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ABSTRACT 

This paper presents an approach which is called meta - 

optimization combining with scattering analysis used to 

enhance on-site real-time temperature anticipation for 

energy management. The aim of this approach is to 

analyse the sensitivity of the parameters in order to 

simplify, and then attain, the best reduced model able to 

match with measurements regularly in a robust manner. 

This will be done with the effort of keeping their 

physical properties. Indeed, parameter identification is a 

key challenge for modelling system that are used with 

many uncertainties such as construction and material 

quality, weather conditions, and occupant behaviour that 

are changing during building life. This method is applied 

for a nearly-zero energy building in France to validate 

our approach. 

INTRODUCTION   

The current energy estimation methods for building are 

based on simulation: typical values are introduced in a 

model but the gap with reality is approximately between 

50% and 200% (C. Turner et al., 2008). Nevertheless, 

calibration allows reducing this error while keeping a 

physical meaning to parameters and models. It is indeed 

very useful when purpose is to use models for energy 

management. Many kinds of knowledge models 

(sometimes called forward or physical models) are 

proposed in literature but models are related to a specific 

goal with a specific time scale. Consequently, assessing 

the relevance of a reduced order model for a specific 

goal is a key issue. Even if it may reduce model 

explanatory capabilities, reductions based on a 

simplified physics are useful to reduce the number of 

variables and then to improve the efficiency of the 

parameter estimation. 

The knowledge models (sometimes called white box 

models) exclusively rely on general physical knowledge, 

which generally does not fit a specific building context. 

The universal models (sometimes called black box 

models, or data-driven model), such as polynomial 

models (ARX, ARMAX...) are built from measurements 

without using a priori physical knowledge. Even if these 

models may be far from relevant model structures, there 

are chosen so that the optimization related to parameter 

estimation if globally convex and easy to carry out. In 

addition, quality of universal models depends both on 

the richness of the dataset and on how much the 

standardized model structure matches with the reality. 

Adjusted knowledge model (sometimes called “grey-

box” model) offers a good alternative because model 

structure comes from physical knowledge and can 

therefore better match with observations. Nevertheless, 

the optimization processes implied by parameter 

estimation are usually much more complex for 

knowledge models, because universal model structures 

are properly chosen for optimization whereas knowledge 

models are generally parametrically non-linear. 

In studying thermal behaviour of building, electrical 

network equivalence is widely used:  

 with quite big structures (15R13C for G.G.J., 

Achterbosch et al., 1985 ; 38R35C for G. Fraisse et 

al., 2002, or 48R37C for Deng et al., 2010) 

 with small structures (2R2C for Nielsen and 

Nielsen, 1984, 2R2C for Madsen and Holst, 1995, 

4R4C for Bacher et Madsen, 2011, and 2R2C for 

Parker et al., 2013) 

On the one hand, it is usual to try to reach a good 

accuracy by increasing the number of parameters, but it 

leads to identification issues and to non-robust 

predictions. On the other hand, using very small 

structure is good for robust prediction but very simple 

phenomenon is captured. Our purpose in this paper, is to 

use physical knowledge and sensitivity study for 

parameter estimation in order to improve robustness 

identification strategies. A meta-optimisation approach, 

with the help of scattering parameters analysis, is 

proposed to reach a reduced number of parameter to be 

identified. It has been applied to a nearly-zero energy 

household to confirm that our approach is better than a 

classical identification. It has been done more 

specifically for the prediction of inside air temperature 

for energy management systems that is our main interest 

as described in literature review (Li et al, 2014). 

CASE STUDY 

Our case study is a modern building located in South of 

France. This household has one main zone which is 

regulated by a heating system, two basements and one 

garage zone. Total surface area is about 200 m
2
. It has 

been built to be a positive energy building, with high 

insulation materials to ensure thermal comfort without 

cooling system in summer.  



 

Building thermal model 

A detailed dynamic thermal model has been built with 

EnergyPlus
1
 software by our colleges in LOCIE

2
 

laboratory. 

 

Figure 1: Overview of studied building 

In our study, an electrical equivalent circuit has been 

done (Dinh et al., 2016), in which the thermal - electrical 

analogy has been used to produce a reduced order model 

for optimization purpose. This electrical circuit can be 

seen in Figure 2, with understanding that electrical 

components like voltage sources, current sources, 

resistors and capacitors are respectively corresponding to 

temperatures, heat gains, thermal resistances and 

capacitances.  

 

Figure 2: Thermal - electrical network of Heated Zone 

Where Text, Tgar, Toff, Troom and Tint are external, garage, 

office, and room basement zone air temperature. Psun, 

Pelec, Poccu and Pheat are internal heat gains inside the main 

zone. The others components are thermal resistances and 

capacitances of envelope, which have physical meanings 

below: 

 Cair: thermal capacity of air; 

 Cext, Cgar, Coff, Croom: thermal capacity of wall 

linked to external, garage, office basement and 

room basement; 

 Rext1, Rgar1, Roff1, Rroom1: external resistance of 

wall link to external, garage, office basement and 

room basement; 

 Rext2, Rgar2, Roff2, Rroom2: internal resistance of 

wall link to external, garage, office basement and 

room basement; 

Physical analytical values of these parameters are 

expressed in table 1 

                                                           
1
 http://apps1.eere.energy.gov/buildings/energyplus 

2
 www.polytech.univ-savoie.fr/locie 

Equations from (1) to (5) are from Ohm and Kirchoff’s 

laws and thermal - electrical equivalent transformation. 

𝐶𝑒𝑥𝑡 ∗ 𝑇𝑤𝑒
′ =

𝑇𝑒𝑥𝑡−𝑇𝑤𝑒

𝑅𝑒𝑥𝑡_1
+

𝑇𝑖𝑛𝑡−𝑇𝑤𝑒

𝑅𝑒𝑥𝑡_2
  (1) 

𝐶𝑔𝑎𝑟 ∗ 𝑇𝑤𝑔
′ =

𝑇𝑒𝑥𝑡−𝑇𝑤𝑔

𝑅𝑔𝑎𝑟_1
+

𝑇𝑖𝑛𝑡−𝑇𝑤𝑔

𝑅𝑔𝑎𝑟_2
  (2) 

𝐶𝑜𝑓𝑓 ∗ 𝑇𝑤𝑜
′ =

𝑇𝑜𝑓𝑓−𝑇𝑤𝑜

𝑅𝑜𝑓𝑓_1
+

𝑇𝑖𝑛𝑡−𝑇𝑤𝑜

𝑅𝑜𝑓𝑓_2
  (3) 

𝐶𝑟𝑜𝑜𝑚 ∗ 𝑇𝑤𝑟
′ =

𝑇𝑟𝑜𝑜𝑚−𝑇𝑤𝑟

𝑅𝑟𝑜𝑜𝑚_1
+

𝑇𝑖𝑛𝑡−𝑇𝑤𝑟

𝑅𝑟𝑜𝑜𝑚_2
  (4) 

𝐶𝑖𝑛𝑡 ∗ 𝑇𝑖𝑛𝑡
′ =

𝑇𝑒𝑥𝑡−𝑇𝑖𝑛𝑡

𝑅𝑣𝑒𝑛𝑡
+

𝑇𝑤𝑒−𝑇𝑖𝑛𝑡

𝑅𝑒𝑥𝑡2

+
𝑇𝑤𝑔−𝑇𝑖𝑛𝑡

𝑅𝑔𝑎𝑟2

+

𝑇𝑤𝑜−𝑇𝑖𝑛𝑡

𝑅𝑜𝑓𝑓2

+
𝑇𝑤𝑟−𝑇𝑖𝑛𝑡

𝑅𝑟𝑜𝑜𝑚2

+ 𝑃𝑠𝑢𝑛 + 𝑃𝑒𝑙𝑒𝑐 + 𝑃𝑜𝑐𝑐𝑢 + 𝑃ℎ𝑒𝑎𝑡   
(5) 

Equation from (1) to (5) can be described in state system 

form: 

𝑑𝑋

𝑑𝑡
= 𝐴 ∗ 𝑋(𝑡) + 𝐵 ∗ 𝑈(𝑡) (6) 

Where:  X is state vector of 5 temperatures. 

U is 4 temperatures and 4 heat gain inputs 

We emphasize that matrix A5x5 and B5x8 are state 

matrices, which consist of the resistances and 

capacitances corresponding to physical knowledge of 

construction. For instances: 

𝐴(5,5) =  −
1

𝐶𝑎𝑖𝑟

∗ (
1

𝑅𝑣𝑒𝑛𝑡

+
1

𝑅𝑒𝑥𝑡_2

+
1

𝑅𝑔𝑎𝑟_2

+
1

𝑅𝑜𝑓𝑓_2

+
1

𝑅𝑟𝑜𝑜𝑚_2

) ; 

𝐵(5,1) =
1

𝐶𝑎𝑖𝑟

∗
1

𝑅𝑣𝑒𝑛𝑡

 

State system (6) is solved using numerical integration 

scheme (Heun’s scheme) with hourly time step. 

Characteristic Parameter Analytic value 

Resistance 

(9 parameters) 

(J/°K) 

Rvent 0.00700 

Rext1 0.00350 

Rext2 0.01020 

Rgar1 0.06830 

Rgar2 0.30950 

Roff1 0.18910 

Roff2 0.00170 

Rroom1 0.08930 

Rroom2 0.00078 

Capacitance 

(5 parameters) 

(°K/W) 

Cext 73273763 

Cgar 1947600 

Coff 7899650
 

Croom 16731307 

Cair 4400000 

Table 1: Analytic value for thermal parameters 



 

CLASSICAL FORECASTING METHOD 

Classical Prediction Diagram 

In forecasting, the model identification and prediction 

process are combined together and repeated as it can be 

shown in figure 3. Thermal model in this case contains 

14 thermal parameters as mentioned above. 8 days for 

identification and 2 days for prediction have been chosen 

as a compromise between anticipation accuracy and 

calculation time. 

Model 
Identification

Prediction for 2 
following days

Take 8 previous 
days data

Use 8 
first day

Meta - optimization

T

Cycle = 2 days

 

Figure 3: Classical prediction diagram 

Multi-start parameter identification 

It is obvious that the identification process always plays 

an important role in this work, because its good or bad 

achievement will directly influence the results of 

prediction. For now, the optimization procedure is driven 

by Sequential Quadratic Programming (SQP, Boggs 

1996) algorithm that can be introduced here: 

 SQP algorithm is a classical Quasi-Newton 

Method, based on quadratic approximation using 

gradients. It is excellent for finding local optimum of 

many parameters and constraints, but it is especially 

sensitive to initial value. To overcome this issue and 

keep taking advantage of SQP, a multi-start strategy is 

applied. This type of algorithm allows driving the 

optimization with several initial values, to compare the 

results and to provide a set of local optimal solutions. 

 Validity range: The bounds for optimizing 

parameters p are a pre-defined range [pmin, pmax]. It is 

considered as an acceptable searching range for each 

parameter that still maintaining its own physical 

properties. In fact, the nominal value of each parameter 

is obtained using analytical model based on physical 

properties of material, and geometry. Then pmin and pmax 

are obtained with an estimation of uncertainties. 

 Initial guess: 10 optimizations have been done 

with different initial values for each R and C parameters. 

Excepted ones from the analytic values, all others are 

created randomly in the validity range. 

Results 

In order to apply the identification procedure, the 

building measures are simulated using EnergyPlus 

simulation results obtained with OpenStudio modelling 

that is shown in Figure 1. One room is controlled based 

on the air temperature of the zone considered previously. 

Then, the identification procedure has been done 

according to the model predictive control horizon of 2 

days. It means that the identification is done using 8 days 

extracted for the one year EnergyPlus simulation, but 

only sequences of 2 days are remaining which 

corresponds to the prediction parts, while the 

identification parts are erased. Figure 4 shows the best 

result from the ones obtained for 10 sets of RC 

parameters initial values. 

 

Figure 4: Identification errors 

A two days prediction horizon for one year is shown in 

figure 5 where the mean absolute error (MAE) of room 

air temperature over the year is quite acceptable (1.07-

degree C). But many high errors still exist (max error 

5.82
o
C), which greatly deteriorate overall performance. 

Calculating time for whole process is about 8240 

seconds, equivalent to 2 hours and 20 minutes. 

 

Figure 5: Prediction air temperature of controlled zone, 

and error through - out one year 

To conclude, we can say that although multi-start 

algorithm can boost up the strengths of SQP 

optimization, the complexity of RC thermal circuit is 

significant regarding identification and anticipation 

efficiency. Hence the sensitivity of parameters should be 

taken under consideration as a solution for reducing 

model order.  

META-OPTIMIZATON AND SCATTERING 

PARAMETERS ANALYSIS METHOD 

As it has been seen previously, the use of whole 

parameters of Heat Zone for prediction is not efficient. 

Indeed, the optimizing task with 14 parameters, with 

multi-start strategy, needs computing time and even 

could not achieve the best result. It is now necessary to 

introduce a new methodology that keeps the same order 

of model but with faster and more robust results.  

The main idea of scattering parameters analysis initially 

introduced by (A. Le Mounier, 2014) is to find which 

parameters are the most scattering and hard to converge 

through optimization. After that, they are fixed to their 

physical value, hence decreasing the number of 

dependent parameters and hopefully, the optimization 

process could converge easier. 



 

Scattering Parameters Analysis 

It is considered that the dataset is not rich enough to 

adjust the values of all the parameters. Because 

identifiability is related to parameter sensitivity, the idea 

is to use a sensitivity analysis to priority determine the 

parameters that should be considered for parameter 

adjustment. 

First, a scattering index for each parameter is introduced. 

The index corresponds to the standard deviation of all 

the identification values in the multi-start strategy, 

divided by the width of validity range in order to obtain 

normalized results. 

𝑖𝑛𝑑𝑒𝑥𝑖 =
𝑠𝑡𝑑(𝑝𝑎𝑟𝑎𝑚𝑖)

𝑝𝑚𝑖𝑛
𝑖 − 𝑝𝑚𝑎𝑥

𝑖
 (1) 

with 𝑝𝑚𝑖𝑛
𝑖  and 𝑝𝑚𝑎𝑥

𝑖  respectively the lower and upper 

bounds for the parameter i acceptable range. 

By observing the scattering index of parameters, one can 

indicate which parameters are struggling to converge and 

find optimal value inside their own acceptable range.  

Using this scattering information not only enhances 

efficiency of searching and model robustness, but also 

reduces computing time.  

Model Pre-training 

Firstly, from initial model with 14 parameters, one 

should define how many parameters would be fixed. To 

obtain that, weather data sets are used to pre-train model 

and analyse parameters deviation using statistics. 

First of all, with a specific data set, 20 optimizations 

have run with the 14 parameters model, the best 

optimum is then recorded. After that, one may assess 

parameters based on their scattering indices. 

 

Figure 6: Scattering index for 14 parameters  

As shown in figure 6, parameters 3,5,7,8 and 11 have a 

high scattering index, meaning that inside the searching 

range, they are hard to converge. Therefore, in order to 

enhance the optimization efficiency, the more scattered 

is fixed to reduce the number of parameter to be 

optimized (13 parameters) 

This process is repeated until the reduced model contains 

only 5 parameters to identify. Another dataset is used as 

a new training data, and the process starts again from 14 

parameters, then descending gradually. The final result 

after that model pre-training process is introduced in 

figure 7. The mean square error (MSE) between 

EnergyPlus and the reduced model is plotted regarding 

the number of fixed parameters (from 0 to 9). 

 

Figure 7: Mean square error observation after training 

with 5 month data sets 

It can be noticed that with 7 fixed parameters, the best 

MSE is reached. So, it could be a good idea to simplify 

the model with 7 constants and 7 parameters to identify. 

We also emphasize that for different months, parameters 

list to be identified is quite disparate because they might 

depend on data input. Consequently, we are proposing a 

meta-optimization combining multi-start with scattering 

parameters analysis, that find the best reduce model of 7 

fixed parameters. It also determines the 7 other 

parameters which have to be fixed. It is done once per 

three months, as to adapt the variation of seasonal 

weather. 

New Model Predictive Control 

 

Figure 8: Prediction with meta-optimization  

The synoptic of the new anticipation approach is 

presented in Figure 8. The meta-optimization process is 

operated firstly, to define the best reduced model (7 

fixed and 7 dependent parameters), then use a classical 

approach to make re-identification based on the reduced 

model.  This classical approach is based on a calibration 

using 8 previous days, for a prediction horizon of 2 days. 

This optimal control runs as a three-month cycle for a 

good trade-off between the accuracy, the robustness, and 

the computation time. 

Figure 9 shows prediction throughout one year, 

constituted from all cycles of 2 days prediction. 

 

Figure 9: Prediction results throughout one year 



 

Comparing to classical approach, this new approach 

enhances the absolute mean error for a year (from 1.06-

degree C to 0.88-degree C) and the numbers and 

amplitudes of high errors have been decreased 

significantly (from 5.5-degree C to 2.5-degree C).  

Moreover, the time consumption for whole year 

anticipation has been reduced from 2h20 to 1h40. It can 

be noticed that this time, in the case of  meta-

optimization approach, does not include the time for pre-

training model, which could be estimated to 20 minutes, 

done by a regular user. 

One can conclude that the identification performance is 

boosted up, and the robustness of identification model is 

better. 

Main properties of both approaches are summarized in 

table 5: 

Properties 
Classical 

Approach 

Meta-

optimization 

Approach 

Number of parameters 

to-be-optimized 
14 7 

Time consumption for 

whole year anticipation 

8240 seconds ~ 

2 hrs 20m 

5883 second ~ 

1 hr 40m 

Identification 

Mean 

error 
1.08 °C 0.88 °C 

Max 

error 
5.80 °C 2.57 °C 

Prediction 

Mean 

error 
1.07 °C 0.88 °C 

Max 

error 
5.82 °C 2.51 °C 

Table 2: Classical and Meta-optimization approach 

results 

 

CONCLUSIONS AND PERSPECTIVES 

The classical way to predict inside building temperature 

using all model parameters identification is not 

convenient with optimization process. The methodology 

integrating meta-optimization and scattering analysis 

improves the model identification process. It also 

decrease the calculation time by providing a logical way 

to simplify the model.  

Some aspects could be improved, such as the numbers 

and procedures of meta-optimization progress per cycle, 

which are still the most consuming processes. Improving 

parameters initial values sets distribution in the 

searching range could also enhance optimization 

performances.  

Furthermore, the algorithm should be tested in other 

contexts and be integrated into a model-based 

anticipative energy management system to ensure its 

applicable ability in real buildings. 
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