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Abstract
We introduce a new class of distributed algorithms for the approximate consensus problem in
dynamic rooted networks, which we call amortized averaging algorithms. They are deduced from
ordinary averaging algorithms by adding a value-gathering phase before each value update. This
results in a drastic drop in decision times, from being exponential in the number n of processes to
being polynomial under the assumption that each process knows n. In particular, the amortized
midpoint algorithm is the first algorithm that achieves a linear decision time in dynamic rooted
networks with an optimal contraction rate of 1/2 at each update step.

We then show robustness of the amortized midpoint algorithm under violation of network
assumptions: it gracefully degrades if communication graphs from time to time are non rooted,
or under a wrong estimate of the number of processes. Finally, we prove that the amortized
midpoint algorithm behaves well if processes can store and send only quantized values, rendering
it well-suited for the design of dynamic networked systems. As a corollary we obtain that the
2-set consensus problem is solvable in linear time in any dynamic rooted network model.
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1 Introduction

This paper studies the problem of approximate consensus: given a set of processes, each of
them with an initial real value, for any positive real number ε, every process has to achieve
ε-consensus, i.e., decides on one value that lies in the range of the initial values and that
differs from the other decision values by at most ε. This problem, which is a weakening
of exact (ε = 0) consensus, has a large variety of applications in distributed computing or
multi-agent control (e.g., clock synchronization or geometric coordination tasks) and often
has to be solved in the context of dynamic networks, using local information, and under
adverse constraints.

In recent work [8], we proved that approximate consensus is solvable in a dynamic network
model if and only if the directed time-varying communication graph is always rooted, i.e.,
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contains a rooted spanning tree. The spanning tree can change completely from time to time.
Hence no stability condition is required to solve approximate consensus.

In fact, we showed that when addressing the solvability issue of approximate consensus,
it suffices to consider the class of averaging algorithms where each process maintains a single
scalar state variable and repeatedly updates to a weighted average of the values it has just
received. Indeed, the problem is solvable if and only if it can be solved by an averaging
algorithm.

We proved that, if there is a positive lower bound % on the weights used in averaging
steps, then the averaging algorithm achieves ε-agreement in O

(
n%−n log 1

ε

)
rounds where n is

the number of processes. Moreover, we showed that the classical averaging algorithm, called
the equal-neighbor algorithm, exhibits an exponentially large decision time in the case of the
Butterfly network model.

Contribution. In this work we present a new approximate consensus algorithm that we show
to be fast, being the first algorithm in highly dynamic networks with linear time complexity
in the number of processes, robust to violation of network assumptions, and allowing for
quantization of its variables – leading to a space efficient algorithm.

We list the main contributions in detail in the following:
(i) We consider the property of %-safety for averaging algorithms originally introduced

by Chazelle [12], which is a generalization of the lower bound condition on positive
weights. This property focuses on the set of transmitted values and not on the linear
functions (stochastic matrices) applied in the averaging steps, as done classically. It
thus captures the essential properties needed for contracting the range of current values
in the system. Using a graph-theoretic reduction that already played a key role in [8],
we first give simple proofs of correctness and of upper bounds on the contraction rate of
%-safe averaging algorithms.
More importantly, this approach allows us to propose a new averaging algorithm for
approximate consensus in dynamic rooted networks, that we call the midpoint algorithm,
with an optimal contraction rate of 1/2.

(ii) We introduce the notion of amortization of averaging algorithms, which consists in
inserting a value-gathering phase before each averaging step. This additional phase
transforms %-safe averaging algorithms into “turbo versions” of themselves in that
decision times pass from being exponential [8] to being polynomial in the number n of
processes.
Amortization assumes that each process knows the size n of the network. Furthermore,
processes ought to be able to accumulate and to relay values from the past, as opposed
to averaging algorithms that are memoryless in the sense that processes deal only with
fresh values. More precisely, we show that the amortized version of a %-safe averaging
algorithm solves approximate consensus with polynomial decision times in any dynamic
rooted network, and a priori under the conditions that each process knows the size of
the network, and can store and transmit in every message up to n(n− 1) scalar values.
Then we combine the two above ideas in the design of the amortized midpoint algorithm,
which achieves ε-agreement in O

(
n log 1

ε

)
rounds. Apart its linear decision times, the

positive features of this amortized averaging algorithm are that it works in anonymous
networks (without process identifier) and that processes are required to store and to
transmit in each message only two scalar values, whatever the size of the network is.

(iii) The correctness proof of amortized averaging algorithms relies on two fundamental
hypotheses: common knowledge of the number n of processes and rootedness of all
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occurring communication graphs. However we show that, even with an erroneous estimate
on n or when communication graphs sometimes fail to be rooted, the amortized version
of a %-safe averaging algorithm still solves approximate consensus, albeit with larger
decision time. This graceful degradation property demonstrates that the robustness of a
%-safe averaging algorithm carries over to some extent to its amortized versions.

(iv) Finally we show that if processes can only use variables with finite precision, then the
amortized midpoint algorithm achieves ε-consensus in linear time whenever possible, i.e.,
when ε is larger than the variables’ precision. The decision time with quantization does
not degrade and remains in the same order as without quantization. The robustness to
rounding errors seems to be specific to the amortized midpoint algorithm as our proof
does not work for general amortized %-safe averaging algorithms.

As a corollary, we get that the 2-set consensus problem – another weakening of exact consensus
where disagreement is limited to at most two different decision values – is solvable in linear
time in all dynamic rooted network models.

While the practical implications of a versatile approximate consensus algorithm which is
both fast and robust are clearly appealing for the design of man-made dynamic networked
systems, our results go even beyond that and are interesting also from a different, more
analytic, perspective.

Many natural phenomena, like bird flocking [11], synchronization of coupled oscillators [27,
20], opinion dynamics [16], or firefly synchronization [19], can be modeled with agents that
execute averaging algorithms. However, there is a large mismatch between the fast agreement
times observed in nature and the theoretical worst-case times, which may be exponential [11].
In this sense, our results provide a step towards closing this gap, suggesting that the agents in
these natural systems in fact operate on a different, slower, time scale than their environments,
and that this inertia actually contributes positively to faster consensus.

Related work. The time complexity of approximate consensus has been extensively studied
in the past. Several papers (e.g., [20, 6, 1, 5, 2]) handle the case of time-varying communication
graphs and consider averaging algorithms with decision times which are exponential in the
number of processes.

The first algorithm with polynomial decision times has been proposed by Olshevsky and
Tsitsiklis [24], based on ideas from load balancing. They proved that their algorithm achieves
ε-consensus in O

(
n3 log 1

ε

)
rounds with a time-varying bidirectional topology under the quite

strong stability condition that graphs do not change during each 3 round slot 3k, 3k + 1,
3k + 2. A refined analysis of this algorithm [22] results in an improved quadratic bound. In
the meantime, Chazelle [12] proposed a remarkable averaging algorithm with cubic decision
times, which works in any bidirectional connected network model.

Another approach to speed up decision times – also developed in the context of load
balancing – consists in considering second-order algorithms where the update rule for process p
at round k + 1 involves the old value held by p at round k − 1, in addition to the values
at round k of p’s neighbors; see [21]. Following this approach, Olshevsky [23] has recently
proposed a linear decision time algorithm that requires each process to know n, and to be
able to store and to transmit in every message two scalar values, like the amortized midpoint
algorithm. Unfortunately Olshevsky’s algorithm works only under the assumption of a
fixed bidirectional communication graph. Another linear approximate consensus algorithm
has been proposed in [28] in the case of a fixed topology, possibly non-bidirectional, but
it assumes processes with strong computational power and large memory (processes ought
to store all values of the past). The sum of these efforts makes the time-linearity of the
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relatively simple amortized midpoint algorithm in arbitrarily dynamic directed anonymous
networks all the more so striking.

As for the effects of quantization, they have been studied in a number of papers, but
most of them assume a fixed topology to bound the time complexity; see [18, 15]. In their
seminal paper [22], Nedić et al. analyzed the quantized version of their quadratic averaging
algorithm for a time-varying bidirectional topology and proved that decision times with
quantized values are of the same order as with continuous values.

2 Approximate consensus and averaging algorithms

We assume a distributed, round-based computational model in the spirit of the Heard-Of
model [9]. A system consists in a set of processes [n] = {1, . . . , n}. Computation proceeds in
rounds: In a round, each process sends its state to its outgoing neighbors, receives values
from its incoming neighbors, and finally updates its state based. The value of the updated
state is determined by a deterministic algorithm, i.e., a transition function that maps the
values in the incoming messages to a new state value. Rounds are communication closed in
the sense that no process receives values in round k that are sent in a round different from k.

Communications that occur in a round are modeled by a directed graph G = ([n], E(G))
with a self-loop at each node. The latter requirement is quite natural as a process can obviously
communicate with itself instantaneously. Such a directed graph is called a communication
graph. We denote by Inp(G) and Outp(G) the sets of incoming and outgoing neighbors of p,
respectively.

The product of two communication graphs G and H, denoted G ◦ H, is the directed
graph with an edge from (p, q) if there exists r ∈ [n] such that (p, r) ∈ E(G) and (r, q) ∈
E(H). We easily see that G ◦H is a communication graph and, because of the self-loops,
E(G) ∪ E(H) ⊆ E(G ◦H).

A communication pattern is a sequence (G(k))k>1 of communication graphs. For a
given communication pattern, Inp(k) and Outp(k) stand for Inp(G(k)) and Outp(G(k)),
respectively.

Each process p has a local state sp the value of which at the end of round k > 1 is denoted
by sp(k). Process p’s initial state, i.e., its state at the beginning of round 1, is denoted by sp(0).
Let the global state at the end of round k be the collection s(k) = (sp(k))p∈[n]. The execution
of an algorithm from global initial state s(0), with communication pattern (G(k))k>1 is the
unique sequence (s(k))k>0 of global states defined as follows: for each round k > 1, process p
sends sp(k−1) to all the processes in Outp(k), receives sq(k−1) from each process q in Inp(k),
and computes sp(k) from the incoming messages, according to the algorithm’s transition
function.

When the structure of states allows each process to record and to relay information it has
received during any period of K rounds for some positive integer K, we may be led to modify
time-scale and to consider blocks of K consecutive rounds, called macro-rounds: macro-round
` is the sequence of rounds (` − 1)K + 1, . . . , `K and the corresponding information flow
graph, called communication graph at macro-round `, is the product of the communication
graphs G((`− 1)K + 1) ◦ . . . ◦G(`K).

2.1 Approximate consensus
A crucial problem in distributed systems is to achieve agreement among local process states
from arbitrary initial local states. It is a well-known fact that this goal is not easily achievable
in the context of dynamic network changes [26, 8], and restrictions on communication patterns
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are required for that. We define a network model as a non-empty set N of communication
graphs, those that may occur in communication patterns.

We now consider the above round-based algorithms in which the local state of process p
contains two variables xp and decp. Initially the range of xp is [0, 1] and decp = ⊥ (which
informally means that p has not decided yet).1 Process p is allowed to set decp to the current
value of xp, and so to a value v different from ⊥, only once; in that case we say that p
decides v.

For any ε > 0, an algorithm achieves ε-agreement with communication pattern (G(k))k>1
if each execution from a global initial state as specified above and with the communication
pattern (G(k))k>1 fulfills the following three conditions:
ε-Agreement. The decision values of any two processes are within ε.
Validity. All decided values are in the range of the initial values of processes.
Termination. All processes eventually decide.

An algorithm solves approximate consensus in a network model N if for any ε > 0, it achieves
ε-agreement with each communication pattern formed with graphs all in N. It solves exact
consensus in N if f it achieves 0-agreement with each communication pattern with graphs
in N.

In a previous paper [8], we proved the following characterization of network models in
which approximate consensus is solvable:

I Theorem 1 ([8]). The approximate consensus problem is solvable in a network model N
if and only if each graph in N has a rooted spanning tree.

2.2 Averaging algorithms
We focus on averaging algorithms in which at each round k, every process p updates xp
to some weighted average of the values it has just received: formally, if mp(k − 1) is the
minimum of the values {xq(k − 1) | q ∈ Inp(k)} received by p in round k and Mp(k − 1) is
its maximum, then

mp(k − 1) 6 xp(k) 6Mp(k − 1) .

In other words, at each round k, every process adopts a new value within the interval formed
by the values of its incoming neighbors in the communication graph G(k).

Since we strive for distributed implementations of averaging algorithms, weights in the
average update rule of process p are required to be locally computable by p. They may
depend only on the set of values received by p at round k, as is the case, for instance, with
the update rule of the mean-value algorithm:

xp(k) = 1
|Vp(k)|

∑
v∈Vp(k)

v (1)

where Vp(k) = {xq(k− 1) | q ∈ Inp(k)}. In contrast, even in anonymous networks, weights in
the update rule for p may depend on the multiset of values received by p at round k counted
with their multiplicities: as an example, p’s update rule in the equal-neighbor algorithm is
given by:

xp(k) = 1
| Inp(k)|

∑
q∈Inp(k)

xq(k − 1) . (2)

1 In the case of binary consensus, xp is restricted to be initially from {0, 1}.

ICALP 2016
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Observe that the decision rule is not specified in the above definition of averaging
algorithms: the decision time immediately follows from the number of rounds that is proven
to be sufficient to reach ε-agreement.

Let % ∈]0, 1/2]; an averaging algorithm is %-safe in N if at any round k of each of its
executions with communication patterns in N , each process adopts a new value within the
interval formed by its neighbors in G(k) not too close to the boundary:

%Mp(k − 1) + (1− %)mp(k − 1) 6 xp(k) 6 (1− %)Mp(k − 1) + %mp(k − 1) .

Clearly if an averaging algorithm is %-safe, then it is %′-safe for any %′ 6 %. We also easily
check the following property of the equal-neighbor and mean-value algorithms.

I Proposition 2. In any network model with n processes, the equal-neighbor algorithm and
the mean-value algorithm are both (1/n)-safe.

Finally, an averaging algorithm is α-contracting in N if at each round k of any of its
executions with communication patterns in N , we have

δ
(
x(k)

)
6 α δ

(
x(k − 1)

)
where δ is the seminorm on Rn defined by δ(x) = maxp(xp)−minp(xp).

I Proposition 3. In any network model, every α-contracting averaging algorithm with
α ∈ [0, 1[ solves approximate consensus and achieves ε-agreement in

⌈
log 1

α

( 1
ε

)⌉
rounds.

3 Averaging algorithms, nonsplitness, and contraction rates

In a previous paper [8], we proved solvability of approximate consensus in rooted network
models by a reduction to nonsplit network models: a directed graph is nonsplit if any two
nodes have a common incoming neighbor. The crucial point of nonsplitness lies in the
following result:

I Theorem 4. In a nonsplit network model, a %-safe averaging algorithm is (1−%)-contracting.
Thus it solves approximate consensus and achieves ε-agreement in

⌈
log 1

1−%

( 1
ε

)⌉
rounds.

Combined with Proposition 2, we obtain an elementary proof of the classical result [4, 7]
that approximate consensus is solvable in rooted network models, which does not make use
anymore of Dobrushin’s coefficients of scrambling matrices [14], which can be defined as
δ(A) = supδ(x) 6=0 δ(Ax)/δ(x).

As an immediate consequence of Theorem 4, we deduce that any %-safe algorithm is at
best (1/2)-contracting since by definition the safety coefficient % cannot be larger than 1/2.
Indeed, in Section 4 we shall present an averaging algorithm that is (1/2)-safe in any nonsplit
network model. But do there exist other averaging algorithms with a contraction rate less
than 1/2? As stated in the following theorem, the answer is no in the network model of
nonsplit communication graphs, except in the case of two processes for which the best
contraction rate is 1/3.

I Theorem 5. In the network model of nonsplit communication graphs with n processes,
there is no averaging algorithm that is α-contracting for any α > 1/3 if n = 2 and for any
α > 1/2 if n > 3.

Both lower bounds in Theorem 5 are tight. Indeed the midpoint algorithm that we will
introduce in Section 4.3 is (1/2)-safe, and so (1/2)-contracting in the network model of
nonsplit communication graphs. For a two process network, we check that Algorithm 1 has a
contraction rate of 1/3.
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Algorithm 1 Averaging algorithm for two processes with contraction rate 1/3
Initialization:
1: xp ∈ [0, 1]

In round k > 1 do:
2: send xp to other process and receive xq if (q, p) ∈ E(k)
3: if xq was received then
4: xp ← xp/3 + 2xq/3
5: end if

4 Speedup by amortization

In [8] we proved the following reduction from rooted to nonsplit network models to show
that averaging algorithms solve approximate consensus in exponential time.

I Proposition 6 ([8]). Every product of n− 1 rooted graphs with n nodes and self-loops at
all nodes is nonsplit.

We next show that one can in fact push this reduction to the extreme, obtaining
significantly faster algorithms: Proposition 6 and Theorem 4 suggest to consider a new
type of distributed algorithms, which we call amortized averaging algorithms, in which each
process repeatedly first collects values during n− 1 rounds, and then computes a weighted
average of values it has just collected. In other words, an amortized averaging algorithm is
an averaging algorithm with the granularity of macro-rounds consisting in blocks of n− 1
consecutive rounds.

We now make this notion more precise. First let us fix some notation. Macro-round ` is
the sequence of rounds (`− 1)(n− 1) + 1, . . . , `(n− 1). We consider algorithms for which
every variable xp is updated only at the end of macro-rounds; xp(`) will denote the value
of xp at the end of round `(n− 1), as no confusion can arise. Given some communication
pattern (G(k))k>1, the communication graph at macro-round ` is equal to:

Ĝ(`) = G((`− 1)(n− 1) + 1) ◦ . . . ◦G(`(n− 1)) .

Each process p can record the set of values it has received during macro-round `, namely the
set Vp(`) = {xq(` − 1) | q ∈ Inp

(
Ĝ(`)

)
}, but in anonymous networks, p cannot determine

the set of its incoming neighbors in Ĝ(`). This is in contrast to networks with unique
process identifiers where each process p can determine the membership of Inp

(
Ĝ(`)

)
by

piggybacking the name of the sender onto every message, and so can compute the set
Wp(`) = {

(
q, xq(`− 1)

)
| q ∈ Inp

(
Ĝ(`)

)
}. Each process can then determine the multiset of

values that it has received during a macro-round, counted with their multiplicities.
In consequence in any anonymous network, we can define the amortized version of an

averaging algorithm A with weights in update rules that depend only on the sets of received
values: at the end of every macro-round `, each process p adopts a new value by applying
the same update rule as in A with the macro-set Vp(`). Based on the above discussion, this
definition can be extended to averaging algorithms with update rules involving the sets of
incoming neighbors when processes have unique identifiers. For instance, the amortized
version of the mean-value algorithm is defined in any anonymous network while the amortized
equal-neighbor algorithm requires to have unique process identifiers.

In both cases, the new value adopted by process p at the end of macro-round ` lies within
the interval formed by the values of its incoming neighbors in the communication graph Ĝ(`):
if m̂p(`− 1) is the minimum of the values in Vp(`) and M̂p(`− 1) is the maximum, then

m̂p(`− 1) 6 xp(`) 6 M̂p(`− 1) .

ICALP 2016
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Algorithm 2 Amortized equal-neighbor algorithm
Initialization:
1: xp ∈ [0, 1] and Wp ← {(p, xp)}

In round k > 1 do:
2: send Wp to all processes in Outp(k) and receive Wq from all processes q in Inp(k)
3: Wp ←

⋃
q∈Inp(k) Wq

4: if k ≡ 0 mod n− 1 then
5: xp ← 1

|Wp|

∑
(q,v)∈Wp

v

6: Wp ← {(p, xp)}
7: end if

If the original averaging algorithm is %-safe, then we have the additional guarantee that

%M̂p(`− 1) + (1− %)m̂p(`− 1) 6 xp(`) 6 (1− %)M̂p(`− 1) + % m̂p(`− 1) .

We can then combine Proposition 6 and Theorem 4 to derive the following central result for
amortized averaging algorithms.

I Theorem 7. In any rooted network model, the amortized version of a %-safe averaging
algorithm solves approximate consensus and achieves ε-agreement in (n − 1)

⌈
log 1

1−%

( 1
ε

)⌉
rounds.

In order to fix decision times, we have assumed from the beginning that each process
knows the number n of processes or at least a common upper bound on n. However, regarding
the asymptotic consensus problem, obtained by substituting limit values for decision values in
the specification of approximate consensus, this common knowledge on n is actually useless
for averaging algorithms.

In contrast, update rules in amortized averaging algorithms require that the number of
processes in the network is known to all processes. In other words, amortized averaging
algorithms are defined only under the assumption of this common knowledge in the network,
even for solving asymptotic consensus. In fact, we can adapt the definition of amortized
averaging algorithms to the case where n is a fixed parameter and then, because of the
self-loops, obtain that Theorem 7 still holds when n is only an upper bound on the number
of processes.

4.1 A quadratic-time algorithm in rooted networks with process
identifiers

In [8], we proposed an approximate consensus algorithm with a quadratic decision time.
The algorithm (cf. Algorithm 2) does not work in anonymous networks as it uses process
identifiers so that each process can determine whether some value that it has received several
times during a macro-round is originated from the same process or not.

The update rule (line 5) rewrites as:

xp(`) = 1∣∣ Inp (Ĝ(`)
)
}
∣∣ ∑
q∈Inp

(
Ĝ(`)
) xq(`− 1) .

Hence Algorithm 2 is actually the amortized version of the equal-neighbor algorithm.
From Proposition 2 and Theorem 7, it follows that Algorithm 2 solves approximate

consensus. Moreover, because of the inequality log(1 − a) 6 −a when 0 6 a and because
δ (x(0)) 6 1, it follows that if ` > n log 1

ε , then δ (x(`)) 6 ε. Hence Algorithm 2 achieves
ε-agreement in O

(
n2 log 1

ε

)
rounds.
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4.2 A quadratic-time algorithm in anonymous rooted networks
Interestingly, Algorithm 2 still works when processes just collect values without taking into
account processes from which they originate.

Algorithm 3 Amortized mean-value algorithm
Initialization:
1: xp ∈ [0, 1]
2: Vp ⊆ V , initially ∅

In round k > 1 do:
3: send Vp to all processes in Outp(k) and receive Vq from all processes q in Inp(k)
4: Vp ←

⋃
q∈Inp(k) Vq

5: if k ≡ 0 mod n− 1 then
6: xp ← 1

|Vp|

∑
v∈Vp

v

7: Vp ← ∅
8: end if

At each macro-round `, the update rule in the resulting algorithm for anonymous networks
(cf. Algorithm 3, line 6) coincides with the update rule in the mean-value algorithm. In other
words, Algorithm 3 is the amortized version of the mean-value algorithm. Since the latter
algorithm is a (1/n)-safe averaging algorithm (Proposition 2), we may apply Theorem 7 and
obtain the following result.

I Theorem 8. In a rooted network model of n processes, the amortized mean-value algorithm
solves approximate consensus and achieves ε-agreement in O(n2 log 1

ε ) rounds.

4.3 A linear-time algorithm in anonymous rooted networks
We improve the above quadratic upper bound on decision times with a linear amortized
averaging algorithm which differs from our previous algorithm in the update rule: each
process adopts the midpoint of the range of values it has received during a macro-round (cf.
Algorithm 4).

Algorithm 4 Amortized midpoint algorithm
Initialization:
1: xp ∈ [0, 1]
2: mp ∈ [0, 1], initially xp

3: Mp ∈ [0, 1], initially xp

In round k > 1 do:
4: send (mp, Mp) to all processes in Outp(k) and receive (mq, Mq) from all processes q in Inp(k)
5: mp ← min

{
mq | q ∈ Inp(k)

}
6: Mp ← max

{
Mq | q ∈ Inp(k)

}
7: if k ≡ 0 mod n− 1 then
8: xp ← (mp + Mp)/2
9: mp ← xp

10: Mp ← xp

11: end if

Let us now consider the midpoint algorithm that is the simple averaging algorithm with
the midpoint update rule. In other words, Algorithm 4 is the amortized version of the
midpoint algorithm.

By definition, the midpoint algorithm is (1/2)-safe. By Theorem 4, it follows that this
algorithm is a (1/2)-contracting approximate consensus algorithm in any nonsplit network

ICALP 2016
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model, with a constant decision time. This improves the linear time complexity of the equal
neighbor averaging algorithm [8] for this type of network models and demonstrates that the
1/2 lower bound in Theorem 5 for networks with n > 3 processes is tight.

Furthermore Theorem 7 implies that Algorithm 4 solves approximate consensus in any
rooted network model with a decision time in O(n log 1

ε ) rounds.

I Theorem 9. In a rooted network model of n processes, the amortized midpoint algorithm
solves approximate consensus and achieves ε-agreement in (n− 1)

⌈
log2

1
ε

⌉
rounds.

Hence the amortized mean-value algorithm and the amortized midpoint algorithm both
work in any anonymous network model, under the assumption that the number of processes
is known to all processes. However while the first algorithm has quadratic decision times and
requires each process to store n values per round and to transmit n values per message, the
amortized midpoint algorithm solves approximate consensus in linear-time and with only a
constant number of (namely, two) values per process and per message.

5 Robustness of amortized averaging algorithms

In this section, we discuss the resiliency of our amortized averaging algorithms against a
wrong estimate of the number of processes or against a partial failure of the assumption that
communication graphs are permanently rooted.

Firstly consider some communication pattern in which only part of communication graphs
are rooted: suppose that N−1 communication graphs in any macro-round of n−1 consecutive
rounds are guaranteed to be rooted. Then there are at least n− 1 rooted communication
graphs in any sequence of L =

⌈
n−1
N−1

⌉
macro-rounds of length n− 1, and every product of L

communication graphs of macro-rounds is nonsplit.
Secondly suppose that the network model is indeed rooted but processes do not know

the exact number n of processes and only knows an estimate N on n. Macro-rounds in the
amortized averaging algorithms then consist of N − 1 rounds (instead of n− 1), and so the
cumulative communication graphs in such macro-rounds may be not nonsplit when N < n.
However the communication graph over any block of L =

⌈
n−1
N−1

⌉
macro-rounds of length

N − 1 is nonsplit.
In both cases, the above discussion leads to introduce the notion of K-nonsplit network

model defined as any network model N such that every product of K communication graphs
from N is nonsplit. Theorem 4 can then be extended as follows:

I Theorem 10. In a K-nonsplit network model, a %-safe averaging algorithm is (1− %K)-
contracting over each block of K consecutive rounds, i.e., for every non negative integer k,
we have

δ
(
x(k +K)

)
6 (1− %K) δ

(
x(k)

)
.

As an immediate corollary of Theorem 10, we obtain that the amortized version of a
%-safe averaging algorithm is resilient against a wrong estimate of the number of processes
or against a partial failure of the assumption of a rooted network model, and its decision
times are multiplied by a factor in O

(
L%−L

)
. Note that the theorem measures the number

of macro-rounds, and not the number of rounds.

I Theorem 11. The amortized version of a %-safe averaging algorithm solves approximate
consensus even with an erroneous number of processes or with a communication pattern
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where only part of communication graphs are rooted. Moreover it achieves ε-agreement in
O
(
L%−L · log

( 1
ε

))
macro-rounds if N denotes the estimate on process number or if only

N − 1 rounds in each block of n − 1 consecutive rounds are guaranteed to have a rooted
communication graph and where L =

⌈
n−1
N−1

⌉
.

6 Quantization

In this section, we take into account the additional constraint that processes can only store
and transmit quantized values. This model provides a good approximation for networks with
storage constraints or with finite bandwidth channels.

We include this constraint by quantizing each averaging update rule. For that, we fix
some positive integer Q and choose a rounding function, denoted [ . ], which rounds down (or
rounds up) to the nearest multiple of 1/Q. Then the quantized update rule for process p at
round k writes

xp(k) =

 ∑
q∈Inp(k)

wqp(k)xq(k − 1)

 (3)

where the wqp(k) denote the weights in the average of the original algorithm. Besides we
assume that all initial values are multiples of 1/Q.

6.1 Quantization and midpoint
Nedić et al. [22] proved that in any strongly connected network model, every quantized
averaging algorithm with the update rule (3) solves exact consensus (and so approximate
consensus). Because of the impossibility result for exact consensus [8], their result does
not hold if the strong connectivity assumption is weakened into the one of rooted network
models.

For the same reason, if ε < 1/Q, then ε-consensus cannot be generally achieved in a
rooted network model by a quantized averaging algorithm or its amortized version. In this
section, we prove that the quantization of the amortized midpoint algorithm indeed achieves
1/Q-agreement in any rooted network model.

I Theorem 12. In a rooted network model, quantization of the amortized midpoint algorithm
achieves 1/Q-agreement by round (n− 1)

(⌊
log2(Q− 2)

⌋
+ 2
)
. Moreover in every execution,

the sequence of values of every process p converges to a limit x∗p that is a multiple of 1/Q in
finite time, and for every pair of processes p, q, we have either x∗p = x∗q or

∣∣x∗p − x∗q∣∣ = 1/Q.

We see that the decision times of the quantized and the non-quantized versions of the
amortized midpoint algorithm are in the same order for ε = 1/Q. Further, one can show that
for ε > 2/Q, ε-agreement is achieved earlier, namely in round (n − 1)

(⌊
log2

Q−2
Qε−2

⌋
+ 1
)
.

When increasing precision, i.e., for Q→∞, this reduces to O(n log 1
ε ).

6.2 Approximate consensus versus 2-set consensus
We now consider the 2-set consensus problem which is another natural generalization of
the consensus problem. Instead of requiring that processes agree to within any positive
real-valued tolerance ε, processes have to decide on at most 2 different values:
Agreement. There are at most two different decision values.
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Formally, each process starts with an input value from the set V of multiples of 1/Q
and has to output a decision value from V in such a way that the termination and validity
conditions in the consensus specification as well as the above agreement condition are satisfied.

The 2-set consensus problem naturally reduces to approximate consensus: processes
round off their 1/Q-agreement output values. Unfortunately, the use of averaging procedures
to solve approximate consensus leads processes to exchange values out of the set V in the
resulting 2-set consensus algorithms. The quantized amortized midpoint algorithm allows us
to overcome this problem, and Theorem 12 shows that in any rooted network model, this
algorithm achieves 2-set consensus in (n− 1)

(⌊
log2(Q− 2)

⌋
+ 2
)
rounds.

The above discussion shows that the 2-set consensus problem is solvable in a dynamic
network model if all the communication graphs are rooted. In particular, 2-set consensus is
solvable in a asynchronous complete network with a minority of faulty senders since nonsplit
rounds can be implemented in this model. Combined with the impossibility result in [13] in
the case of a strict majority of faulty processes, we obtain an exact characterization of the
sender faulty models for which 2-set consensus is solvable in asynchronous systems if the
number of processes n is odd and a small gap (namely n/2 faulty processes) when n is even.

Our positive result can be interestingly compared with the 2 faulty processes boundary [3,
17, 25] between possibility and impossibility of the original (and stronger) 2-set consensus
problem [10] where decision values ought to be initial values, instead of being in the range of
the initial values. That points out the crucial role of the validity condition on the solvability
of 2-set consensus.

7 Conclusion

This paper presented a linear-time approximate consensus algorithm in rooted dynamic
network models. For that, we introduced the amortization technique to speed up classical
averaging algorithms from exponential to polynomial time, while preserving their inherent
robustness. Careful study of the properties that make averaging algorithms contracting lead
us to identify the midpoint algorithm as having the optimal contraction rate of 1/2. Central
to our analysis of the amortized midpoint algorithm was the switch from the commonly
employed matrix-based to a value-based view. An important property of the amortized
midpoint algorithm is that it can be used almost unaltered with quantized values, which
allows to decide on at most two neighboring values, thereby a fortiori solving 2-set consensus.
Interestingly, it only needs to store and send two values in each round, which makes it
space-efficient and viable for implementation.
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