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A QUANTITATIVE INTERPRETATION OF THE FREQUENT

HYPERCYCLICITY CRITERION

R. ERNST, A. MOUZE

Abstract. We give a quantitative interpretation of the Frequent Hypercyclicity Criterion.
Actually we show that an operator which satisfies the Frequent Hypercyclicity Criterion is
necessarily A-frequently hypercyclic, where A refers to some weighted densities sharper than
the natural lower density. In that order, we exhibit different scales of weighted densities
that are of interest to quantify the “frequency” measured by the Frequent Hypercyclicity
Criterion. Moreover we construct an example of unilateral weighted shift which is frequently
hypercyclic but not A-frequently hypercyclic on a particular scale.

1. Introduction

The notion of frequent hypercyclicity was introduced in the context of linear dynamics by
Bayart and Grivaux in 2006 [1], [2]. This latter is now a central notion in that field and is
highly connected to combinatorics, number theory and ergodic theory. Let X be a metrizable
and complete topological vector space and L(X) be the space of continuous linear operators
on X. An operator T ∈ L(X) is said to be hypercyclic if there exists x ∈ X such that for any
non-empty open set U ⊂ X, the return set {n ≥ 0 : Tnx ∈ U} is non-empty or equivalently
infinite. Such a vector x is called a hypercyclic vector for T . Furthermore an operator T
is called frequently hypercyclic if there exists x ∈ X such that for any non-empty open set
U ⊂ X, the set of integers n satisfying Tnx ∈ U has positive lower density, i.e.

lim inf
N→+∞

#{k ≤ N : T kx ∈ U}
N

> 0,

where as usual # denotes the cardinality of the corresponding set. Thus the notion of frequent
hypercyclicity extends the classical hypercyclicity and appraises how often the orbit of a
hypercyclic vector visits every non-empty open set. In the sequel we denote by N the set of
positive integers and for any x ∈ X and any subset U ⊂ X we set N(x, U) := {n ∈ N : Tnx ∈
U}. Given a subset E ⊂ N, we define its lower and upper densities respectively by

d(E) = lim inf
N→+∞

#{k ≤ N : k ∈ E}
N

and d(E) = lim sup
N→+∞

#{k ≤ N : k ∈ E}
N

.

In other words, an operator T ∈ L(X) is hypercyclic (resp. frequently hypercyclic) if there
exists x ∈ X such that for any non-empty open set U ⊂ X, the set N(x, U) is non-empty
(resp. has positive lower density). To prove that an operator is hypercyclic we have at our
disposal the so-called Hypercyclicity Criterion (see [4], [10] and the references therein). In the
same spirit, Bayart and Grivaux stated the Frequent Hypercyclicity Criterion, which ensures
that an operator is frequently hypercyclic [2]. Let us recall it here.
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Theorem 1.1. Let T be an operator on a separable Fréchet space X. If there is a dense subset
X0 of X and a map S : X0 → X0 such that, for any x ∈ X0,

(i)
+∞∑
n=0

Tnx converges unconditionally,

(ii)
+∞∑
n=0

Snx converges unconditionally,

(iii) TSx = x,

then T is frequently hypercyclic.

We already know that the above result does not characterize frequently hypercyclic oper-
ators. Indeed Bayart and Grivaux have exhibited a frequently hypercyclic weighted shift on
c0 that does not satisfy this criterion [3]. A natural question arises: what does the Frequent
Hypercyclicity Criterion really quantify? In order to answer this question, Bès, Menet, Peris
and Puig recently generalized the notion of hypercyclic operators by introducing the concept
of A-frequent hypercyclicity, where A refers to a family of subsets of N satisfying suitable
conditions [8]. In particular, A has to satisfy the following separation condition:

A contains a sequence (Ak) of disjoint sets such that for any j ∈ Ak, any j′ ∈ Ak′ , j 6= j′,

we have |j′ − j| ≥ max(k, k′).

In this abstract framework, they also obtain an A-Frequent Hypercyclicity Criterion and
prove that the Frequent Hypercyclicity Criterion has very strong consequences in the sense
that if T satisfies the Frequent Hypercyclicity Criterion, then T also satisfies the A-Frequent
Hypercyclicity Criterion for any suitable family A. Bonilla and Grosse-Erdmann also studied
specific notions related to the concept of A-frequent hypercyclicity in the article [7].
On the other hand, the notion of frequent hypercyclicity measures the frequency and the
length of the intervals when iterates of a hypercyclic vector visits every non-empty open set
in a very specific way, that is given by the natural density. Actually, there are many types and
notions of densities different from the natural one. Our goal is to give quantified consequences
to the Frequent Hypercyclicty Criterion in terms of weighted densities. To that purpose, we
consider a special kind of lower weighted densities, generalizing the natural one but sharper
than this one, by using the formalism of matrix summability methods. For such a matrix A,
we use the concept of A-density and A-frequent hypercyclicity (see Definitions 2.2 and 2.11
below). These general densities were already used in the context of linear dynamics to study
frequently universal series [11]. In the present paper, we show that the Frequent Hypercyclicity
Criterion gives a stronger conclusion than frequent hypercyclicity, that we quantify thanks
to explicit weighted densities on different scales. We refer the reader to Proposition 3.5
and Theorem 4.12 below. Therefore an operator which satisfies the Frequent Hypercyclicity
Criterion is necessarily A-frequently hypercyclic, where A refers to some weighted densities
sharper than the natural lower density.

Let us return to the formalism of A-frequent hypercyclicity. For instance A could be a
family of subsets with positive given lower weighted density satisfying the aforementioned
separation property. However from [8], there is an underlying question: does there exist a
frequently hypercyclic operator not being A-frequently hypercyclic? We give a positive an-
swer by constructing an unilateral weighted shift on c0 which is frequently hypercyclic but
not A-frequently hypercyclic with respect to some A-densities covered by the criterion (see
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Theorem 5.4 below).

The paper is organized as follows: in Section 2 we introduce some densities that will be
of interest in the sequel and some properties on these densities. Section 3 is devoted to an
improvement of the Frequent Hypercyclicity Criterion for a certain scale of weighted densities.
In Section 4, we modify this proof in order to obtain a stronger result to the criterion. Finally
in Section 5, we exhibit a new example, inspired by [5], of an operator which is frequently
hypercyclic although it does not satisfy the Frequent Hypercyclicity Criterion. To ensure
this latter property, we will show that this operator is not A-frequently hypercyclic for some
suitable matrix A.

2. Densities: preliminary results

In this section, we state some definitions and results we shall need throughout the paper.
Let us first introduce the concept of summability matrix and its connections with some kind
of densities on subsets of N.

Definition 2.1. A summability matrix is an infinite matrix M = (mn,k) of complex numbers.

Let us recall that, if (xn) is a sequence and M = (mn,k) is a summability matrix, then by

Mx we denote the sequence ((Mx)1, (Mx)2, . . . ) where (Mx)n =
∑+∞

k=1mn,kxk. The matrix
M is called regular if the convergence of x to c implies the convergence of Mx to c. By a
well-known result of Toeplitz (see for instance [12]), M is regular if and only if the following
three conditions hold:

(2.1)


(i) lim

n→+∞
mn,k = 0, for all k ∈ N,

(ii) lim
n→+∞

∑
k≥1

mn,k = 1,

(iii) supn
∑

k≥1 |mn,k| <∞.
Freedman and Sember showed that every regular summability matrix M with non-negative

real coefficients defines a density dM on subsets of N, called lower M -density [9].

Definition 2.2. For a regular matrix M = (mn,k) with non-negative coefficients and a set
E ⊂ N, the lower M -density of E, denoted dM (E), is defined by

dM (E) = lim inf
n→+∞

+∞∑
k=1

mn,k1E(k),

and the associated upper M -density, denoted by dM (E), is defined by

dM (E) = 1− dM (N \ E).

Remark 2.3. For a non-negative regular matrix M = (mn,k), Proposition 3.1 of [9] ensures
that the upper M -density of any set E ⊂ N is given by

dM (E) = lim sup
n→+∞

+∞∑
k=1

mn,k1E(k).

Let (αk)k≥1 be a non-negative sequence such that
∑n

k=1 αk → +∞ as n tends to∞. Then,

we deal with the special case of A-density where we write A =
(
αk/

∑n
j=1 αj

)
, when A =

(αn,k) with αn,k = αk/
∑n

j=1 αj for 1 ≤ k ≤ n and αn,k = 0 for k > n. It is easy to check that
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A is a non-negative regular summability matrix. In summability theory the transformation
given by x = (xn) 7→ Ax is called the Riesz mean (A,αn). Here the associated A-density can
be viewed as a weighted density with respect to the non-negative weight sequence (αk)k≥1.

Definition 2.4. A summability matrix A =
(
αk/

∑n
j=1 αj

)
as above will be called an ad-

missible matrix. We define its summatory function ϕα as follows: ϕα : N → R+, ϕα(n) =∑
k≤n αk.

Example 2.5. (1) If αk = 1, k = 1, 2, . . . , then the summability matrix A is the well-
known Cesàro matrix and dA is the natural lower density.

(2) If αk = 1/k, k = 1, 2, . . . , dA is the so-called lower logarithmic density, which is derived
from the well-known logarithmic summability method. We have ϕα(k) ∼ log(k), as k
tends to +∞.

(3) The special case αk = kr, r ≥ −1, for k = 1, 2, . . . , generalizes both the natural

density (r = 0) and the logarithmic density (r = −1). Clearly we have ϕα(k) ∼ kr+1

r+1 ,
as k tends to +∞, when r > −1.

(4) If αk = ek
r
, 0 < r < 1, for k = 1, 2, . . . , an easy calculation gives ϕα(k) ∼ k1−r

r ek
r
, as

k tends to +∞.
(5) If αk = ek, for k = 1, 2, . . . , then ϕα(k) ∼ e

e−1e
k, as k tends to +∞.

(6) If α1 = 1 and αk = ek/ log
r(k), r > 0, for k = 2, 3, . . . , a summation by parts gives

ϕα(k) ∼ logr(k)ek/ log
r(k), as k tends to +∞.

(7) Let hs be the real function defined by hs = log . log(s), with log(s) = log ◦ log · · · ◦ log,

where log appears s times. If αk = ek/hs(k), l ∈ N, s ≥ 2, for k large enough, again a
summation by parts gives ϕα(k) ∼ hs(k)ek/hs(k), as k tends to +∞.

In the following sections, we shall use the following definitions connected to Example 2.5.

Definition 2.6. We denote by

(1) Cr the admissible matrix Cr =
(
kr/

∑n
j=1 j

r
)
, r ≥ −1;

(2) Ar the admissible matrix Ar =
(
ek
r
/
∑n

j=1 e
jr
)
, r ≥ 0;

(3) Br the admissible matrix Br = (αk/
∑n

j=1 αj) with α1 = 1 and αk = ek/ log
r(k), for

k ≥ 2, r ≥ 0;
(4) Let hs be the real function defined by hs = log . log(s), with log(s) = log ◦ log · · · ◦

log, where log appears s times. We denote by B̃s the admissible matrix B̃s =
(αk/

∑n
j=1 αj) with αk = ek/hs(k), for k large enough and s ≥ 2.

For any subset E ⊂ N, we can write E as a strictly increasing sequence (nk) of positive
integers. It is well-known that d(E) = lim infk→+∞

k
nk

which allows to deduce the following

simple fact: d(E) > 0 if and only if the sequence
(
nk
k

)
is bounded [10]. The following lemma

extends this remark to suitable A-densities.

Lemma 2.7. Let (αk) be a non-negative sequence such that
∑

k∈N αk = +∞. Assume that
the sequence (αn/

∑n
j=1 αj) converges to zero as n tends to +∞. Let (nk) be an increasing

sequence of integers forming a subset E ⊂ N. Then, we have

dA(E) = lim inf
k→+∞

(∑k
j=1 αnj∑nk
j=1 αj

)
,
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where dA is the A-density given by the summability matrix A = (αk/
∑n

j=1 αj).

Proof. Let us consider nk ≤ N < nk+1, then∑k+1
j=1 αnj∑nk+1

j=1 αj
−

αnk+1∑nk+1

j=1 αj
=

∑k
j=1 αnj∑nk+1

j=1 αj
≤
∑

nj≤N αnj∑N
j=1 αj

≤
∑k

j=1 αnj∑nk
j=1 αj

.

Thus, we deduce

dA(E) = lim inf
N→+∞

(∑
nj≤N αnj∑N
j=1 αj

)
= lim inf

k→+∞

(∑k
j=1 αnj∑nk
j=1 αj

)
.

�

In the present paper, we are mainly interested in sharper A-densities than the classical
natural density. From this point of view, the following lemma gives some conditions to ensure
that the sequence (αk) leads to a sharper density.

Lemma 2.8. Let (αk) and (βk) be non-negative sequences such that
∑

k∈N αk =
∑

k∈N βk =
+∞. Assume that the sequence (αk/βk) is eventually decreasing to zero. Let A = (αk/

∑n
j=1 αj)

and B = (βk/
∑n

j=1 βj) be the associated admissible matrices. Then, for every subset E ⊂ N,
we have

dB(E) ≤ dA(E) ≤ dA(E) ≤ dB(E).

Proof. Let E be a subset of N. For every n ≥ 1, let us define ΛαE(n) =
∑n

k=1 αk1E(k) (resp.

ΛβE(n) =
∑n

k=1 βk1E(k)). In particular, one may observe that ΛαN = ϕα. Now, let N ≥ 1 be
an integer such that the sequence (αk/βk)k≥N is decreasing. Then for every n ≥ N + 1, we
have

n∑
k=N+1

αk1E(k) =
n−1∑

k=N+1

ΛβE(k)

(
αk
βk
− αk+1

βk+1

)
+ ΛβE(n)

αn
βn
− ΛβE(N)

αN+1

βN+1

=
n−1∑

k=N+1

ΛβE(k)

ϕβ(k)
ϕβ(k)

(
αk
βk
− αk+1

βk+1

)
+

ΛβE(n)

ϕβ(n)
ϕβ(n)

αn
βn
− ΛβE(N)

αN+1

βN+1
.

Moreover, since (αk/βk) is a non-negative decreasing sequence and
∑
αk = +∞, we deduce

dA(E) = lim sup
n→+∞

[
(ϕα(n))−1

(
N∑
k=1

αk1E(k) +

n∑
k=N+1

αk1E(k)

)]

= lim sup
n→+∞

[
(ϕα(n))−1

(
n−1∑

k=N+1

ΛβE(k)

ϕβ(k)
ϕβ(k)

(
αk
βk
− αk+1

βk+1

)
+

ΛβE(n)

ϕβ(n)
ϕβ(n)

αn
βn

)]

≤ sup
k>N

(
ΛβE(k)

ϕβ(k)

)
lim sup
n→+∞

[
(ϕα(n))−1

(
n−1∑

k=N+1

ϕβ(k)

(
αk
βk
− αk+1

βk+1

)
+ ϕβ(n)

αn
βn

)]
.

Since
∑n−1

k=N+1 ϕβ(k)
(
αk
βk
− αk+1

βk+1

)
+ ϕβ(n)αnβn = ϕβ(N + 1)

αN+1

βN+1
+
∑n

k=N+2 αk, we get

dA(E) ≤ sup
k>N

(
ΛβE(k)

ϕβ(k)

)
.
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Hence letting N → +∞, we obtain dA(E) ≤ dB(E).
The other inequality is obtained using the relations dA(E) = 1 − dA(N \ E) and dB(E) =
1− dB(N \ E). �

From now on, we are interested in densities given by special admissible matrices given in
Definition 2.6. In this case, Lemma 2.8 leads to the following inequalities.

Lemma 2.9. For every subset E ⊂ N and for any 0 < r ≤ r′, 0 < s ≤ s′ < 1, 1 < t ≤ t′,
2 ≤ l ≤ l′, we have

dA1
(E) = dB0

(E) ≤ d
B̃l′

(E) ≤ d
B̃l

(E) ≤ dBt(E) ≤ dBt′ (E)

and

dBt′ (E) ≤ dAs′ (E) ≤ dAs(E) ≤ dCr′ (E) ≤ dCr(E) ≤ d(E).

Moreover, observe that a subset E of N possesses a strictly positive natural lower density
if and only if it has a strictly positive lower Cr-density, for any r > −1.

Lemma 2.10. Let r > −1. Then, for every subset E ⊂ N the following assertions are
equivalent

(i) dCr(E) > 0,
(ii) d(E) > 0.

Proof. Let (nk) ⊂ N be the increasing sequence of elements of E. We divide the proof in two
cases.
Case r ≥ 0: Lemma 2.8 gives dCr(E) ≤ d(E), hence (i) ⇒ (ii). For the other implication,

assume that d(E) > 0. This means that the sequence
(
nj
j

)
is bounded (see Lemma 2.7). We

deduce that there exists an integer M ≥ 1 such that for every k ∈ N, k ≤ nk ≤Mk and

nk∑
j=1

jr ≤
Mk∑
j=1

jr ≤ (Mk + 1)r+1

r + 1
≤M r+1 (k + 1)r+1

r + 1
.

Using the fact that
∑k

j=1 j
r ∼ kr+1

r+1 ∼
(k+1)r+1

r+1 , as k tends to +∞ (cf Example 2.5) we deduce
that there exists C > 0 such that

nk∑
j=1

jr ≤ CM r+1
k∑
j=1

jr.

Therefore we have
nk∑
j=1

jr ≤ CM r+1
k∑
j=1

(nj)
r

and lim infk→+∞

(∑k
j=1(nj)

r∑nk
j=1 j

r

)
> 0 which is sufficient to conclude thanks to Lemma 2.7.

Case −1 < r < 0: As in the previous case, Lemma 2.8 gives the implication (ii)⇒ (i) because
dCr(E) ≥ d(E). For the converse, assume that dCr(E) > 0. According to Lemma 2.7, there
exists C > 0 such that

nk∑
j=1

jr ≤ C
k∑
j=1

(nj)
r.
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Using the inequality j ≤ nj and since r < 0, we get

(nk + 1)r+1

r + 1
− 1

r + 1
≤

nk∑
j=1

jr ≤ C
k∑
j=1

(nj)
r ≤ C

k∑
j=1

jr ≤ C
(
kr+1

r + 1
− 1

r + 1
+ 1

)
.

The positivity of r + 1 now ensures that the sequence
(
nk
k

)
is bounded and d(E) > 0. �

Finally let us also extend the definition of frequently hypercyclic operators using the general
notion of A-densities introduced before.

Definition 2.11. Let A =
(
αk/

∑n
j=1 αj

)
be an admissible matrix. Using the notations of

Section 1, an operator T ∈ L(X) is said to be A-frequently hypercyclic if there exists x ∈ X
such that for any non-empty open set U ⊂ X, the set N(x, U) has positive lower A-density.

3. Frequent hypercyclicity criterion: classical construction

According to Lemma 2.10, a frequently hypercyclic operator is necessarily Cr-frequently
hypercyclic for any r > −1. So, even if this is obvious, the Frequent Hypercyclicity Criterion
allows to obtain the Br-frequent hypercyclicity too. A careful examination of the well-known
proof of this criterion leads to a more precise result. Indeed, in the classical proof of the
Frequent Hypercyclicity Criterion the following constructive lemma plays a prominent role [10,
Lemma 9.5].

Lemma 3.1. There exist pairwise disjoint subsets A(l, ν), l, ν ≥ 1, of N of positive lower
density such that, for any n ∈ A(l, ν) and m ∈ A(k, µ), we have that n ≥ ν and

|n−m| ≥ ν + µ if n 6= m.

The proof of this result is based on a specific partition of N using the dyadic representation
n =

∑+∞
j=0 aj2

j = (a0, a1, . . . ) of any positive integer. Actually the authors define the sets

I(l, ν), l, ν ≥ 1, as the sets of all n ∈ N whose dyadic representation has the form n =
(0, . . . , 0, 1, . . . , 1, 0, ∗) with l− 1 leading zeros, exactly followed by ν ones, then one zero and
an arbitrary remainder. Let δk = ν, if k ∈ I(l, ν) for some l ≥ 1. Then they construct the
following strictly increasing sequence (nk) of positive integers by setting

nk = 2
k−1∑
i=1

δi + δk, k ≥ 1.

This construction clearly ensures that for any integers i, j, with i 6= j, the separation condition
stated in Lemma 3.1 holds, that is

|ni − nj | ≥ δi + δj .

Finally they define the sets A(l, ν) = {nk; k ∈ I(l, ν)} and they prove that these sets have
positive lower density since (nk) does and the sets I(l, ν) are arithmetic sequences. Actually
we are going to prove that the sequence (nk) has positive lower B2-density. To do that,
we start by giving an exact formula for this sequence that will allow to obtain easily its
asymptotic behaviour. We obtain the following result, whose proof will be given later (see
Lemma 4.8 below).
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Lemma 3.2. If k = 2n +
∑n−1

i=0 αi2
i with αi ∈ {0; 1} for every 0 ≤ i ≤ n− 1, then

nk = 4k − 2

∑
i∈Ik

Li(i+ 1)

− δk,
where Ik stands for the set of integers i such that αi is the first non-zero integer of a block
(of consecutive non-zero coefficients) having length Li in the dyadic decomposition of k.

From this lemma, we deduce the following estimate using the same notations.

Proposition 3.3. The sequence (nk) satisfies the following estimate nk − 4k = O(log2(k)).
Moreover this estimate is optimal in the following sense: there exists an increasing sub-

sequence (λn) of positive integers such that the sequence
nλj−4λj
log2(λj)

converges to a non-zero real

number.

Proof. According to Lemma 3.2, we have, for k = 2l +
∑l−1

i=0 αi2
i with αi ∈ {0; 1} for every

0 ≤ i ≤ l − 1,

nk = 4k − 2

∑
i∈Ik

Li(i+ 1)

− δk,
where Ik = {i ∈ N; αi 6= 0 and αi−1 = 0}, with the conventions α−1 = 0, αl = 1 and for
i ∈ Ik, Li = min{j;αi+j = 0}. Obviously we deduce

nk ≤ 4k − 2 log2(k)− 1.

Notice that we have the equality nk = 4k − 2(log2(k) + 1)− 1 for k = 2l.
On the other hand, we can write∑

i∈Ik

Li(i+ 1) =
∑

i1<i2<···<imk

Lij (ij + 1),

where Ik = {i1 < i2 < · · · < imk}. Observe that we have

in + Lin + 1 ≤ in+1 for n = 1, . . . ,mk − 1 and Limk = l − imk + 1.

Since imk ≤ l, we get

∑
i1<i2<···<imk

Lij (ij + 1) ≤

mk−1∑
j=1

(ij+1 − (ij + 1))(ij + 1)

+ (l+ 1− imk)(imk + 1) ≤ (l+ 1)2.

By construction we have
δk ≤ log2(k) + 1.

Since log2(k) ≤ l ≤ log2(k) + 1, we conclude

4k − 2(log2(k) + 2)2 − log2(k)− 1 ≤ nk ≤ 4k − 2 log2(k)− 1

and the estimate nk − 4k = O(log2 k) holds. Finally let us consider λj =
∑j

l=0 22l. An easy
calculation gives

nλj = 4λj − 2

j∑
l=0

(2l + 1)− 1 = 4λj − 2j2 − 4j − 3.

Since λj = (4j+1 − 1)/3, the sequence
(
nλj−4λj
log2(λj)

)
converges to a non-zero real number. �
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We now prove that the sequence (nk) constructed above not only has positive lower density
but has also positive lower B2-density.

Lemma 3.4. We have dB2
((nk)) > 0.

Proof. Using (6) from Example 2.5, we have

dB2
(nk) = lim inf

k→+∞

( ∑k
j=1 e

nj/ log
2(nj)

log2(nk)enk/ log
2(nk)

)
.

According to Proposition 3.3, there exists a constant C > 0 such that, for N large enough,∑k
j=N e

nj/ log
2(nj)

log2(nk)enk/ log
2(nk)

≥
∑k

j=N e
(4j−C log2(j))/ log2(4j−C log2(j))

log2(4k)e4k/ log
2(4k)

.

A summation by parts gives

k∑
j=N

e(4j−C log2(j))/ log2(4j−C log2(j)) ∼ log2(k)

4
e(4k−C log2(k))/ log2(4k−C log2(k)), as k → +∞.

Finally, a similar computation as those needed for Example 2.5, yields∑k
j=N e

(4j−C log2(j))/ log2(4j−C log2(j))

log2(4k)e4k/ log
2(4k)

∼ e−C

4
, as k → +∞,

which finishes the proof. �

Lemma 3.4 allows us to show that the Frequent Hypercyclicity Criterion gives a strength-
ened result.

Proposition 3.5. Let T be an operator on a separable Fréchet space X. If there is a dense
subset X0 of X and a map S : X0 → X0 such that, for any x ∈ X0,

(i)
+∞∑
n=0

Tnx converges unconditionally,

(ii)
+∞∑
n=0

Snx converges unconditionally,

(iii) TSx = x,

then T is B2-frequently hypercyclic.

The proof of this result is the same as the classical proof of the Frequent Hypercyclicity
Criterion. Indeed, from Lemma 3.4, we can deduce that the sets A(l, ν) not only have positive
lower density but even have positive lower B2-density. We won’t detail the proof here because
we will prove a stronger result in Section 4.

Thanks to Lemma 2.9, one may actually deduce the following corollary proving that the
scale defined by matrices Ar is not fine enough to exhibit the limit in term of densities of the
Frequent Hypercyclicity Criterion.

Corollary 3.6. Under the assumptions of the previous proposition, the operator T is Ar-
frequently hypercyclic for every 0 ≤ r < 1.
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The previous result proves that for any 0 ≤ r < 1, the Ar-frequent hypercyclicity phenom-
enon exists and is even common. On the other hand, one may also notice that the geometric
rate of growth (i.e. r = 1) is unreachable in terms of dynamics. More precisely, we have the
following result.

Proposition 3.7. There is no A1-frequently hypercyclic operator.

Proof. We argue by contradiction. Assume that T is a A1-frequently hypercyclic operator on
a Banach space X and x is a A1-frequently hypercyclic vector. Let also U be a non-empty
open subset in X. Then, by definition and with Example 2.5, we get

0 < lim inf
N→+∞

∑
k≤N

ek∑N
j=1 e

j
1N(x,U)(k) = lim inf

N→+∞
(1− e−1)

∑
k≤N

ek−N1N(x,U)(k).

Moreover one may remark that asserting that this limit is non-zero implies that the set
N(x, U) has bounded gaps. Indeed, if one suppose that N(x, U) has unbounded gaps then
there exists a sequence (Ni) and a sequence (pi) tending to +∞ such that for every i ∈ N,
{Ni − pi + 1;Ni − pi + 2; . . . ;Ni} ∩N(x, U) = ∅. This gives

0 < lim inf
i→+∞

(1−e−1)
∑
k≤Ni

ek−Ni1N(x,U)(k) ≤ lim inf
i→+∞

(1−e−1)
∑

k≤Ni−pi

ek−Ni = lim
i→+∞

e−pi−1 = 0

and this contradiction shows that the set N(x, U) has bounded gaps. Let us denote by M an
upper bound of the length of these gaps. It suffices to choose V so far from the origin such
that the norm of T forbids T k(U) from intersecting V for k ≤M . This means that the orbit
of x will never reach the open set V contradicting the A1-frequent hypercyclicity of x. �

On the other hand, observe that the following result holds.

Lemma 3.8. For every 0 < r < 1, dBr(nk) = 0.

Proof. We have to estimate the following limit

dBr(nk) = lim inf
k→+∞

( ∑k
j=1 e

nj/ log
r(nj)∑nk+1−1

j=1 ej/ log
r(j)

)
.

Remark that by definition of δk, there exists an increasing sequence of integers (λk)k∈N
such that nλk+1 − nλk − 1 = δλk = k + 1 ∼ log2(λk), as k tends to ∞ (consider for example

λk = 2k+1 − 1). Then,

dBr(nk) ≤ lim inf
k→+∞

 ∑λk
j=1 e

nj/ log
r(nj)∑nλk+1−1

j=1 ej/ log
r(j)

 ≤ lim inf
k→+∞

 ∑nλk
j=1 e

j/ logr(j)∑nλk+1−1
j=1 ej/ log

r(j)

 .

Using the estimate (6) from Example 2.5 and the one from Proposition 3.3, we get:

dBr(nk) ≤ lim inf
k→+∞

(
logr(nλk)enλk/ log

r(nλk )

logr(nλk+1 − 1)enλk/ log
r(nλk )

)
≤ lim inf

k→+∞
enλk/ log

r(nλk )−(nλk+δλk )/ log
r(nλk+δλk )
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We begin by studying the term in the exponent

nλk
logr(nλk)

− nλk + δλk
logr(nλk + δλk)

=
nλk

logr (nλk + δλk)

1 +
log
(

1 +
δλk
nλk

)
log(nλk)

r

−
(

1 +
δλk
nλk

)
which reduces to the following thanks to a Taylor expansion:

nλk
logr (nλk + δλk)

(
1

log(nλk)
− 1

)
+ o

(
δλk

log1+r(nλk)

)
.

Now combining the estimate δλk ∼ log2(λk) as k tends to∞ with the one given by Proposition

3.3, we deduce that δλk/ log1+r(nλk)→0, as k tends to ∞. Hence we get

enλk/ log
r(nλk )−(nλk+δλk )/ log

r(nλk+δλk ) ∼ e
nλk

logr(nλk+δλk)

(
1

log(nλk
)
−1
)
−→
k→+∞

0.

This proves that dBr(nk) = 0. �

Notice that Proposition 3.3 combined with Lemma 3.8 do not allow us to conclude to the
Br-frequent hypercyclicity or not in the Frequent Hypercyclicity Criterion for 1 ≤ r < 2.

4. Further results

In this section, we are going to improve the conclusion of the Frequent Hypercyclicity Cri-
terion given by Proposition 3.5. To do this, we will modify the sequence (nk) used in the
proof of Lemma 3.1 to obtain a new sequence possessing a positive A-density for an admissible
matrix A defining a sharper density than the natural density.

Throughout this section, (an) will be an increasing sequence of positive integers with a1 = 1.
Using this sequence we define the function f : N→ N, by f(j) = m for all j ∈ {am, . . . , am+1−
1}. In the spirit of the sequence studied in the previous section, we also define the sequence
(nk(f)) by induction:

n1(f) = f(1) = 1 and nk(f) = nk−1(f) + f(δk−1) + f(δk) for k ≥ 2.

Clearly we obtain the following equality, for all k ≥ 2,

(4.1) nk(f) = 2

k−1∑
i=1

f(δi) + f(δk).

Let us notice that, if we set am = m for every m ≥ 1, then the corresponding sequence (nk(f))
is the sequence (nk) of Section 3. From now on, we will omit the notation f in (nk(f)) for
sake of readability. Our purpose is to compute an exact formula for the new sequence (nk) to
understand its asymptotic behavior. First of all, we obtain an expression for the subsequence
(n2am ).

Lemma 4.1. For all m ∈ N, we have

n2am = 2am+1
m∑
i=1

1

2ai−1
− 2m+ 1.
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Proof. Set ∆
(m)
j = {0 ≤ l ≤ 2am−1 : δl = j}. First let us observe that we have, by definition,

for every 1 ≤ j ≤ am,

n2am = 2
2am−1∑
k=1

f(δk) + f(δ2am ) = 2

am∑
j=1

f(j)#∆
(m)
j + f(δ2am ).

Thus it suffices to compute the cardinal of the set ∆
(m)
j . It easily follows that #∆

(m)
j =

1 +
∑am−j−1

i=0 2am−j−i. Indeed, we separate the case when the first block of ones in the dyadic
decomposition of l ends on 2am−1 and the case when the first block of ones ends before. In
the first case, we have no choice, there is only one possibility but in the second case we have
a certain number i of zeros at the beginning, then the first block of ones, which is of length j,
then one zero (because the first block of ones has to be of length j) and then we have 2am−j−i

possible choices as shown below.

(

length am+1︷ ︸︸ ︷
0, 0, . . . , 0︸ ︷︷ ︸

length i

, 1, 1, . . . , 1, 1, 0︸ ︷︷ ︸
length j+1

, ?, ?, . . . , ?, ?, 0, 0, . . .).

A quick calculation leads to #∆
(m)
j = 1 +

∑am−j−1
i=0 2am−j−i = 2am−j . Therefore we get

n2am = 2

am∑
j=1

f(j)2am−j + f(δ2am ) = 2

am∑
j=1

f(j)2am−j + 1.

Now we use the link between the values of f(j) and the position of j compared to the sequence
(am) to compute the sum:

n2am = 2

am∑
j=1

f(j)2am−j + 1

= 2am+1
am−1∑
j=1

f(j)2−j + 2m+ 1.

Let us now split the sum according to the values of f(j):

n2am = 2am+1
m−1∑
i=1

ai+1−1∑
j=ai

f(j)2−j

+ 2m+ 1

= 2am+1
m−1∑
i=1

i

ai+1−1∑
j=ai

2−j

+ 2m+ 1

= 2am+1
m−1∑
i=1

i

(
1

2ai−1
− 1

2ai+1−1

)
+ 2m+ 1

= 2am+1
m∑
i=1

1

2ai−1
− 2m+ 1.

�

We strengthen the previous lemma as follows.
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Lemma 4.2. Let m ∈ N. For every q ∈ N such that q < am − am−1, the following equality
holds

n2am−q = 2am−q+1
m−1∑
j=1

1

2aj−1
− 2(m− 1) + 1.

Proof. This proof works along the same lines as the proof of Lemma 4.1. Thus, we adapt the
preceding proof. It yields

n2am−q = 2
2am−q−1∑
j=1

f(δj) + f(δ2am−q)

= 2

am−q∑
j=1

f(j)2am−q−j + 1

= 2am−q+1

m−2∑
i=1

ai+1−1∑
j=ai

i2−j

+

am−q∑
j=am−1

(m− 1)2−j

+ 1

= 2am−q+1
m−1∑
j=1

1

2aj−1
− 2(m− 1) + 1.

�

Lemma 4.3. For k = 2n +
∑n−2

i=0 αi2
i with αi ∈ {0; 1}, 0 ≤ i ≤ n− 2, and (α0, . . . , αn−2) 6=

(0, . . . , 0), we have

nk−2n = 2

k−1∑
i=2n+1

f(δi) + f(δk).

For k = 2n + 2n−1 +
∑n−2

i=0 αi2
i with αi ∈ {0; 1}, 0 ≤ i ≤ n− 2, we have

nk−2n = 2
k−1∑

i=2n+1

f(δi)− f(δk−2n)− 2(f(L)− 1) + 2f(δk),

where L is the length of the block of one’s containing the coefficient one of 2n in the dyadic
decomposition of k.

Proof. We begin by proving the first assertion. We have

nk−2n = 2

k−2n−1∑
i=1

f(δi) + f(δk−2n).

Since k = 2n +
∑n−2

i=0 αi2
i, observe that for all 2n + 1 ≤ i ≤ k− 1 the dyadic decomposition of

i contains a one for some 2l with 0 ≤ l ≤ n− 2 and the coefficient of 2n−1 is zero. Therefore,
the first block of ones in the dyadic decomposition of i does not contain the coefficient of 2n.
Thus, for every such 2n + 1 ≤ i ≤ k − 1, we have δi = δi−2n . This proves the first part of the
lemma since δk = δk−2n .
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To prove the second assertion, we begin by observing that

2

k−1∑
i=2n+1

f(δi) = 2

k∑
i=2n+1

f(δi)− 2f(δk).

Then, as above if the index i is such that the coefficient of 2n does not belong to the first
block of ones (in the dyadic decomposition of i) then δi = δi−2n . On the other hand, if the
coefficient of 2n belongs to the first block of ones and since we have an−1 = 1 then i has to
be of the form i =

∑p
l=0 2n−l for p ∈ {1, . . . , L − 1} and δi = δi−2n + 1. Now let us pick a

particular index i of the form i =
∑p

l=0 2n−l with p ∈ {1, . . . , L− 1}. We consider two cases:
Case 1: for every j ∈ {2, . . . , f(L)}, we have p + 1 6= aj . Then we have f(δi) = f(p + 1) =
f(δi − 1) = f(δi−2n).
Case 2: there exists an integer j ∈ {2, . . . , f(L)} with p+1 = aj . Then we get f(δi) = f(aj) =
j = f(δi − 1) + 1 = f(δi−2n) + 1.
Finally we deduce

2
k−1∑

i=2n+1

f(δi) = 2
k∑

i=2n+1

f(δi)− 2f(δk) = 2

(
k−2n∑
i=1

f(δi) + (f(L)− 1)

)
− 2f(δk)

= nk−2n + f(δk−2n) + 2(f(L)− 1)− 2f(δk).

�

From Lemma 4.3 we deduce the following result.

Lemma 4.4. Let L be any non-zero integer and q be an integer. If k =
∑L−1

j=0 2q+j + k′ with

0 ≤ k′ < 2q−1 then either k′ 6= 0 and

nk = nk′ +
L−1∑
j=0

n2q+j + 2
L∑
j=2

(f(j)− 1) + L,

or k′ = 0 and

nk =
L−1∑
j=0

n2q+j + 2
L∑
j=2

(f(j)− 1) + L− f(L).

Proof. We proceed by induction on L. For L = 1, set k = 2q+k′. First, observe that if k′ = 0,
the result is clear by Lemma 4.3. So assume that 0 < k′ < 2q−1. We divide nk into two sums

nk =

(
2
2q−1∑
i=1

f(δi) + f(δ2q)

)
+

(
f(δ2q) + 2

k−1∑
i=2q+1

f(δi) + f(δk)

)
.

It suffices to apply Lemma 4.3 to obtain

nk = n2q + f(δ2q) + nk′ = n2q + 1 + nk′
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and we have the desired conclusion. Now choose L ≥ 2 and suppose that the result holds for
every integer l, with 1 ≤ l ≤ L− 1. By Lemma 4.3, we get

nk =

k−1∑
i=1

f(δi) + f(δk)

=

2q+L−1−1∑
i=1

f(δi) + 2f(δ2q+L−1) + 2

k−1∑
i=2q+L−1+1

f(δi) + f(δk)

= n2q+L−1 + f(δ2q+L−1) + nk−2q+L−1 + f(δk−2q+L−1) + 2(f(L)− 1)− f(δk).

We have f(δ2q+L−1) = 1. Moreover suppose that 0 < k′ < 2q−1, then the block of ones
containing the coefficient one of 2q+L−1 is not the first one, thus δk = δk′ = δk−2q+L−1 . Using
the induction hypothesis, we obtain

nk = n2q+L−1 + nk−2q+L−1 + 2(f(L)− 1) + 1

= nk′ +
L−2∑
j=0

n2q+j + 2
L−1∑
j=2

(f(j)− 1) + L− 1 + n2q+L−1 + 2(f(L)− 1) + 1

= nk′ +

L−1∑
j=0

n2q+j + 2

L∑
j=2

(f(j)− 1) + L.

On the other hand, in the case k′ = 0, the induction hypothesis gives

nk = n2q+L−1 + 1 + nk−2q+L−1 + f(L− 1) + 2(f(L)− 1)− f(L)

=

L−2∑
j=0

n2q+j + 2

L−1∑
j=2

(f(j)− 1) + (L− 1)− f(L− 1)

+ n2q+L−1 + 1 + f(L− 1) + 2(f(L)− 1)− f(L)

=
L−1∑
j=0

n2q+j + 2
L∑
j=2

(f(j)− 1) + L− f(L).

This completes the proof. �

From Lemma 4.4, we immediately get the following result since f(1) = 1.

Lemma 4.5. Let L1, . . . , Lr be non-zero integers and q1, . . . , qr be integers such that qi+Li <
qi+1 for every 1 ≤ i ≤ r − 1. For k =

∑r
i=1

∑Li−1
j=0 2qi+j we have

nk =

r∑
i=1

Li−1∑
j=0

n2qi+j + 2

r∑
i=1

Li∑
j=1

f(j)−
r∑
i=1

Li − f(L1).

We are ready to obtain a general formula for the sequence (nk). Let us introduce some
notations.

Notations 4.6. Let L1, . . . , Lr be non-zero integers and q1, . . . , qr be integers such that
qi + Li < qi+1 for every 1 ≤ i ≤ r − 1. We define the integers mi, ti, si and pi as follows:

(1) mi is the greatest integer such that ami ≤ qi + Li − 1,
(2) ti = qi + Li − 1− ami ,
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(3) pi = #{l ∈ N : l < mi and qi ≤ al ≤ qi + Li − 1},
(4) si = Li − 1− ti − (ami − ami−pi).

To understand these notations, we give the following representation.

Now we state an explicit formula for the sequence (nk(f)). This will allow us to obtain a good
asymptotic formula for this sequence.

Lemma 4.7. Using the notations (4.6), for k =
∑r

i=1

∑Li−1
j=0 2qi+j we have

nk(f) = 2k

(
+∞∑
l=1

1

2al−1

)
−

r∑
i=1

pi−1∑
u=0

ami−u−ami−(u+1)∑
j=1

2ami−u−j+1

 +∞∑
l=mi−u

1

2al−1


+

 ti∑
j=0

2ami+j+1

 +∞∑
l=mi+1

1

2al−1

+

(
si∑
l=1

2ami−pi−l+1

) +∞∑
l=mi−pi

1

2al−1


− 2

r∑
i=1

 ami+ti∑
j=ami−pi−si

f(j)−
Li∑
j=1

f(j)

− f(L1).

Proof. We only prove the lemma for ti < Li, the other case being similar but simpler. We
use the notations (4.6) to write

(4.2)

Li−1∑
j=0

n2qi+j =

Li−1∑
j=0

n2ami+ti−j =

ti∑
j=0

n2ami+j +

Li−1−si−ti∑
j=1

n2ami−j +

si∑
j=1

n
2
ami−pi−j .

It remains to compute these three sums. We begin by the second one, dropping for the
moment the index i for sake of readability. Using Lemma 4.2, we write

L−1−s−t∑
j=1

n2am−j =

p−1∑
u=0

am−u−am−(u+1)∑
j=1

n2am−u−j

=

p−1∑
u=0

am−u−am−(u+1)∑
j=1

2am−u−j+1

m−(u+1)∑
l=1

1

2al−1
− 2(m− (u+ 1)) + 1

 .

Thus, we deduce

(4.3)

L−1−s−t∑
j=0

n2am−j =

p−1∑
u=0

am−u−am−(u+1)∑
j=1

2am−u−j+1

m−(u+1)∑
l=1

1

2al−1


−2

p∑
u=1

(m− u)(am−(u−1) − am−u) + L− s− t.
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In the same spirit we compute the first and third sums as follows

(4.4)
t∑

j=0

n2am+j =

 t∑
j=0

2am+j+1

( m∑
l=1

1

2al−1

)
− 2m(t+ 1) + t+ 1

and

(4.5)

s∑
j=1

n2am−p−j =

(
s∑
l=1

2am−p−l+1

)m−(p+1)∑
l=1

1

2al−1

− 2(m− (p+ 1))s+ s.

Moreover since we have by definition ti < ami+1 − ami and si < ami−pi − ami−pi−1, when
we gather equations (4.3), (4.4) and (4.5), we have to compute the following sum:

(4.6)

pi∑
u=1

(mi − u)(ami−(u−1) − ami−u) +mi(ti + 1) + (mi − (pi + 1))si

=

pi∑
u=1

ami−(u−1)−ami−u−1∑
j=0

f(ami−u + j) +

ti∑
j=0

f(ami + j) +

si∑
j=1

f(ami−pi − j)

=

ami+ti∑
j=ami−pi−si

f(j).

Thus thanks to Lemma 4.5 and the equations (4.2), (4.3), (4.4), (4.5), (4.6), we deduce

nk =

r∑
i=1

Li−1∑
j=0

n2qi+j + 2

r∑
i=1

Li∑
j=1

f(j)−
r∑
i=1

Li − f(L1)

=

r∑
i=1

pi−1∑
u=0

ami−u−ami−(u+1)∑
j=1

2ami−u−j+1

mi−(u+1)∑
l=1

1

2al−1

+

 ti∑
j=0

2ami+j+1

( mi∑
l=1

1

2al−1

)

+

(
si∑
l=1

2ami−pi−l+1

)mi−(pi+1)∑
l=1

1

2al−1

− 2

ami+ti∑
j=ami−pi−si

f(j) + Li


+ 2

r∑
i=1

Li∑
j=1

f(j)−
r∑
i=1

Li − f(L1).

We remark that a
∑r

i=1 Li comes out from the first sum and cancels the term lying in the
end of the preceding equality, we also gather the sums over f(j) and we get:

nk =
r∑
i=1

pi−1∑
u=0

ami−u−ami−(u+1)∑
j=1

2ami−u−j+1

mi−(u+1)∑
l=1

1

2al−1

+

 ti∑
j=0

2ami+j+1

( mi∑
l=1

1

2al−1

)

+

(
si∑
l=1

2ami−pi−l+1

)mi−(pi+1)∑
l=1

1

2al−1

+ 2

r∑
i=1

 Li∑
j=1

f(j)−
ami+ti∑

j=ami−pi−si

f(j)

− f(L1).
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Then, we express the partial sums
∑N

l=1
1

2al−1 as the series minus its remainder of order N
which yields:

nk =

(
+∞∑
l=1

1

2al−1

)
r∑
i=1

pi−1∑
u=0

ami−u−ami−(u+1)∑
j=1

2ami−u−j+1

+

ti∑
j=0

2ami+j+1 +

si∑
l=1

2ami−pi−l+1


−

r∑
i=1

pi−1∑
u=0

ami−u−ami−(u+1)∑
j=1

2ami−u−j+1

 +∞∑
l=mi−u

1

2al−1

+

 ti∑
j=0

2ami+j+1

 +∞∑
l=mi+1

1

2al−1


+

(
si∑
l=1

2ami−pi−l+1

) +∞∑
l=mi−pi

1

2al−1

+ 2
r∑
i=1

 Li∑
j=1

f(j)−
ami+ti∑

j=ami−pi−si

f(j)

− f(L1).

Now it suffices to remark that coming back to notations with qi’s, then k can be expressed in
the following way

k =
r∑
i=1

pi−1∑
u=0

ami−u−ami−(u+1)∑
j=1

2ami−u−j

+

ti∑
j=0

2ami+j +

si∑
l=1

2ami−pi−l

 .

Thus we obtain:

nk = 2k

(
+∞∑
l=1

1

2al−1

)
−

r∑
i=1

pi−1∑
u=0

ami−u−ami−(u+1)∑
j=1

2ami−u−j+1

 +∞∑
l=mi−u

1

2al−1


+

 ti∑
j=0

2ami+j+1

 +∞∑
l=mi+1

1

2al−1

+

(
si∑
l=1

2ami−pi−l+1

) +∞∑
l=mi−pi

1

2al−1


+ 2

r∑
i=1

 Li∑
j=1

f(j)−
ami+ti∑

j=ami−pi−si

f(j)

− f(L1).

�

Observe that if we set (am)m = (m)m, then f(j) = j for every integer j and Lemma 4.7
takes the following form.

Lemma 4.8. In the aforementioned case, if k = 2n +
∑n−1

i=0 αi2
i with αi ∈ {0; 1} for every

0 ≤ i ≤ n− 1, then

nk = 4k − 2

∑
i∈Ik

Li(i+ 1)

− δk,
where Ik stands for the set of integers i such that αi is the first non-zero integer of a block
(of consecutive non-zero coefficients) having length Li in the dyadic decomposition of k.
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Proof. Using the notations of Lemma 4.7, we have: ti = si = 0, Li = pi + 1, mi = i+ Li − 1.
Therefore we deduce

nk = 4k − 4
r∑
i=1

(pi + 1)− 2
r∑
i=1

i+Li−1∑
j=i

j − Li(Li + 1)

2

− L1

= 4k − 4
r∑
i=1

Li −
r∑
i=1

(2i+ Li − 1)Li +
r∑
i=1

Li(Li + 1)− L1

= 4k − 2
r∑
i=1

Li(i+ 1)− L1.

This last inequality gives the result since L1 = δk. �

Lemma 4.8 is exactly Lemma 3.4 announced in the previous section.

Let us return to the general situation, using the notation (nk(f)) again. From Lemma 4.7,
we deduce the following estimate on the sequence (nk(f)) for specific choices of functions f.

Lemma 4.9. Using the previous notations, assume that am = 22
. ..2m

, where 2 appears
s times (s ≥ 1). Then the associated function fs : N → N is given by fs(j) = m, for
j ∈ {am, . . . , am+1 − 1}, and the following estimate holds:

2k

(
+∞∑
l=1

1

2al−1

)
−2 log2(k)fs(blog2(k)c)−14 log2(k)−8fs(blog2(k)c) ≤ n(s)k ≤ 2k

(
+∞∑
l=1

1

2al−1

)
,

with nk(fs) = n
(s)
k .

Proof. We need Lemma 4.7 and its notations. The proof of the upper bound is obvi-
ous. For the lower bound, observe first that the subadditivity of fs implies that for k =∑r

i=1

∑Li−1
j=0 2qi+j ,

Li∑
j=1

fs(j)−
ami+ti∑

j=ami−pi−si

fs(j) =

Li∑
j=1

(fs(j)− fs(ami−pi − si − 1 + j)) ≥ −Lifs(ami−pi − si).

In addition, since for every u ≥ 1, we have au + 2 < au+2 and
∑+∞

l=q 2−j = 21−q, we obtain: ti∑
j=0

2ami+j+1

 +∞∑
l=mi+1

1

2al−1

 = 4

 ti∑
j=0

2ami+j

 +∞∑
l=mi+1

1

2al


≤ 4

 ti∑
j=0

2ami+j

( 1

2ami+1
+

1

2ami+1+1 +
1

2ami+1+2

)

≤ 7

2ami+1−ami

(
2ti+1 − 1

)
≤ 7

2ami+1−(ami+ti+1)

≤ 7.
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In the same spirit, we also have(
si∑
l=1

2ami−pi−l+1

) +∞∑
l=mi−pi

1

2al−1

 = 4

(
si∑
l=1

2ami−pi−l

) +∞∑
l=mi−pi

1

2al


≤ 4

(
si∑
l=1

2ami−pi−l

)(
1

2ami−pi
+

1

2ami−pi+1 +
1

2ami−pi+2

)

≤ 7

(
si∑
l=1

2−l

)
≤ 7.

The same method gives again

pi−1∑
u=0

ami−u−ami−(u+1)∑
j=1

2ami−u−j+1

 +∞∑
l=mi−u

1

2al−1

 ≤ 7

pi−1∑
u=0

ami−u−ami−(u+1)∑
j=1

2−j

 ≤ 7pi.

Finally we gather these estimates and we obtain

n
(s)
k ≥ 2k

(
+∞∑
l=1

1

2al−1

)
− 7

r∑
i=1

(2 + pi)− 2
r∑
i=1

Lifs(ami−pi − si)− fs(L1)

≥ 2k

(
+∞∑
l=1

1

2al−1

)
− 7(2r +mr)− 2

(
r∑
i=1

Li

)
fs(amr + tr)− fs(L1).

Using the fact that amr + ti = qr +Lr − 1 ≤ log2(k) < qr +Lr and k =
∑r

i=1

∑Li−1
j=0 2qi+j , we

get

n
(s)
k ≥ 2k

(
+∞∑
l=1

1

2al−1

)
− 7(2 log2(k) + fs(blog2(k)c))− 2 log2(k)fs(blog2(k)c)− fs(blog2(k)c)

≥ 2k

(
+∞∑
l=1

1

2al−1

)
− 2 log2(k)fs(blog2(k)c)− 14 log2(k)− 8fs(blog2(k)c).

This finishes the proof. �

We now prove that the sequence (n
(s)
k ) constructed above not only has positive lower density

but has also positive lower B̃s-density, for every s ≥ 2.

Lemma 4.10. We have d
B̃s

((n
(s)
k )) > 0.

Proof. According to (7) from Example 2.5, we write

dBs(n
(s)
k ) = lim inf

k→+∞

 ∑k
j=1 e

n
(s)
j /hs(n

(s)
j )

hs(n
(s)
k )en

(s)
k /hs(n

(s)
k )

 .
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Observe that Lemma 4.9 ensures the existence of two constants C1, C2 > 1 such that for
N large enough, ∑k

j=N e
n
(s)
j /hs(n

(s)
j )

hs(n
(s)
k )en

(s)
k /hs(n

(s)
k )
≥
∑k

j=N e
(C1j−C2hs(j))/hs(C1j−C2hs(j))

hs(C1k)eC1k/hs(C1k)
.

A summation by parts gives

k∑
j=N

e(C1j−C2hs(j))/hs(C1j−C2hs(j)) ∼ hs(k)

C1
e(C1k−C2hs(k))/hs(C1k−C2hs(k)), as k → +∞.

Then, a similar computation as those needed for (7) from Example 2.5 leads to the following
estimate ∑k

j=N e
(C1j−C2hs(j))/hs(C1j−C2hs(j))

hs(C1k)eC1k/hs(C1k)
∼ e−C2

C1
, as k → +∞,

which gives the desired conclusion. �

This allows to prove the following combinatorial lemma which extends Lemma 3.1.

Lemma 4.11. There exist pairwise disjoint subsets B(s)(l, ν), l, ν ≥ 1, of N having positive

B̃s density such that, for any n ∈ B(s)(l, ν) and m ∈ B(s)(k, µ), we have that n ≥ fl(ν) and

|n−m| ≥ fl(ν) + fl(µ) if n 6= m.

Proof. We consider the sequence (n
(s)
k ) constructed above and also sets I(l, ν) constructed

in [10] that we recalled just after Lemma 3.1. We also define B(s)(l, ν) := {n(s)k ; k ∈ I(l, ν)}.
These sets are clearly pairwise disjoint since the sets I(l, ν) are, and the sequence is (n

(s)
k )

increasing. Moreover by definition of the sets I(l, ν), that are arithmetic sequences, and

Lemma 4.9, the conclusion of Lemma 4.10 remains true, i.e. the sets B(s)(l, ν) have positive

lower B̃s-density. Then by definition of n
(s)
k from (4.1), we get n

(s)
k ≥ fs(δk) = fs(ν). Finally,

if n
(s)
j ∈ B(s)(l, ν) and n

(s)
m ∈ B(s)(k, µ) with j > m, then

n
(s)
j − n

(s)
m = f(δm) + 2

j−1∑
i=m+1

f(δi) + f(δj) ≥ f(µ) + f(ν).

�

This strengthened version of Lemma 3.1 allows us to give a stronger conclusion to the
so-called Frequent Hypercyclicity Criterion whose proof will be only sketched since it is an
adaptation of the classical proof given in [10, Theorem 9.9].

Theorem 4.12. Let T be an operator on a separable Fréchet space X. If there is a dense
subset X0 of X and a map S : X0 → X0 such that, for any x ∈ X0,

(i)
∞∑
n=0

Tnx converges unconditionally,

(ii)
∞∑
n=0

Snx converges unconditionally,

(iii) TSx = x,
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then T is B̃s-frequently hypercyclic, for every s ≥ 2.

Proof. Let (yn) be a dense sequence from X0 that is dense in X. Let ‖.‖ denote an F -norm
that defines the topology of X. The unconditional convergence of the series (ii) and (iii)
allows to find, for every l ∈ N, an integer Nl ≥ 1 such that for every j ≤ l and every finite
set F ⊂ {Nl;Nl + 1; . . .}, ∥∥∥∥∥∑

n∈F
Tnyl

∥∥∥∥∥ ≤ 1

l2l
and

∥∥∥∥∥∑
n∈F

Snyl

∥∥∥∥∥ ≤ 1

l2l
.

Now let (Ml) be an increasing sequence such that fs(Ml) ≥ Nl and (fs(Ml)) is increasing.
We also define

B(s) :=

+∞⋃
l=1

B(s)(l,Ml)

and

zn = yl if n ∈ B(s)(l,Ml).

Finally we claim that

x =
∑
n∈N

Sn(zn)

defines a B̃s-frequently hypercyclic vector for T . From this point, the proof is just an adap-
tation of the proof of the Frequent Hypercyclicity Criterion from [10] replacing Lemma 3.1
by Lemma 4.11 stated above. �

We may also deduce the following corollary using Lemma 2.9.

Corollary 4.13. Under the assumptions of the previous proposition, the operator T is Br-
frequently hypercyclic for every r > 1.

5. A frequently hypercyclic operator which is not Ar-frequently hypercyclic

In this final section, we are going to show that there exists frequently hypercyclic operator,
that do not belong to the class of Ar-frequently hypercyclic operator, for any 0 < r ≤ 1.
According to Proposition 3.5 or Theorem 4.12 such an operator cannot satisfy the Frequent
Hypercyclicity Criterion. To build it, we are going to use several ideas of the work [5], where
the authors provide some counterexamples to questions regarding frequent hypercyclicity.

In a recent paper, Bayart and Ruzsa gave a characterization of frequently hypercyclic
weighted shifts on the sequence spaces `p and c0. We recall here their result on c0(N) that
will be useful in the following [5, Therorem 13].

Theorem 5.1. Let w = (ωn)n∈N be a bounded sequence of positive integers. Then Bw is
frequently hypercyclic on c0(N) if and only if there exist a sequence (M(p)) of positive real
numbers tending to +∞ and a sequence (Ep) of subsets of N such that:

(a) For any p ≥ 1, d (Ep) > 0;
(b) For any p, q ≥ 1, p 6= q, (Ep + [0, p]) ∩ (Eq + [0, q]) = ∅;
(c) limn→∞, n∈Ep+[0,p] ω1 · · ·ωn = +∞;
(d) For any p, q ≥ 1, for any n ∈ Ep and any m ∈ Eq with m > n, for any t ∈ {0, . . . , q},

ω1 · · ·ωm−n+t ≥M(p)M(q).
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In the same paper, the authors also provide examples of a U-frequently hypercyclic weighted
shift which is not frequently hypercyclic and of a frequently hypercyclic weighted shift which is
not distributionally chaotic. In what follows, we modify these constructions in order to provide
a frequently hypercyclic weighted shift on c0(N) which is not Ar-frequently hypercyclic for
any 0 < r < 1. To that purpose, we will need the following lemma [5, Lemma 1]:

Lemma 5.2. There exist a > 1 and ε > 0 such that d
(
∪u≥1Ia,4εu

)
< 1 and, for any integer

u > v ≥ 1,
Ia,2εu ∩ Ia,2εv = ∅, Ia,2εu − Ia,2εv ⊂ Ia,4εu ,

where Ia,εu = [(1− ε)au, (1 + ε)au].

The philosophy of the previous lemma is that it suffices to choose a very large and at the
same time ε very small to obtain the result stated. This allows us to strengthen this lemma
demanding also that the following condition holds:

(5.1)
1− ε
1 + ε

a > 1.

From now on, we suppose that a and ε are given by the previous lemma with the additional
condition (5.1).

Let also (bp) be an increasing sequence of integers such that

(5.2)
∑
q≥1

(4q + 1)(2q + 1)

bq
e2q <∞ and bp ≥ 8p.

Finally, let (Ap) be any syndetic partition of N and

Ep = ∪u∈Ap (Ia,εu ∩ (bpN + [0, p])) .

Bayart and Ruzsa construct such sets and they prove that these sets have positive lower
density [5, Lemma 2]. Then, for the same reasons we have d(Ep) > 0. Further, the following
lemma is almost the same as [5, Lemma 3] once again and it still holds in our context:

Lemma 5.3. Let p, q ≥ 1, n ∈ Ep, m ∈ Eq with n 6= m. Then |n−m| > max(p, q).

In particular, (Ep + [0, p]) ∩ (Eq + [0, q]) = ∅ if p 6= q.
Thus, the sequence of sets (Ep) satisfy conditions (a) and (b) from Theorem 5.1.

We now turn to the construction of the weights of the weighted shift we are looking for.
For this construction, we also draw our inspiration from constructions made in [5]. We set:

wp0 · · ·w
p
k−1 =

{
1 if k /∈ bpN + [−4p, 4p]

2p if k ∈ bpN + [−2p, 2p]

and for every k ∈ N, 1
2 ≤ w

p
k ≤ 2. Then for p, q ≥ 1, u ∈ Ap and v ∈ Aq with u > v we define

wu,v0 · · ·w
u,v
k−1 =

{
1 if k /∈ Ia,4εu

max(2p, 2q) if k ∈ Ia,εu − Ia,εv + [0, p]

and for every k ∈ N, 1
2 ≤ w

u,v
k ≤ 2.

We are now able to give the definition of the weight w. This one is constructed in order to
satisfy the following equality:

w0 · · ·wn−1 = max
p,u,v

(
wp0 · · ·w

p
n−1, w

u,v
0 · · ·w

u,v
n−1
)
.
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It is clear by construction that for every n ∈ N, 1
2 ≤ wn ≤ 2, so the weighted backward shift

Bw is bounded and invertible. Moreover this construction satisfies condition (c) in Theorem
5.1.

Since we want to prove that Bw is frequently hypercyclic, the only condition left to prove
is condition (d) from Theorem 5.1. Thus let p, q ≥ 1, n ∈ Ep and m ∈ Eq with m > n and
t ∈ [0, q]. Then we have two cases:

• If p = q, thenm−n+t ∈ bqN+[−q, 2q] and the definition of w ensures that w0 · · ·wm−n+t ≥
2q.

• If p 6= q, then there exists u > v such that n ∈ Ia,εv and m ∈ Ia,εu . Thus, by definition of
w,

w0 · · ·wm−n+t ≥ max (2p; 2q) ≥ 2
p+q
2 ≥ b2

p
2 c · b2

q
2 c.

Now, one may define M(p) := b2
p
2 c and each case above satisfies condition (d) from Theo-

rem 5.1. Thus we have proved that the weighted shift Bw is frequently hypercyclic.

We now turn to the Ar-frequent hypercyclicity of Bw. We are going to prove by contradic-
tion that Bw is not Ar-frequently hypercyclic for every 0 < r < 1.
Let us suppose that Bw is Ar-frequently hypercyclic and that E ⊂ N is such that dAr(E) > 0
and limn→∞,n∈E w1 · · ·wn = +∞. Such a set exists since Bw is Ar-frequently hypercyclic.

Indeed it suffices to consider E = {n ∈ N : ‖Bn
w(x) − e0‖ ≤ 1

2} where x is a Ar-frequently
hypercyclic vector.

For every p ≥ 1, we consider the set:

Fp = {n ∈ E : w1 · · ·wn > 2p}.

This set is a cofinite subset of E, so it has the same lower Ar-density. We also consider an
increasing enumeration (nk) of Ap.

Then

dAr(Fp) ≤ lim inf
k→∞



∑
n≤(1+ε)ank ,

n∈Fp

en
r

+
∑

(1+ε)ank<n≤(1−ε)ank+1 ,

n∈∪q>p(bqN+[−2q,2q])

en
r

∑
n≤(1−ε)ank+1

en
r

 .

Moreover, since we have
∑

n≤N e
nr ∼ 1

rN
1−reN

r
, as N tends to ∞, we get

dAr(Fp) ≤ lim inf
k→∞



1
r ((1 + ε)ank)1−r e((1+ε)a

nk )r +
∑

(1+ε)ank<n≤(1−ε)ank+1 ,

n∈∪q>p(bqN+[−2q,2q])

en
r

1
r ((1− ε)ank+1)1−r e((1−ε)a

nk+1 )r

 .
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A straightforward computation using inequality (5.1) proves that the first term on the right-
hand side tends to 0. We now focus on the second term:

dAr(Fp) ≤ lim inf
k→∞



∑
(1+ε)ank<n≤(1−ε)ank+1 ,

n∈∪q>p(bqN+[−2q,2q])

en
r

1
r ((1− ε)ank+1)1−r e((1−ε)a

nk+1 )r



≤ lim inf
k→∞

∑
q>p(4q + 1)

∑ (1−ε)ank+1

bq+2q

j=1 e(jbq+2q)r

1
r ((1− ε)ank+1)1−r e((1−ε)a

nk+1 )r
.

An classical calculation ensures that we have
(1−ε)ank+1

bq+2q∑
j=1

e(jbq+2q)r ∼

(
bq(1−ε)ank+1

bq+2q + 2q
)1−r

rbq
e

(
bq(1−ε)a

nk+1

bq+2q
+2q

)r
,

as k tends to ∞. Thus we obtain

dAr(Fp) ≤ lim inf
k→∞

∑
q>p(4q + 1)

(
bq(1−ε)ank+1

bq+2q + 2q
)1−r

e

(
bq(1−ε)a

nk+1

bq+2q
+2q

)r

bq ((1− ε)ank+1)1−r e((1−ε)a
nk+1 )r

≤ lim inf
k→∞

∑
q>p

4q + 1

bq

(
bq

bq + 2q
+

2q

(1− ε)ank+1

)1−r
e((1−ε)a

nk+1+2q)r−((1−ε)ank+1 )r

≤
∑
q>p

4q + 1

bq
(1 + 2q)1−re(2q)

r

≤
∑
q>p

4q + 1

bq
(1 + 2q)e2q.

Recall that this does not require any property on p so we can let p tend to infinity which,
thanks to (5.2), implies that dAr(E) = limp→∞ dAr(Fp) = 0, hence we obtain a contradiction.
Thus the weighted shift Bw is not Ar-frequently hypercyclic. From this construction together
with Corollary 3.6, we deduce the following result.

Theorem 5.4. There exists a frequently hypercyclic operator being not Ar-frequently hyper-
cyclic, for any 0 < r ≤ 1, hence which does not satisfy the Frequent Hypercyclicity Criterion.
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