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Equilibrium paths of mechanical 
systems with unilateral constraints 

I. Theory 
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10442 Stuttgart, Germany (Marcus.Schulz2@de.bosch.com) 

2 Department of Engineering, University of Cambridge, Trumpington Street, 
Cambridge CB2 1PZ, UK (pellegrino@eng.cam.ac.uk) 

The paper shows that the behaviour of mechanical systems subject to unilateral 
constraints differs from that of standard systems in subtle, and yet important, ways. 
Therefore, a proper theoretical formulation is required for simulating their behaviour. 
After showing that the equilibrium equations for a multibody system subject to 
unilateral constraints have the same form as the standard Kuhn-Tucker conditions 
in optimization theory, the first-order equilibrium equations are derived and their 
integration is discussed. At a general integration step, one has to distinguish between 
constraints that are strongly active, weakly active and inactive. Whereas strongly 
active constraints can be treated like bilateral constraints and inactive constraints 
can be neglected, weakly active constraints need to be constantly re-analysed to 
determine if they switch to a different state. The outcome is that, in addition to 
the well-known limit points and bifurcation points, a new type of limit point can 
exist, where the path is non-smooth and the first-order equilibrium equations-after 
elimination of any strongly active constraints-non-singular. Such points are called 
corner limit points. In analogy with common limit points, the degree of instability 
of the system changes by one at a corner limit point. 

Keywords: multibody systems; unilateral constraint; equilibrium path; 
limit point; snap through; bifurcation 

1. Introduction 

A common problem in structural mechanics is the determination of the static equi
librium path of a structure for varying values of a certain parameter, which may 
be an external load, a displacement or the arc length of the path itself. The reason 
why it is useful to know the equilibrium path, and also which of its parts are stable 
or unstable, is that it characterizes the behaviour of the structure. Designers are, 
of course, interested in any special features of a structure that might cause it to 
suddenly collapse. Special points of the equilibrium path are very important. For 
example, in a shallow arch or dome, a catastrophic change of configuration occurs 
at the limit point, and the load-carrying capacity of a thin-walled cylindrical shell in 
compression suddenly decreases at the bifurcation point. Therefore, much work has 
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been done on the computation of the equilibrium paths of all kinds of structures, and 
also on robust solution procedures, to handle special features that are encountered 
in certain cases (see, for example, Crisfield (1991) for more details). 

More recently, there has been a growing interest in mechanical systems that consist 
of rigid, or elastically deformable, elements, such as rods or shells, connected together 
by passive joints, such as hinges or sliders, driven by motors or other kinds of actu
ators. These are known as multibody systems and are covered by a now extensive 
literature (Garcia de Jalon & Bayo 1994; Shabana 1989). Multibody systems have a 
variety of applications, including robotic arms and automotive suspensions. 

The particular type of system that we are interested in is a linkage of flexible 
elements connected by mechanical joints that undergo large changes of configuration. 
This is a model for a type of deployable structure that is packaged for storage and/ or 
transportation, and can be automatically deployed into its operational configuration 
(Pellegrino & Guest 2000). Many such structures have a small mobility and hence can 
be analysed by a purely kinematic approach (see, for example, Kumar & Pellegrino 
1996). However, there is an increasing tendency to design systems with a mobility 
of zero, whose flexible elements are able to store strain energy during folding and to 
release it during deployment (Hayman et al. 1994). 

To simulate such systems, it is useful to think in terms of an equilibrium path 
in a configuration space that includes a set of independent coordinates augmented 
with a parameter that controls the configuration of the system. Standard commercial 
multibody packages are currently unable to handle the complex behaviour of these 
structures. Recently, a general computational approach to systems with bilateral 
constraints has been proposed by Crisfield (1997), and some simple examples have 
been analysed by Cardona & Huespe (1998). 

The research that is presented in this paper originated from the need to develop 
a realistic simulation of a solid surface deployable antenna, recently developed in 
the Deployable Structures Laboratory at Cambridge University (Guest & Pellegrino 
1996). A physical model of the antenna had shown that the antenna follows different 
paths during deployment and retraction; in Schulz & Pellegrino (1998) we described 
this behaviour in detail. We showed, by analysing a simple multibody system, that 
the observed behaviour can be explained by the existence of two limit points on the 
equilibrium path; the first would cause a snap during deployment and the second a 
snap during retraction. Thus it would be possible for a deployable structure to be 
in a particular configuration at the beginning of a deployment-retraction cycle and 
in a different configuration at the end of it. Further work on systems that model 
more closely the real antenna has shown, however, that the two limit points that are 
required to produce this behaviour exist only for a small range of system parame
ters. 

An important effect that was not included in our previous study and, as far as 
we know, has not been previously considered in multibody systems, is the effect of 
unilateral constraints on the equilibrium path. We have discovered that there are 
some important differences between systems of this type and the better-known type 
of systems subject to bilateral constraints. Thus the aim of this paper is to develop a 
full understanding of the type of behaviour that can occur in systems with unilateral 
constraints and, based on this understanding, to develop a proper formulation for 
simulating such systems. Simple examples are used to illustrate key points, and a 
full application is presented in the companion paper (Schulz & Pellegrino 2000). 
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The paper is laid out as follows. Section 2 derives the first-order equilibrium equa
tions for a multibody system that is subject to bilateral constraints, by generalizing 
a formulation in terms of independent coordinates in Thompson & Hunt (1973). A 
way of switching the integration variable near a limit point is discussed. 

Section 3 derives the first-order equilibrium equations for a conservative multibody 
system subject to unilateral constraints. In addition to requiring that the Lagrangian 
of the system be stationary in an equilibrium configuration, it is also required that 
the reactions of all unilateral constraints be either zero, if the constraint is not active, 
or non-negative, if the constraint is active. Mathematically, these conditions have the 
same form as the standard Kuhn-Tucker conditions in optimization theory. 

It is important to distinguish between strongly active constraints, which, in a 
particular configuration, are active with non-zero reaction, and weakly active, whose 
reaction is zero. When integrating the first-order equilibrium equations, at a general 
step all strongly active constraints can be treated like bilateral constraints until 
they become weakly active or inactive, but weakly active constraints need to be 
re-analysed to determine if they switch to a different state. 

Section 4 shows that, in addition to the well-known type of limit points, there is 
a new type where the path is non-smooth and the first-order equilibrium equations 
non-singular. Such points are named corner limit points; they are associated with 
the change of state of a weakly active constraint. 

In § 5 it is shown that, in analogy with common limit points, at a corner limit 
point the degree of instability of a system also changes by one. A simple example is 
presented in § 6. Section 7 analyses the different cases that can be encountered when 
the first-order equilibrium equations become singular. 

A discussion, including a brief comparison of bilaterally and unilaterally con
strained systems, concludes the paper. 

2. Systems with bilateral constraints 

We consider a conservative multibody system which is described by a set of n gen
eralized position coordinates 

and m scleronomic bilateral constraints 

gj(<p) == 0, j == 1, ... ,m. (2.1) 

The potential energy U of the system is assumed to be a function of the general
ized coordinates and a single control parameter p. It is assumed that the constraint 
functions, as well as the energy function, are C 2-continuous. A standard procedure 
for enforcing m constraints is to introduce the Lagrangian function 

(2.2) 

where A is a vector of Lagrange multipliers and 

(2.3) 
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The equations of equilibrium for this system can be obtained by differentiat
ing (2.2) with respect to <p and .\, which gives 

\l 'P£ == \l 'Pu- E.X == o, 
\JA£ == -g == 0. 

Here, E, of size n x m, is a constraint matrix, defined by 

(2.4) 

(2.5) 

(2.6) 

It will be assumed that the gradients of the constraint functions are independent 
in all configurations of interest, and hence E has full rank (regularity assumption). 
The term E.\ represents the generalized constraint reactions. 

Our aim is to determine equilibrium configurations of the system for varying values 
of the control parameter p. Excluding bifurcational behaviour, for the moment, the 
tangent to the equilibrium path in the <p-p space is uniquely defined at every point 
of the path. The equilibrium path can be expressed with the aid of a parameter s, 

<p == <p(s), A== .\(s), p == p(s). (2.7) 

A suitable choice for s would be the arc length of the path itself or-away from 
limit points-the control parameter p. Note that the symbol <pis being used to denote 
both a general configuration of the system and an equilibrium configuration. 

Starting from a given equilibrium configuration (s == 0), the equilibrium path can 
be traced by applying a continuation method, i.e. the parameter s is incremented in 
finite steps and the nonlinear algebraic equations (2.4) and (2.5) are solved iteratively 
for the current value of s. Efficient techniques for doing this exist (Riks 1979; Crisfield 
1980). 

A different approach will be followed in this study. The idea is to define the equi
librium path in terms of a set of differential equations in cp and A that are numerically 
integrated with a standard solver. This is conceptually similar to using a continuation 
algorithm that evaluates derivatives in order to obtain improved initial estimates in 
each step. These differential equations are the first-order equilibrium equations for 
the system (Thompson & Hunt 1973), obtained by differentiating (2.4)-(2.5) with 
respect to s, 

(\l~£)<jJ + (\l 'PU')p- E~ == 0, 

ET<jJ==O, 

(2.8) 

(2.9) 

where the dot denotes total differentiation with respect to s, the prime denotes partial 
differentiation with respect top, and the Hessian of the Lagrangian function 

m 

\l~£ == \l~U- L Aj\l2gj == \l~U- [E,{{JlA E,{{J2A 0 0 

·] 
(2.10) 

j=l 

is not necessarily regular. 
Equation (2.9) is equivalent to stating that <P is in the nullspace of the constraint 

matrix transposed. Hence, considering a matrix T whose columns span the nullspace, 

cp == Tx, (2.11) 
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where x E Rn-m. Substituting (2.11) into (2.8) and premultiplying by TT yields 

Hx + TT(\l 'PU')p == 0, (2.12) 

where 

(2.13) 

is the reduced Hessian. 
If the reduced Hessian is regular we can solve (2.12) for x and substitute the result 

into (2.11), 

(2.14) 

Then the path derivative of A is obtained by pre-multiplying (2.8) by ET and 
solving the resulting equation, 

(2.15) 

Note that the matrix ET E is positive definite due to the regularity assumption. 
If we choose the control parameter as the path parameter (s == p), equations (2.14) 

and (2.15) become 

(2.16) 

(2.17) 

(a) Singularities 

In some equilibrium configurations the reduced Hessian H may become singular. 
Let 

W == [w1 . . . wm] 
be the matrix of the eigenvectors of H; the diagonalized form of H is 

dll 

(2.18) 

Introducing the transformation 

X== Wy, (2.19) 

the diagonalized form of (2.12) is 

wT HW y + wTTT\l 'Pu' fJ == o. (2.20) 

Assuming that only the first eigenvalue is zero, the first equation in (2.20), which 
corresponds to this eigenvalue, reads 

(2.21) 
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If w[TT\7 cpU' == 0, it is likely that the system is at a bifurcation point, in which 
case a higher-order analysis is required (Thompson & Hunt 1973). A corresponding 
equation has been derived, for the case of unconstrained systems, by Riks (1979). The 
post-critical behaviour can be determined by applying a branch switching procedure 
(Stein et al. 1990). 

If w{TT\7 cpU' -=f. 0, then (2.21) requires 

p == 0, (2.22) 

and the system is likely to be at a limit point (Thompson & Hunt 1973), in which 
case the solution of (2.20) is 

y == [Yl 0 . . . OJ T' 

and hence, from (2.19) and (2.11), 

X== WIYl, 

cp == TWIYl· 

(2.23) 

(2.24) 

(2.25) 

Because p == 0, the control parameter p cannot be chosen as path parameter and 
hence an alternative choice is required. Any generalized coordinate such that cpi # 0 
can be chosen and, considering (2.25), this requires that the ith component of Tw1 

be not equal to zero. 
In practice, it is best to switch parameters before getting too close to a limit 

point, and a reasonable strategy is to choose the particular generalized coordinate 
that corresponds to the largest magnitude component of Tw1 . Letting C{Ji be the new 
path parameter, equation (2.12) is supplemented by 

(2.26) 

Hence (2.11) and (2.12) yield 

[Z TT6~U'] [;] = [~] , (2.27) 

where ti denotes the ith row ofT. After solving (2.27), we can compute the path 
derivatives of the generalized coordinates according to (2.11). 

3. Systems with unilateral constraints 

This section extends the formulation presented in § 2 to systems with unilateral 
constraints, representing frictionless contacts between different parts of the system. 
Consider a system with m unilateral constraints, 

gj(cp) ~ 0, j E I, (3.1) 

where I == {1, 2, ... , m} identifies the full set of constraints. For simplicity, it is 
assumed that there are no bilateral constraints and that the coordinates cp are a set 
of independent coordinates when all unilateral constraints are inactive. 

As in the previous section, the potential energy U of this conservative system 
depends on the generalized coordinates cp plus a single control parameter p. The same 
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assumptions on the continuity of U and gj are made, and an analogous Lagrangian 
function is defined, 

£(cp,p) == u- LAj9j· (3.2) 
jEI 

The differentiation of this function with respect to cp is unchanged from § 2, and 
yields an equation equivalent to (2.4). Equation (2.5) is now replaced by inequality 
constraints and, additionally, the Lagrange multipliers must be non-negative, and 
cannot be non-zero together with the corresponding constraint function ( comple
mentarity condition). That is, a constraint is either inactive (gj > 0) or it is active 
(gj == 0) and its reaction is positive (.\j ~ 0) (see Pfeiffer & Glocker (1996) for further 
details). Mathematically, 

\7 'P£ == \7 'Pu - L Aj \7 9j == o, 
jEI 

(3.3) 

(3.4) 

In optimization theory, equations (3.3), (3.4) are known as Kuhn-Tucker condi
tions (Fletcher 1987). It is well known that their validity is subject to a regularity 
condition (see below). 

We distinguish between active constraints, for which gj == 0, whose index set is 

I*== {j E I I gj(cp) == 0}, (3.5) 

and inactive constraints, for which gj > 0. Active constraints can be further subdi
vided into strongly active (.\j > 0), whose index set is 

I+ == {j E I I gj == 0, Aj > 0}, (3.6) 

and weakly active constraints (.Xj == 0), whose set is simply I*\I+. The regularity 
condition requires that the gradient vectors \7 gj of all active constraints be linearly 
independent. 

We are interested in tracing the equilibrium path of this system following an 
approach similar to§ 2. However, the path in the cp-p space is, in general, non-smooth, 
due to the change of state of unilateral constraints from active to inactive, or vice 
versa. Therefore, whereas for systems with bilateral constraints the equilibrium path 
is smooth and the path derivatives are continuous, now we will have to consider left
and right-hand side derivatives, which may not coincide. 

In analogy with § 2, we have to differentiate (3.3) with respect to s. Due to the 
non-smoothness of the path, we replace ordinary derivatives with right-hand side 
derivatives with respect to s, denoted with a dot, 

(\7~£)0 + (\7 'PU')p - E+.\+ - Eo.\o == 0, 

\7~£ == \7~U- L Aj\72gj, 
jEI+ 

(3.7) 

(3.8) 

where the constraint matrices for the strongly and weakly active constraints, E+ 
and E0 respectively, and the corresponding column vectors of path derivatives of 
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Lagrange multipliers, are 

E+ == [\7gJ]' 

Eo == [\7 9J] , 

.\+ == {.\J}, j E I+, 

.\o == { .\J }, j E I*\I+. 

(3.9) 

(3.10) 

The reason why the last two terms in (3. 7) include only the active constraints 
is because, for every point cp of the equilibrium path, excluding end points, there 
exists a neighbourhood on the path where the strict inequality gj > 0 holds for 
all constraints which are inactive at cp. In this neighbourhood, the corresponding 
Lagrange multipliers Aj are equal to zer<?, due to the complementarity condition 
gjAj == 0, and thus their path derivatives Aj are also zero at cp. 

Next, we turn to (3.4). Since \7 cpU and \7 gj are continuous on the equilibrium path 
in the cp-p space, the regularity assumption and (3.3) imply that Aj is also continuous. 
For this reason, at every equilibrium point cp, there exists a neighbourhood on the 
equilibrium path-excluding end points-where the strict inequality Aj > 0 holds for 
all constraints which are strongly active at cp. The corresponding constraint functions 
are equal to zero in this neighbourhood because of the complementarity condition, 
and hence also their path derivatives at cp. In conclusion, 

(3.11) 

The corresponding equation for systems with bilateral constraints would be iden
tical. In analogy with § 2, we replace (3.11) with 

(3.12) 

where the columns ofT+ span the nullspace of E~. 
For weakly active constraints, the path derivatives of the constraint functions and 

of the corresponding Lagrange multipliers are greater than or equal to zero. Moreover, 
complementarity must hold for these path derivatives, 

(3.13) 

Otherwise, the constraint functions and the Lagrange multipliers could become neg
ative and there would exist points where the complementarity condition (3.4) would 
be violated. 

At this point, we eliminate the strongly active constraints by introducing a reduced 
Hessian, as in § 2, 

Defining 

!Jo == {!JJ}, j E I*\I+, 

we can write (3.7) and (3.13) as 

H+x + T'J_ (\7 cpU')p- T'J_ Eo.\o == 0, 

!Jo ~ 0, 

where x and g0 are linked by 

A.o ~ 0, 
·T· A.o go == 0, 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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The inequalities in (3.17) are to be interpreted in the sense that all elements of a 
vector are greater than or equal to zero. 

Equations (3.16) and (3.17) are the first-order equilibrium equations of a multi
body system with unilateral constraints. Similar equilibrium equations were derived 
by Bjorkman (1992) for structures that come into contact with a single rigid obstacle. 
Bjorkman made use of the mathematical concept of B-differentiability. Our deriva
tions are more straightforward, as no advanced mathematical concepts are required. 

Consider the case of systems with bilateral constraints. The standard stability 
condition for a solution cp, A of (2.4), (2.5) is 

zT(\7~£)z > 0 (3.19) 

for any z -=/=- 0 in the nullspace of the constraint matrix transposed. This is a sufficient 
condition for uniqueness of the solution and regularity of the reduced Hessian. In the 
case of systems with unilateral constraints, the stability condition would have to be 
satisfied only for those elements z -=/=- 0 of the nullspace of the matrix of strongly 
active constraints transposed that also satisfy the condition 

zT\7gj~O \:/jEI*\1+. (3.20) 

However, this will not guarantee the reduced Hessian H+ to be positive definite, 
or, indeed, equations (3.16) and (3.17) to have a unique solution. 

The situation can be illustrated with the aid of the example depicted in figure 1. 
The two generalized coordinates are subjected to two linear unilateral constraints. 
The potential energy U is a quadratic positive semi-definite function of the gener
alized coordinates, whose contours are shown in the figure. For s == 0 (figure 1a), 
the intersection of the constraint functions corresponds to a stable equilibrium point 
and (3.19) holds for z -=/=- 0 in the nullspace of E+ and satisfying (3.20). There is no 
other feasible equilibrium point. Both constraints are weakly active at the point of 
equilibrium. 

Let us now consider a continuous transformation of the potential energy from s == 0 
(figure 1a) to s == E > 0 (figure 1b). Obviously, all points on the segment AB corre
spond to equilibrium solutions and, thus, the path derivative of cp at the equilibrium 
point of figure 1a is not unique. There are path derivatives with 

(i) ill > 0, il2 > 0; 

(ii) il1 > 0, il2 == A2 == 0; and 

(iii) il1 == A1 == 0, il2 > 0. 

If, instead, the continuous transformation from s == 0 (figure 1a) to s ==. E > 0 
produces the result shown in figure 1c, the path derivative is unique and Ao > 0. 
In the next sections we discuss the solution of the first-order equilibrium equations 
depending on the features of the reduced Hessian. 

4. Regular H + 
If the reduced Hessian is non-singular, equation (3.16) can be solved for x and the 
solution substituted into (3.18). Together with (3.17), this yields 

ilo ==GAo+ pg, 
ilo ~ 0, Ao ~ 0, 

(4.1) 

(4.2) 
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where 

q>2 

(a) 

(b) 

feasible 
domain 

gl = 0 

g2=0 

(c) 

U=2 
U=min U=O 

U=l 
U=2 

U=minU=O 

U=2 

U=2 

U=2 

Figure 1. Solution of first-order equilibrium equations. (a) s == 0. (b) s == E > 0, 
the solution is non-unique. (c) s == E > 0, but the solution is unique. 

G == EJT+H+. 1TJE0 , 

g == -EJT+H+1TJ\l <pU'. 

(4.3) 
(4.4) 

10



p 

Figure 2. Solution of the LCP for positive definite H+. 

This is a linear complementarity problem (LCP) in standard form, which has been 
dealt with by, for example, Murty (1988), Lemke (1970) and Cottle (1977). Contact 
problems, both of a static and dynamic nature, invariably lead to complementarity 
problems, in some cases of the linear type. Examples of LCPs in dynamic mechanical 
systems can be found in Pfeiffer & Glocker (1996) and Klarbring (1988); structural 
mechanics examples can be found in Bjorkman (1991). 

In tracing the equilibrium path of a system with unilateral constraints, when one 
or more of these constraints are weakly active we have to determine in each step 
which of the weakly active constraints become inactiv~ and which remain active, in 
order to update the index sets I* and I+. In general, Aj is discontinuous at a point 
where an inactive constraint becomes active, or vice versa. Such an event can induce 
the transformation of other weakly active constraints into strongly active or inactive. 

For this reason, treating unilateral constraints as either bilateral if they are active, 
or altogether neglecting them when their Lagrange multiplier becomes negative, with
out solving the LCP can lead in some cases to non-convergence and errors. 

After solving the LCP, the right-hand side path derivatives of cp can be computed 
by substituting ,\0 into (3.16), solving for x, and substituting into (3.12), 

(4.5) 

The right-hand side path derivatives of A.+ are obtained by solving (3.7), 

(4.6) 

Equations ( 4.5) and ( 4.6) are integrated. At each step, the constraint function 
of the inactive constraints and the Lagrange multipliers of the strongly active con
straints are checked for zeros. In this way, the index sets I* and I+ can be updated. 

(a) Positive definite H+ 

Due to the regularity assumption, the matrix G is also positive definite and, there
fore, the LCP in ( 4.1) and ( 4.2) has a unique solution both for jJ < 0 and for jJ > 0 
(Murty 1988). The two solutions that are obtained correspond to the two directions 
in which we can move on the path (see figure 2). 
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• A 
pg<O 

Figure 3. Solution of the LCP for one weakly active constraint and negative G. 

It can be shown that (4.1) and (4.2) represent the Kuhn-Tucker conditions for a 
solution of the associated quadratic programming problem 

(4.7) 

which can be solved instead of the LCP. 

(b) Non-positive definite H + 

In this case, the uniqueness of the solution of the LCP is not guaranteed and hence 
bifurcational behaviour can occur, despite the fact that the reduced Hessian is not 
singular. This is an important difference from systems with bilateral constraints. 

If H+ is, for example, negative definite, G is also negative definite. In fact, G can 
be negative definite even in the case of an indefinite H+. 

In practical situations, often only one constraint is weakly active. In this case, if 
G is negative, the possible solutions of the LCP are illustrated in figure 3. The three 
lines plotted have the same slope G (less than zero). For g == 0, the LCP has the 
same unique solution for p > 0 and p < 0, as pg == 0. The weakly active constraint 
remains weakly active and the left- and right-hand side path derivatives of cp and A 
coincide (see (4.5) and (4.6)). 

If g -=/=- 0, the LCP has two solutions for pg > 0 and no solution for pg < 0. Thus, 
if there are two solutions for p < 0 (p > 0), there is no solution for p > 0 (p < 0). 
This means that the equilibrium path has reached a maximum (minimum) in the 
cp-p space, which will be called a corner limit point because of the non-smoothness 
of the path at this point. 

At a common limit point, the condition p == 0 holds, but at a corner point it does 
not necessarily hold (see figure 4b). The reduced Hessian H+ is singular at a common 
limit point, whereas at a corner point it can be regular but not positive definite. 

Note that the equilibrium path may also have reached a minimum or maximum 
in the cp-p space if G == 0 ( H + regular but indefinite) and g -=/=- 0. In this case, the 
LCP has a unique solution for p == 0, corresponding to a horizontal tangent, and a 
unique solution for pg > 0, corresponding to a non-horizontal tangent. In order to 
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p p p 

(a) (b) (c) 

~ ' ' ' ' ' ' \ 
stable unstable unstable 

Figure 4. (a) End point (number of weakly active constraints greater than one). 
(b) Corner limit point. (c) Common limit point. 

find out if the path has indeed reached a maximum or minimum, we have to derive 
the second-order, or possibly even higher-order, equilibrium equations. 

If the number of weakly active constraints is greater than one, it is still possible 
to find corner limit points. In addition, one can find mathematical examples where 
there is a unique solution of the LCP for p < 0 (p > 0) and no solution for p > 0 
(p < 0). In such cases, the equilibrium path has reached an end point (figure 4a). 
This is not possible with a single active constraint, as in this case the plot in figure 3 
shows that there are either two solutions or none. 

5. Stability at corner limit points 

The stability of a mechanical system that is subject only to bilateral or strongly active 
constraints can be analysed by considering the reduced Hessian H+. The number of 
negative eigenvalues of this matrix is equal to the degree of instability of the system 
(Thompson & Hunt 1973). 

At a common limit point, the degree of instability changes by one if a single 
stability coefficient changes sign, and an obvious question is whether the behaviour 
at a corner limit point is the same. Let us consider the case of a corner limit point 
s == sp where a single constraint is weakly active. It is assumed that, in advancing on 
the equilibrium path with increasing s, this constraint is transformed from strongly 
active into inactive. Therefore, the dimension of H+ increases by one. Next, it will 
be shown that in this case the number of negative stability coefficients also increases 
by one, and hence the degree of instability increases. 

At such a corner limit point, the basis of the nullspace of the matrix of strongly 
active constraints transposed is obtained by augmenting with a vector t0 the basis 
of the nulls pace of [ E+ Eo J T, 

T+ == [T t0 ] . (5.1) 

Note that Eo is a column vector and that to has the property 

t6Eo # 0, (5.2) 

because of the regularity assumption. Next, we partition the reduced Hessian 

_ [ H TT (\7~£)to] 
H+- t6(V'~£)T tJ'(V'~£)t0 ' 

(5.3) 
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where 

(5.4) 

can be interpreted as the reduced Hessian to the left of sp. Since H+ is regular, 
assuming that H and tJ (\7~£)to are non-singular, the inverse matrix has the form 

(5.5) 

where 

(5.6) 

is the Schur complement of H in H+ (Cottle 1974). Substituting (5.5) into (4.3) and 
evaluating 

(5.7) 

we arrive at 

(5.8) 

Since G is negative at the corner limit point, the Schur complement must also be 
negative. Using the inertia formula (Cottle 1974) 

(5.9) 

where the inertia In of a real symmetric matrix is the triple 

[no. eigenvalues > 0, no. eigenvalues < 0, no. eigenvalues == 0], 

we can conclude that the number of negative eigenvalues of H+ increases by one 
at the corner limit point. Thus, if the equilibrium path is stable for s == sp - E, it 
is unstable for s == sp + E, where E is a small positive number. This result agrees 
completely with the behaviour at a common limit point. 

6. Example of corner limit point 

A simple system exhibiting a corner limit point is shown in figure 5. This system 
consists of a rigid bar AB of length L, connected by a frictionless hinge A to a rigid 
foundation, and an extensional spring of stiffness k, whose undeformed length is zero. 
The spring is attached to the bar at B and to a vertical slider at D. A unilateral 
constraint on point B requires it to lie above a horizontal line through C. 

The position coordinate is the angle cp between the bar and the horizontal, and 
the control parameter p is the displacement of the end of the spring, measured from 
the line AC and positive upwards. 

In the initial configuration, shown in the figure, cp == 0 and p == - L. The bar is in 
contact with C and the unilateral constraint g( cp) ==sin cp ~ 0 is strongly active. 

The equilibrium path is shown in figure 6 for initially increasing p. The initial 
configuration corresponds to (0, -L). Asp increases from -L to 0, there is no change 
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Figure 5. Example of system with corner limit point; in the initial configuration p == - L, cp == 0. 
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Figure 6. Equilibrium path of simple example. 

in cp. At (0, 0), the constraint becomes weakly active, and the path derivatives of the 
gap, !Jo, and of the reaction, -Xo, are found by solving the corresponding LCP, 

!Jo )! 0, -Xo )! 0, -Xo!Jo == 0. 

(6.1) 

(6.2) 

Because the complementarity condition requires at least one of -X0 , g0 to be 
zero, .this LCP can be solved by trial and error. Thus, first w_e set flo 0 and 
find -Xo == -kLp )! 0, which requires p ~ 0. Second, we set -X0 == 0 and obtain 
!Jo == -pL -l )! 0, which also requires p ~ 0. So, there are two non-trivial solutions 
for p < 0 and no solution for p > 0, as shown in figure 6. t 

So, from the corner point, the system can move in two different directions on the 
equilibrium path. If the system goes back towards the initial configuration, bar AB 
remains horizontal and in contact with the constraint at B; this part of the path is 

t Note that p is the right-hand side derivative, which is equal to the infinitesimal change of p when 
moving away from the corner point. 
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stable. Alternately, AB can rotate by an amount such that AB and BD are always 
parallel; this part of the path is unstable. 

In practice, from 0, the system will jump to a stable configuration with <p == 180°, 
from which <p can be increased to follow a stable path that is not shown in the figure. 

7. Singular H + 
We introduce a transformation analogous to (2.19), where W contains the eigenvec
tors of H+ at the singularity s == s0 , and diagonalize (3.16), 

wT H+ Wy + WTTJ(\7 <pU')p- WTTJ Eo.\o == 0. (7.1) 

If the set of weakly active constraints is empty, the last term disappears and the 
problem becomes identical to one involving only bilateral constraints (see § 2 a). 

If the set of weakly active constraints is not empty, the situation becomes more 
complex. Assuming that only one eigenvalue of H+ is zero, the solution of the diag
onalized equations is 

where 

. T" c1p - c2 -Xo == 0, 

1 T T . · I 
Yi == d·. wi T+ (Eo-Xo- p\7 'PU ), i == 2, ... , m+, 

(7.2) 

(7.3) 
~~ 

C1 == w[TJ\7 <pU'Is=so, (7.4) 

C2 == EJT+wlls=so, (7.5) 

and m+ is the number of constraints that are strongly active in the configuration 
s == so. 

We have analysed the case in which the num~er of weakly active constraints is 
one, in which case Eo is a column vector and c2 , -Xo and g0 are scalar quantities, and 
have found that bifurcational behaviour can occur only for 

C1 == 0. (7.6) 

This condition corresponds to (2.22) for systems with bilateral constraints, but 
recall that systems with unilateral constraints can show bifurcational behaviour also 
when H+ is regular (see §4b). 

Next we summarize the results of a detailed study of the various cases that can 
occur. 

If c1 f=. 0 and c 2 f=. 0, it is likely that we are at a corner limit point. The first-order 
equilibrium equations have two solutions, corresponding to two directions on the 
equilibrium path. For one of these directions, p == 0 and a more detailed classification 
of the different cases that are possible (see figure 7) requires the introduction of 

C3 == w_rr_r (Eo - ( c2/ cl)\1 <pU'), (7.7) 

c4 == ElW+c3, (7.8) 

where 

(7.9) 

If c1 f=. 0 and c 2 == 0, it is likely that we are at a common limit point, where the 
equilibrium path is smooth and the weakly active constraint does not change state. 

16



p 

p 

p 

(/). 
l (/). 

l 

p 
(d) 

(/). 
l 

(/). 
l 

Figure 7. Different shapes of equilibrium path at a corner point, for c1 :/= 0 and c2 :/= 0. 
(a) C3 :j= 0, C4 > 0. (b) C3 :j= 0, C4 < 0. (c) C3 :j= 0, C4 == 0. (d) C3 == 0. 

8. Discussion 

The first-order equilibrium equations of a conservative multi body system with unilat
eral constraints that are functions of the coordinates, but not of the control parameter 
of the system, have been derived in a straightforward manner, without recourse to 
advanced mathematical concepts. If the reduced Hessian matrix of the system is reg
ular, a standard linear complementarity problem (LCP) is obtained, whose dimension 
is equal to the number of weakly active constraints. 

During the integration of the equilibrium path equations, when the index set of 
weakly active constraints is non-empty, we have to determine at every step of the 
integration which of the weakly active constraints become inactive and which remain 
active. This requires the LCP to be solved. Strongly active unilateral constraints can 
be treated in a straightforward way, like bilateral constraints. 

For systems with bilateral constraints, a sufficient condition for stability can be 
formulated in terms of second-order derivatives. If this condition holds, the path 
derivatives are uniquely defined. A corresponding second-order condition exists for 
systems with unilateral constraints, but it does not ensure that the path derivatives 
are unique. 

In contrast to bilaterally constrained systems, systems subject to unilateral con
straints can be at a limit or bifurcation point, even if the reduced Hessian matrix is 
regular. Therefore, a new type of limit point, called a corner limit point, exists for 
such systems. At corner limit points the equilibrium path is non-smooth. 

At an end point, the LCP has a unique solution when the control parameter 
changes in one direction, but no solution in the other direction. It has been shown 
that, if the constraint functions are independent of the control parameter, end points 
can exist only if at least two unilateral constraints are weakly active. 
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A simple example system exhibiting a corner limit point has been discussed. How
ever, finding a good example of a system with constraints independent of the control 
parameter and which has an end point is more difficult. This difficulty can be under
stood by recalling that, under the assumptions made above, an end point requires at 
least two constraints to be weakly active, whereas a corner limit point requires only 
one. 

Finally, note that a corner limit point may look exactly like an end point in a plot 
of the control parameter versus a particular coordinate that happens not to vary in 
the vicinity of the limit point. Such plots can be misleading, and care should be taken 
before reaching general conclusions. We believe that it is important that behind any 
simulation software for the analysis of multibody systems of the type described in 
this paper there should be a solid theoretical framework that can address the many 
subtle issues discussed in this paper. 

Support from the European Commission, in the form of a TMR Marie Curie Research Training 
Grant for M.S., and from the Royal Academy of Engineering, in the form of a Foresight Award 
for S.P., is gratefully acknowledged. 

G 
H,H+ 
H+/H 
I, I*, I-f-

£ 
T, T+ 
u 
w 
w+ 
C1 , C2, C3, C4 

dii 

gj, g, 90 

Nomenclature 

constraint matrices of bilateral, weakly and strongly active 
unilateral constraints 
matrix defined in equation ( 4.3) 
reduced Hessian matrices 
Schur complement of H in H+ 
index sets of unilateral constraints, and of active and strongly 
active constraints 
Lagrangian function 
matrices of vectors that span the nullspace of ET or EJ 
potential energy 
matrix of eigenvectors of reduced Hessian 
matrix defined in equation (7.9) 
coefficients 
elements of diagonalized reduced Hessian 
constraint function, column vector of constraint functions, 
corresponding column vector for weakly active constraints 

vector defined in equation ( 4.4) 
number of bilateral or unilateral constraints 
number of unilateral constraints that are strongly active 
number of generalized coordinates 
control parameter 
path parameter 
ith row ofT 
column vector defined in equation (5.1) 
ith column of W 
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x, y, z 
<pj, <p 

vectors 
generalized coordinates, column vector of generalized 
coordinates 
Lagrange multipliers, column vector of Lagrange multipliers, 
corresponding column vectors for weakly (subscript 0) and 
strongly active (subscript +) constraints 
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