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Introduction

The objective of this note is to prove the almost sure invariance principle (ASIP) for a large class of random dynamical systems. The random dynamics is driven by an invertiblemeasure preserving transformation σ of (Ω, F, P) called the base transformation. Trajectories in the phase space X are formed by concatenations

f n ω := f σ n-1 ω • • • • • f σω • f ω
of maps from a family of maps f ω : X → X, ω ∈ Ω. For a systematic treatment of these systems we refer to [START_REF] Arnold | Random Dynamical Systems[END_REF]. For sufficiently regular bounded observables ψ ω : X → R, ω ∈ Ω, an almost sure invariance principle guarantees that the random variables ψ σ n ω • f n ω can be matched with trajectories of a Brownian motion, with the error negligible compared to the length of the trajectory. In the present paper, we consider observables defined on some measure space (X, m) which is endowed with a notion of variation. In particular, we consider examples where the observables are functions of bounded variation or quasi-Hölder functions on a compact subset X of R n . We emphasize that our setting is quite similar to that in [START_REF] Buzzi | Exponential Decay of Correlations for Random Lasota-Yorke Maps[END_REF], where the maps f ω are called random Lasota-Yorke maps.

In a more general setting and under suitable assumptions, Kifer proved in [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF] central limit theorems (CLT) and laws of iterated logarithm; we will briefly compare Kifer's assumptions with ours in Remark 2 below. In [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF]Remark 2.7], Kifer claimed without proof (see [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF]Remark 4.1]) a random functional CLT, i.e. the weak invariance principle (WIP), and also a strong version of the WIP with almost sure convergence, namely the almost sure invariance principle (ASIP), referring to techniques of Philip and Stout [START_REF] Philip | Almost sure invariance principle for sums of weakly dependent random variables[END_REF].

Here we present a proof of the ASIP for our class of random transformations, following a method recently proposed by Cuny and Merlèvede [START_REF] Cuny | Strong invariance principles with rate for "reverse" martingales and applications[END_REF]. This method is particularly powerful when applied to non-stationary dynamical systems; it was successfully used in [START_REF] Haydn | Almost sure invariance principle for sequential and non-stationary dynamical systems[END_REF] for a large class of sequential systems with some expanding features and for which only the CLT was previously known [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF]. We stress that ω-fibered random dynamical systems discussed above are also non-stationary since we use ω-dependent sample measures (see below) on the underlying probability space.

The technique of Cuny and Merlèvede is based on martingale approximation; it was shown in [START_REF] Haydn | Almost sure invariance principle for sequential and non-stationary dynamical systems[END_REF] how to satisfy one of the main assumptions in [START_REF] Cuny | Strong invariance principles with rate for "reverse" martingales and applications[END_REF] by using a result of Sprindzuk [START_REF] Sprindzuk | Metric theory of Diophantine approximations[END_REF], which basically consists of getting an almost sure bound when the latter is known to hold in the L 1 norm. To prove such a result we also need two other ingredients: (i) the error in the martingale approximation must be bounded in a suitable Banach space; (ii) the quenched correlations with respect to the sample measures must decay with a summable rate.

We now compare our assumptions and results with those in Kifer's paper [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF]. Kifer used a martingale approximation, but the martingale approximation error in [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF] is given in terms of an infinite series (see the error g ω in equation (4.18) in [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF]), which appears difficult to estimate under general assumptions. Instead, our martingale approximation error term is explicitly given in terms of a finite sum (see ( 14)), and as mentioned above we can bound it easily. Furthermore, Kifer invoked a rate of mixing, but to deal with it he assumed strong conditions (φ-mixing and α-mixing), which are very hard to check on concrete examples. We use instead quenched decay of correlations on a space of regular observables, for example, bounded variation or quasi-Hölder and L ∞ functions (exponential decay was shown by Buzzi [START_REF] Buzzi | Exponential Decay of Correlations for Random Lasota-Yorke Maps[END_REF]), with an addition: the constant that scales the norm of the observable in the decay rate is independent of the noise ω; we can then satisfy the hypotheses of Sprindzuk's result. Further comparisons are deferred to Remark 2.

The rate which we obtain by approximating our process with a sum of i.i.d Gaussian variables (the content of the ASIP) is of order n 1/4 , which is, up to logarithmic corrections, a rate previously obtained for deterministic uniformly expanding systems [START_REF] Gouëzel | Almost sure invariance principle for dynamical systems by spectral methods[END_REF].

Preliminaries and statement of the main results

2.1.

Preliminaries. We introduce in this section the fiber maps and the associated function spaces which we will use to form the random concatenations. We will call them random expanding transformations, or random Lasota-Yorke maps. We will refer to and use the general assumptions for these maps as proposed by Buzzi [3] in order to use his results on quenched decay of correlations. However, we will strengthen a few of those assumptions with the aim of obtaining limit theorems. Our additional conditions are similar to those called Dec and Min in the paper [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF], and which were used to establish and recover a property akin to quasi-compactness for the composition of transfer operators.

Let (Ω, F, P) be a probability space and let σ : Ω → Ω be an invertible P-preserving transformation. We will assume that P is ergodic. Moreover, let (X, B) be a measurable space endowed with a probability measure m and a notion of a variation var :

L 1 (X, m) → [0, ∞] which satisfies the following conditions: (V1) var(th) = |t| var(h); (V2) var(g + h) ≤ var(g) + var(h); (V3) h ∞ ≤ C var ( h 1 + var(h)) for some constant 1 ≤ C var < ∞; (V4) for any C > 0, the set {h : X → R : h 1 + var(h) ≤ C} is L 1 (m)-compact; (V5) var(1 X ) < ∞, where 1 X denotes the function equal to 1 on X; (V6) {h : X → R + : h 1 = 1 and var(h) < ∞} is L 1 (m)-dense in {h : X → R + : h 1 =
1}. (V7) there exists K var < ∞ such that var(f g) + f g 1 ≤ K var (var(f ) + f 1 )(var(g) + g 1 ), for every f, g ∈ BV .

(

) (V8) for any f ∈ L 1 (X, m) such that essinf f > 0, we have var(1/f ) ≤ var(f ) (essinf f ) 2 . 1 
We denote by BV = BV (X, m) the space of all h ∈ L 1 (X, m) such that var(h) < ∞. It is well known that BV is a Banach space with respect to the norm

h BV = var(h) + h 1 .
On several occasions we will also consider the following norm

h var = var(h) + h ∞ , on BV which (although different) is equivalent to • BV . Let f ω : X → X, ω
∈ Ω be a collection of mappings on X. The associated skew product transformation τ : Ω × X → Ω × X is defined by

τ (ω, x) = (σ(ω), f ω (x)).
(

) 2 
Each transformation f ω induces the corresponding transfer operator L ω acting on L 1 (X, m) and defined by the following duality relation

X (L ω φ)ψ dm = X φ(ψ • f ω ) dm, φ ∈ L 1 (X, m), ψ ∈ L ∞ (X, m).
For each n ∈ N and ω ∈ Ω, set

f n ω = f σ n-1 (ω) • • • • • f ω and L n ω = L σ n-1 (ω) • • • • • L ω .
We say that the family of maps f ω , ω ∈ Ω (or the associated family of transfer operators

L ω , ω ∈ Ω) is uniformly good if: (H1) The map (ω, x) → (L ω H(ω, •))(x) is P × m-measurable for every P × m-measurable function H such that H(ω, •) ∈ L 1 (m) for a.e. ω ∈ Ω; (H2) There exists C > 0 such that L ω φ BV ≤ C φ BV
for φ ∈ BV and P a.e. ω ∈ Ω. (H3) For P a.e. ω ∈ Ω, sup

n≥0 φ n+1 • f σ n (ω) BV < ∞,
whenever {(φ n ) n≥0 } ⊂ BV and sup n φ n BV < ∞. (H4) There exist K, λ > 0 such that L n ω φ BV ≤ Ke -λn φ BV , for n ≥ 0, P a.e. ω ∈ Ω and φ ∈ BV such that φ dm = 0. (H5) There exists c > 0 such that L n ω 1 X ≥ c, for P a.e. ω ∈ Ω and n ∈ N.

Using (H1), (H2), and (H4) we can prove the existence of a unique random ACIM h : Ω × X → R, with uniformly bounded fibres h ω .

Proposition 1. Let f ω , ω ∈ Ω be a uniformly good family of maps on X. Then there exist a unique measurable and nonnegative function h : Ω × X → R with the property that

h ω := h(ω, •) ∈ BV , h ω dm = 1, L(h ω ) = h σ(ω) for a.e. ω ∈ Ω esssup ω∈Ω h ω BV < ∞. (3) 
Proof. Let

Y = v : Ω × X → R : v measurable, v ω := v(ω, •) ∈ BV and esssup ω∈Ω v ω BV < ∞ .
Then, Y is a Banach space with respect to the norm

v ∞ := esssup ω∈Ω v ω BV .
Moreover, let Y 1 be the set of all v ∈ Y such that v ω dm = 1 and v ω ≥ 0 for a.e. ω ∈ Ω.

It is easy to verify that Y 1 is a closed subset of Y and thus a complete metric space. We define a map L :

Y 1 → Y 1 by (L(v)) ω = L σ -1 (ω) v σ -1 (ω) , ω ∈ Ω, v ∈ Y 1 .
Note that it follows from (H2) that

L(v) ∞ = esssup ω∈Ω (L(v)) ω BV ≤ C esssup ω∈Ω v σ -1 (ω) BV = C v ∞ .
Furthermore,

(L(v)) ω dm = L σ -1 (ω) v σ -1 (ω) dm = v σ -1 (ω) dm = 1,
for a.e. ω ∈ Ω. Hence, L is well-defined. Similarly,

L(v) -L(w) ∞ ≤ C v -w ∞ , for v, w ∈ Y 1
which shows that L is continuous. Choose n 0 ∈ N such that Ke -λn 0 < 1. Take arbitrary v, w ∈ Y 1 and note that by (H4),

L n 0 (v) -L n 0 (w) ∞ = esssup ω∈Ω L n 0 σ -n 0 (ω) (v σ -n 0 (ω) -w σ -n 0 (ω)) BV ≤ Ke -λn 0 esssup ω∈Ω v σ -n 0 (ω) -w σ -n 0 (ω) BV = Ke -λn 0 v -w ∞ .
Hence, L n 0 is a contraction on Y 1 and thus has a unique fixed point h ∈ Y 1 . Set

h ω := 1 n 0 hω + 1 n 0 L σ -1 (ω) ( hσ -1 (ω) ) + . . . + 1 n 0 L n 0 -1 σ -(n 0 -1) ω ( hσ -(n 0 -1) ω ), ω ∈ Ω.
Then, h is measurable, nonnegative, h ω dm = 1 and a simple computation yields L(h ω ) = h σ(ω) . Finally, by (H2) we have that

esssup ω∈Ω h ω BV ≤ C n 0 -1 n 0 (C -1) esssup ω∈Ω hω BV < ∞.
Thus, we have established existence of h. The uniqueness is obvious since each h satisfying the assertion of the theorem is a fixed point of L and thus also of L n 0 which implies that it must be unique.

We note that [START_REF] Buzzi | measures for random Lasota-Yorke maps[END_REF][START_REF] Buzzi | Exponential Decay of Correlations for Random Lasota-Yorke Maps[END_REF] prove the above existence result with weaker control on the properties of f ω , and obtain existence of a random ACIM {h ω } ω∈Ω under less restrictive conditions. Indeed, those results don't require (H4) and in addition (H2) is allowed to hold with C = C(ω) such that log C ∈ L 1 (P).

We now describe a large class of examples of good families of maps f ω , ω ∈ Ω. We first show that they satisfy properties (H1)-(H3); this will crucially depend on the choice of the function space. We then give additional requirements in order for those maps to satisfy condition (H4), also called Dec in [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF] when applied to sequential systems, and condition (H5), named Min in [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF].

2.2. Examples. 2.2.1. Random Lasota-Yorke maps. Take X = [0, 1], a Borel σ-algebra B on [0, 1] and the Lebesgue measure m on [0, 1]. Furthermore, let var(g) = inf h=g(mod m) sup 0=s 0 <s 1 <...<sn=1 n k=1 |h(s k ) -h(s k-1 )|.
It is well known that var satisfies properties (V1)-(V8) with C var , K var = 1. For a piecewise

C 2 f : [0, 1] → [0, 1], set δ(f ) = essinf x∈[0,1] |f |. Consider now a finitely-valued, measurable map ω → f ω , ω ∈ Ω of piecewise C 2 maps on [0, 1] satisfying (H1) such that sup ω∈Ω N (f ω ) =: N < ∞, inf ω∈Ω δ(f ω ) =: δ > 1, and sup ω∈Ω |f ω | ∞ =: D < ∞.
It is proved in [START_REF] Buzzi | Exponential Decay of Correlations for Random Lasota-Yorke Maps[END_REF] that the family f ω , ω ∈ Ω satisfies (H2) with

C = 4 N δ ∨ 1 D δ 2 ∨ 1 1 δ ∨ 1 , (4) 
where for any two real-valued functions g 1 and g 2 , g 1 ∨ g 2 = max{g 1 , g 2 }, and (V8) has been used for the bound var(1/f ) ≤ D δ 2 . We note that since N < ∞, condition (H3) holds.

The uniform decay rate (H4) has been treated in Propositions 2.10 and 2.11 in [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF]. There, sufficient conditions were stated for sequential dynamical systems, but these conditions can be can be easily adapted to our random setting. Conze and Raugi [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF] propose two types of conditions, either of which yields (H4). The first local type requires the existence of a fiber map, say f 0 , whose transfer operator L 0 is quasi-compact and exact. Defining a distance between two transfer operators [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF] that there is a neighborhood U 0 of L 0 such that all allowed concatenations of transfer operators drawn from U 0 verify (H4) as well.

L 1 , L 2 , as d(L 1 , L 2 ) := sup φ∈BV, φ BV ≤1 ||L 1 φ -L 2 φ|| 1 , it was proved in
To establish (H4) for the second, more general, nonlocal type of random dynamics we require two conditions:

• Random covering: Let A ω denote the collection of intervals of monotonicity for the map f ω and define A n ω = n-1 j=0 (f j ω ) -1 A σ j ω . We will say that the random Lasota-Yorke maps {f ω } ω∈Ω are covering if for each n ≥ 0, ω ∈ Ω, and J ∈ A n ω there is an

n 0 such that f n 0 ω (J) = [0, 1]. • Uniform Lasota-Yorke inequality: There exist n ∈ N, 0 < ρ < 1 and B > 0 such that for a.e. ω ∈ Ω, L n ω f BV ≤ ρ f BV + B f 1 .
For a fixed covering Lasota-Yorke map, Liverani [12, Theorem 3.6] established exponential decay of correlations for observables of bounded variation, using cone techniques and the property that the unique random invariant density is uniformly bounded below [START_REF] Liverani | Decay of correlations for piecewise expanding maps[END_REF]Lemma 4.2]. His results, in particular [12, Lemma 3.5], which determines the rate of correlation decay, are directly applicable in our setting of random composition of finitely many Lasota-Yorke maps. This ensures exactness of the sequences (f σ j ω ) j≥0 for every ω ∈ Ω. That is, for every φ ∈ BV with φ dm = 0, lim n→∞ L n ω φ 1 = 0; see for example the proof of Proposition 3.6 in [START_REF] Froyland | Stability and approximation of random invariant densities for Lasota-Yorke map cocycles[END_REF].

The proof of (H4) now follows as the proof of [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF]Proposition 2.11]. Indeed exactness, together with the compactness condition (for every sequence (L ω j ) j∈N , there exists a convergent subsequence) ensures that for every ε 0 > 0 and every ω ∈ Ω there exists q ∈ N such that for every φ ∈ BV with φ dm = 0 and every j ∈ N, L q σ j ω φ 1 ≤ ε 0 φ BV , via a diagonal argument. This property, combined with the uniform Lasota-Yorke inequality implies (H4) essentially as in the proof of [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF]Proposition 2.7].

With the random covering and uniform Lasota-Yorke conditions introduced above, and assuming esssup ω∈Ω |f ω | ∞ ≤ C , it follows from Proposition 2 in [START_REF] Aimino | Concentration inequalities for sequential dynamical systems on the unit interval, Ergodic Theory Dynam[END_REF] that (H5) holds. We note that [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF] demonstrated that (H5) holds for compositions of β-transformations with β selected from an appropriate interval of values, and that [START_REF] Haydn | Almost sure invariance principle for sequential and non-stationary dynamical systems[END_REF] stated similar sufficient conditions for (H5) for sequences of Lasota-Yorke maps that are translations of a fixed Lasota-Yorke map or small perturbations of a fixed Lasota-Yorke map.

2.2.2. Random piecewise expanding maps. In higher dimensions, the properties (V1)-(V8) can be checked for a so-called quasi-Hölder space, which in particular is injected in L ∞ (condition (V3)) and has the algebra property (V7). Originally developed by Keller [START_REF] Keller | Generalized bounded variation and applications to piecewise monotonic transformations[END_REF] for one-dimensional dynamics, we refer the reader to [START_REF] Saussol | Absolutely continuous invariant measures for multidimensional expanding maps[END_REF] for a detailed presentation of that space in higher dimensions, as well as for the proof of its main properties. In particular, using the same notation as in [START_REF] Saussol | Absolutely continuous invariant measures for multidimensional expanding maps[END_REF], we use the following notion of variation:

var(f ) = sup 0<ε≤ε 0 ε -α R n osc(f, B ε (x)) dx, where osc(f, B ε (x)) = esssup Bε(x) f -essinf Bε(x) f.
In [START_REF] Saussol | Absolutely continuous invariant measures for multidimensional expanding maps[END_REF] it is proved that this notion of variation satisfies (V1)-( V3) and (V5)-(V7) and noted that (V4) is a consequence of a result in [START_REF] Keller | Generalized bounded variation and applications to piecewise monotonic transformations[END_REF]. We prove here that (V8) also holds. Assume that essinf f ≥ c and observe that

osc(1/f, B ε (x)) = esssup Bε(x) (1/f ) -essinf Bε(x) (1/f ) = 1/ essinf Bε(x) (f ) -1/ esssup Bε(x) (f ) = esssup Bε(x) (f ) -essinf Bε(x) (f ) (esssup Bε(x) (f ))(essinf Bε(x) (f )) ≤ osc(f, B ε (x)) (essinf Bε(x) (f )) 2 ≤ 1 c 2 osc(f, B ε (x)), which readily implies that var(1/f ) ≤ var(f ) (essinf f ) 2 .
One can consider piecewise C 2 expanding maps on compact subdomains of R d with C 2 boundary. As in the one-dimensional situation, condition (H3) holds because N is finite. In the local setting the conditions (H4) and (H5) can be verified as in the one-dimensional case using the results of [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF] (see also Th. 7.7 in [START_REF] Haydn | Almost sure invariance principle for sequential and non-stationary dynamical systems[END_REF]). In the nonlocal setting, for maps of the type considered in [3, Appendix B], it is likely that (H4) and (H5) can be obtained as in the one-dimensional case.

2.3.

Further properties of the random ACIM. Let µ ω be the measure on X given by dµ ω = h ω dm for ω ∈ Ω. We have the following important consequence of (H4), which establishes the appropriate decay of correlations result that will be used later on.

Lemma 1. There exists K > 0 and ρ ∈ (0, 1) such that

L n ω (φh ω )ψ dm -φ dµ ω • ψ dµ σ n (ω) ≤ Kρ n ψ ∞ • φ var , (5) 
for n ≥ 0, ψ ∈ L ∞ (X, m) and φ ∈ BV (X, m).

Proof. We consider two cases. Assume first that φ dµ ω = φh ω dm = 0. Then, it follows from (H4) that

L n ω (φh ω )ψ dm -φ dµ ω • ψ dµ σ n ω = L n ω (φh ω )ψ dm ≤ ψ ∞ • L n ω (φh ω ) 1 ≤ ψ ∞ • L n ω (φh ω ) BV ≤ Ke -λn φh ω BV • ψ ∞ , and 
thus (5) follows from (1) and ( 3). Now we consider the case when φ dµ ω = 0. We have

L n ω (φh ω )ψ dm -φ dµ ω • ψ dµ σ n (ω) = L n ω (φh ω )ψ dm -φh ω dm • ψh σ n (ω) dm ≤ ψ ∞ • L n ω (φh ω ) - φh ω dm h σ n (ω) dm = ψ ∞ • φh ω dm • L n ω (Φ -h ω ) dm ≤ ψ ∞ • φh ω dm • L n ω (Φ -h ω ) BV ,
where

φh ω = φh ω dm Φ.
Note that (Φ -h ω ) dm = 0 and thus using (H4),

ψ ∞ • φh ω dm • L n ω (Φ -h ω ) BV ≤ Ke -λn ψ ∞ • φh ω dm • Φ -h ω BV ≤ Ke -λn ψ ∞ • φ -φh ω dm h ω BV .
Hence, it follows from (1) and (3) that

L n ω (φh ω )ψ dm -φ dµ ω • ψ dµ σ n (ω) ≤ K e -λn ψ ∞ • φ BV
for some K > 0 and thus (5) follows from the observation that • BV ≤ • var .

Remark 1. We would like to emphasize that (5) is a special case of a more general decay of correlation result obtained in [START_REF] Buzzi | Exponential Decay of Correlations for Random Lasota-Yorke Maps[END_REF] which does not require (H4) and yields (5) but with

K = K(ω).
Finally, we prove that condition (H5) implies that we have a uniform lower bound for h ω .

Lemma 2. We have that essinf h ω ≥ c/2, for a.e. ω ∈ Ω.

Proof. We note that

h ω = L n σ -n (ω) 1 X -(L n σ -n (ω) 1 X -h ω ) and thus it follows from (H5) that essinf h ω ≥ c -L n σ -n (ω) 1 -h ω ) ∞ ≥ c -C var L n σ -n (ω) 1 -h ω BV . (7) 
On the other hand, it follows from (H4) and (3) that

L n σ -n (ω) 1 -h ω BV = L n σ -n (ω) (1 -h σ -n (ω) ) BV ≤ Ke -λn 1 -h σ -n (ω) BV ≤ Ke -λn ,
for some K > 0. Choosing n such that C var Ke -λn ≤ c/2, it follows from ( 7) that ( 6) holds.

Remark 2. We now briefly compare our setting with that in [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF]. In the latter, the space X is replaced by a foliation Ξ ω := {ξ ∈ Ξ : (ξ, ω) ∈ Ξ}, where Ξ is some measurable space and ω belongs to the base space Ω. On the fibered subset Ξ it is defined the skew map τ (ξ, ω) = (f ω ξ, σω), with the associated fiber maps f ω : Ξ ω → Ξ σω . In our situation the Ξ ω 's for all ω coincide with the set X and all f ω : X → X are endomorphisms of X with some regularity property; moreover the previous skew transformation will still hold on the product space X × Ω, see [START_REF] Arnold | Random Dynamical Systems[END_REF]. Consequently, the conformal measure m is also allowed to depend on ω. In principle, all the arguments in the present paper could also be extended to this more general setting. However, we refrain from doing so since it would require heavy notation and more importantly since it is hard to verify that conditions like (H4) and (H5) hold in this more general setting unless fibers Ξ ω can be identified in some natural way (like for example tangent spaces at different points on a manifold).

2.4.

Statement of the main results. We are now ready to state our main result. We will consider an observable ψ : Ω × X → R. Let ψ ω = ψ(ω, •), ω ∈ Ω and assume that

sup ω∈Ω ψ ω BV < ∞. (8) 
We also introduce centered observable

ψω = ψ ω -ψ ω dµ ω , ω ∈ Ω.
and we consider the associated Birkhoff sum

n-1 k=0 ψσ k ω • f k ω , and the variance τ 2 n = E ω n-1 k=0 ψσ k ω • f k ω 2
. The Almost Sure Invariance Principle is a matching of the trajectories of the dynamical system with a Brownian motion in such a way that the error is negligible in comparison with the Birkhoff sum. Limit theorems such as the central limit theorem, the functional central limit theorem and the law of the iterated logarithm transfer from the Brownian motion to time-series generated by observations on the dynamical system: these last results will therefore be immediate consequences of our proof of the ASIP for random Lasota-Yorke maps : Theorem 1. Let us consider the family of uniformly good random Lasota-Yorke maps. Then the variance τ 2 n will grow linearly as τ 2 n ∼ nΣ 2 and two cases will present: (i) either Σ = 0, and this is equivalent to the existence of φ ∈ L 2 (Ω × X) such that (co-boundary condition)

ψ = φ -φ • τ. (9) 
(ii) or Σ 2 > 0 and in this case for P-a.e. ω ∈ Ω and d ∈ (0, 1/2), by enlarging probability space (X, B, µ ω ) if necessary, it is possible to find a sequence (Z k ) k of independent centered Gaussian random variables such that

sup 1≤k≤n n k=1 ( ψσ k ω • f k ω ) - n k=1 Z k = o((n 1/2+d (|log n 1/2-d | + log log n 1/2+d
)) 1/2 ), a.s.

Reverse martingale construction

In this section we construct the reverse martingale (or the reverse martingale difference) and establish various useful estimates that will play an important role in the rest of the paper. Indeed, the proof of our main result (Theorem 1) will be obtained as a consequence of the recent result by Cuny and Merlevède [START_REF] Cuny | Strong invariance principles with rate for "reverse" martingales and applications[END_REF] applied to our reverse martingale.

For ω ∈ Ω and k ∈ N, let T k ω := (f k ω ) -1 (B). Furthermore, for a measurable map φ : X → R and a σ-algebra H on X, E ω (φ|H) will denote the conditional expectation of φ with respect to H and the measure µ ω . Moreover, from now on, for k ∈ N and ω ∈ Ω we will write σ k ω instead of σ k (ω). We begin by the following technical lemma.

Lemma 3. We have

E ω (φ • f l ω |T n ω ) = L n-l σ l ω (h σ l ω φ) h σ n ω • f n ω , (10) 
for each ω ∈ Ω and 0 ≤ l ≤ n.

Proof. We note that the right-hand side of ( 10) is measurable with respect to T n ω . Take now an arbitrary A ∈ T n ω and write it in the form A = (f n ω ) -1 (B) for some B ∈ B. We have

A φ • f l ω dµ ω = X (φ • f l ω )1 A dµ ω = X (φ • f l ω ) • (1 B • f n ω ) dµ ω = X φ(1 B • f n-l σ l ω ) dµ σ l ω = X h σ l ω φ(1 B • f n-l σ l ω ) dm = X L n-l σ l ω (h σ l ω φ)1 B dm = X L n-l σ l ω (h σ l ω φ) h σ n ω 1 B dµ σ n ω = X L n-l σ l ω (h σ l ω φ) h σ n ω • f n ω (1 B • f n ω ) dµ ω = X L n-l σ l ω (h σ l ω φ) h σ n ω • f n ω 1 A dµ ω = A L n-l σ l ω (h σ l ω φ) h σ n ω • f n ω dµ ω ,
which proves [START_REF] Keller | Generalized bounded variation and applications to piecewise monotonic transformations[END_REF].

We now return to the observable ψ ω introduced in (8) and its centered companion

ψω = ψ ω -ψ ω dµ ω , ω ∈ Ω. Set M n = ψσ n ω + G n -G n+1 • f σ n ω , n ≥ 0, (11) 
where G 0 = 0 and

G k+1 = L σ k ω ( ψσ k ω h σ k ω + G k h σ k ω ) h σ k+1 ω , k ≥ 0. ( 12 
)
We emphasize that M n and G n depend on ω. However, in order to avoid complicating the notation, we will not make this dependence explicit. In preparation for the next proposition we need the following elementary result.

Lemma 4. We have

L ω ((ψ • f ω )φ) = ψL ω φ, for φ ∈ L 1 (X, m) and ψ ∈ L ∞ (X, m).
Proof. We first note that (ψ • f ω )φ ∈ L 1 (X, m). Moreover, for an arbitrary g ∈ L ∞ (X, m) we have that

X L ω ((ψ • f ω )φ)g dm = X (ψ • f ω )φ(g • f ω ) dm = X ((ψg) • f ω )φ dm = X (ψL ω φ)g dm,
which immediately implies the conclusion of the lemma. Now we prove that the sequence (M n • f n ω ) n is a reversed martingale (or the reversed martingale difference) with respect to the sequence of σ-algebras (T n ω ) n . Proposition 2. We have

E ω (M n • f n ω |T n+1 ω ) = 0.
Proof. It follows from Lemma 3 that

E ω (M n • f n ω |T n+1 ω ) = L σ n ω (h σ n ω M n ) h σ n+1 ω • f n+1 ω . ( 13 
)
Moreover, by [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF] we have

L σ n ω (h σ n ω M n ) h σ n+1 ω = L σ n ω (h σ n ω ψσ n ω + h σ n ω G n -h σ n ω (G n+1 • f σ n ω )) h σ n+1 ω .
By Lemma 4,

L σ n ω (h σ n ω (G n+1 • f σ n ω )) = G n+1 L σ n ω h σ n ω = G n+1 h σ n+1 ω ,
and thus it follows from ( 12) that

L σ n ω (h σ n ω M n ) h σ n+1 ω = 0.
This conclusion of the lemma now follows readily from [START_REF] Philip | Almost sure invariance principle for sums of weakly dependent random variables[END_REF].

We now establish several auxiliary results that will be used in the following section. These results estimate various norms of functions related to M n and G n , defined in [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF] and [START_REF] Liverani | Decay of correlations for piecewise expanding maps[END_REF], respectively. Lemma 5. We have that sup

n≥0 G n BV < ∞.
Proof. By iterating [START_REF] Liverani | Decay of correlations for piecewise expanding maps[END_REF], we obtain

G n = 1 h σ n ω n-1 j=0 L n-j σ j ω ( ψσ j ω h σ j ω ), n ∈ N. (14) 
We note that ψσ j ω h σ j ω dm = ψσ j ω dµ σ j ω = 0,

and thus it follows from (H4) that

n-1 j=0 L n-j σ j ω ( ψσ j ω h σ j ω ) BV ≤ K n-1 j=0
e -λ(n-j) ψσ j ω h σ j ω BV , for each n ∈ N which together with (V8), ( 1), ( 3), ( 6) and ( 8) implies the conclusion of the lemma.

Lemma 6. We have that

sup n≥0 M 2 n BV < ∞.
Proof. In view of ( 8), [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF] and Lemma 5, it is sufficient to show that

sup n≥0 G n+1 • f σ n ω BV < ∞.
However, this follows directly from (H3) and Lemma 5.

Lemma 7. We have that

sup n≥0 E ω (M 2 n • f n ω |T n+1 ω ) ∞ < ∞.
Proof. It follows from Lemma 3 that

E ω (M 2 n • f n ω |T n+1 ω ) = L σ n ω (h σ n ω M 2 n ) h σ n+1 ω • f n+1 ω ,
and thus, recalling [START_REF] Cuny | Strong invariance principles with rate for "reverse" martingales and applications[END_REF],

sup n≥0 E ω (M 2 n • f n ω |T n+1 ω ) ∞ ≤ 1 c L σ n ω (h σ n ω M 2 n ) ∞ .
Taking into account ( 1), (H2), (3), Lemma 6 and the fact that

• ∞ ≤ C var • BV (see ( V3 
)) we obtain the conclusion of the lemma.

Sprindzuk's Theorem and consequences

The main tool in establishing the almost sure invariance principle is the recent result by Cuny and Merlevède (quoted in our Theorem 3 in Section 5). However, in order to verify the assumptions of that theorem we will first need to apply the following classical result due to Sprindzuk [START_REF] Sprindzuk | Metric theory of Diophantine approximations[END_REF]. Theorem 2. Let (Ω, B, µ) be a probability space and let (f k ) k be a sequence of nonnegative and measurable functions on Ω. Moreover, let (g k ) k and (h k ) k be bounded sequences of real numbers such that 0 ≤ g k ≤ h k . Assume that there exists C > 0 such that

m<k≤n (f k (ω) -g k ) 2 dµ ≤ C m<k≤n h k (16) 
for m, n ∈ N such that m < n. Then, for every ε > 0

1≤k≤n f k (ω) = 1≤k≤n g k + O(Θ 1/2 (n) log 3/2+ε Θ(n)),
for µ-a.e. ω ∈ Ω, where

Θ(n) = 1≤k≤n h k . Lemma 8. For each ε > 0, n-1 k=0 E ω (M 2 k • f k ω |T k+1 ω ) = n-1 k=0 E ω (M 2 k • f k ω ) + O(Θ 1/2 (n) log 3/2+ε Θ(n)),
for µ-a.e. ω ∈ Ω, where

Θ(n) = n-1 k=0 (E ω (M 2 k • f k ω ) + M 2 k var ). (17) 
Proof. Fix ω ∈ Ω. We want to apply Theorem 2 to

f k = E ω (M 2 k • f k ω |T k+1 ω ) and g k = E ω (M 2 k • f k ω ).
We have that m<k≤n

E ω (M 2 k • f k ω |T k+1 ω ) - m<k≤n E ω (M 2 k • f k ω ) 2 dµ ω = m<k≤n E ω (M 2 k • f k ω |T k+1 ω ) 2 dµ ω -2 m<k≤n E ω (M 2 k • f k ω ) m<k≤n E ω (M 2 k • f k ω |T k+1 ω ) dµ ω + m<k≤n E ω (M 2 k • f k ω ) 2 = m<k≤n E ω (M 2 k • f k ω |T k+1 ω ) 2 dµ ω - m<k≤n E ω (M 2 k • f k ω ) 2 = m<k≤n E ω (M 2 k • f k ω |T k+1 ω ) 2 dµ ω + 2 m<i<j≤n E ω (M 2 i • f i ω |T i+1 ω ) • E ω (M 2 j • f j ω |T j+1 ω ) dµ ω - m<k≤n E ω (M 2 k • f k ω ) 2 -2 m<i<j≤n E ω (M 2 i • f i ω ) • E ω (M 2 j • f j ω ) ≤ m<k≤n E ω (M 2 k • f k ω |T k+1 ω ) 2 dµ ω + 2 m<i<j≤n E ω (M 2 i • f i ω |T i+1 ω ) • E ω (M 2 j • f j ω |T j+1 ω ) dµ ω -2 m<i<j≤n E ω (M 2 i • f i ω ) • E ω (M 2 j • f j ω ). (18) 
On the other hand, it follows from Lemma 3 that for i < j we have

E ω (M 2 i • f i ω |T i+1 ω ) • E ω (M 2 j • f j ω |T j+1 ω ) dµ ω = L σ i ω (h σ i ω M 2 i ) h σ i+1 ω • f i+1 ω • L σ j ω (h σ j ω M 2 j ) h σ j+1 ω • f j+1 ω dµ ω = L σ i ω (h σ i ω M 2 i ) h σ i+1 ω • L σ j ω (h σ j ω M 2 j ) h σ j+1 ω • f j-i σ i+1 ω dµ σ i+1 ω = L σ i ω (h σ i ω M 2 i ) • L σ j ω (h σ j ω M 2 j ) h σ j+1 ω • f j-i σ i+1 ω dm = L j-i+1 σ i ω (h σ i ω M 2 i ) • L σ j ω (h σ j ω M 2 j ) h σ j+1 ω dm.
Moreover,

E ω (M 2 i • f i ω ) = M 2 i dµ σ i ω and E ω (M 2 j • f j ω ) = (M 2 j • f j ω ) dµ ω = M 2 j dµ σ j ω = M 2 j h σ j ω dm = L σ j ω (M 2 j h σ j ω ) dm = L σ j ω (M 2 j h σ j ω ) h σ j+1 ω dµ σ j+1 ω .
Hence,

E ω (M 2 i • f i ω |T i+1 ω ) • E ω (M 2 j • f j ω |T j+1 ω ) dµ ω -E ω (M 2 i • f i ω ) • E ω (M 2 j • f j ω ) = L j-i+1 σ i ω (h σ i ω M 2 i ) • L σ j ω (h σ j ω M 2 j ) h σ j+1 ω dm -M 2 i dµ σ i ω • L σ j ω (M 2 j h σ j ω ) h σ j+1 ω dµ σ j+1 ω .
Therefore, it follows from Lemma 1 that

E ω (M 2 i • f i ω |T i+1 ω ) • E ω (M 2 j • f j ω |T j+1 ω ) dµ ω -E ω (M 2 i • f i ω ) • E ω (M 2 j • f j ω ) ≤ Kρ j-i+1 L σ j ω (M 2 j h σ j ω ) h σ j+1 ω ∞ • M 2 i var .
Furthermore,

E ω (M 2 k • f k ω |T k+1 ω ) 2 dµ ω ≤ E ω (M 2 k • f k ω |T k+1 ω ) ∞ • E ω (M 2 k • f k ω ).
Thus, the last two inequalities combined with (18) imply that m<k≤n

E ω (M 2 k • f k ω |T k+1 ω ) - m<k≤n E ω (M 2 k • f k ω ) 2 dµ ω ≤ m<k≤n E ω (M 2 k • f k ω |T k+1 ω ) 2 dµ ω + 2 m<i<j≤n E ω (M 2 i • f i ω |T i+1 ω ) • E ω (M 2 j • f j ω |T j+1 ω ) dµ ω -2 m<i<j≤n E ω (M 2 i • f i ω ) • E ω (M 2 j • f j ω ). ≤ m<k≤n E ω (M 2 k • f k ω |T k+1 ω ) ∞ • E ω (M 2 k • f k ω ) + 2K m<i<j≤n ρ j-i+1 L σ j ω (M 2 j h σ j ω ) h σ j+1 ω ∞ • M 2 i var ,
which combined with (H2), ( 3), [START_REF] Cuny | Strong invariance principles with rate for "reverse" martingales and applications[END_REF] and Lemmas 6 and 7 implies that (16) holds with

h k = E ω (M 2 k • f k ω ) + M 2 k var .
The conclusion of the lemma now follows directly from Theorem 2.

Proof of Theorem 1

The goal of this section is to establish the almost sure invariance principle by proving Theorem 1. It is based on the following theorem due to Cuny and Merlevède. Theorem 3 ([6]). Let (X n ) n be a sequence of square integrable random variables adapted to a non-increasing filtration (G n ) n . Assume that E(X n |G n+1 ) = 0 a.s., σ 2 n := n k=1 E(X 2 k ) → ∞ when n → ∞ and that sup n E(X 2 n ) < ∞. Moreover, let (a n ) n be a non-decreasing sequence of positive numbers such that the sequence (a n /σ 2 n ) n is non-increasing, (a n /σ n ) is non-decreasing and such that :

1. n k=1 (E(X 2 k |G k+1 ) -E(X 2 k )) = o(a n ) a.s.; (19) 2. 
n≥1

a -v n E(|X n | 2v ) < ∞ for some 1 ≤ v ≤ 2. ( 20 
)
Then, enlarging our probability space if necessary, it is possible to find a sequence

(Z k ) k of independent centered Gaussian variables with E(X 2 k ) = E(Z 2 k ) such that sup 1≤k≤n n k=1 X k - n k=1 Z k = o((a n (|log(σ 2 n /a n )| + log log a n )) 1/2 ), a.s.
In order to obtain the almost sure invariance principle for the sequence ( ψθ k ω • f k ω ) k , k ∈ N we will first apply Theorem 3 for

X n = M n • f n ω and G n = T n ω . We note that it follows from Lemma 8 that n k=1 (E(X 2 k |G k+1 ) -E(X 2 k )) = O(b n ), with b n = Θ 1/2 (n) log 3/2+ε Θ(n), (21) 
and where Θ(n) is given by (17). On the other hand, it follows from Lemma 6 that Θ(n) ≤ Dn for some D > 0 and every n ∈ N and therefore (19) holds with

a n = n 1/2+d , (22) 
for any d > 0. From now on, we take d ∈ (0, 1/2).

Lemma 9. There exists Σ 2 ≥ 0 such that

lim n→∞ 1 n E ω n-1 k=0 ψσ k ω • f k ω 2 = Σ 2 , for a.e. ω ∈ Ω. (23) 
Proof. Note that

E ω n-1 k=0 ψσ k ω • f k ω 2 = n-1 k=0 E ω ( ψ2 σ k ω • f k ω ) + 2 0≤i<j≤n-1 E ω (( ψσ i ω • f i ω )( ψσ j ω • f j ω )) = n-1 k=0 E ω ( ψ2 σ k ω • f k ω ) + 2 n-1 i=0 n-1 j=i+1 E σ i ω ( ψσ i ω ( ψσ j ω • f j-i σ i ω )).
Using the skew product transformation τ from (2), it follows from Birkhoff's ergodic theorem that

lim n→∞ 1 n n-1 k=0 E ω ( ψ2 σ k ω • f k ω ) = lim n→∞ 1 n n-1 k=0 X ψ(τ k (ω, x)) 2 dµ ω (x) = Ω X ψ(ω, x) 2 dµ ω (x) dP(ω) = Ω×X ψ(ω, x) 2 dµ(ω, x),
for a.e. ω ∈ Ω, where µ is an invariant measure for τ given by

µ(A × B) = A µ ω (B) dP(ω), for A ∈ F and B ∈ B.
Furthermore, set

Ψ(ω) = ∞ n=1 X ψ(ω, x) ψ(τ n (ω, x)) dµ ω (x) = ∞ n=1 X L n ω ( ψω h ω ) ψσ n ω dm.
By ( 5) and ( 8), we have

|Ψ(ω)| ≤ ∞ n=1 X L n ω ( ψω h ω ) ψσ n ω dm ≤ K ∞ n=1 ρ n = Kρ 1 -ρ ,
for some K > 0 and a.e. ω ∈ Ω. In particular, Ψ ∈ L 1 (Ω) and thus it follows again from Birkhoff's ergodic theorem that

lim n→∞ 1 n n-1 i=0 Ψ(σ i ω) = Ω Ψ(ω) dP(ω) = ∞ n=1 Ω×X ψ(ω, x) ψ(τ n (ω, x)) dµ(ω, x), (24) 
for a.e. ω ∈ Ω. In order to complete the proof of the lemma, we are going to show that

lim n→∞ 1 n n-1 i=0 n-1 j=i+1 E σ i ω ( ψσ i ω ( ψσ j ω • f j-i σ i ω )) - n-1 i=0 Ψ(σ i ω) = 0, (25) 
for a.e. ω ∈ Ω. Using (5), we have that for a.e. ω ∈ Ω,

n-1 i=0 n-1 j=i+1 E σ i ω ( ψσ i ω ( ψσ j ω • f j-i σ i ω )) - n-1 i=0 Ψ(σ i ω) = n-1 i=0 n-1 j=i+1 E σ i ω ( ψσ i ω ( ψσ j ω • f j-i σ i ω )) - n-1 i=0 ∞ k=1 E σ i ω ( ψσ i ω ( ψσ k+i ω • f k σ i ω )) ≤ n-1 i=0 ∞ k=n-i E σ i ω ( ψσ i ω ( ψσ k+i ω • f k σ i ω )) = n-1 i=0 ∞ k=n-i X L k σ i ω ( ψσ i ω h σ i ω ) ψσ k+i ω dm ≤ K n-1 i=0 ∞ k=n-i ρ k = K ρ (1 -ρ) 2 ,
which readily implies (25). It follows from ( 24) and (25) that

lim n→∞ 1 n n-1 i=0 n-1 j=i+1 E σ i ω ( ψσ i ω ( ψσ j ω • f j-i σ i ω )) = ∞ n=1 Ω×X ψ(ω, x) ψ(τ n (ω, x)) dµ(ω, x)
for a.e. ω ∈ Ω and therefore (23) holds with

Σ 2 = Ω×X ψ(ω, x) 2 dµ(ω, x) + 2 ∞ n=1 Ω×X ψ(ω, x) ψ(τ n (ω, x)) dµ(ω, x). (26) 
Finally, we note that it follows readily from (23) that Σ 2 ≥ 0 and the proof of the lemma is completed.

We now present necessary and sufficient conditions under which Σ 2 = 0. We note that a similar result is stated in [11, (2.10)] with ψ • τ instead of ψ in (27).

Proposition 3. We have that Σ 2 = 0 if and only if there exists φ ∈ L 2 (Ω × X) such that

ψ = φ -φ • τ. ( 27 
)
Proof. We first observe that Assume now that Σ 2 = 0. Then, it follows from the above equality and (26) that On the other hand, by [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1], In: Ergodic Theory and Related Fields[END_REF] we have that Ω×X ψ( ψ • τ k ) dµ → 0 exponentially fast when k → ∞ and hence, it follows from (28) that the sequence (X n ) n defined by

X n (ω, x) = n-1 k=0 ψ(τ k (ω, x)), ω ∈ Ω, x ∈ X
is bounded in L 2 (Ω × X). Thus, it has a subsequence (X n k ) k which converges weakly to some φ ∈ L 2 (Ω × X). We claim that φ satisfies (27). Indeed, take an arbitrary g = 1 A×B , where A ∈ F and B ∈ B and observe that g ∈ L 2 (Ω × X) and

Ω×X g( ψ -φ + φ • τ ) = lim k→∞ Ω×X g( ψ -X n k + X n k • τ ) dµ = lim k→∞ Ω×X g( ψ • τ n k ) dµ = 0,
where in the last equality we used (5) again. Therefore, ψ -φ + φ • τ = 0 which readily implies (27). Suppose now that there exists φ ∈ L 2 (Ω × X) satisfying (27). Then,

1 √ n n-1 k=0 ψ • τ k = 1 √ n (φ -φ • τ n ),
and thus

1 √ n n-1 k=0 ψ • τ k L 2 (Ω×X) ≤ 2 √ n φ L 2 (Ω×X) → 0,
when n → ∞. Therefore, it follows by integrating (23) over Ω that

Σ 2 = lim n→∞ 1 √ n n-1 k=0 ψ • τ k 2 L 2 (Ω×X) = 0.
This concludes the proof of the proposition.

In the rest of the paper we assume that Σ 2 > 0. We also need the following lemmas.

Lemma 10. We have that E ω (X i X j ) = 0, for i < j.

Proof. By Lemma 2, we conclude that E ω (M i • f i ω |T i+1 ω ) = 0. Moreover, we note that M j • f j ω is measurable with respect to T i+1 ω and thus

E ω ((M j • f j ω )(M i • f i ω )|T i+1 ω ) = (M j • f j ω )E ω (M i • f i ω |T i+1 ω ) = 0.
The conclusion of the lemma now follows simply by integrating the above equality.

In what follows, we write a n ∼ b n if there exists c ∈ R\{0} such that lim n→∞ a n /b n = c.

Lemma 11. We have that σ 2 n → ∞ as n → ∞. Proof. It follows from [START_REF] Kifer | Limit theorems for random transformations and processes in random environments[END_REF] that

n-1 k=0 X k = n-1 k=0 ψσ k ω • f k ω -G n • f n ω , (29) 
and thus,

n-1 k=0 X k 2 = n-1 k=0 ψσ k ω • f k ω 2 -2(G n • f n ω ) n-1 k=0 ψσ k ω • f k ω + (G 2 n • f n ω ). (30) 
By Lemma 9 and the assumption Σ 2 > 0,

τ 2 n := E ω n-1 k=0 ψσ k ω • f k ω 2 → ∞. (31) 

  k (ω, x)) dµ(ω, x) + 2 k (ω, x) ψ(τ j (ω, x)) dµ(ω, x) x) ψ(τ k-j (ω, x)) dµ(ω, x) x) ψ(τ k (ω, x)) dµ(ω, x), , x) ψ(τ k (ω, x)) dµ(ω, x) , x) ψ(τ k (ω, x)) dµ(ω, x).

Ω×X n- 1 k=0ψ • τ k 2 dµ

 12 • τ k ) dµ. (28)
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On the other hand, it follows from ( 8), (30) and Lemma 5 that

By Lemma 10 and (32), we have that

which together with (31) implies the desired conclusion of Lemma 11.

Lemma 12. There exists n 0 ∈ N such that the sequence (a n /σ 2 n ) n≥n 0 is non-increasing and that the sequence (a n /σ n ) n≥n 0 is non-decreasing.

Proof. It follows from Lemma 9 and (33) that

Therefore (22) yields,

and the conclusion of the lemma follows readily from the assumption that d ∈ (0, 1/2).

Since the conclusion of Theorem 3 concerns the tails of (a n ) n and (σ n ) n , it will remain valid if the monotonicity hypotheses for (a n /σ 2 n ) n and (a n /σ n ) n hold for sufficiently large n, and those are verified in Lemma 12. Finally, we show that (20) holds with v = 2.

Lemma 13. We have that

Now we can conclude the proof or our main result.

Proof of Theorem 1. Using Theorem 3, we obtain the almost sure invariance principle for the sequence

The almost sure invariance principle for the sequence