(V8) for any f ∈ L1(X,m) such that essinf f > 0, we have var(1/f) ≤ var(f)
(essinf f)2

.
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We denote by BV = BV (X,m) the space of all h ∈ L1(X,m) such that var(h) <∞. It
is well known that BV is a Banach space with respect to the norm

‖h‖BV = var(h) + ‖h‖1.

On several occasions we will also consider the following norm

‖h‖var = var(h) + ‖h‖∞,

on BV which (although different) is equivalent to ‖·‖BV .
Let fω : X → X, ω ∈ Ω be a collection of mappings on X. The associated skew product

transformation τ : Ω×X → Ω×X is defined by

τ(ω, x) = (σ(ω), fω(x)). (2)

Each transformation fω induces the corresponding transfer operator Lω acting on L1(X,m)
and defined by the following duality relation∫

X

(Lωφ)ψ dm =

∫
X

φ(ψ ◦ fω) dm, φ ∈ L1(X,m), ψ ∈ L∞(X,m).

For each n ∈ N and ω ∈ Ω, set

fnω = fσn−1(ω) ◦ · · · ◦ fω and Lnω = Lσn−1(ω) ◦ · · · ◦ Lω.

We say that the family of maps fω, ω ∈ Ω (or the associated family of transfer operators
Lω, ω ∈ Ω) is uniformly good if:
(H1) The map (ω, x) 7→ (LωH(ω, ·))(x) is P×m-measurable for every P×m-measurable

function H such that H(ω, ·) ∈ L1(m) for a.e. ω ∈ Ω;
(H2) There exists C > 0 such that

‖Lωφ‖BV ≤ C‖φ‖BV
for φ ∈ BV and P a.e. ω ∈ Ω.

(H3) For P a.e. ω ∈ Ω,
sup
n≥0
‖φn+1 ◦ fσn(ω)‖BV <∞,

whenever {(φn)n≥0} ⊂ BV and supn‖φn‖BV <∞.
(H4) There exist K,λ > 0 such that

‖Lnωφ‖BV ≤ Ke−λn‖φ‖BV ,

for n ≥ 0, P a.e. ω ∈ Ω and φ ∈ BV such that
∫
φ dm = 0.

(H5) There exists c > 0 such that

Lnω1X ≥ c, for P a.e. ω ∈ Ω and n ∈ N.

Using (H1), (H2), and (H4) we can prove the existence of a unique random ACIM h :
Ω×X → R, with uniformly bounded fibres hω.

Proposition 1. Let fω, ω ∈ Ω be a uniformly good family of maps on X. Then there
exist a unique measurable and nonnegative function h : Ω×X → R with the property that
hω := h(ω, ·) ∈ BV ,

∫
hω dm = 1, L(hω) = hσ(ω) for a.e. ω ∈ Ω

esssupω∈Ω ‖hω‖BV <∞. (3)
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Proof. Let

Y =

{
v : Ω×X → R : v measurable, vω := v(ω, ·) ∈ BV and esssupω∈Ω‖vω‖BV <∞

}
.

Then, Y is a Banach space with respect to the norm

‖v‖∞ := esssupω∈Ω‖vω‖BV .
Moreover, let Y1 be the set of all v ∈ Y such that

∫
vω dm = 1 and vω ≥ 0 for a.e. ω ∈ Ω.

It is easy to verify that Y1 is a closed subset of Y and thus a complete metric space. We
define a map L : Y1 → Y1 by

(L(v))ω = Lσ−1(ω)vσ−1(ω), ω ∈ Ω, v ∈ Y1.

Note that it follows from (H2) that

‖L(v)‖∞ = esssupω∈Ω‖(L(v))ω‖BV ≤ C esssupω∈Ω‖vσ−1(ω)‖BV = C‖v‖∞.

Furthermore, ∫
(L(v))ω dm =

∫
Lσ−1(ω)vσ−1(ω) dm =

∫
vσ−1(ω) dm = 1,

for a.e. ω ∈ Ω. Hence, L is well-defined. Similarly,

‖L(v)− L(w)‖∞ ≤ C‖v − w‖∞, for v, w ∈ Y1

which shows that L is continuous. Choose n0 ∈ N such that Ke−λn0 < 1. Take arbitrary
v, w ∈ Y1 and note that by (H4),

‖Ln0(v)− Ln0(w)‖∞ = esssupω∈Ω‖Ln0

σ−n0 (ω)
(vσ−n0 (ω) − wσ−n0 (ω))‖BV

≤ Ke−λn0 esssupω∈Ω‖vσ−n0 (ω) − wσ−n0 (ω)‖BV = Ke−λn0‖v − w‖∞.

Hence, Ln0 is a contraction on Y1 and thus has a unique fixed point h̃ ∈ Y1. Set

hω :=
1

n0

h̃ω +
1

n0

Lσ−1(ω)(h̃σ−1(ω)) + . . .+
1

n0

Ln0−1

σ−(n0−1)ω
(h̃σ−(n0−1)ω), ω ∈ Ω.

Then, h is measurable, nonnegative,
∫
hω dm = 1 and a simple computation yields

L(hω) = hσ(ω). Finally, by (H2) we have that

esssupω∈Ω‖hω‖BV ≤
Cn0 − 1

n0(C − 1)
esssupω∈Ω‖h̃ω‖BV <∞.

Thus, we have established existence of h. The uniqueness is obvious since each h satisfying
the assertion of the theorem is a fixed point of L and thus also of Ln0 which implies that
it must be unique. �

We note that [4, 3] prove the above existence result with weaker control on the prop-
erties of fω, and obtain existence of a random ACIM {hω}ω∈Ω under less restrictive
conditions. Indeed, those results don’t require (H4) and in addition (H2) is allowed to
hold with C = C(ω) such that logC ∈ L1(P).

We now describe a large class of examples of good families of maps fω, ω ∈ Ω. We
first show that they satisfy properties (H1)–(H3); this will crucially depend on the choice
of the function space. We then give additional requirements in order for those maps to
satisfy condition (H4), also called Dec in [5] when applied to sequential systems, and
condition (H5), named Min in [5].

2.2. Examples.
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2.2.1. Random Lasota-Yorke maps. Take X = [0, 1], a Borel σ-algebra B on [0, 1] and
the Lebesgue measure m on [0, 1]. Furthermore, let

var(g) = inf
h=g(mod m)

sup
0=s0<s1<...<sn=1

n∑
k=1

|h(sk)− h(sk−1)|.

It is well known that var satisfies properties (V1)–(V8) with Cvar, Kvar = 1. For a piece-
wise C2 f : [0, 1] → [0, 1], set δ(f) = essinfx∈[0,1]|f ′|. Consider now a finitely-valued,
measurable map ω 7→ fω, ω ∈ Ω of piecewise C2 maps on [0, 1] satisfying (H1) such that

sup
ω∈Ω

N(fω) =: N <∞, inf
ω∈Ω

δ(fω) =: δ > 1, and sup
ω∈Ω
|f ′′ω |∞ =: D <∞.

It is proved in [3] that the family fω, ω ∈ Ω satisfies (H2) with

C = 4

(
N

δ
∨ 1

)(
D

δ2
∨ 1

)(
1

δ
∨ 1

)
, (4)

where for any two real-valued functions g1 and g2, g1 ∨ g2 = max{g1, g2}, and (V8) has
been used for the bound var(1/f ′) ≤ D

δ2
. We note that since N < ∞, condition (H3)

holds.
The uniform decay rate (H4) has been treated in Propositions 2.10 and 2.11 in [5].

There, sufficient conditions were stated for sequential dynamical systems, but these
conditions can be can be easily adapted to our random setting. Conze and Raugi [5]
propose two types of conditions, either of which yields (H4). The first local type re-
quires the existence of a fiber map, say f0, whose transfer operator L0 is quasi-compact
and exact. Defining a distance between two transfer operators L1,L2, as d(L1,L2) :=
supφ∈BV,‖φ‖BV ≤1 ||L1φ−L2φ||1, it was proved in [5] that there is a neighborhood U0 of L0

such that all allowed concatenations of transfer operators drawn from U0 verify (H4) as
well.

To establish (H4) for the second, more general, nonlocal type of random dynamics we
require two conditions:
• Random covering: Let Aω denote the collection of intervals of monotonicity for the
map fω and define Anω =

∨n−1
j=0 (f jω)−1Aσjω. We will say that the random Lasota-

Yorke maps {fω}ω∈Ω are covering if for each n ≥ 0, ω ∈ Ω, and J ∈ Anω there is an
n0 such that fn0

ω (J) = [0, 1].
• Uniform Lasota-Yorke inequality: There exist n ∈ N, 0 < ρ < 1 and B > 0 such
that for a.e. ω ∈ Ω, ‖Lnωf‖BV ≤ ρ‖f‖BV +B‖f‖1.

For a fixed covering Lasota-Yorke map, Liverani [12, Theorem 3.6] established expo-
nential decay of correlations for observables of bounded variation, using cone techniques
and the property that the unique random invariant density is uniformly bounded below
[12, Lemma 4.2]. His results, in particular [12, Lemma 3.5], which determines the rate of
correlation decay, are directly applicable in our setting of random composition of finitely
many Lasota-Yorke maps. This ensures exactness of the sequences (fσjω)j≥0 for every
ω ∈ Ω. That is, for every φ ∈ BV with

∫
φ dm = 0, limn→∞ ‖Lnωφ‖1 = 0; see for example

the proof of Proposition 3.6 in [7].
The proof of (H4) now follows as the proof of [5, Proposition 2.11]. Indeed exactness,

together with the compactness condition (for every sequence (Lωj
)j∈N, there exists a

convergent subsequence) ensures that for every ε0 > 0 and every ω ∈ Ω there exists q ∈ N
such that for every φ ∈ BV with

∫
φ dm = 0 and every j ∈ N, ‖Lq

σjω
φ‖1 ≤ ε0‖φ‖BV , via

a diagonal argument. This property, combined with the uniform Lasota-Yorke inequality
implies (H4) essentially as in the proof of [5, Proposition 2.7].
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With the random covering and uniform Lasota-Yorke conditions introduced above, and
assuming esssupω∈Ω |f ′ω|∞ ≤ C ′, it follows from Proposition 2 in [1] that (H5) holds. We
note that [5] demonstrated that (H5) holds for compositions of β-transformations with
β selected from an appropriate interval of values, and that [9] stated similar sufficient
conditions for (H5) for sequences of Lasota-Yorke maps that are translations of a fixed
Lasota-Yorke map or small perturbations of a fixed Lasota-Yorke map.

2.2.2. Random piecewise expanding maps. In higher dimensions, the properties (V1)-(V8)
can be checked for a so-called quasi-Hölder space, which in particular is injected in L∞
(condition (V3)) and has the algebra property (V7). Originally developed by Keller
[10] for one-dimensional dynamics, we refer the reader to [14] for a detailed presentation
of that space in higher dimensions, as well as for the proof of its main properties. In
particular, using the same notation as in [14], we use the following notion of variation:

var(f) = sup
0<ε≤ε0

ε−α
∫
Rn

osc(f,Bε(x)) dx,

where
osc(f,Bε(x)) = esssupBε(x) f − essinfBε(x) f.

In [14] it is proved that this notion of variation satisfies (V1)–(V3) and (V5)–(V7) and
noted that (V4) is a consequence of a result in [10]. We prove here that (V8) also holds.
Assume that essinf f ≥ c and observe that

osc(1/f,Bε(x)) = esssupBε(x)(1/f)− essinfBε(x)(1/f)

= 1/ essinfBε(x)(f)− 1/ esssupBε(x)(f)

=
esssupBε(x)(f)− essinfBε(x)(f)

(esssupBε(x)(f))(essinfBε(x)(f))

≤ osc(f,Bε(x))

(essinfBε(x)(f))2
≤ 1

c2
osc(f,Bε(x)),

which readily implies that var(1/f) ≤ var(f)
(essinf f)2

.

One can consider piecewise C2 expanding maps on compact subdomains of Rd with C2

boundary. As in the one-dimensional situation, condition (H3) holds because N is finite.
In the local setting the conditions (H4) and (H5) can be verified as in the one-dimensional
case using the results of [5] (see also Th. 7.7 in [9]). In the nonlocal setting, for maps of
the type considered in [3, Appendix B], it is likely that (H4) and (H5) can be obtained
as in the one-dimensional case.

2.3. Further properties of the random ACIM. Let µω be the measure on X given
by dµω = hωdm for ω ∈ Ω. We have the following important consequence of (H4), which
establishes the appropriate decay of correlations result that will be used later on.

Lemma 1. There exists K > 0 and ρ ∈ (0, 1) such that∣∣∣∣ ∫ Lnω(φhω)ψ dm−
∫
φ dµω ·

∫
ψ dµσn(ω)

∣∣∣∣ ≤ Kρn‖ψ‖∞ · ‖φ‖var, (5)

for n ≥ 0, ψ ∈ L∞(X,m) and φ ∈ BV (X,m).
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Proof. We consider two cases. Assume first that
∫
φ dµω =

∫
φhω dm = 0. Then, it

follows from (H4) that∣∣∣∣ ∫ Lnω(φhω)ψ dm−
∫
φ dµω ·

∫
ψ dµσnω

∣∣∣∣ =

∣∣∣∣ ∫ Lnω(φhω)ψ dm

∣∣∣∣
≤ ‖ψ‖∞ · ‖Lnω(φhω)‖1 ≤ ‖ψ‖∞ · ‖Lnω(φhω)‖BV ≤ Ke−λn‖φhω‖BV · ‖ψ‖∞,

and thus (5) follows from (1) and (3). Now we consider the case when
∫
φ dµω 6= 0. We

have ∣∣∣∣ ∫ Lnω(φhω)ψ dm−
∫
φ dµω ·

∫
ψ dµσn(ω)

∣∣∣∣
=

∣∣∣∣ ∫ Lnω(φhω)ψ dm−
∫
φhω dm ·

∫
ψhσn(ω) dm

∣∣∣∣
≤ ‖ψ‖∞ ·

∫ ∣∣∣∣(Lnω(φhω)−
(∫

φhω dm

)
hσn(ω)

)∣∣∣∣ dm
= ‖ψ‖∞ ·

∣∣∣∣ ∫ φhω dm

∣∣∣∣ · ∫ ∣∣∣∣Lnω(Φ− hω)

∣∣∣∣ dm
≤ ‖ψ‖∞ ·

∣∣∣∣ ∫ φhω dm

∣∣∣∣ · ‖Lnω(Φ− hω)‖BV ,

where
φhω =

(∫
φhω dm

)
Φ.

Note that
∫

(Φ− hω) dm = 0 and thus using (H4),

‖ψ‖∞ ·
∣∣∣∣ ∫ φhω dm

∣∣∣∣ · ‖Lnω(Φ− hω)‖BV ≤ Ke−λn‖ψ‖∞ ·
∣∣∣∣ ∫ φhω dm

∣∣∣∣ · ‖Φ− hω‖BV
≤ Ke−λn‖ψ‖∞ ·

∥∥∥∥(φ− ∫ φhω dm

)
hω

∥∥∥∥
BV

.

Hence, it follows from (1) and (3) that∣∣∣∣ ∫ Lnω(φhω)ψ dm−
∫
φ dµω ·

∫
ψ dµσn(ω)

∣∣∣∣ ≤ K ′e−λn‖ψ‖∞ · ‖φ‖BV

for some K ′ > 0 and thus (5) follows from the observation that ‖·‖BV ≤ ‖·‖var.
�

Remark 1. We would like to emphasize that (5) is a special case of a more general decay
of correlation result obtained in [3] which does not require (H4) and yields (5) but with
K = K(ω).

Finally, we prove that condition (H5) implies that we have a uniform lower bound for
hω.

Lemma 2. We have that

essinf hω ≥ c/2, for a.e. ω ∈ Ω. (6)

Proof. We note that
hω = Lnσ−n(ω)1X − (Lnσ−n(ω)1X − hω)

and thus it follows from (H5) that

essinf hω ≥ c− ‖Lnσ−n(ω)1− hω)‖∞ ≥ c− Cvar‖Lnσ−n(ω)1− hω‖BV . (7)
7



On the other hand, it follows from (H4) and (3) that

‖Lnσ−n(ω)1− hω‖BV = ‖Lnσ−n(ω)(1− hσ−n(ω))‖BV ≤ Ke−λn‖1− hσ−n(ω)‖BV ≤ K̃e−λn,

for some K̃ > 0. Choosing n such that CvarK̃e
−λn ≤ c/2, it follows from (7) that (6)

holds. �

Remark 2. We now briefly compare our setting with that in [11]. In the latter, the space
X is replaced by a foliation Ξω := {ξ ∈ Ξ : (ξ, ω) ∈ Ξ}, where Ξ is some measurable
space and ω belongs to the base space Ω. On the fibered subset Ξ it is defined the skew
map τ(ξ, ω) = (fωξ, σω), with the associated fiber maps fω : Ξω → Ξσω. In our situation
the Ξω’s for all ω coincide with the set X and all fω : X → X are endomorphisms of X
with some regularity property; moreover the previous skew transformation will still hold
on the product space X × Ω, see (2). Consequently, the conformal measure m is also
allowed to depend on ω. In principle, all the arguments in the present paper could also be
extended to this more general setting. However, we refrain from doing so since it would
require heavy notation and more importantly since it is hard to verify that conditions
like (H4) and (H5) hold in this more general setting unless fibers Ξω can be identified in
some natural way (like for example tangent spaces at different points on a manifold).

2.4. Statement of the main results. We are now ready to state our main result. We
will consider an observable ψ : Ω×X → R. Let ψω = ψ(ω, ·), ω ∈ Ω and assume that

sup
ω∈Ω
‖ψω‖BV <∞. (8)

We also introduce centered observable

ψ̃ω = ψω −
∫
ψω dµω, ω ∈ Ω.

and we consider the associated Birkhoff sum
∑n−1

k=0 ψ̃σkω ◦ fkω , and the variance τ 2
n =

Eω
(∑n−1

k=0 ψ̃σkω ◦ fkω
)2

. The Almost Sure Invariance Principle is a matching of the tra-
jectories of the dynamical system with a Brownian motion in such a way that the error
is negligible in comparison with the Birkhoff sum. Limit theorems such as the central
limit theorem, the functional central limit theorem and the law of the iterated logarithm
transfer from the Brownian motion to time-series generated by observations on the dy-
namical system: these last results will therefore be immediate consequences of our proof
of the ASIP for random Lasota-Yorke maps :

Theorem 1. Let us consider the family of uniformly good random Lasota-Yorke maps.
Then the variance τ 2

n will grow linearly as τ 2
n ∼ nΣ2 and two cases will present:

(i) either Σ = 0, and this is equivalent to the existence of φ ∈ L2(Ω × X) such that
(co-boundary condition)

ψ̃ = φ− φ ◦ τ. (9)

(ii) or Σ2 > 0 and in this case for P-a.e. ω ∈ Ω and d ∈ (0, 1/2), by enlarging probability
space (X,B, µω) if necessary, it is possible to find a sequence (Zk)k of independent centered
Gaussian random variables such that

sup
1≤k≤n

∣∣∣∣ n∑
k=1

(ψ̃σkω ◦ fkω)−
n∑
k=1

Zk

∣∣∣∣ = o((n1/2+d(|log n1/2−d|+ log log n1/2+d))1/2), a.s.
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3. Reverse martingale construction

In this section we construct the reverse martingale (or the reverse martingale difference)
and establish various useful estimates that will play an important role in the rest of the
paper. Indeed, the proof of our main result (Theorem 1) will be obtained as a consequence
of the recent result by Cuny and Merlevède [6] applied to our reverse martingale.

For ω ∈ Ω and k ∈ N, let
T kω := (fkω)−1(B).

Furthermore, for a measurable map φ : X → R and a σ-algebra H on X, Eω(φ|H) will
denote the conditional expectation of φ with respect to H and the measure µω. Moreover,
from now on, for k ∈ N and ω ∈ Ω we will write σkω instead of σk(ω). We begin by the
following technical lemma.

Lemma 3. We have

Eω(φ ◦ f lω|T nω ) =

(Ln−l
σlω

(hσlωφ)

hσnω

)
◦ fnω , (10)

for each ω ∈ Ω and 0 ≤ l ≤ n.

Proof. We note that the right-hand side of (10) is measurable with respect to T nω . Take
now an arbitrary A ∈ T nω and write it in the form A = (fnω )−1(B) for some B ∈ B. We
have∫

A

φ ◦ f lω dµω =

∫
X

(φ ◦ f lω)1A dµω

=

∫
X

(φ ◦ f lω) · (1B ◦ fnω ) dµω =

∫
X

φ(1B ◦ fn−lσlω
) dµσlω

=

∫
X

hσlωφ(1B ◦ fn−lσlω
) dm =

∫
X

Ln−l
σlω

(hσlωφ)1B dm

=

∫
X

Ln−l
σlω

(hσlωφ)

hσnω

1B dµσnω =

∫
X

[(Ln−l
σlω

(hσlωφ)

hσnω

)
◦ fnω

]
(1B ◦ fnω ) dµω

=

∫
X

[(Ln−l
σlω

(hσlωφ)

hσnω

)
◦ fnω

]
1A dµω =

∫
A

(Ln−l
σlω

(hσlωφ)

hσnω

)
◦ fnω dµω,

which proves (10). �

We now return to the observable ψω introduced in (8) and its centered companion
ψ̃ω = ψω −

∫
ψω dµω, ω ∈ Ω.

Set
Mn = ψ̃σnω +Gn −Gn+1 ◦ fσnω, n ≥ 0, (11)

where G0 = 0 and

Gk+1 =
Lσkω(ψ̃σkωhσkω +Gkhσkω)

hσk+1ω

, k ≥ 0. (12)

We emphasize that Mn and Gn depend on ω. However, in order to avoid complicating
the notation, we will not make this dependence explicit. In preparation for the next
proposition we need the following elementary result.

Lemma 4. We have

Lω((ψ ◦ fω)φ) = ψLωφ, for φ ∈ L1(X,m) and ψ ∈ L∞(X,m).
9



Proof. We first note that (ψ◦fω)φ ∈ L1(X,m). Moreover, for an arbitrary g ∈ L∞(X,m)
we have that∫
X

Lω((ψ ◦ fω)φ)g dm =

∫
X

(ψ ◦ fω)φ(g ◦ fω) dm =

∫
X

((ψg) ◦ fω)φ dm =

∫
X

(ψLωφ)g dm,

which immediately implies the conclusion of the lemma. �

Now we prove that the sequence (Mn ◦ fnω )n is a reversed martingale (or the reversed
martingale difference) with respect to the sequence of σ-algebras (T nω )n.

Proposition 2. We have
Eω(Mn ◦ fnω |T n+1

ω ) = 0.

Proof. It follows from Lemma 3 that

Eω(Mn ◦ fnω |T n+1
ω ) =

(
Lσnω(hσnωMn)

hσn+1ω

)
◦ fn+1

ω . (13)

Moreover, by (11) we have

Lσnω(hσnωMn)

hσn+1ω

=
Lσnω(hσnωψ̃σnω + hσnωGn − hσnω(Gn+1 ◦ fσnω))

hσn+1ω

.

By Lemma 4,

Lσnω(hσnω(Gn+1 ◦ fσnω)) = Gn+1Lσnωhσnω = Gn+1hσn+1ω,

and thus it follows from (12) that
Lσnω(hσnωMn)

hσn+1ω

= 0.

This conclusion of the lemma now follows readily from (13). �

We now establish several auxiliary results that will be used in the following section.
These results estimate various norms of functions related to Mn and Gn, defined in (11)
and (12), respectively.

Lemma 5. We have that
sup
n≥0
‖Gn‖BV <∞.

Proof. By iterating (12), we obtain

Gn =
1

hσnω

n−1∑
j=0

Ln−j
σjω

(ψ̃σjωhσjω), n ∈ N. (14)

We note that ∫
ψ̃σjωhσjω dm =

∫
ψ̃σjω dµσjω = 0, (15)

and thus it follows from (H4) that∥∥∥∥ n−1∑
j=0

Ln−j
σjω

(ψ̃σjωhσjω)

∥∥∥∥
BV

≤ K

n−1∑
j=0

e−λ(n−j)‖ψ̃σjωhσjω‖BV ,

for each n ∈ N which together with (V8), (1), (3), (6) and (8) implies the conclusion of
the lemma. �

Lemma 6. We have that
sup
n≥0
‖M2

n‖BV <∞.
10



Proof. In view of (8), (11) and Lemma 5, it is sufficient to show that

sup
n≥0
‖Gn+1 ◦ fσnω‖BV <∞.

However, this follows directly from (H3) and Lemma 5. �

Lemma 7. We have that

sup
n≥0
‖Eω(M2

n ◦ fnω |T n+1
ω )‖∞ <∞.

Proof. It follows from Lemma 3 that

Eω(M2
n ◦ fnω |T n+1

ω ) =

(
Lσnω(hσnωM

2
n)

hσn+1ω

)
◦ fn+1

ω ,

and thus, recalling (6),

sup
n≥0
‖Eω(M2

n ◦ fnω |T n+1
ω )‖∞ ≤

1

c
‖Lσnω(hσnωM

2
n)‖∞.

Taking into account (1), (H2), (3), Lemma 6 and the fact that ‖·‖∞ ≤ Cvar‖·‖BV (see
(V3)) we obtain the conclusion of the lemma. �

4. Sprindzuk’s Theorem and consequences

The main tool in establishing the almost sure invariance principle is the recent result
by Cuny and Merlevède (quoted in our Theorem 3 in Section 5). However, in order to
verify the assumptions of that theorem we will first need to apply the following classical
result due to Sprindzuk [15].

Theorem 2. Let (Ω,B, µ) be a probability space and let (fk)k be a sequence of nonnegative
and measurable functions on Ω. Moreover, let (gk)k and (hk)k be bounded sequences of
real numbers such that 0 ≤ gk ≤ hk. Assume that there exists C > 0 such that∫ ( ∑

m<k≤n

(fk(ω)− gk)
)2

dµ ≤ C
∑

m<k≤n

hk (16)

for m,n ∈ N such that m < n. Then, for every ε > 0∑
1≤k≤n

fk(ω) =
∑

1≤k≤n

gk +O(Θ1/2(n) log3/2+ε Θ(n)),

for µ-a.e. ω ∈ Ω, where Θ(n) =
∑

1≤k≤n hk.

Lemma 8. For each ε > 0,
n−1∑
k=0

Eω(M2
k ◦ fkω |T k+1

ω ) =
n−1∑
k=0

Eω(M2
k ◦ fkω) +O(Θ1/2(n) log3/2+ε Θ(n)),

for µ-a.e. ω ∈ Ω, where

Θ(n) =
n−1∑
k=0

(Eω(M2
k ◦ fkω) + ‖M2

k‖var). (17)

Proof. Fix ω ∈ Ω. We want to apply Theorem 2 to

fk = Eω(M2
k ◦ fkω |T k+1

ω ) and gk = Eω(M2
k ◦ fkω).

11



We have that∫ [ ∑
m<k≤n

Eω(M2
k ◦ fkω |T k+1

ω )−
∑

m<k≤n

Eω(M2
k ◦ fkω)

]2

dµω

=

∫ ( ∑
m<k≤n

Eω(M2
k ◦ fkω |T k+1

ω )

)2

dµω

− 2

( ∑
m<k≤n

Eω(M2
k ◦ fkω)

)∫ ( ∑
m<k≤n

Eω(M2
k ◦ fkω |T k+1

ω )

)
dµω

+

( ∑
m<k≤n

Eω(M2
k ◦ fkω)

)2

=

∫ ( ∑
m<k≤n

Eω(M2
k ◦ fkω |T k+1

ω )

)2

dµω −
( ∑
m<k≤n

Eω(M2
k ◦ fkω)

)2

=
∑

m<k≤n

∫
Eω(M2

k ◦ fkω |T k+1
ω )2 dµω

+ 2
∑

m<i<j≤n

∫
Eω(M2

i ◦ f iω|T i+1
ω ) · Eω(M2

j ◦ f jω|T j+1
ω ) dµω

−
∑

m<k≤n

Eω(M2
k ◦ fkω)2 − 2

∑
m<i<j≤n

Eω(M2
i ◦ f iω) · Eω(M2

j ◦ f jω)

≤
∑

m<k≤n

∫
Eω(M2

k ◦ fkω |T k+1
ω )2 dµω

+ 2
∑

m<i<j≤n

∫
Eω(M2

i ◦ f iω|T i+1
ω ) · Eω(M2

j ◦ f jω|T j+1
ω ) dµω

− 2
∑

m<i<j≤n

Eω(M2
i ◦ f iω) · Eω(M2

j ◦ f jω).

(18)

On the other hand, it follows from Lemma 3 that for i < j we have∫
Eω(M2

i ◦ f iω|T i+1
ω ) · Eω(M2

j ◦ f jω|T j+1
ω ) dµω

=

∫ [(
Lσiω(hσiωM

2
i )

hσi+1ω

)
◦ f i+1

ω

]
·
[(Lσjω(hσjωM

2
j )

hσj+1ω

)
◦ f j+1

ω

]
dµω

=

∫ (
Lσiω(hσiωM

2
i )

hσi+1ω

)
·
[(Lσjω(hσjωM

2
j )

hσj+1ω

)
◦ f j−i

σi+1ω

]
dµσi+1ω

=

∫
Lσiω(hσiωM

2
i ) ·

[(Lσjω(hσjωM
2
j )

hσj+1ω

)
◦ f j−i

σi+1ω

]
dm

=

∫
Lj−i+1
σiω

(hσiωM
2
i ) ·

(Lσjω(hσjωM
2
j )

hσj+1ω

)
dm.

Moreover,

Eω(M2
i ◦ f iω) =

∫
M2

i dµσiω

12



and

Eω(M2
j ◦ f jω) =

∫
(M2

j ◦ f jω) dµω =

∫
M2

j dµσjω =

∫
M2

j hσjω dm

=

∫
Lσjω(M2

j hσjω) dm =

∫ Lσjω(M2
j hσjω)

hσj+1ω

dµσj+1ω.

Hence,∫
Eω(M2

i ◦ f iω|T i+1
ω ) · Eω(M2

j ◦ f jω|T j+1
ω ) dµω − Eω(M2

i ◦ f iω) · Eω(M2
j ◦ f jω)

=

∫
Lj−i+1
σiω

(hσiωM
2
i ) ·

(Lσjω(hσjωM
2
j )

hσj+1ω

)
dm−

∫
M2

i dµσiω ·
∫ Lσjω(M2

j hσjω)

hσj+1ω

dµσj+1ω.

Therefore, it follows from Lemma 1 that∫
Eω(M2

i ◦ f iω|T i+1
ω ) · Eω(M2

j ◦ f jω|T j+1
ω ) dµω − Eω(M2

i ◦ f iω) · Eω(M2
j ◦ f jω)

≤ Kρj−i+1

∥∥∥∥Lσjω(M2
j hσjω)

hσj+1ω

∥∥∥∥
∞
· ‖M2

i ‖var.

Furthermore,∫
Eω(M2

k ◦ fkω |T k+1
ω )2 dµω ≤ ‖Eω(M2

k ◦ fkω |T k+1
ω )‖∞ · Eω(M2

k ◦ fkω).

Thus, the last two inequalities combined with (18) imply that∫ [ ∑
m<k≤n

Eω(M2
k ◦ fkω |T k+1

ω )−
∑

m<k≤n

Eω(M2
k ◦ fkω)

]2

dµω

≤
∑

m<k≤n

∫
Eω(M2

k ◦ fkω |T k+1
ω )2 dµω

+ 2
∑

m<i<j≤n

∫
Eω(M2

i ◦ f iω|T i+1
ω ) · Eω(M2

j ◦ f jω|T j+1
ω ) dµω

− 2
∑

m<i<j≤n

Eω(M2
i ◦ f iω) · Eω(M2

j ◦ f jω).

≤
∑

m<k≤n

‖Eω(M2
k ◦ fkω |T k+1

ω )‖∞ · Eω(M2
k ◦ fkω)

+ 2K
∑

m<i<j≤n

ρj−i+1

∥∥∥∥Lσjω(M2
j hσjω)

hσj+1ω

∥∥∥∥
∞
· ‖M2

i ‖var,

which combined with (H2), (3), (6) and Lemmas 6 and 7 implies that (16) holds with

hk = Eω(M2
k ◦ fkω) + ‖M2

k‖var.

The conclusion of the lemma now follows directly from Theorem 2. �

5. Proof of Theorem 1

The goal of this section is to establish the almost sure invariance principle by proving
Theorem 1. It is based on the following theorem due to Cuny and Merlevède.
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Theorem 3 ([6]). Let (Xn)n be a sequence of square integrable random variables adapted
to a non-increasing filtration (Gn)n. Assume that E(Xn|Gn+1) = 0 a.s., σ2

n :=
∑n

k=1 E(X2
k)→

∞ when n→∞ and that supn E(X2
n) <∞. Moreover, let (an)n be a non-decreasing se-

quence of positive numbers such that the sequence (an/σ
2
n)n is non-increasing, (an/σn) is

non-decreasing and such that :
1.

n∑
k=1

(E(X2
k |Gk+1)− E(X2

k)) = o(an) a.s.; (19)

2. ∑
n≥1

a−vn E(|Xn|2v) <∞ for some 1 ≤ v ≤ 2. (20)

Then, enlarging our probability space if necessary, it is possible to find a sequence (Zk)k
of independent centered Gaussian variables with E(X2

k) = E(Z2
k) such that

sup
1≤k≤n

∣∣∣∣ n∑
k=1

Xk −
n∑
k=1

Zk

∣∣∣∣ = o((an(|log(σ2
n/an)|+ log log an))1/2), a.s.

In order to obtain the almost sure invariance principle for the sequence (ψ̃θkω ◦ fkω)k,
k ∈ N we will first apply Theorem 3 for

Xn = Mn ◦ fnω and Gn = T nω .

We note that it follows from Lemma 8 that
n∑
k=1

(E(X2
k |Gk+1)− E(X2

k)) = O(bn),

with
bn = Θ1/2(n) log3/2+ε Θ(n), (21)

and where Θ(n) is given by (17). On the other hand, it follows from Lemma 6 that
Θ(n) ≤ Dn for some D > 0 and every n ∈ N and therefore (19) holds with

an = n1/2+d, (22)

for any d > 0. From now on, we take d ∈ (0, 1/2).

Lemma 9. There exists Σ2 ≥ 0 such that

lim
n→∞

1

n
Eω
( n−1∑

k=0

ψ̃σkω ◦ fkω
)2

= Σ2, for a.e. ω ∈ Ω. (23)

Proof. Note that

Eω
( n−1∑

k=0

ψ̃σkω ◦ fkω
)2

=
n−1∑
k=0

Eω(ψ̃2
σkω ◦ f

k
ω) + 2

∑
0≤i<j≤n−1

Eω((ψ̃σiω ◦ f iω)(ψ̃σjω ◦ f jω))

=
n−1∑
k=0

Eω(ψ̃2
σkω ◦ f

k
ω) + 2

n−1∑
i=0

n−1∑
j=i+1

Eσiω(ψ̃σiω(ψ̃σjω ◦ f j−iσiω
)).
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Using the skew product transformation τ from (2), it follows from Birkhoff’s ergodic
theorem that

lim
n→∞

1

n

n−1∑
k=0

Eω(ψ̃2
σkω ◦ f

k
ω) = lim

n→∞

1

n

n−1∑
k=0

∫
X

ψ̃(τ k(ω, x))2 dµω(x)

=

∫
Ω

∫
X

ψ̃(ω, x)2 dµω(x) dP(ω) =

∫
Ω×X

ψ̃(ω, x)2 dµ(ω, x),

for a.e. ω ∈ Ω, where µ is an invariant measure for τ given by

µ(A×B) =

∫
A

µω(B) dP(ω), for A ∈ F and B ∈ B.

Furthermore, set

Ψ(ω) =
∞∑
n=1

∫
X

ψ̃(ω, x)ψ̃(τn(ω, x)) dµω(x) =
∞∑
n=1

∫
X

Lnω(ψ̃ωhω)ψ̃σnω dm.

By (5) and (8), we have

|Ψ(ω)| ≤
∞∑
n=1

∣∣∣∣ ∫
X

Lnω(ψ̃ωhω)ψ̃σnω dm

∣∣∣∣ ≤ K̃
∞∑
n=1

ρn =
K̃ρ

1− ρ
,

for some K̃ > 0 and a.e. ω ∈ Ω. In particular, Ψ ∈ L1(Ω) and thus it follows again from
Birkhoff’s ergodic theorem that

lim
n→∞

1

n

n−1∑
i=0

Ψ(σiω) =

∫
Ω

Ψ(ω) dP(ω) =
∞∑
n=1

∫
Ω×X

ψ̃(ω, x)ψ̃(τn(ω, x)) dµ(ω, x), (24)

for a.e. ω ∈ Ω. In order to complete the proof of the lemma, we are going to show that

lim
n→∞

1

n

( n−1∑
i=0

n−1∑
j=i+1

Eσiω(ψ̃σiω(ψ̃σjω ◦ f j−iσiω
))−

n−1∑
i=0

Ψ(σiω)

)
= 0, (25)

for a.e. ω ∈ Ω. Using (5), we have that for a.e. ω ∈ Ω,∣∣∣∣ n−1∑
i=0

n−1∑
j=i+1

Eσiω(ψ̃σiω(ψ̃σjω ◦ f j−iσiω
))−

n−1∑
i=0

Ψ(σiω)

∣∣∣∣
=

∣∣∣∣ n−1∑
i=0

n−1∑
j=i+1

Eσiω(ψ̃σiω(ψ̃σjω ◦ f j−iσiω
))−

n−1∑
i=0

∞∑
k=1

Eσiω(ψ̃σiω(ψ̃σk+iω ◦ fkσiω))

∣∣∣∣
≤

n−1∑
i=0

∞∑
k=n−i

∣∣∣∣Eσiω(ψ̃σiω(ψ̃σk+iω ◦ fkσiω))

∣∣∣∣ =
n−1∑
i=0

∞∑
k=n−i

∣∣∣∣ ∫
X

Lkσiω(ψ̃σiωhσiω)ψ̃σk+iω dm

∣∣∣∣
≤ K̃

n−1∑
i=0

∞∑
k=n−i

ρk = K̃
ρ

(1− ρ)2
,

which readily implies (25). It follows from (24) and (25) that

lim
n→∞

1

n

n−1∑
i=0

n−1∑
j=i+1

Eσiω(ψ̃σiω(ψ̃σjω ◦ f j−iσiω
)) =

∞∑
n=1

∫
Ω×X

ψ̃(ω, x)ψ̃(τn(ω, x)) dµ(ω, x)
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for a.e. ω ∈ Ω and therefore (23) holds with

Σ2 =

∫
Ω×X

ψ̃(ω, x)2 dµ(ω, x) + 2
∞∑
n=1

∫
Ω×X

ψ̃(ω, x)ψ̃(τn(ω, x)) dµ(ω, x). (26)

Finally, we note that it follows readily from (23) that Σ2 ≥ 0 and the proof of the lemma
is completed. �

We now present necessary and sufficient conditions under which Σ2 = 0. We note that
a similar result is stated in [11, (2.10)] with ψ̃ ◦ τ instead of ψ̃ in (27).

Proposition 3. We have that Σ2 = 0 if and only if there exists φ ∈ L2(Ω×X) such that

ψ̃ = φ− φ ◦ τ. (27)

Proof. We first observe that∫
Ω×X

( n−1∑
k=0

ψ̃(τ k(ω, x))

)2

dµ(ω, x)

=
n−1∑
k=0

∫
Ω×X

ψ̃2(τ k(ω, x)) dµ(ω, x) + 2
n−1∑
k=1

k−1∑
j=0

∫
Ω×X

ψ̃(τ k(ω, x)ψ̃(τ j(ω, x)) dµ(ω, x)

= n

∫
Ω×X

ψ̃2(ω, x) dµ(ω, x) + 2
n−1∑
k=1

k−1∑
j=0

∫
Ω×X

ψ̃(ω, x)ψ̃(τ k−j(ω, x)) dµ(ω, x)

= n

∫
Ω×X

ψ̃2(ω, x) dµ(ω, x) + 2
n−1∑
k=1

(n− k)

∫
Ω×X

ψ̃(ω, x)ψ̃(τ k(ω, x)) dµ(ω, x),

and thus∫
Ω×X

( n−1∑
k=0

ψ̃(τ k(ω, x))

)2

dµ(ω, x) =

= n

(∫
Ω×X

ψ̃2(ω, x) dµ(ω, x) + 2
n−1∑
k=1

∫
Ω×X

ψ̃(ω, x)ψ̃(τ k(ω, x)) dµ(ω, x)

)

− 2
n−1∑
k=1

k

∫
Ω×X

ψ̃(ω, x)ψ̃(τ k(ω, x)) dµ(ω, x).

Assume now that Σ2 = 0. Then, it follows from the above equality and (26) that∫
Ω×X

( n−1∑
k=0

ψ̃ ◦ τ k
)2

dµ = −2n
∞∑
k=n

∫
Ω×X

ψ̃(ψ̃ ◦ τ k) dµ− 2
n−1∑
k=1

k

∫
Ω×X

ψ̃(ψ̃ ◦ τ k) dµ. (28)

On the other hand, by (5) we have that
∫

Ω×X ψ̃(ψ̃ ◦ τ k) dµ→ 0 exponentially fast when
k →∞ and hence, it follows from (28) that the sequence (Xn)n defined by

Xn(ω, x) =
n−1∑
k=0

ψ̃(τ k(ω, x)), ω ∈ Ω, x ∈ X

is bounded in L2(Ω×X). Thus, it has a subsequence (Xnk
)k which converges weakly to

some φ ∈ L2(Ω×X). We claim that φ satisfies (27). Indeed, take an arbitrary g = 1A×B,
16



where A ∈ F and B ∈ B and observe that g ∈ L2(Ω×X) and∫
Ω×X

g(ψ̃ − φ+ φ ◦ τ) = lim
k→∞

∫
Ω×X

g(ψ̃ −Xnk
+Xnk

◦ τ) dµ

= lim
k→∞

∫
Ω×X

g(ψ̃ ◦ τnk) dµ = 0,

where in the last equality we used (5) again. Therefore, ψ̃ − φ+ φ ◦ τ = 0 which readily
implies (27).

Suppose now that there exists φ ∈ L2(Ω×X) satisfying (27). Then,

1√
n

n−1∑
k=0

ψ̃ ◦ τ k =
1√
n

(φ− φ ◦ τn),

and thus ∥∥∥∥ 1√
n

n−1∑
k=0

ψ̃ ◦ τ k
∥∥∥∥
L2(Ω×X)

≤ 2√
n
‖φ‖L2(Ω×X) → 0,

when n→∞. Therefore, it follows by integrating (23) over Ω that

Σ2 = lim
n→∞

∥∥∥∥ 1√
n

n−1∑
k=0

ψ̃ ◦ τ k
∥∥∥∥2

L2(Ω×X)

= 0.

This concludes the proof of the proposition. �

In the rest of the paper we assume that Σ2 > 0. We also need the following lemmas.

Lemma 10. We have that

Eω(XiXj) = 0, for i < j.

Proof. By Lemma 2, we conclude that Eω(Mi ◦ f iω|T i+1
ω ) = 0. Moreover, we note that

Mj ◦ f jω is measurable with respect to T i+1
ω and thus

Eω((Mj ◦ f jω)(Mi ◦ f iω)|T i+1
ω ) = (Mj ◦ f jω)Eω(Mi ◦ f iω|T i+1

ω ) = 0.

The conclusion of the lemma now follows simply by integrating the above equality. �

In what follows, we write an ∼ bn if there exists c ∈ R\{0} such that limn→∞ an/bn = c.

Lemma 11. We have that σ2
n →∞ as n→∞.

Proof. It follows from (11) that
n−1∑
k=0

Xk =
n−1∑
k=0

ψ̃σkω ◦ fkω −Gn ◦ fnω , (29)

and thus,( n−1∑
k=0

Xk

)2

=

( n−1∑
k=0

ψ̃σkω ◦ fkω
)2

− 2(Gn ◦ fnω )

( n−1∑
k=0

ψ̃σkω ◦ fkω
)

+ (G2
n ◦ fnω ). (30)

By Lemma 9 and the assumption Σ2 > 0,

τ 2
n := Eω

( n−1∑
k=0

ψ̃σkω ◦ fkω
)2

→∞. (31)

17



On the other hand, it follows from (8), (30) and Lemma 5 that

Eω
( n−1∑

k=0

Xk

)2

∼ τ 2
n. (32)

By Lemma 10 and (32), we have that

σ2
n =

n−1∑
k=0

Eω(X2
k) = Eω

( n−1∑
k=0

Xk

)2

∼ τ 2
n, (33)

which together with (31) implies the desired conclusion of Lemma 11. �

Lemma 12. There exists n0 ∈ N such that the sequence (an/σ
2
n)n≥n0 is non-increasing

and that the sequence (an/σn)n≥n0 is non-decreasing.

Proof. It follows from Lemma 9 and (33) that

σ2
n =

n−1∑
k=0

Eω(M2
k ◦ fkω) ∼ nΣ2.

Therefore (22) yields,

an/σ
2
n ∼

n1/2+d

n
and an/σn ∼

n1/2+d

√
n

,

and the conclusion of the lemma follows readily from the assumption that d ∈ (0, 1/2). �

Since the conclusion of Theorem 3 concerns the tails of (an)n and (σn)n, it will remain
valid if the monotonicity hypotheses for (an/σ

2
n)n and (an/σn)n hold for sufficiently large

n, and those are verified in Lemma 12. Finally, we show that (20) holds with v = 2.

Lemma 13. We have that ∑
n≥1

a−2
n Eω(|Xn|4) <∞.

Proof. Since supn‖Mn‖∞ <∞, we have that supn‖Xn‖∞ <∞ and thus∑
n≥1

a−2
n Eω(|Xn|4) ≤ C

∑
n≥1

a−2
n = C

∑
n≥1

1

n1+2d
<∞.

�

Now we can conclude the proof or our main result.

Proof of Theorem 1. Using Theorem 3, we obtain the almost sure invariance principle for
the sequence (Xk)k = (Mk ◦ fkω)k. The almost sure invariance principle for the sequence
(ψ̃θkω ◦ fkω)k, stated in Theorem 1, now follows from (29) and Lemma 5. �
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