
HAL Id: hal-01395529
https://hal.science/hal-01395529v1

Preprint submitted on 10 Nov 2016 (v1), last revised 10 Sep 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An equilibrated fluxes approach to the Certified Descent
Algorithm for shape optimization using conforming

Finite Element and Discontinuous Galerkin
discretizations
Matteo Giacomini

To cite this version:
Matteo Giacomini. An equilibrated fluxes approach to the Certified Descent Algorithm for shape
optimization using conforming Finite Element and Discontinuous Galerkin discretizations. 2016. �hal-
01395529v1�

https://hal.science/hal-01395529v1
https://hal.archives-ouvertes.fr


An equilibrated fluxes approach to the Certified Descent Algorithm

for shape optimization using conforming Finite Element and

Discontinuous Galerkin discretizations

M. Giacomini ∗ ,†

Abstract

The Certified Descent Algorithm (CDA) is a gradient-based method for shape optimization
which certifies that the direction computed using the shape gradient is a genuine descent direction
for the objective functional under analysis. It relies on the computation of an upper bound of
the error introduced by the Finite Element approximation of the shape gradient. In this paper,
we present a goal-oriented error estimator which depends solely on local quantities and is fully-
computable. By means of the equilibrated fluxes approach, we construct a unified strategy valid
for both conforming Finite Element approximations and Discontinuous Galerkin discretizations.
The new variant of the CDA is tested on the inverse identification problem of Electrical Impedance
Tomography: both its ability to identify a genuine descent direction at each iteration and its reliable
stopping criterion are confirmed.

Keywords: Shape optimization; Certified Descent Algorithm; A posteriori error estimator; Equilibrated

fluxes; Conforming Finite Element; Discontinuous Galerkin; Electrical Impedance Tomography

1 Introduction

Shape optimization problems - that is optimization problems featuring shape-dependent functionals
- have been successfully tackled in the literature by means of gradient-based methods. The major
problem of the existing strategies to solve shape optimization problems is represented by the choice
of the stopping criterion when moving from the continuous framework to its discrete counterpart, e.g.
by means of a Finite Element approximation. As a matter of fact, stopping criteria based on the
norm of the shape gradient may never be fulfilled if the tolerance is chosen too small with respect to
the discretization. In order to circumvent this issue, in [30] we proposed a strategy to solve shape
optimization problems based on a certification procedure. Basic idea relies on the derivation of an
upper bound of the error due to the approximation of the shape gradient to verify at each iteration
that the direction computed using the discretized shape gradient is a genuine descent direction for the
objective functional. The resulting algorithm obtained by coupling a descent method based on the
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shape gradient with an a posteriori error estimator proved to automatically stop after generating a
sequence of shapes that improved the value of the objective functional at each iteration.

Several works on the Adaptive Finite Element Method (AFEM) for shape optimization may be
found in the literature [5, 39, 51]. As a matter of fact, the idea of coupling shape optimization and
a posteriori error estimators is not new. It can be traced back to the work of Banichuk et al. [8]
and has been later extended by Morin et al. [44]: in these works, the authors split the error into a
component due to the approximation of the geometry and another one related to the discretization
of the Boundary Value Problem. Concerning the latter, a key aspect of a good estimator is the low
computational cost associated to its derivation whence the great interest in estimators constructed
using solely local quantities. The construction of a posteriori error estimators in the context of
Finite Element approximations is another extensively investigated subject and we refer the reader
to [3, 48, 54] for a complete introduction to the field. In this work we consider a strategy - known
as equilibrated fluxes approach - to derive fully-computable guaranteed a posteriori error estimators
for both conforming and Discontinuous Galerkin discretizations. Within the framework of conforming
Finite Element, local H(div)-reconstructions leading to fully-computable upper bounds have been
studied by several authors [12, 22, 43, 46, 55]. Moreover, we refer to [2, 20, 26, 40] for the main results
obtained in recent years on equilibrated fluxes for Discontinuous Galerkin formulations.

The present paper starts from the framework introduced in the aforementioned work [30], where
we neglect the error due to the approximation of the geometry in order to focus on the component
arising from the discretization of the governing equation. The novelty of our approach resides in
the certification procedure for the descent direction, for which fully-computable a posteriori error
estimators are required. As a matter of fact, to the best of our knowledge all the works in the
literature on AFEM for shape optimization focus on the qualitative information provided by the error
estimators to drive mesh adaptation and do not exploit the quantitative information they carry to
improve and automatize the overall optimization strategy.
To construct the required fully-computable a posteriori error estimators, we follow the approach
proposed by Ern and Vohraĺık in [28]: after presenting a thorough review of the recent developments
in the field, the authors depict a unified framework for the construction and the analysis of a posteriori
error estimators based on equilibrated fluxes. Thus, on the one hand, for the conforming Finite
Element approximation we construct the equilibrated fluxes by introducing the mixed Finite Element
formulation of a local Boundary Value Problem with Neumann boundary conditions over patches of
elements. On the other hand, for the Discontinuous Galerkin discretization we reconstruct the fluxes
element-wise in the Raviart-Thomas Finite Element space by specifying the values of the Degrees of
Freedom using an average of the gradient of the solution at the interfaces. We especially highlight
the interest of this latter approach for the study of the problem of Electrical Impedance Tomography
(EIT). As a matter of fact, there has been a growing interest in recent years for a particular class
of Discontinuous Galerkin methods - known as Symmetric Weighted Interior Penalty Discontinuous
Galerkin - for problems featuring an inhomogeneous diffusion tensor [13, 27] as the one appearing in
the EIT.

The rest of the paper is organized as follows. In section 2, we recall the general formulation of
a shape optimization problem, the so-called Boundary Variation Algorithm and its improved version
known as Certified Descent Algorithm. Then, we discuss the strategy to construct the a posteriori
estimator of the error in the shape gradient (Section 3) and we introduce the problem of Electrical
Impedance Tomography (Section 4). In section 5 and 6 we provide the details of the discretized
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formulations and the equilibrated fluxes estimators respectively for the conforming Finite Element
and the Discontinuous Galerkin approximations. Eventually, in section 7 we present some numerical
tests of the application of the CDA featuring the equilibrated fluxes estimators to the EIT problem
and section 8 summarizes our results.

2 Gradient-based methods for shape optimization

In this section, we recall the abstract formulation of a shape optimization problem and a gradient-based
method to solve it. Let Ω ⊂ R

d (d ≥ 2) be an open domain with Lipschitz boundary ∂Ω. We introduce
a separable Hilbert space VΩ depending on Ω, a continuous bilinear form aΩ(·, ·) : VΩ × VΩ → R and
a continuous linear form FΩ(·) on VΩ. We define the following state problem in Ω: we seek uΩ ∈ VΩ
such that

aΩ(uΩ, δu) = FΩ(δu) ∀δu ∈ VΩ. (2.1)

Under the assumption that the bilinear form satisfies the inf-sup condition

inf
w∈VΩ

sup
v∈VΩ

aΩ(v,w)

‖v‖‖w‖
= inf

v∈VΩ

sup
w∈VΩ

aΩ(v,w)

‖v‖‖w‖
> 0

problem (2.1) has a unique solution uΩ.
Let us consider a cost functional J(Ω) = j(Ω, uΩ) which depends on the domain Ω itself and on

the solution uΩ of the state equation. We denote the set of admissible domains in R
d with Uad and

we introduce the following problem for the minimization of the functional J(Ω):

min
Ω∈Uad

J(Ω). (2.2)

Hence, we seek a domain Ω that minimizes the functional j(Ω, u) under the constraint that u is solution
of the state equation (2.1). In the literature, (2.2) is called a shape optimization problem, that is a
PDE-constrained optimization problem of a shape-dependent functional.

2.1 Optimize-then-Discretize: the Boundary Variation Algorithm

This work exploits a gradient-based method for the numerical approximation of problem (2.2). In
particular, two main approaches have been proposed in the literature: the Discretize-then-Optimize
strategy and the Optimize-then-Discretize one. The former relies on the idea of computing a discretized
version of the objective functional and subsequently constructing its gradient to run the optimization
procedure. The latter works the other way around, by first computing the gradient of the cost
functional and then discretizing it for the optimization loop. The Discretize-then-Optimize strategy
has two main drawbacks: on the one hand, the discretized functional may not be differentiable, thus
limiting the possibility of using a gradient method; on the other hand, this approach may suffer from
severe mesh dependency. Hence, we consider an Optimize-then-Discretize approach for problem (2.2)
by studying a variant of the Boundary Variation Algorithm (BVA) discussed in [6]: this method
relies on the computation of the so-called shape gradient which arises from the differentiation of the
functional with respect to the shape (cf. section 2.1.1).

The key aspect of the BVA is the computation of a descent direction for J(Ω), that is we seek
a direction θ along which the objective functional decreases. Once a descent direction has been
identified, the domain is deformed by means of a perturbation of the identity map (Id +θ)Ω.
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2.1.1 Differentiation with respect to the shape

Let X ⊂W 1,∞(Ω;Rd) be a Banach space and θ ∈ X be an admissible smooth deformation of Ω. The
cost functional J(Ω) is said to be X-differentiable at Ω ∈ Uad if there exists a continuous linear form
dJ(Ω) on X such that ∀θ ∈ X

J((Id +θ)Ω) = J(Ω) + 〈dJ(Ω),θ〉 + o(θ).

Several approaches are feasible to compute the shape gradient and we refer to [30] for a brief review of
the existing techniques. In this work, we consider the material derivative approach [53]. Let us define
a diffeomorphism ϕ : Rd → R

d such that every admissible set in Uad may be written as Ωϕ := ϕ(Ω).
We introduce the Lagrangian functional, defined for every admissible open set Ω and every u, p ∈ VΩ
by

L(Ω, u, p) = j(Ω, u) + aΩ(u, p) − FΩ(p). (2.3)

We define the following adjoint problem, in which we seek pΩ ∈ VΩ such that

aΩ(δp, pΩ) +

〈
∂j

∂u
(Ω, uΩ), δp

〉
= 0 ∀δp ∈ VΩ. (2.4)

Moreover, all functions uϕ, pϕ ∈ VΩϕ defined on the deformed domain Ωϕ may be mapped to the fixed
reference domain Ω as follows:

uϕ := u ◦ ϕ−1 , u ∈ VΩ,

pϕ := p ◦ ϕ−1 , p ∈ VΩ.

We admit that u 7→ uϕ is a one-to-one map between VΩ and VΩϕ . The Lagrangian (2.3) is said to

admit a material derivative if there exists a linear form ∂L
∂ϕ

such that

L(Ωϕ, uϕ, pϕ) = L(Ω, u, p) +

〈
∂L

∂ϕ
(Ω, u, p),θ

〉
+ o(θ)

where ϕ = Id +θ. Provided that uϕ is differentiable with respect to ϕ at ϕ = Id in VΩϕ , from the fast
derivation method of Céa [17] we obtain the following expression for the shape gradient:

〈dJ(Ω),θ〉 =

〈
∂L

∂ϕ
(Ω, uΩ, pΩ),θ

〉
. (2.5)

For the sake of simplicity, for the rest of this paper, we consider X to be a Hilbert space. Under this
assumption, we may define the following variational problem to compute a descent direction for J(Ω):
we seek θ ∈ X such that

(θ, δθ)X + 〈dJ(Ω), δθ〉 = 0 ∀δθ ∈ X. (2.6)

2.2 The Certified Descent Algorithm

In this section, we introduce the Finite Element approximations of the state problem (2.1) and adjoint
problem (2.4) and we present the conditions that the discretized direction θh has to fulfill in order to
be a genuine descent direction for the functional J(Ω).
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First, we define the bilinear form ahΩ(·, ·) and the linear form F h
Ω(·) associated with the following

discrete state problem: we seek uhΩ ∈ V h,ℓ
Ω such that

ahΩ(uhΩ, δu
h) = F h

Ω(δuh) ∀δuh ∈ V h,ℓ
Ω (2.7)

where V h,ℓ
Ω is an appropriate Finite Element or Discontinuous Galerkin approximation space featuring

basis functions of degree ℓ. Following the same procedure, we introduce the discrete adjoint problem
which consists in seeking phΩ ∈ V h,ℓ

Ω such that

ahΩ(δph, phΩ) +

〈
∂j

∂u
(Ω, uhΩ), δph

〉
= 0 ∀δph ∈ V h,ℓ

Ω . (2.8)

The details on the approximation space V h,ℓ
Ω will be discussed in section 5 for the case of conforming

Finite Element and in section 6 for the Discontinuous Galerkin approximation.
We may now introduce the discretized shape gradient 〈dhJ(Ω), δθ〉 defined as

〈dhJ(Ω), δθ〉 :=

〈
∂L

∂ϕ
(Ω, uhΩ, p

h
Ω), δθ

〉
. (2.9)

The discretized direction θh ∈ X is computed as the solution of problem (2.6) substituting dJ(Ω) by
dhJ(Ω). We recall the following definition:

Definition 2.1. A direction θ is said to be a genuine descent direction for the functional J(Ω) if

〈dJ(Ω),θ〉 < 0. (2.10)

It is straightforward to observe that a direction θ fulfilling (2.10) is such that J(Ω) decreases along θ,
that is J((Id +θ)Ω) < J(Ω).
Nevertheless, due to the numerical error introduced by the Finite Element discretization, even though
〈dhJ(Ω),θh〉 < 0, θh is not necessarily a genuine descent direction for the functional J(Ω). In the
following subsection, we introduce the notion of certified descent direction and we describe a procedure
that allows to identify a genuine descent direction for J(Ω) by accounting for the error in the shape
gradient.

2.2.1 Certification of a genuine descent direction

Let us define the error Eh due to the approximation of the shape gradient as follows:

Eh := 〈dJ(Ω) − dhJ(Ω),θh〉. (2.11)

From (2.11), it follows that
〈dJ(Ω),θh〉 = 〈dhJ(Ω),θh〉 +Eh. (2.12)

As stated before, θh is constructed starting from (2.6) and substituting the expression of the shape
gradient with its discrete counterpart (2.9). This results in a discretized direction θh such that
〈dhJ(Ω),θh〉 < 0. Nevertheless, in order for θh to be a descent direction for the objective functional,
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condition (2.10) has to be fulfilled thus the quantity Eh in (2.12) has to be accounted for. Within this
framework, we obtain the following condition on θh:

〈dhJ(Ω),θh〉 + Eh < 0. (2.13)

Nevertheless, this condition does not imply that θh is a genuine descent direction for J(Ω) since
the quantity Eh may be either positive or negative. In order to derive a relationship that stands
independently of the sign of Eh and since no a priori information on the aforementioned sign is
available, we modify (2.13) by introducing the absolute value of the error in the shape gradient:

〈dhJ(Ω),θh〉 + Eh ≤ 〈dhJ(Ω),θh〉 + |Eh| < 0. (2.14)

We may now introduce the following definition:

Definition 2.2. Let E be the upper bound of the error |Eh| in the shape gradient. A direction θh is
said to be a certified descent direction for the functional J(Ω) if

〈dhJ(Ω),θh〉 + E < 0. (2.15)

The expression certified is due to the fact that a direction constructed within this framework is verified
to be a genuine descent direction for the functional J(Ω). As a matter of fact, it is straightforward to
observe that if θh fulfills (2.15), then it verifies (2.10) as well.

Remark 2.3. It is important to observe that a direction fulfilling (2.15) is a genuine descent direction
for J(Ω), whether it is the solution of equation (2.6) or not. This is extremely important since
the computation of the descent direction is done through the discretization of the aforementioned
variational problem, that is θh is only an approximation of the direction θ solution of (2.6).

In [29, 30], we coupled the certification procedure to the Boundary Variation Algorithm and we
derived a new gradient-based method for shape optimization named Certified Descent Algorithm
(CDA - script 1). On the one hand, the computation of the upper bound of the numerical error in the
shape gradient provides useful information to identify a certified descent direction thus improving the
objective functional at each iteration of the optimization strategy. On the other hand, owing to the
quantitative information encapsulated in E the CDA features a guaranteed stopping criterion for the
overall optimization procedure.
The key point of this algorithm is the derivation of a fully-computable guaranteed estimator of the error
in the shape gradient. In particular, in section 3 we introduce an approach based on the equilibrated
fluxes method which relies solely on the computation of local quantities.

2.2.2 The CDA workflow

At each iteration, the algorithm solves the state and adjoint problems and computes a descent direction
θh. Then, an upper bound of the numerical error in the shape gradient along the direction θh is derived.
If condition (2.15) is not fulfilled, the mesh is adapted in order to improve the error estimate. This
procedure is iterated until the direction θh is a certified descent direction for J(Ω). Once a certified
descent direction has been identified, we compute a step µ via an Armijo rule and the shape of the
domain is updated according to the computed perturbation of the identity Id +µθh. Eventually, a
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novel stopping criterion is proposed in order to use the information embedded in the error bound E
to derive a reliable condition to end the evolution of the algorithm.

A key aspect of the sketched procedure is the mesh adaptation routine that is performed if condition
(2.15) is not fulfilled. In order to reduce the quantity E at each iteration, we construct an indicator
based on the error in the shape gradient and we drive the mesh adaptation using the information
carried by the indicator itself. This strategy is known as goal-oriented mesh adaptation (cf. [49])
and aims to identify the areas of the domain that are mainly responsible for the error in the target
quantity and reducing it by means of a local refinement in order to limit the insertion of new Degrees
of Freedom.

Algorithm 1: The Certified Descent Algorithm

Given the domain Ω0, set tol > 0, j = 0 and iterate:

1. Solve the state problem in Ωj;

2. Solve the adjoint problem in Ωj;

3. Compute a descent direction θh
j ;

4. Compute an upper bound E of the numerical error Eh;

5. If 〈dhJ(Ωj),θ
h
j 〉 + E ≥ 0, refine the mesh and go to 1;

6. Identify an admissible step µj;

7. Update the shape Ωj+1 = (Id +µjθ
h
j )Ωj;

8. While |〈dhJ(Ωj),θ
h
j 〉| + E > tol, j = j + 1 and repeat.

3 Approximation error for the shape gradient

In this section, we present a strategy to construct a fully-computable guaranteed upper bound E of the
error Eh in the approximation of the shape gradient in order to practically implement the certification
procedure described in section 2.2.1.

3.1 Bound for the approximation error of a linear functional

Let us recall the framework described in [49] for the derivation of an estimate of the error in a bounded
linear functional. We consider a Quantity of Interest Q : VΩ → R which we aim to evaluate for the
function uΩ, solution of the state problem (2.1). We introduce the solution uhΩ of the corresponding
discretized problem (2.7) and we seek an estimate of the error in the target functional Q:

EQ := Q(uΩ) −Q(uhΩ) = Q(uΩ − uhΩ) (3.1)

where the first equality follows from the linearity of Q. We introduce an adjoint problem featuring
the quantity Q as right-hand side, that is we seek an influence function rΩ ∈ VΩ such that

aΩ(δr, rΩ) = Q(δr) ∀δr ∈ VΩ. (3.2)

We remark that problem (3.2) is well-posed owing to the Lax-Milgram theorem. The approximation
of (3.2) is obtained following the framework introduced in section 2.2 for the state problem. It is
well-known in the literature (cf. e.g. [4]) that in order to retrieve a sharp upper bound of the error in
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a Quantity of Interest, higher-order approximations should be employed for the solution of the adjoint
problem. Let ahΩ(·, ·) be the discrete bilinear form and V h,m

Ω the space of Finite Element (respectively

Discontinuous Galerkin) functions of degree m, m > ℓ. We seek rhΩ ∈ V h,m
Ω such that

ahΩ(δrh, rhΩ) = Q(δrh) ∀δrh ∈ V h,m
Ω . (3.3)

From (3.2) and (2.1) it is straightforward to observe that

FΩ(rΩ) = aΩ(uΩ, rΩ) = Q(uΩ). (3.4)

Thus, the following relationship between the error in the approximation of the target functional and
the solutions of the state and adjoint problems is derived:

EQ = Q(uΩ) −Q(uhΩ) = FΩ(rΩ) − ahΩ(uhΩ, r
h
Ω) = FΩ(rΩ) − ahΩ(uhΩ, rΩ) (3.5)

where the first equality follows from the approximation (3.3) of the adjoint problem (3.2) whereas the
justification of the last one exploits different properties when dealing with conforming Finite Element
or Discontinuous Galerkin approximations.
For the case of conforming Finite Element approximations, we have that ahΩ(·, ·) = aΩ(·, ·) and

aΩ(δrh, rΩ) = Q(δrh) stands for all δrh ∈ V h,m
Ω owing to (3.2) and the fact that the discretiza-

tion space V h,m
Ω is a subspace of VΩ. Thus the last equality in (3.5) reduces to the classical expression

of the residue of the state equation applied to the function rΩ:

Ru
Ω(rΩ) := FΩ(rΩ) − aΩ(uhΩ, rΩ).

On the contrary, when dealing with Discontinuous Galerkin formulations, the expression of the dis-
crete bilinear form also features the terms associated with the jumps of the discontinuous functions
and it cannot be identified with its continuous version. Within this framework, the last equality in
(3.5) stands if the numerical method used to discretize the adjoint problem is consistent, that is if

ahΩ(δrh, rΩ) = Q(δrh) ∀δrh ∈ V h,m
Ω . The adjoint consistency is equivalent to the usual Galerkin orthog-

onality property in Finite Element and we refer to [32] for more details on its role in the construction
of discretizations of optimal order in terms of target functionals. In section 6, we provide some details
on the Discontinuous Galerkin strategy chosen for the test case of Electrical Impedance Tomography
and we refer to [23] for a complete analysis of the numerical scheme.

3.2 Goal-oriented estimate of the error in the shape gradient

In order to apply the technique described in the previous section to the estimate of the error in the
shape gradient, we need to extend the previously introduced framework to the case of non-linear
Quantities of Interest. We rely on the approach in [31], by performing a linearization of the target
functional that leads to the introduction of the following linearized error Ẽh:

Eh =

〈
∂L

∂ϕ
(Ω, uΩ, pΩ) −

∂L

∂ϕ
(Ω, uhΩ, p

h
Ω),θh

〉

≃
∂2L

∂ϕ∂u
(Ω, uhΩ, p

h
Ω)[θh, uΩ − uhΩ] +

∂2L

∂ϕ∂p
(Ω, uhΩ, p

h
Ω)[θh, pΩ − phΩ] =: Ẽh.

(3.6)
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For the rest of this paper, we neglect the linearization error and we construct an estimator to evaluate
the error in the shape gradient by considering solely the information in Ẽh. In particular, we introduce
two adjoint problems associated with the terms on the right-hand side of (3.6) and we seek rΩ, sΩ ∈ VΩ
such that

aΩ(δr, rΩ) =
∂2L

∂ϕ∂u
(Ω, uhΩ, p

h
Ω)[θh, δr] ∀δr ∈ VΩ,

aΩ(δs, sΩ) =
∂2L

∂ϕ∂p
(Ω, uhΩ, p

h
Ω)[θh, δs] ∀δs ∈ VΩ.

(3.7)

The problems (3.7) are well-posed since their right-hand sides are linear and continuous forms on VΩ.
For the corresponding conforming Finite Element (respectively Discontinuous Galerkin) discretizations

of problems (3.7), we seek rhΩ, s
h
Ω ∈ V h,m

Ω such that

ahΩ(δrh, rhΩ) =
∂2L

∂ϕ∂u
(Ω, uhΩ, p

h
Ω)[θh, δrh] ∀δrh ∈ V h,m

Ω ,

ahΩ(δsh, shΩ) =
∂2L

∂ϕ∂p
(Ω, uhΩ, p

h
Ω)[θh, δsh] ∀δsh ∈ V h,m

Ω .

(3.8)

Let us now define two quantities associated respectively with the contribution of the state error
uΩ − uhΩ and the adjoint error pΩ − phΩ to the error in the shape gradient Eh:

Eh
u =

∂2L

∂ϕ∂u
(Ω, uhΩ, p

h
Ω)[θh, uΩ − uhΩ] = FΩ(rΩ) − ahΩ(uhΩ, rΩ), (3.9)

Eh
p =

∂2L

∂ϕ∂p
(Ω, uhΩ, p

h
Ω)[θh, pΩ − phΩ] = −

〈
∂j

∂u
(Ω, uΩ), sΩ

〉
− ahΩ(phΩ, sΩ). (3.10)

It is straightforward to observe that Eh = Eh
u +Eh

p . In order to derive a practical strategy to perform
the certification procedure in section 2.2.1 by verifying condition (2.15), we have to compute an upper
bound E of the error |Eh|.
In this paper, we propose an implicit error estimator based on the equilibrated fluxes method [3].
This technique provides a fully-computable guaranteed upper bound of the error and relies solely on
the computation of local quantities, namely the equilibrated fluxes. A detailed description of the
construction of the equilibrated fluxes for the state and adjoint problems and the derivation of the
estimator of the error in the shape gradient starting from the quantities Eh

u and Eh
p is presented in

the following sections. Since the expressions of both the equilibrated fluxes and the error estimator
depend on the nature of the problem under analysis, in the next section we introduce the formulation
of the inverse identification problem of Electrical Impedance Tomography that will act as proof of
concept for the discussed method.

4 Electrical Impedance Tomography

We consider the inverse identification problem of Electrical Impedance Tomography in the most clas-
sical Point Electrode Model. We consider a shape optimization formulation for this inverse problem
and we solve it by means of a version of the Certified Descent Algorithm (cf. algorithm 1) featuring
an equilibrated fluxes strategy for the certification procedure.
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It is well-known in the literature that the problem of Electrical Impedance Tomography is severely ill-
posed. Moreover, classical shape optimization methods proved to be highly unsatisfactory by remain-
ing trapped in local minima and consequently providing fairly poor reconstructions of the inclusions.
The Certified Descent Algorithm does not aim to solve the known issues of gradient-based strategies
when dealing with ill-posed problems. Nevertheless, the interest in the EIT problem is twofold. On
the one hand, the EIT is a non-trivial scalar problem that may guide towards the establishment of
some properties of this new version of the Certified Descent Algorithm. On the other hand, the CDA
proves to be a viable example to confirm the aforementioned limitations of gradient-based methods
applied to inverse problems. In particular, the rapidly increasing number of Degrees of Freedom re-
quired for the certification procedure highlights the severe ill-posedness of the EIT problem. We refer
the reader interested in an overview of the methods investigated in the literature for the EIT problem
to [1,24,42] for shape optimization approaches, to [15,34,35] for topology optimization strategies and
to [19,37,38] for regularization techniques.

We are now ready to introduce the formulation of the Electrical Impedance Tomography problem.
Let us consider an open domain D ⊂ R

2 featuring an open subdomain Ω ⊂⊂ D such that the electrical
conductivity is piecewise constant in Ω and D \ Ω:

kΩ := kIχΩ + kE(1 − χΩ) (4.1)

where kI and kE are two positive parameters and χΩ is the characteristic function of Ω. The goal
is to identify the location and the shape of the inclusion Ω fitting non-invasive measurements g and
UD respectively of the flux and the potential taken on the external boundary ∂D. In order to solve
this problem, we introduce two Boundary Value Problems (Section 4.1) and owing to [41] we define a
minimization problem for an objective functional inspired by the Kohn-Vogelius one (Section 4.2).

The inverse problem of Electrical Impedance Tomography - also known as Calderón’s problem -
has been extensively studied over the years. We suggest that the interested reader reviews [10,14,18]
for a detailed exposition of the physical problem, its mathematical formulation and its numerical
approximation.

4.1 State problems

We consider g ∈ L2(∂D) and UD ∈ H
1

2 (∂D) as boundary data for the flux and the potential. Let
i = N,D be the subscripts associated respectively with Neumann and Dirichlet boundary conditions.
We introduce the Boundary Value Problems





− kΩ∆uΩ,i + uΩ,i = 0 in D \ ∂Ω

JuΩ,iK = 0 on ∂Ω

JkΩ∇uΩ,i · nK = 0 on ∂Ω

(4.2)

with the following sets of boundary conditions on ∂D:

kE∇uΩ,N · n = g, (4.3)

uΩ,D = UD. (4.4)
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4.2 Shape gradient of the Kohn-Vogelius functional

Let us consider the following objective functional inspired by the work of Kohn and Vogelius [41]:

J(Ω) =
1

2

∫

D

(
kΩ |∇(uΩ,N − uΩ,D)|2 + |uΩ,N − uΩ,D|

2
)
dx. (4.5)

The problem of retrieving the inclusion Ω starting from the boundary measurements g and UD may
be viewed as an optimization problem in which we seek the open subset that minimizes (4.5), uΩ,N

and uΩ,D being the solutions of the state problems (4.2) with boundary conditions given respectively
by the Neumann (4.3) and the Dirichlet (4.4) data.

As stated in section 2.1.1, in order to differentiate a functional with respect to the shape, we
introduce an adjoint problem for each state variable. Owing to the fact that the Kohn-Vogelius
problem is self-adjoint, we get that pΩ,N = uΩ,N − uΩ,D and pΩ,D = 0. In this work, we consider
a volumetric formulation of the shape gradient. As a matter of fact, it has been recently proved by
Hiptmair and co-workers (cf. [36]) that the volumetric expression provides better numerical accuracy
than its corresponding surface representation1.
Let θ ∈W 1,∞(D;R2) be an admissible deformation of the domain such that θ = 0 on ∂D. We define
M(θ) = ∇θ + ∇θT − (∇ · θ) Id. By introducing the following operator

〈G(Ω, u),θ〉 =
1

2

∫

D

(
kΩM(θ)∇u · ∇u−∇ · θ u2

)
dx, (4.6)

the volumetric expression of the shape gradient of (4.5) reads as

〈dJ(Ω),θ〉 = 〈G(Ω, uΩ,N ) −G(Ω, uΩ,D),θ〉. (4.7)

The interested reader may refer to [50] for more details on the differentiation of the Kohn-Vogelius
functional with respect to the shape and its application to the identification of discontinuities of the
conductivity parameter.

5 Conforming Finite Element approximation

In this section, we introduce a discretization of the EIT problem based on conforming Finite Element
functions. Let {Th}h>0 be a family of triangulations of the domain D with no hanging nodes. Having
in mind that d = 2, we consider a mesh such that each element T ∈ Th is a triangle and for each couple
T, T ′ ∈ Th such that T 6= T ′, the intersection of the two elements is either an empty set or a vertex or
an edge. An edge e is said to be an interior edge of the triangulation Th if there exist two elements
T−(e), T+(e) ∈ Th such that e = T−(e)∩T+(e), whereas is a boundary edge if there exists T (e) ∈ Th
such that e = T (e) ∩ ∂D. In the former case, the unit normal vector to e is denoted by ne and goes
from T−(e) towards T+(e). In the latter one, n is the classical outward normal to ∂D. The set of the
internal edges is noted as EI

h , the boundary edges are collected into EB
h and we set Eh := EI

h ∪ EB
h .

The state and adjoint problems are solved using the following Lagrangian Finite Element space

V h,κ
Ω := {uh ∈ C0(D) : uh|T ∈ P

κ(T ) ∀T ∈ Th}

1We refer to [36] for a detailed comparison of the volumetric and surface expressions of the shape gradient for elliptic state
problems. In particular, in this work the authors prove that within the framework of Finite Element discretizations, a
better numerical accuracy is achieved when using the volumetric formulation of the shape gradient.
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where Pκ(T ) is the set of polynomials of degree less than or equal to κ on an element T , being κ = ℓ and
κ = m respectively for the state and adjoint equations. The procedure to construct the equilibrated
fluxes is performed via the solution of local subproblems defined on patches of elements using mixed
Finite Element formulations. A key aspect of this approach - which will be precisely detailed - is the
choice of the degree of the approximating functions for both the solution of the problems and the
equilibrated fluxes.

5.1 The state problems

Let aΩ(·, ·) be the bilinear form associated with problems (4.2) and FΩ,i(·), i = N,D the linear forms
respectively for the Neumann and the Dirichlet problem:

aΩ(uΩ,i, δu) =

∫

D

(
kΩ∇uΩ,i · ∇δu+ uΩ,iδu

)
dx, (5.1)

FΩ,N (δu) =

∫

∂D
gδu ds and FΩ,D(δu) = 0. (5.2)

We consider uΩ,N , uΩ,D ∈ H1(D) such that uΩ,D = UD on ∂D, solutions of the following Neumann
and Dirichlet variational problems ∀δuN ∈ H1(D) and ∀δuD ∈ H1

0 (D):

aΩ(uΩ,i, δui) = FΩ,i(δui) , i = N,D. (5.3)

We remark that within the framework of conforming Finite Element discretizations, the continuous
and discrete bilinear (respectively linear) forms have the same expressions. Hence, the correspond-
ing discretized formulations of the state problems (5.3) may be derived by replacing the analytical

solutions uΩ,N and uΩ,D with their approximations uhΩ,N and uhΩ,D which belong to the space V h,ℓ
Ω of

Lagrangian Finite Element functions of degree ℓ. In a similar fashion, θh is the solution of equation
(2.6) computed using a vector-valued Lagrangian Finite Element space and substituting the expression
of the discrete shape gradient (2.9) to its analytical counterpart (2.5). For both the state problems and
the computation of the descent direction, we consider a low-order approximation respectively using
P
1 and P

1 × P
1 Lagrangian Finite Element functions.

5.2 The adjoint problems

Let rΩ,N and rΩ,D be the solutions of the adjoint problems (3.7) introduced to evaluate the contribu-
tions of the Neumann and Dirichlet state problems to the error in the Quantity of Interest: we seek
rΩ,N ∈ H1(D) and rΩ,D ∈ H1

0 (D) such that respectively ∀δrN ∈ H1(D) and ∀δrD ∈ H1
0 (D)

aΩ(δri, rΩ,i) = HΩ,i(δri) , i = N,D (5.4)

where for i = N,D the linear forms HΩ,i(δri) read as

HΩ,i(δr) :=
∂G

∂u
(Ω, uhΩ,i)[θ

h, δr]

=

∫

D

(
kΩM(θh)∇uhΩ,i · ∇δr −∇ · θh uhΩ,iδr

)
dx.

(5.5)
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As per the state problems, the discretized solutions rhΩ,N and rhΩ,D are obtained solving the adjoint
equations (5.4) within an appropriate space of Lagrangian Finite Element functions, that is the space

V h,m
Ω of degree m. According to the requirement of higher-order methods to solve the adjoint problems,

we consider a P
2 Lagrangian Finite Element space for the discretization of (5.4).

5.3 Estimate of the error in the shape gradient via the equilibrated fluxes

Starting from the framework described in section 3.2, we construct a goal-oriented estimator of the
error in the shape gradient by evaluating the quantities Eh

u and Eh
p in (3.9)-(3.10). First of all, we

observe that owing to the Kohn-Vogelius problem being self-adjoint, this reduces to estimating the
quantity Eh

u for the Neumann and the Dirichlet cases. By recalling the expression (4.7) of the shape
gradient for the Kohn-Vogelius functional, we may rewrite the error in the shape gradient as follows:

Eh = 〈dJ(Ω) − dhJ(Ω),θh〉

= 〈G(Ω, uΩ,N ) −G(Ω, uhΩ,N ),θh〉 − 〈G(Ω, uΩ,D) −G(Ω, uhΩ,D),θh〉

≃ HΩ,N(uΩ,N − uhΩ,N ) −HΩ,D(uΩ,D − uhΩ,D) =: Eh
u,N

− Eh
u,D

.

(5.6)

Before constructing the components of the estimator of the error in the shape gradient in (5.6), we
recall the notion of equilibrated fluxes. In order to do so, we introduce the space of vector-valued
functions H(div) = {τ ∈ L2(D;Rd) : ∇ · τ ∈ L2(D)} and the discrete space W h,κ

Ω of the functions
that restricted to a single element of the triangulation are Raviart-Thomas Finite Element functions
of degree κ:

W h,κ
Ω := {τ h ∈ H(div) : τh|T ∈ [Pκ(T )]d + xPκ(T ) ∀T ∈ Th}.

Remark 5.1. A function τ h ∈ W h,κ
Ω is such that ∇ · τ h ∈ P

κ(T ) ∀T ∈ Th , τ h · ne ∈ P
κ(e) ∀e ⊂

∂T , ∀T ∈ Th and its normal trace is continuous across all edges e ⊂ ∂T (cf. [9]).

5.3.1 Equilibrated fluxes for the state equations

The discretized solutions uhΩ,i’s of the state problems are usually such that −kΩ∇u
h
Ω,i /∈ H(div) or

∇·(−kΩ∇u
h
Ω,i)+u

h
Ω,i 6= 0. On the contrary, the weak solutions uΩ,i’s - and their fluxes σΩ,i := −kΩ∇uΩ,i

- fulfill σΩ,i ∈ H(div) and ∇ · σΩ,i + uΩ,i = 0. In order to retrieve the aforementioned properties, we
construct some discrete quantities known as equilibrated fluxes (cf. [12]):

Definition 5.2. Let uhΩ,i ∈ V h,ℓ
Ω be the solution of a state problem (5.3) computed using Lagrangian

Finite Element functions of degree ℓ. Let κ = max{0, ℓ − 1}, we define πκZ : L2(D) → Zh,κ
Ω the

L2-orthogonal projection operator onto the space Zh,κ
Ω of the piecewise discontinuous Finite Element

functions of degree κ. A function σh
Ω,i ∈ W h,κ

Ω is said to be an equilibrated flux for the problem (5.3)
if

∇ · σh
Ω,i + πκZu

h
Ω,i = 0. (5.7)

Under the previously introduced assumptions on the degree of the discretization spaces, we get that
ℓ = 1 and κ = 0, that is the equilibrated flux is sought in the lowest-order Raviart-Thomas space RT0
and the projection operator returns P

0 piecewise constant functions.
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To practically reconstruct the equilibrated fluxes σh
Ω,i’s, we follow the approach proposed by Ern

and Vohraĺık in [28] which is based on the work [12] by Braess and Schöberl. In particular, we consider
a procedure that starting from the Finite Element functions uhΩ,i , i = N,D constructs the equilibrated
fluxes locally on subpatches of elements. Thus, for each vertex xv , v = 1, . . . , Nv of the elements in
the computational mesh we introduce a linear shape function ψv such that ψv(xw) = δvw, δ being the
classical Kronecker delta. The support of ψv is the subpatch centered in xv and is denoted by ωv. We
remark that the family of functions ψv’s fulfills the condition known as partition of the unity, that is

Nv∑

v=1

ψv = 1.

In order to retrieve a precise approximation of the fluxes, we consider a dual mixed Finite Element
formulation of the aforementioned local problems. First, let us denote by W h,κ

ωv (respectively Zh,κ
ωv )

the restriction to ωv of the space W h,κ
Ω (respectively Zh,κ

Ω ) defined at the beginning of the chapter.
Moreover, we introduce the following Finite Element spaces:

W h,κ
v,0 := {τ h ∈W h,κ

ωv
: τ h · ne = 0 on e ∈ ∂ωv}, (5.8)

W h,κ
v,1 := {τ h ∈W h,κ

ωv
: τ h · ne = 0 on e ∈ ∂ωv \ E

B
h }. (5.9)

For each vertex xv , v = 1, . . . , Nv and for i = N,D, we prescribe (σh
i,v, t

h
i,v) ∈W h,κ

i,v × Zh,κ
ωv such that

∀(δσh
i , δt

h
i ) ∈W h,κ

v × Zh,κ
ωv

∫

ωv

∇ · σh
i,vδt

h
i dx +

∫

ωv

thi,vδt
h
i dx = −

∫

ωv

(
kΩ∇u

h
Ω,i · ∇ψv + uhΩ,iψv

)
δthi dx,

∫

ωv

σh
i,v · δσ

h
i dx−

∫

ωv

kΩt
h
i,v∇ · δσh

i dx = −

∫

ωv

kΩψv∇u
h
Ω,i · δσ

h
i dx.

(5.10)

The spaces in which the trial and the test functions are sought are detailed below. It is important to
highlight the different nature of problem (5.10) when the patch ωv is centered on a vertex belonging to
the interior of D or to its boundary ∂D. As Braess and Schöberl remark in [12], some caution has to
be used when dealing with the corresponding boundary conditions: in particular, a flux-free condition
is imposed on the whole boundary ∂ωv of the patch for interior vertices, whereas it is limited to the
edges in ∂ωv \ E

B
h for points which belong to the external boundary of the global domain.

To construct the equilibrated fluxes for the Neumann state problem on ωv centered in a vertex xv ∈ ∂D,
equation (5.10) is solved using the spaces

W h,κ
N,v

:= {τ h ∈W h,κ
ωv

: τh · ne = 0 on e ∈ ∂ωv \ E
B
h

and τ h · ne = πκW ·n(ψvg) on e ∈ ∂ωv ∩ EB
h },

(5.11)

W h,κ
v = W h,κ

v,0 . (5.12)

When considering the Dirichlet state problem on ωv centered in xv ∈ ∂D, the trial and test spaces
read as follows:

W h,κ
D,v = W h,κ

v = W h,κ
v,1 . (5.13)
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Eventually, for the vertices xv ∈ int(D), we solve (5.10) using the spaces

W h,κ
N,v = W h,κ

D,v = W h,κ
v = W h,κ

v,0 . (5.14)

In (5.11), πκW ·n stands for the L2-orthogonal projection operator from L2(∂D) to the space W h,κ
Ω ·n of

polynomial functions of degree κ on the external boundary. For additional details on the procedure to
construct the equilibrated fluxes and on the properties of the resulting a posteriori error estimators,
we refer to [28].

We now extend all the σh
i,v’s by zero in D \ ωv. By combining the above information arising from

all the subpatches, we may retrieve the global equilibrated fluxes for the state problems:

σh
Ω,i =

Nv∑

v=1

σh
i,v , i = N,D. (5.15)

Lemma 5.3. For the case of the Neumann state problem, there holds

σh
Ω,N · n = πκW ·n(g) on ∂D. (5.16)

Proof. Let χe
v be equal to 1 if a given edge e ∈ EB

h belongs to the subpatch ωv centered in xv and 0
otherwise. Hence,

σh
Ω,N |e =

Nv∑

v=1

χe
vσ

h
N,v.

Let δuh ∈ (W h,κ
Ω ·n)|e be a polynomial function of degree κ on the edge e ∈ EB

h . Owing to the condition
on the normal trace σh

N,v · ne in (5.11), we get

〈σh
Ω,N · ne, δu

h〉e =

Nv∑

v=1

χe
v〈σ

h
N,v · ne, δu

h〉e =

Nv∑

v=1

χe
v〈ψvg, δu

h〉e = 〈g, δuh〉e,

where the last equality follows from the partition of the unity property fulfilled by the functions ψv’s.
The result is inferred by observing that the previous chain of equality holds ∀δuh ∈ (W h,κ

Ω ·n)|e , ∀e ∈
EB
h .

5.3.2 Equilibrated fluxes for the adjoint equations

Following the same approach discussed above for the state problems, we define the equilibrated fluxes
for the adjoint problems:

Definition 5.4. Let rhΩ,i ∈ V h,m
Ω be the solution of an adjoint problem (5.4) computed using Lagrangian

Finite Element functions of degree m. Let κ = max{0,m−1} and πκZ : L2(D) → Zh,κ
Ω the L2-orthogonal

projection operator onto the space Zh,κ
Ω defined in the previous section. A function ξhΩ,i ∈W h,κ

Ω is said
to be an equilibrated flux for the problem (5.4) if

∇ · ξhΩ,i + πκZr
h
Ω,i = −πκZ

(
∇ · (kΩM(θh)∇uhΩ,i) + ∇ · θh uhΩ,i

)
. (5.17)
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Having in mind that the adjoint equations are solved using P
2 Lagrangian Finite Element functions -

that is m = 2 - it follows that the equilibrated fluxes ξhΩ,i’s are constructed via RT1 Raviart-Thomas

functions of degree 1 and the operator πkZ projects functions from L2(D) to the discrete space of
piecewise discontinuous Finite Elements of degree 1.

The computation of the equilibrated fluxes for the adjoint problems is again performed via the
solution of a mixed Finite Element problem. We consider the same discrete spaces introduced in
definitions (5.12) to (5.14), whereas the space W h,κ

N,v associated with the Neumann adjoint problem

featuring a patch centered on a boundary node is W h,κ
v,0 . Thus, for each subpatch ωv , v = 1, . . . , Nv

and for i = N,D, we seek (ξhi,v, q
h
i,v) ∈W h,κ

i,v × Zh,κ
ωv such that ∀(δξhi , δq

h
i ) ∈W h,κ

v × Zh,κ
ωv

∫

ωv

∇ · ξhi,vδqi dx +

∫

ωv

qhi,vδqi dx =

∫

ωv

kΩM(θh)∇uhΩ,i · ∇ψvδqi dx

−

∫

ωv

∇ · θhuhΩ,iψvδqi dx−

∫

ωv

(
kΩ∇r

h
Ω,i · ∇ψv + rhΩ,iψv

)
δqi dx,

∫

ωv

ξhi,v · δξi dx−

∫

ωv

kΩq
h
i,v∇ · δξi dx =

∫

ωv

kΩψvM(θh)∇uhΩ,i · δξi dx

−

∫

ωv

kΩψv∇r
h
Ω,i · δξi dx.

(5.18)

The corresponding equilibrated fluxes ξhΩ,i’s are obtained by extending the functions ξhi,v’s by zero in
D \ ωv and by combining the previously computed local information:

ξhΩ,i =

Nv∑

v=1

ξhi,v , i = N,D.

Remark 5.5. A key aspect of the discussed procedure is represented by the local nature of the problems
to be solved for the construction of the equilibrated fluxes. The advantage of this approach is twofold.
On the one hand, solving the local problems (5.10)-(5.18) is computationally inexpensive owing to
the small size of the subpatches. On the other hand, every problem set on a subpatch is independent
from the remaining ones thus it is straightforward to implement a version of the procedure that can
efficiently exploit modern parallel architectures.

5.3.3 Goal-oriented equilibrated fluxes error estimator

As previously stated, the construction of the error estimator for the shape gradient for the case of the
Electrical Impedance Tomography reduces to the evaluation of (3.9) for the Neumann and Dirichlet
problems. For this purpose, we introduce respectively the quantities Eh

u,N
andEh

u,D
and two parameters

ζi’s such that ζN := 1 and ζD := 0. By exploiting the formulation of the bilinear and linear forms
(5.1)-(5.2) and adding the expression of the equilibrated fluxes (5.7), Eh

u,i
reads as:

Eh
u,i

:= FΩ,i(rΩ,i) − aΩ(uhΩ,i, rΩ,i) = ζi

∫

∂D
grΩ,i ds−

∫

D
kΩ∇u

h
Ω,i · ∇rΩ,idx

−

∫

D
uhΩ,irΩ,idx +

∫

D

(
∇ · σh

Ω,i + πκZu
h
Ω,i

)
rΩ,i dx.

(5.19)
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Integrating by parts the last integral and owing to lemma 5.3 and to rΩ,D = 0 on ∂D, we obtain

Eh
u,i

= ζi

∫

∂D

(
g − πκW ·n(g)

)
rΩ,i ds+

∫

D

(
πκZu

h
Ω,i − uhΩ,i

)
rΩ,i dx

−

∫

D

(
σh
Ω,i + kΩ∇u

h
Ω,i

)
· ∇rΩ,i dx.

(5.20)

By adding and subtracting the corresponding terms featuring the Finite Element counterparts rhΩ,i’s

of the adjoint solutions and owing to definition 5.4 of the equilibrated fluxes ξhΩ,i’s, we are finally able

to derive the expression of the errors Eh
u,i

’s:

Eh
u,i

= ζi

∫

∂D

(
g − πκW ·n(g)

)
rhΩ,i ds+ ζi

∫

∂D

(
g − πκW ·n(g)

)
(rΩ,i − rhΩ,i)ds

+

∫

D

(
πκZu

h
Ω,i − uhΩ,i

)
rhΩ,i dx +

∫

D

(
πκZu

h
Ω,i − uhΩ,i

)
(rΩ,i − rhΩ,i)dx

+

∫

D

(
σh
Ω,i + kΩ∇u

h
Ω,i

)
· k−1

Ω ξhΩ,i dx

−

∫

D

(
σh
Ω,i + kΩ∇u

h
Ω,i

)
·
(
∇rΩ,i + k−1

Ω ξhΩ,i

)
dx.

(5.21)

We remark that in (5.21) both the exact and the discretized solutions of the adjoint problems appear.
From a practical point of view, in order to fully compute the quantity (5.21) we substitute the exact

solutions with their Finite Element counterparts rhΩ,i ∈ V
h,m
Ω obtained by the high-order approximation

of (5.4). The corresponding approximated solutions are then replaced by the projection of the high-

order approximations onto the space V h,ℓ
Ω of the low-order Finite Element functions used for the

discretization of the state problems. Let Iℓm : V h,m
Ω → V h,ℓ

Ω be the projection operator from the space
of high-order approximations to the low-order one. The fully computable version of the estimator
of the quantity Eh

u,i
is obtained by substituting rΩ,i − rhΩ,i with rhΩ,i − Iℓmr

h
Ω,i and ∇rΩ,i with ∇rhΩ,i

in (5.21). By plugging the expressions of Eh
u,N

and Eh
u,D

arising from (5.21) into (5.6), we obtain a

computable expression of the error in the shape gradient and the bound E follows by considering its
absolute value.

Remark 5.6. The goal-oriented error estimators constructed using the equilibrated fluxes approach
are known to be asymptotically exact (cf. [4]). Owing to the aforementioned asymptotic exactness,
the term E tends to zero as the mesh size tends to zero. This property plays a crucial role since it
guarantees that the mesh adaptation routine performed to certify the descent direction (cf. algorithm
1 - step 5) eventually leads to the fulfillment of condition (2.15).

6 Discontinuous Galerkin approximation

In this section, we present an alternative strategy for the approximation of the EIT problem based on
the Symmetric Weighted Interior Penalty Discontinuous Galerkin (SWIP-DG) formulation.
Let us consider the notations introduced in section 5 for the triangulation Th. The Discontinuous
Galerkin (DG) problems are solved within the space

V h,κ
Ω := {uh ∈ L2(D) : uh|T ∈ P

κ(T ) ∀T ∈ Th}
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of the discontinuous functions whose restrictions to a single element are polynomials of degree less
than or equal to κ. When dealing with DG formulations, discontinuous functions - as the ones of
the aforementioned space V h,κ

Ω - which are double-valued on EI
h and single-valued on EB

h have to be
properly handled. We define the jump of uh across the edge e shared by the elements T±(e) as

JuhKe := uh|T−(e) − uh|T+(e). (6.1)

In a similar fashion, the weighted average of uh on e ∈ EI
h reads as follows

{{uh}}α := αT−(e),eu
h|T−(e) + αT+(e),eu

h|T+(e). (6.2)

where the weights are non-negative quantities such that αT−(e),e + αT+(e),e = 1. On boundary edges,

we set JuhKe = uh|e, αT−(e),e = 1 and {{uh}}α = uh.
Classical Discontinuous Galerkin methods use arithmetic averages in (6.2), that is for all edges

the weights are constant and equal αT−(e),e = αT+(e),e = 1
2 . As stated in the introduction, in recent

years there has been a growing interest towards the so-called Symmetric Weighted Interior Penalty
DG methods, especially when dealing with problems featuring inhomogeneous coefficients for the
diffusion term (cf. [13, 27]). In particular, these methods rely on the definition of weights based on
the information carried by the diffusion tensor. For the case of the Electrical Impedance Tomography
under analysis, this results in the following weights based on the different values of the electrical
conductivity:

αT−(e),e :=
kΩ|T+(e)

kΩ|T+(e) + kΩ|T−(e)
, αT+(e),e :=

kΩ|T−(e)

kΩ|T+(e) + kΩ|T−(e)
.

It is well-known in the literature [23] that the bilinear form associated with Discontinuous Galerkin
methods may suffer from lack of coercivity thus preventing the discrete problem from having a unique
solution. A widely-spread workaround (cf. [52]) is represented by the interior penalty approach that
introduces a sufficiently large penalization in order to retrieve the coercivity of the discrete bilinear
form. Owing to the idea of exploiting the information carried by the diffusion tensor to construct the
weights for the jump term, we define the stabilization parameter in a similar way [20]:

γe := βe
kΩ|T+(e)kΩ|T−(e)

kΩ|T+(e) + kΩ|T−(e)

where βe > 0 is a user-dependent parameter.
As per the conforming Finite Element approximation described in the previous section, first we

introduce the discrete state and adjoint problems and then we construct the equilibrated fluxes via
a procedure relying solely on local quantities. As previously stated, a key aspect of this approach is
represented by the choice of the degree of the approximating functions for both the solution of the
problems and the equilibrated fluxes. The details of this choice will be discussed in the following
subsections. For the sake of readability, from now on we will omit the subscript e associated with
jumps, weights and averages if there is no risk of ambiguity.
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6.1 The state problems

In order to appropriately handle the terms involving the effect of the boundary data in the estimator
of the error in the shape gradient, the boundary conditions have to imposed using the same strategy in
both the weak and the discrete formulation. Owing to the fact that the essential boundary conditions
are classically verified in a weak sense in Discontinuous Galerkin methods, we consider an alternative
formulation of (5.1)-(5.2) to weakly impose the Dirichlet boundary condition on ∂D. Let ζN := 1 and
ζD := 0. The bilinear forms aΩ,i(·, ·) and the linear ones FΩ,i(·) associated with problems (4.2) coupled
with the boundary conditions (4.3) and (4.4) respectively read as:

aΩ,i(uΩ,i, δu) =

∫

D

(
kΩ∇uΩ,i · ∇δu+ uΩ,iδu

)
dx

− (1 − ζi)

∫

∂D

(
kΩ∇uΩ,i · nδu+ uΩ,ikΩ∇δu · n

)
ds

+ (1 − ζi)

∫

∂D
γuΩ,iδu ds,

(6.3)

FΩ,N (δu) =

∫

∂D
gδu ds , FΩ,D(δu) =

∫

∂D
UD(γδu − kΩ∇δu · n)ds. (6.4)

We refer to appendix A for the formal derivation of (6.3)-(6.4) in the Dirichlet case. The variational
formulation of the state equations (4.2) reads as follows: for i = N,D we seek uΩ,i ∈ H1(D) such that

aΩ,i(uΩ,i, δui) = FΩ,i(δui) ∀δui ∈ H1(D). (6.5)

The corresponding discrete bilinear and linear forms arising from the Interior Penalty Discontinuous
Galerkin method have the following expressions:

ahΩ,i(u
h
Ω,i, δu

h) =
∑

T∈Th

∫

T

(
kΩ∇u

h
Ω,i · ∇δu

h + uhΩ,iδu
h
)
dx

−
∑

e∈EI
h

∫

e

(
ne · {{kΩ∇u

h
Ω,i}}αJδuhK + JuhΩ,iKne · {{kΩ∇δu

h}}α

)
ds

−(1 − ζi)
∑

e∈EB
h

∫

e

ne · {{kΩ∇u
h
Ω,i}}αJδuhKds

−(1 − ζi)
∑

e∈EB
h

∫

e

JuhΩ,iKne · {{kΩ∇δu
h}}αds

+
∑

e∈EI
h

∫

e

γe
|e|

JuhΩ,iKJδu
hKds+ (1 − ζi)

∑

e∈EB
h

∫

e

γe
|e|

JuhΩ,iKJδu
hKds,

(6.6)

F h
Ω,N (δuh) =

∫

∂D
gδuh ds,

F h
Ω,D(δuh) =

∑

e∈EB
h

∫

e

UD

( γe
|e|
δuh − kΩ∇δu

h · ne

)
ds.

(6.7)
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Thus, according to the SWIP-DG problem we seek uhΩ,N , u
h
Ω,D ∈ V h,ℓ

Ω such that

ahΩ,i(u
h
Ω,i, δu

h
i ) = F h

Ω,i(δu
h
i ) ∀δuhi ∈ V h,ℓ

Ω . (6.8)

Concerning the degree of the Discontinuous Galerkin approximating functions, we maintain the same
choice previously presented for the conforming Finite Element discretization, that is a low-order ap-
proximation based on piecewise linear polynomials (ℓ = 1). In a similar fashion, the computation of
the descent direction θh is performed by means of the conforming discretization using the space of
P
1 × P

1 Lagrangian Finite Element functions discussed at the beginning of the chapter.

6.2 The adjoint problems

The Symmetric Weighted Interior Penalty Discontinuous Galerkin formulation of the adjoint problems
may be derived following the same procedure used for the state problems. In particular, the bilinear
forms in (6.6) also stand for the Neumann and Dirichlet adjoint problems. The corresponding linear
forms for i = N,D read as

Hh
Ω,i(δr

h) =
∑

T∈Th

∫

T

(
kΩM(θh)∇uhΩ,i · ∇δr

h −∇ · θh uhΩ,iδr
h
)
dx

−
∑

e∈EI
h

∫

e

ne · {{kΩM(θh)∇uhΩ,i}}αJδrhKds

−
∑

e∈EI
h

∫

e

JkΩM(θh)∇uhΩ,iKne · {{δr
h}}αds

− (1 − ζi)

∫

∂D
kΩM(θh)∇uhΩ,i · n δrh ds.

(6.9)

The discretized solutions of the adjoint problems are the functions rhΩ,i ∈ V h,m
Ω such that ∀δrhi ∈ V h,m

Ω

ahΩ,i(δr
h
i , r

h
Ω,i) = Hh

Ω,i(δr
h
i ) , i = N,D. (6.10)

It is straightforward to verify that the SWIP-DG formulation of the adjoint problems is consistent,
that is (6.10) stands substituting the analytical solutions rΩ,i’s to their discretized counterparts rhΩ,i’s
(cf. [23]). As previously stated, this property plays a crucial role in the construction of discretizations
of optimal order in terms of target functionals and we refer to [32] for a detailed presentation of this
subject. In order to obtain a higher-order approximation of the adjoint problems, we consider m = 2,
as per the case of the conforming Finite Element approximation in section 5.

6.3 Estimate of the error in the shape gradient via the equilibrated fluxes

In this section we construct the equilibrated fluxes associated with the Discontinuous Galerkin ap-
proximations (6.8) and (6.10) and we derive the corresponding goal-oriented estimator of the error
in the shape gradient. Following the procedure introduced for the case of conforming Finite Element
discretization, this problem reduces to estimating the quantity (5.6).
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6.3.1 Equilibrated fluxes for the state equations

We introduced the notion of equilibrated fluxes for the state problems in definition 5.2. In particular,
for each problem we aim to construct an H(div)-conforming flux σh

Ω,i ∈W h,κ
Ω such that (5.7) stands.

We recall that the state problems are approximated using Discontinuous Galerkin functions of degree
ℓ = 1, thus the fluxes are reconstructed using RT0 Finite Element functions (κ = 0). Owing to the
nature of the Degrees of Freedom of the lowest-order Raviart-Thomas Finite Element functions, the
construction of the equilibrated fluxes is straightforward via the prescription of the normal fluxes on
all the edges:

∫

e

σh
Ω,i · ne δt

h ds =

∫

e

( γe
|e|

JuhΩ,iK − ne · {{kΩ∇u
h
Ω,i}}α

)
δth ds ,

∀δth ∈ P
κ(e) ∀e ∈ EI

h

(6.11)

∫

e

σh
Ω,i · ne δt

h ds = (1 − ζi)

∫

e

( γe
|e|

(uhΩ,i − UD) − kΩ∇u
h
Ω,i · ne

)
δth ds

− ζi

∫

e

g δth ds , ∀δth ∈ P
κ(e) ∀e ∈ EB

h .

(6.12)

6.4 Equilibrated fluxes for the adjoint equations

In an analogous way, we may construct the equilibrated fluxes for the adjoint problems. We remark
that owing to the higher-order approximation of (6.10) with respect to (6.8) - i.e. m = 2 -, the

equilibrated fluxes ξhΩ,i’s in definition 5.4 are sought in the space W h,κ
Ω , κ = 1. The RT1 reconstructed

fluxes are such that

∫

e

ξhΩ,i · ne δq
h
1 ds =

∫

e

( γe
|e|

JrhΩ,iK − ne · {{kΩ∇r
h
Ω,i}}α

)
δqh1 ds ,

∀δqh1 ∈ P
κ(e) ∀e ∈ EI

h

(6.13)

∫

e

ξhΩ,i · ne δq
h
1 ds = (1 − ζi)

∫

e

( γe
|e|
rhΩ,i − kΩ∇r

h
Ω,i · ne

)
δqh1 ds

−ζi

∫

e

kΩM(θh)∇uhΩ,i · ne δq
h
1 ds ,

∀δqh1 ∈ P
κ(e) ∀e ∈ EB

h

(6.14)

∫

T

ξhΩ,i · δq
h
2 dx = −

∫

T

kΩ∇r
h
Ω,i · δq

h
2 dx

+
∑

e⊂∂T\EB
h

αT (e),e

∫

e

kΩJrhΩ,iKδq
h
2 · ne ds

+ (1 − ζi)
∑

e⊂∂T∩EB
h

∫

e

kΩr
h
Ω,iδq

h
2 · ne ds ,

∀δqh
2 ∈ [Pκ−1(T )]d ∀T ∈ Th.

(6.15)
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Remark 6.1. The flux reconstruction procedure presented for both the state and adjoint equations relies
solely on the computation of local quantities and is computationally inexpensive. A great advantage
of the Discontinuous Galerkin framework is represented by the cheap algorithms to construct the
equilibrated fluxes on an element-wise level as discussed by several authors, e.g. in [11,16,25,40]. As
previously remarked for the construction of the equilibrated fluxes in the case of conforming Finite
Element discretizations, the local nature of the procedure allows the parallelization of the algorithm
and the exploitation of modern parallel architectures.

6.4.1 Goal-oriented equilibrated fluxes error estimator

We may now evaluate the term (3.9) for the Neumann and Dirichlet problems by exploiting the
information carried by (6.6) and (6.4). We recall that the Symmetric Weighted Interior Penalty
Discontinuous Galerkin method under analysis is adjoint consistent (cf. [23]). Owing to the continuity
of rΩ,i and kΩ∇rΩ,i · ne on all the edges e’s and adding the expression of the equilibrated fluxes (5.7),
we obtain:

Eh
u,i

:=FΩ,i(rΩ,i) − ahΩ,i(u
h
Ω,i, rΩ,i)

= ζi

∫

∂D
grΩ,i ds+ (1 − ζi)

∫

∂D
UD(γrΩ,i − kΩ∇rΩ,i · n)ds

−
∑

T∈Th

∫

T

(
kΩ∇u

h
Ω,i · ∇rΩ,i + uhΩ,irΩ,i

)
dx

+
∑

e∈EI
h

∫

e

JuhΩ,iKkΩ∇rΩ,i · ne ds

+ (1 − ζi)
∑

e∈EB
h

∫

e

JuhΩ,iKkΩ∇rΩ,i · ne ds

+
∑

T∈Th

∫

T

(
∇ · σh

Ω,i + πκZu
h
Ω,i

)
rΩ,i dx.

(6.16)

We integrate by parts the last integral and we plug in the expressions (6.11)-(6.12) of the equilibrated
fluxes for the state problems. It follows from the homogeneous Dirichlet condition fulfilled by the
adjoint solution rΩ,D on ∂D that

Eh
u,i

=ζi

∫

∂D

(
g − πκW ·n(g)

)
rΩ,i ds+ (1 − ζi)

∫

∂D
(uhΩ,i − UD)kΩ∇rΩ,i · n ds

+
∑

e∈EI
h

∫

e

(
JuhΩ,iKkΩ∇rΩ,i · ne + Jσh

Ω,i · neKrΩ,i

)
ds

+
∑

T∈Th

∫

T

(
πκZu

h
Ω,i − uhΩ,i

)
rΩ,i dx

−
∑

T∈Th

∫

T

(
σh
Ω,i + kΩ∇u

h
Ω,i

)
· ∇rΩ,i dx.

(6.17)

We remark that owing to the continuity of the normal traces of the fluxes, Jσh
Ω,i · neK = 0 for all

the internal edges. By adding and subtracting the terms rhΩ,i’s featuring the Discontinuous Galerkin
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approximations of the adjoint solutions and taking into account their equilibrated fluxes ξhΩ,i’s, the

expressions of the errors Eh
u,i

’s read as:

Eh
u,i

= ζi

∫

∂D

(
g − πκW ·n(g)

)
rhΩ,i ds+ ζi

∫

∂D

(
g − πκW ·n(g)

)
(rΩ,i − rhΩ,i)ds

− (1 − ζi)

∫

∂D
(uhΩ,i − UD)ξhΩ,i · n ds

+ (1 − ζi)

∫

∂D
(uhΩ,i − UD)

(
kΩ∇rΩ,i + ξhΩ,i

)
· n ds

−
∑

e∈EI
h

∫

e

JuhΩ,iKξ
h
Ω,i · ne ds+

∑

e∈EI
h

∫

e

JuhΩ,iK
(
kΩ∇rΩ,i + ξhΩ,i

)
· ne ds

+
∑

T∈Th

∫

T

(
πκZu

h
Ω,i − uhΩ,i

)
rhΩ,i dx

+
∑

T∈Th

∫

T

(
πκZu

h
Ω,i − uhΩ,i

)
(rΩ,i − rhΩ,i)dx

+
∑

T∈Th

∫

T

(
σh
Ω,i + kΩ∇u

h
Ω,i

)
· k−1

Ω ξhΩ,i dx

−
∑

T∈Th

∫

T

(
σh
Ω,i + kΩ∇u

h
Ω,i

)
·
(
∇rΩ,i + k−1

Ω ξhΩ,i

)
dx.

(6.18)

As already remarked in the estimator derived for the conforming Finite Element discretization, both
the unknown exact solutions of the adjoint problems and their numerical counterparts appear in (6.18).

Let Iℓm : V h,m
Ω → V h,ℓ

Ω be the projection operator from the space of high-order Discontinuous Galerkin
approximations to the low-order one. The fully computable version of the estimator of the quantity
Eh

u,i
is obtained by substituting rΩ,i − rhΩ,i with rhΩ,i − Iℓmr

h
Ω,i and ∇rΩ,i with ∇rhΩ,i.

Eventually, the upper bound E of the error in the shape gradient is obtained by plugging the expres-
sions of Eh

u,N
and Eh

u,D
arising from (6.18) into (5.6) and by considering its absolute value.

Remark 6.2. In [45], the authors prove that the contribution of the terms in (6.18) featuring the
exact solution of the adjoint problems is negligible and the goal-oriented error estimator constructed
using the previously described equilibrated fluxes approach is asymptotically exact. This property
guarantees that the bound E of the error in the shape gradient tends to zero by reducing the mesh
size. Hence, the mesh adaptation procedure performed by the Certified Descent Algorithm eventually
leads to the fulfillment of condition (2.15).

7 Numerical results

In this section we present some numerical results of the application of the Certified Descent Algorithm
based on the equilibrated fluxes approach for the estimation of the error in the shape gradient. We
consider the problem of Electrical Impedance Tomography as a proof of concept to establish some
properties of this variant of the Certified Descent Algorithm on a non-trivial scalar test case. Shape
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Constant Re[Ci] Im[Ci]

C0 −6.3 · 10−9 +40.39491005

C1 +1.30145994 +0.325482825

C2 +1.5 · 10−11 −1.301459935

Table 1: Constants for the analytical solution.

optimization methods are known to provide poor reconstructions in inverse ill-posed problems as the
EIT. Within this framework, the Certified Descent Algorithm does not aim to remedy the issue of
local minima but may act as a counterexample confirming the limitations of gradient-based strategies
when dealing with ill-posed problems. The current work presents an improvement of the original
Certified Descent Algorithm introduced in [30], in particular using solely local quantities to compute
the error in the shape gradient and perform the certification procedure. The numerical results in this
section focus on the quantitative bound E obtained using the equilibrated fluxes approach for both
conforming Finite Element and Discontinuous Galerkin discretizations.

The simulations are obtained using FreeFem++ [33] and are based on a mesh moving approach
for the deformation of the domain. In particular, a two-mesh strategy is adopted as proposed in [6]:
a fine mesh is used to solve the state problems whereas the computation of the descent direction
is performed on a coarser mesh. Within this framework, the correct number of inclusions is set at
the beginning of the algorithm and remains the same throughout its evolution. Techniques based on
both topological and shape gradients to account for topological changes inside the domain have been
investigated in [34].

7.1 Numerical assessment of the goal-oriented estimator

In order to evaluate the goal-oriented error estimators derived in sections 5.3.3 and 6.4.1, we consider a
configuration for which the analytical solution of the state problems is known. We introduce the polar
coordinate system (ρ, ϑ) and we set D := {x = (x, y) | x2+y2 ≤ ρ2E} and Ω := {x = (x, y) | x2+y2 ≤ ρ2I}
with ρI = 4 and ρE = 5. The value of the conductivity parameter is kI = 10 inside Ω and kE = 1 in
D \Ω. We consider the Neumann boundary condition g = cos(Mϑ) , M = 5 and the Dirichlet datum
UD is the trace of the following function which is the analytical solution of problem (4.2):

uΩ,N =





C0JM

(
−iρk

− 1

2

I

)
cos(Mϑ) , ρ ∈ [0, ρI ]

[
C1JM

(
−iρk

− 1

2

E

)
+ C2YM

(
−iρk

− 1

2

E

)]
cos(Mϑ) , ρ ∈ (ρI , ρE ]

where JM (·) and YM (·) respectively represent the first- and second-kind Bessel functions of order M .
The constants C0, . . . , C2 are detailed in table 1.

We recall that for both the conforming Finite Element and the Discontinuous Galerkin discretiza-
tions we have ℓ = 1 and m = 2, that is the state problems are solved using functions of degree 1,
whereas the adjoint solutions are approximated using functions of degree 2. The corresponding equi-
librated fluxes are sought respectively in the space of RT0 and RT1 Finite Element functions.
Figure 1a presents the convergence history of the discretization error in the shape gradient and the
goal-oriented estimator E for the case of conforming Finite Element. The corresponding quantities
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for the case of Discontinuous Galerkin are depicted in figure 1b.
Eventually, in figure 1c we present the effectivity indices for the discussed discretizations. The effec-
tivity index is the ratio between the estimator E and the exact error Eh. If the effectivity index is
bigger (respectively smaller) than 1, one is overestimating (respectively underestimating) the error.
The evolution of the effectivity indices in figure 1c confirms that the constructed estimators are guar-
anteed - that is they provide an upper bound of the error - and are asymptotically exact since the
effectivity index tends to 1 as the mesh size tends to 0.

(a) Conforming Finite Element. (b) Discontinuous Galerkin. (c) Effectivity index.

Figure 1: Convergence rates and effectivity indices of the estimators of the error in the shape gradient with
respect to the number of Degrees of Freedom. Analytical error in the shape gradient (solid black); goal-oriented
estimator of the error based on the equilibrated fluxes (dashed gray squares) for the discretizations based on
(a) conforming Finite Element and (b) Discontinuous Galerkin. (c) Effectivity indices for the conforming Finite
Element (dark gray squares) and Discontinuous Galerkin (light gray circles).

7.2 Reconstruction of a single inclusion

We consider the problem of reconstructing the inclusion Ω defined in the previous section by means
of a couple (g, UD) of measures on the external boundary ∂D. In all the following simulations, we
consider a stopping criterion that combines the condition in step 8 of algorithm 1 and a bound on the
number of admissible mesh elements - i.e. the size of the state and the adjoint problems. This choice
is due to the ill-posed nature of the Electrical Impedance Tomography problem that we chose as test
case for the Certified Descent Algorithm. As we will highlight throughout this section the ill-posedness
of the problem represents an issue that prevents gradient-based strategies from efficiently solving the
EIT problem since a huge precision is demanded after few iterations of the optimization procedure.

First, we consider the configuration described in figure 2a. The initial guess for the inclusion is
represented by the circle of radius ρini = 2. The Certified Descent Algorithm is able to correctly identify
the interface along which the conductivity parameter kΩ is discontinuous (Fig. 2a). Moreover, figure
2b shows that the objective functional J(Ω) is monotonically decreasing, meaning a genuine descent
direction is computed at each iteration of the algorithm. In tables 2a-2b we present the specifics
of the meshes used to certify the descent direction at several iterations of the CDA. In particular,
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we observe that coarse meshes are reliable during the initial iterations of the algorithm to identify a
genuine descent direction, whereas the number of Degrees of Freedom increases when approaching a
minimum of the functional J(Ω). This is also well-explained by figure 2c in which the evolution of
the number of Degrees of Freedom is depicted. Eventually, we remark that figure 2c also highlights
the ill-posed nature of the problem since a huge amount of Degrees of Freedom is rapidly required
by the CDA to certify the descent direction, testifying the difficulties of gradient-based methods to
handle inverse problems as the Electrical Impedance Tomography. By comparing the approximations
arising from conforming Finite Element and Discontinuous Galerkin formulations, we remark that
the latter provides sharper bounds of the error in the shape gradient thus allowing the algorithm to
automatically stop for a given tolerance tol = 10−6 (cf. table 2b). On the contrary, the certification
in the case of conforming Finite Element is still able to identify a genuine descent direction at each
iteration but rapidly requires a huge number of mesh elements making the computational cost explode.

(a) Reconstructed interface. (b) Objective functional. (c) Degrees of Freedom.

(d) Reconstructed interface. (e) Objective functional. (f) Degrees of Freedom.

Figure 2: Certified Descent Algorithm for the identification of one inclusion. (a) Initial configuration (dotted
black), target inclusion (solid black) and reconstructed interface. (b) Evolution of the objective functional. (c)
Number of Degrees of Freedom. Inversion performed using conforming Finite Element (dark gray squares) and
Discontinuous Galerkin (light gray circles).

The aforementioned issues are confirmed and highlighted by the test case in figure 2d. It is
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straightforward to observe that the Certified Descent Algorithm is able to identify a genuine descent
direction at each iteration (Fig. 2e) and to reconstruct the interface in the region near the external
boundary whereas the inner part is not correctly retrieved. As previously stated, this phenomenon is
due to the well-known ill-posedness of the problem and we cannot expect gradient-based strategies to
successfully overcome this issue. These remarks are confirmed again by the rapidly exploding number
of Degrees of Freedom required by the algorithm to certify the descent direction (Fig. 2f). A possible
workaround is represented by the emerging field of hybrid imaging in which classical tomography
techniques are coupled with acoustic or elastic waves [7].

Iteration #Th 〈dhJ(Ω),θh〉 E

1 8863 −1.45 · 10−6 1.12 · 10−6

5 8582 −4.36 · 10−6 3.31 · 10−6

10 8650 −1.37 · 10−5 9.17 · 10−6

15 9335 −2.83 · 10−5 1.80 · 10−5

20 19683 −1.53 · 10−5 1.07 · 10−5

22 864808 −1.18 · 10−6 1.16 · 10−6

(a) Conforming Finite Element.

Iteration #Th 〈dhJ(Ω),θh〉 E

1 5454 −2.02 · 10−6 1.86 · 10−6

5 7307 −6.63 · 10−6 6.24 · 10−6

10 7099 −1.73 · 10−5 9.20 · 10−6

15 7307 −3.06 · 10−5 7.11 · 10−6

20 10123 −1.38 · 10−5 8.98 · 10−6

24 51406 −4.60 · 10−7 4.55 · 10−7

(b) Discontinuous Galerkin.

Table 2: Test case in figure 2a using (a) conforming Finite Element and (b) Discontinuous Galerkin. Approx-
imated shape gradient and goal-oriented estimator for different meshes.

Iteration #Th 〈dhJ(Ω),θh〉 E

1 3366 −2.29 · 10−4 1.79 · 10−4

10 8312 −7.63 · 10−5 5.49 · 10−5

20 7893 −1.29 · 10−4 1.03 · 10−4

30 227847 −6.16 · 10−6 6.15 · 10−6

31 980555 −3.62 · 10−6 3.60 · 10−6

(a) Conforming Finite Element.

Iteration #Th 〈dhJ(Ω),θh〉 E

1 6189 −2.21 · 10−4 1.34 · 10−4

10 4868 −7.80 · 10−5 4.64 · 10−5

20 4842 −1.62 · 10−4 1.30 · 10−4

30 52595 −4.71 · 10−6 4.60 · 10−6

33 320137 −2.54 · 10−7 2.25 · 10−7

(b) Discontinuous Galerkin.

Table 3: Test case in figure 2d using (a) conforming Finite Element and (b) Discontinuous Galerkin. Approx-
imated shape gradient and goal-oriented estimator for different meshes.

Though both the version based on conforming Finite Element and Discontinuous Galerkin are
able to certify the descent direction at the beginning of the algorithm, the situation changes after few
tens of iterations. In particular, the SWIP-DG formulation allows the computation of inexpensive
and precise bounds of the error in the shape gradient, whereas using conforming Finite Element the
computational cost rapidly becomes enormous making the certification procedure unfeasible (Table
3).
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7.3 The case of two inclusions featuring multiple boundary measurements

In this section, we present a more involved test case in which the domain D features two non-connected
inclusions. As previously stated, we assume that the number of inclusions is set a priori and we restrict
to the case of a two-valued conductivity parameter, that is we distinguish a value kE for the background
and a value kI valid inside both the inclusions.

It is well-known in the literature that multiple boundary measurements are required to retrieve
a correct approximation of the inclusion in Electrical Impedance Tomography. In this section, we
consider D = 10 measurements such that ∀j = 0, . . . ,D − 1

gj(x, y) = (x+ ajy)bja
cj
j , aj = 1 + 0.1j , bj =

j + 1

2
, cj = j − 2

⌊
j

2

⌋
.

As previously remarked, the Certified Descent Algorithm is able to identify the portions of the inter-
faces that lie near the external boundary ∂D whereas the inner parts suffer from a poor reconstruction
(Fig. 3a). Moreover, also in this case after few tens of iterations, the certification procedure requires
a huge number of Degrees of Freedom to identify a genuine descent direction for the objective func-
tional J(Ω) (Fig. 3c). Both the inability of the method to reconstruct the interface far from the
external boundary and the rapidly increasing number of Degrees of Freedom required to certify the
descent direction clearly testifies the limitations of classical gradient-based approaches when dealing
with Electrical Impedance Tomography.
Nevertheless, this new variant of the Certified Descent Algorithm proves to be able to certify the
descent direction in order to construct a minimizing sequence of shapes for which the objective func-
tional is monotonically decreasing (Fig. 3b). Moreover, the quantitative information carried by the
error bound E allows to derive a reliable stopping criterion that automatizes the overall optimization
procedure.

(a) Reconstructed interface. (b) Objective functional. (c) Degrees of Freedom.

Figure 3: Certified Descent Algorithm for the identification of two inclusions. (a) Initial configuration (dotted
black), target inclusion (solid black) and reconstructed interface. (b) Evolution of the objective functional. (c)
Number of Degrees of Freedom. Inversion performed using conforming Finite Element (dark gray squares) and
Discontinuous Galerkin (light gray circles).

Remark 7.1. The tables presented in this section show that the strategy based on a conforming Finite
Element discretization rapidly requires a huge number of mesh elements to perform the certification of
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Iteration #Th 〈dhJ(Ω),θh〉 E

1 2221 −1.62 · 10−3 1.59 · 10−3

10 56487 −1.09 · 10−5 1.04 · 10−5

14 852782 −3.36 · 10−6 3.21 · 10−6

(a) Conforming Finite Element.

Iteration #Th 〈dhJ(Ω),θh〉 E

1 7282 −1.59 · 10−3 1.20 · 10−3

10 42564 −1.10 · 10−5 7.27 · 10−6

20 282718 −3.82 · 10−6 2.61 · 10−6

30 389571 −1.40 · 10−6 8.74 · 10−7

36 568548 −1.92 · 10−7 1.87 · 10−7

(b) Discontinuous Galerkin.

Table 4: Test case in figure 3a using (a) conforming Finite Element and (b) Discontinuous Galerkin. Approx-
imated shape gradient and goal-oriented estimator for different meshes.

the descent direction. However, it is important to recall that the Discontinuous Galerkin formulations
feature a higher number of Degrees of Freedom per mesh element, making the overall dimensions of
the optimization problems comparable. Nevertheless, from a practical point of view the computation
of the error bound E in the framework of conforming Finite Element relies on the solution of a number
of local subproblems on patches of element equal to the number of vertices of the triangulation Th.
On the contrary, the Discontinuous Galerkin discretization is locally conservative and yields to a
straightforward technique to construct the equilibrated fluxes based on an inexpensive and local post-
processing of the solutions of the state and adjoint problems. Thus, both approaches result valid and
present an improvement of the original Certified Descent Algorithm introduced in [30] which required
the solution of additional global problems to perform the certification procedure. Nevertheless, the
computational cost of the version based on the Discontinuous Galerkin formulation appears more
competitive, especially in view of future developments focusing on vectorial and three-dimensional
problems.

8 Conclusion

As already pointed out in [30], the Certified Descent Algorithm (CDA) for shape optimization uses
the quantitative information of the goal-oriented estimator to construct a minimizing sequence of
shapes that lead to a monotonically decreasing evolution of the objective functional and to a novel
stopping criterion for the overall optimization procedure. The main drawback of the aforementioned
strategy was the high computational cost due to the solution of additional global variational problems
to estimate the error in the shape gradient via the complementary energy principle.
In this work, we proposed an improved version of the CDA which uses solely local quantities to
certify that the computed direction is a genuine descent direction for the functional under analysis. In
particular, we derived a goal-oriented estimator of the error in the shape gradient via the construction
of equilibrated fluxes. This approach has been developed for both conforming Finite Element and
Discontinuous Galerkin discretizations and has been tested on the scalar inverse problem of Electrical
Impedance Tomography. On the one hand, using a conforming Finite Element discretization, the
number of Degrees of Freedom required by the approximation of the state and adjoint problems is
small but the construction of the equilibrated fluxes for the estimator of the error in the shape gradient
requires the solution of local subproblems defined on patches of elements whose number is equal to
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the number of vertices of the triangulation. On the other hand, though the Discontinuous Galerkin
formulation of the problems features a higher number of Degrees of Freedom per mesh element,
the computation of the error estimator based on the equilibrated fluxes approach is straightforward
via a post-processing procedure which involves solely local quantities. Both strategies proved to be
valid but the bounds provided by the Discontinuous Galerkin approach appeared more precise and
computationally less expensive.

Ongoing investigations focus on the application of the Certified Descent Algorithm to the vectorial
problem of shape optimization in linear elasticity.

A Weak imposition of the essential boundary conditions

We present a formal derivation of the variational formulation of an elliptic problem featuring weakly-
imposed Dirichlet boundary conditions. The idea of this approach dates back to the classical paper
by Nitsche [47] and has been extensively studied in recent years by several authors (cf. e.g. [21] and
references therein). We recall that the solution of a Boundary Value Problem may be interpreted as an
optimization problem. Let us introduce the Lagrangian functional associated with the state problem
(4.2) featuring Dirichlet boundary conditions:

Λ(w, λ) =
1

2

∫

D

(
kΩ|∇w|

2 + |w|2
)
dx−

∫

∂D
λ(w − UD)ds. (A.1)

The solution of the aforementioned PDE is equivalent to the following min-max problem:

min
w∈H1(D)

max
λ∈H− 1

2 (D)

Λ(w, λ).

The first-order optimality conditions for (A.1) read as





∫

D

(
kΩ∇w · ∇δw + wδw

)
dx−

∫

∂D
λδw ds = 0,

∫

∂D
(w − UD)δλ ds = 0.

From the second condition, we retrieve the Dirichlet boundary condition on ∂D. Integrating by parts
the first condition and owing to the strong form of the problem, we obtain

∫

∂D
(kΩ∇w · n− λ)δw ds = 0.

By plugging λ = kΩ∇w ·n on ∂D into (A.1) we may now derive the following dual variational problem
by seeking w ∈ H1(D) such that ∀δw ∈ H1(D)

∫

D

(
kΩ∇w · ∇δw + wδw

)
dx−

∫

∂D

(
kΩ∇w · nδw + wkΩ∇δw · n

)
ds

= −

∫

∂D
UDkΩ∇δw · n ds.

(A.2)
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We remark that the bilinear form on the left-hand side of (A.2) is not coercive thus we cannot
establish the well-posedness of this problem. To bypass this issue, we consider the following augmented
Lagrangian functional and we construct the corresponding dual variational formulation for the problem
under analysis:

Υ(w, λ, γ) = Λ(w, λ) +
1

2

∫

∂D
γ(w − UD)2ds. (A.3)

Following the same procedure used to derive (A.2), we seek w ∈ H1(D) such that ∀δw ∈ H1(D)
∫

D

(
kΩ∇w · ∇δw + wδw

)
dx−

∫

∂D

(
kΩ∇w · nδw +wkΩ∇δw · n

)
ds+

∫

∂D
γwδw ds

=

∫

∂D
UD

(
γδw − kΩ∇δw · n

)
ds.

(A.4)

It is straightforward to observe that the bilinear form on the left-hand side of (A.4) is coercive owing
a sufficiently large value of γ is chosen.
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