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On a Singular Solution in Higgs Field

A formula for mass of Standard Model Higgs boson is derived by considering certain asymptotic behavior for singular solution of equation of motion (EOM) of Higgs field via Euler-Lagrange equation, in which M H 0 is shown as a rest mass of Higgs boson mass of the field, which maintains Lorentz invariance. Where the asymptotic formula extracts a proper information near the singular solution (vacuum expectation value (vev)) from EOM. By modifying the mass formula to 'mass triangle' with H 0 production scheme of W/Z-fusion process and by obtaining mass representation at a stationary point, the value of M H 0 is determined at 120.611 GeV/c 2 , which is not excluded by latest experimentally preferred mass, and is consistent with simulation result for vector boson fusion.

INTRODUCTION

The value of Higgs boson mass has long been sought by both theoretically and experimentally until now. At this time, the values of 100 < M H < 130 GeV/c 2 with radiative correction (theoretically [START_REF] Okada | Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model[END_REF] for MSSM Higgs boson) and 114 < M H 0 < 123 GeV/c 2 (experimentally 2) (68%CL), for SM Higgs boson), are known. However any theoretically exact formula or definite value for SM Higgs boson mass has not been shown yet, that is mainly from difficulty of obtaining the value of quartic (self-coupling) constant  .

Therefore, here we try to give a formula of SM Higgs boson mass by studying, at first, asymptotic behavior of singular solution for equation of motion (EOM) near vev, which is derived from Lagrangian density of Higgs scalar field (  ). This EOM is, mathematically, one of nonlinear Klein-Gordon equation (NLKG). [START_REF] Hörmander | Lectures on nonlinear hyperbolic differential equations[END_REF] Since EOM should have a unique singular solution ( 0)   of the field at vev where the Higgs scalar field has been extended, we study its behavior near the solution by considering certain asymptotic formula for it. Then we will extract an information without  from EOM as the asymptotic behavior, introducing an infinitesimal Grassmann number. And we express a formula of Higgs boson mass of the field () m  , keeping Lorentz invariance, in which M H 0 is shown as a rest mass. The formula is modified to 'mass triangle' with the relation of H 0 production scheme of W/Z-fusion processes which have been already described by Feynman diagram, to formulate a mass equation by certain parameter. Then by differentiating the mass formula regarding the parameter to obtain the mass representation at a stationary point, we can now get an expected solution  
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which shows that the mass value is at 120.611

GeV/c 2 , then

4 0 0.119975 c   
, which is not excluded by Large Electron Positron Collider (LEP)'s latest preferred value and also is consistent with simulation results of A Toroidal LHC Apparatus (ATLAS), etc. for vector boson fusion (VBF). 4), 5) And we compute respective W  -and Z  -gauge boson fields with the value of this singular solution, and describe the potential V with Higgs scalar fields. Finally, canonical quantization and renormalizability of Higgs field are briefly reviewed.

FORMULATION AND THE RESULT 2.1. LAGLANGIAN DENSITY OF GAUGE FIELD AND EOM OF HIGGS FIELD

Since we will later treat the case of VBF in which only weak bosons relate, we start with well known Lagrangian density for gauge field of WY SU(2) U(1)  after spontaneous symmetry breaking and with unitary condition as follows [START_REF] Fujikawa | Theory of Gauge Field[END_REF] , to make a gauge invariant formulation of the theory where the gauge-boson masses arise.
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abc f SU 2 2 : cf. eq.(1), : self-coupling constant of v      , : Weinberg angle W  (3) '
As it is hard to directly solve m  from eq.(2) itself, let us apply Euler-Lagrange equation onto L of eq.(2) regarding  , and then try to solve it; i.e.,  
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Thus, after calculation, we get an EOM of NLKG for Higgs scalar field ( );
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DERIVATION OF HIGGS MASS FORMULA

Though EOM (eq.( 5)) above is consistent with the type of PDE form: Klein-Gordon equation, which describes equation of motion of boson particle, still now there is no mathematically systematic method to calculate an exact solution for the NLKG yet. [START_REF] Hörmander | Lectures on nonlinear hyperbolic differential equations[END_REF] Therefore we shall from now on study an asymptotic behavior near its certain singular solution. While we will later see that this approach is sufficient within our purpose. Since EOM should have a singular solution of 0   as explained above, let us take an asymptotic form of the solution near vev point to be connected smoothly to it as follows. (Where though we will find another singular solution that 3v

  by factorization of eq.( 5), we shall abandon it because of its inconsistency with Lorentz invariance of Lagrangian (eq.( 2)).) , : cf. eq,( 3)' v , 0 , : constants as So we may expect that (0) 0, (0) 0   , and having a finite value at infinitely far point. (7) Thus eq.( 6) asymptotically satisfies eq.( 5) at world origin. Then by expanding near
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Hence we can take an asymptotic form near singular solution ( 0

  ) as 2 , ( 0) v     (9) 
By inserting eq.( 9) into eq.( 5) and using Higgs mass definition, etc. of eq.( 3), we are able to have a Higgs mass formula without  as
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Here we understood that eq.( 10) expresses one of elliptic curves with coordinates of
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, Z WW    . It is noteworthy that   still has a finite and larger value than 2  at very near vev point ( 2 0  ), because the power of   is always a half power of 2  (that is, equals to 1), describing a micro elliptic mass curve even by very near this point. Further, if we introduce an infinitesimal Grassmann number (   ) for  by putting     , then eqs.( 9),(10) are elegantly represented as
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After all, we now could have an asymptotic behavior of eq.(10') for eq.(9'), as shown in Fig. B1. Since dimensions of two terms in right-side of eq.(10') are to be both square of mass, we can put as
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where  : constant. Furthermore we can write as 7) 
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To maintain Lorentz invariance of m  in eq.( 16), it should be that;
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Then we can write as,
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Since the value of M H 0 above is supposed to be in the range of 'intermediate mass' from the results of LEP, let us consider H 0 production scheme of W/Z-fusion processes which is most expected to meet with above mass formula. 8),9) As these processes are described by Feynman diagram as shown in Fig. 1, we here study the case of that w n -W fusions and z n -Z fusions are simultaneously occurred.

Then wz (N n n ) H 0 's may be produced after these graphs. On the other hand, from eq.( 19);
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Where eq.(20) forms 'mass triangle'. We will see that two Feynman diagrams (Fig. 1) give each factor for three sides of mass triangle (Fig. 2) by recognizing that we can apply eq.( 20) onto two fusion diagrams, as explained in APPENDIX -A. So, by comparing Figs. Also, for H 0 particle, from above discussion and mass triangle it must be kept that 

k k k                 
                                (25) 
As shown in Fig. 3, where the value of M H 0 ()  runs from
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M   via the value of stationary point. Here  is physically interpreted as a parameter related to effective rate of W and Z boson masses into Higgs boson mass in VBF process. Therefore, we will find  -value at stationary point to differentiate eq.( 25) regarding  , and to put zero; 3),( 18) and (28).

Respective W  -and Z  -gauge boson fields are computed at a point of the singular solution 0  , and the potential V is described with scalar Higgs  and  fields, in APPENDICES-B and -C. Finally, canonical quantization and renormalizability of Higgs field are shortly touched on in APPENDIX-D.

CONCLUDING REMARKS

So far, we have derived a formula and shown a value of mass of SM Higgs boson via an asymptotic behavior of a singular solution for the Euler-Lagrange equation, which extracts a proper information without  from EOM. The result is to be strongly expected to examine under the forthcoming experiments. And, SM Higgs Mass form (eq.( 27); symmetrical between W and Z with a factor of 2 (twice)) appears to show the possibility that the Higgs particle is to be composite, as supposed, which is now proceeded to study, and will be discussed elsewhere.

APPENDICES -A: Relation between Mass triangle and VBF triangles

Since we have seen that W, Z and H 0 particles should have both equal  to maintain Lorentz invariance as eq.( 17), we also should consider the case in which they still have both equal  in VBF process. Therefore we shall hereafter discuss with their rest masses, dropping out  's from their relativistic masses, in VBF triangles below, etc. with remembering eqs.( 14) and (15).

Because numbers of consuming W and Z particles are 2n WW M and 2n ZZ M in Feynman diagram (Fig. 1) at each event time and all related 's are both Fig. A1 From Fig. 2, it will be understood that each mass quantity of W and Z boson sides, to which cos and sin are multiplied respectively, contributes to Higgs mass. Therefore we can generally write VBF process for producing one Higgs mass as, with referring to Fig. A1(a), 0
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as 'VBF angle', then we will get always an equal value: 120.611 GeV/c 2 for M H 0 regarding all- 
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, WZ  values from eq.(A1).

-B: Calculation of W  -and Z  -boson fields

We now understand that W  -and Z  -boson field each takes such an asymptotic coordinate value at this singular solution for  as follows. From eqs.( 11)-(15), 0 () , 2

W W W g W W mM k         (B1) 0 (Z ) 2 Z Z Z G mM k       (B2) Therefore,       22 12 0 0 1 () 2 W W W W       2 , WW W M k k v g                12 00 Hence, W W W k v       (B3), (B4) 3 0 22 0 2 Similarly, (Z ) , ZZ Z gW g B M k k v G gg                         (B5) where 12 1 2 2 1 2 kk                      (B6) Finally W  ,
Z  above should be equal (=  ) so as eq.( 17) at this singular solution for  . Hence the mass formula of eq.(10') is described as Fig. B1, in which W and Z bosons should have energies of kv    and kv    respectively at the condition of eq.( 13).

-C: Description of potential V with scalar Higgs ( 1  and  ) fields

We here describe the potential V with scalar Higgs fields in which the position of singular solution
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is shown. We consider an isospinor scalar field (the Higgs field)  as 11) 
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, and by describing the Hamiltonian (H) with the Lagrangian density (L). After setting the same-time canonical commutation relation between () x  and () x  , we are able to calculate the Heisenberg's equation of motion Renormalizability (and unitary property) of massive vector field under gauge symmetry   SU(2) U( 1)  has been firstly confirmed by t' Hooft. 13) Later, Fujikawa et al. 14) developed R  -gauge theory. The renormalizability of Higgs field under BRS-symmetry 15) was shown, using the R  -gauge, also by Fujikawa. 16) 
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  12) at certain point ( designated by 0 ) in respective gauge field. Mathematically, eq.(10') is one of the elliptic curves with   So eqs.(11) and (12) are understood as they fix a coordinate of certain point on the micro elliptic mass curve in the first quadrant. Thus we rewrite eq.(10');
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