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Abstract — In this work, we show how the a posteriori error estimation techniques proposed in
[Di Pietro et al. (2014) Computers & Mathematics with Applications 68, 2331-2347] can be
efficiently employed to improve the performance of a compositional reservoir simulator dedicated to
Enhanced Oil Recovery (EOR) processes. This a posteriori error estimate allows to propose an
adaptive mesh refinement algorithm leading to significant gain in terms of the number of cells in
mesh compared to a fine mesh resolution, and to formulate criteria for stopping the iterative
algebraic solver and the iterative linearization solver without any loss of precision. The emphasis of
this paper is on the computational cost of the error estimators. We introduce an efficient computation
using a practical simplified formula that can be easily implemented in a reservoir simulation code.
Numerical results for a real-life reservoir engineering example in three dimensions show that we
obtain a significant gain in CPU times without affecting the accuracy of the oil production forecast.

Résumé — Amélioration des performances des simulateurs de reservoir basée sur des techniques
d’estimateur d’erreur a posteriori — Dans ce travail, nous montrons comment les techniques
d’estimateur d’erreur a posteriori proposées dans la référence [Di Pietro et al. (2014) Computers &
Mathematics with Applications 68, 2331-2347] peuvent étre efficacement utilisées pour améliorer les
performances d’un simulateur compositionnel de réservoir dédi¢ aux procédés de Récupération
Assistée des Hydrocarbures (RAH). Cet estimateur d’erreur a posteriori permet de proposer un
algorithme de raffinement de maillage adaptatif conduisant a un gain significatif en termes de
nombre de cellules du maillage par rapport a une résolution avec un maillage fin, et de formuler des
critéres d’arrét pour les solveurs itératifs algébriques et non linéaires sans perte de précision. Cet
article se concentre sur le colt de calcul des estimateurs d’erreur. Nous introduisons un calcul
efficace en utilisant une formulation simplifiée qui peut facilement étre mise en oeuvre dans un code
de simulation de réservoir. Des résultats numériques pour un vrai cas d’étude 3D montrent que nous
obtenons un gain significatif de temps CPU, et ce sans affecter la précision des prévisions de
production du champ.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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INTRODUCTION

Reservoir simulation models are nowadays a key element for
oil and gas companies in the development of fields.
Reservoir simulation is used extensively to design advanced
EOR processes like miscible displacement by CO, or
nitrogen, chemical flooding (polymer, alkaline, surfactant,
etc.) or thermal processes with in situ combustion or water
steam injection, see Lake [1]. Such models with very
complex physics are usually time-consuming and expensive
as they lead to solve strongly non linear numerical models.
To preserve the predictivity and the accuracy of the
models with reasonable running simulation time, it is there-
fore crucial to improve the runtime performance of the
simulators.

A posteriori estimate aims at controlling the error during
the simulation and enables to develop adaptive algorithms
leading to a significant computational saving. First rigorous
approachs can be found in [2-4] suitable for unsteady nonlin-
ear models, and [5-7] for degenerated problems. Recently,
abstract frameworks for a posteriori estimates appeared,
for two-phase flow [8, 9], multiphase compositional model
[10], and the thermal multiphase compositional global
model [11]. In these frameworks the dual norm of the
residual augmented by a nonconformity evaluation term is
controlled by fully computable estimators decomposed into
space, time, linearization, and algebraic error components.
This allows to formulate criteria for stopping the iterative
algebraic solver and the iterative linearization solver
when the corresponding error components do not affect
significantly the overall error. Moreover, the spatial and tem-
poral error components can be balanced by adaptations of
both time step and space mesh. The aforementioned
approach is promising. Significant gains in terms of the total
number of algebraic solver iterations and important
reductions in terms of the number of cells can be obtained
in comparison with standard options of reservoir simulators.
However, no straightforward comparison of the computa-
tional cost has been measured on reservoir engineering
practices.

In this paper we propose an engineering approach of the a
posteriori error estimates, provided by recent works [10, 11],
in order to establish an efficient computation of the estima-
tors in such a way that we can ensure important computa-
tional savings for realistic complex models. Our approach
is based on providing a low-cost evaluation formula by
avoiding flux reconstructions. As mentioned before we rely
here on the general ideas of [10, 11], we apply a posteriori
error estimators allowing to distinguish the different
components of the global error, and we use them to formu-
late stopping criteria for the iterative algebraic and nonlinear
solvers together with refinement/coarsening criteria for both
the time step and the space mesh. The present work brings
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two major novelties: first, we propose a well-implemented
evaluation of the estimators using a practical simplified
formula making them usable in engineering practices;
second, we apply the stopping criteria for the iterative
algebraic solver in the context of a three-dimensional realis-
tic reservoir simulation study.

The paper is organized as follows. In Section 1 we
describe a model problem, the two-phase flow model, and
we discuss its numerical resolution. In Section 2 we state
the corresponding a posteriori error estimate. Then, we
introduce in Section 3 a practical simplified formula for
the evaluation of the estimators. In Section 4 we discuss
the use of a posteriori error estimation tools to enhance
the runtime reservoir simulator performance. Finally, in
Section 5 we validate our approach on a real-life reservoir
engineering example in three dimensions.

1 RESERVOIR MODEL AND NUMERICAL RESOLUTION

We introduce in this section a two-phase flow model,
its finite volume discretization, the linearization of the result-
ing discrete system and the algebraic resolution. In [10, 11]
a posteriori error estimates are driven for the thermal
multiphase compositional general model. However, in this
work we focus on the two-phase flow since it is the
model of our chosen study case (SPEIO case, see
Sect. 5), and for the clarity of the simplified evaluation
process.

1.1 Model Problem

We consider an immiscible two-phase model where the
phases are water and oil. Each of them is composed of only
one component, water component and hydrocarbon compo-
nent, respectively. As we have an immiscible model we will
use the same index to represent the phase and its component.
Consequently, we use the indices w,o to represent the water
and the oil, respectively.

We have the following relation between the phase
pressures

Py =Py + P, (1)

where P, is the capillary pressure. Consequently, the
unknowns of the model are the water pressure P,, and the
saturations S,, with p € {o,w}. These unknowns are
collected in the vector = (Py,Sw,S,). We denote by ¢
the porosity of the medium and by K the permeability tensor.
For a phase p € {o,w},k;, is the relative permeability,
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1, is the dynamic viscosity and p, is the density. The system
of governing equations is given by

$0.(5w) + V- (2 vy) =g,
92.(50) + V- (2 v) =4, @)
Sw+ S, =1

with no-flow boundary conditions. For all p € {o,w}, v,
represents the average phase velocity given by Darcy’s law,

Vo =Vp(Pp) = ~K(VP, — pp(PP>g)
= —K(VP,; +p, (Pp)sz) (3)

where g denotes the gravity vector acting in the negative z
direction and g its Euclidian norm.

1.2 Discretization

To discretize our model we choose a popular scheme in the
oil industry, the implicit in time cell centered finite volume
scheme, that is fast and simple to implement and well-known
by its stability.

In order to define this numerical scheme we start by
giving some notations for the space-time mesh.

1.3 Discrete Setting

Let (7,),<,<y denote a sequence of positive real numbers
corresponding to the discrete time steps such that
te = - 7,. We consider the discrete times (£*),_, -, such
that 12 :=0 and, for | <n <N, " == Z?:l‘c,-;ftlilen we
define the time intervals 7, == ("', ¢"). Let (M")oe, <y
denote a family of meshes of the space domain Q superad-
missible in the sense of Eymard et al. [12, Definition 3.1].
In what follows, for all M€ .#", we denote by |M| its d-
dimensional Lebesgue measure and by #) its diameter.
For all ¢ € ﬁj\’;;dM_g the distance between the cell center
xp, and the face center x,, where (5}\4” denotes the faces of
an element M€ .#" not lying on 0Q. Finally, we set 77},
the vertices of M, and .#, the elements from .#" sharing
the vertex V.

1.4 An Implicit Finite Volume Scheme

The cell centered finite volume scheme is a two-point flux
approximation scheme, where the unknowns of the
model are discretized using one value per cell: For
all 1<n<N we let 2" = (X%y)yecs With
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A7y = (PY s (Spar) pewoop)- System (2) is then discretized
as follows: Forall | <n < N,Me .#",andp € {w,0}, we
require

M| Syt

pM+Z

oer" o

pMﬂ(I /) = |M‘QZ,M

(4)

with v[(2",) denoting the upstream mobility and
Fpum0(Z",) the two-point finite volume approximation of
the normal component of the average phase velocity on ¢
is given by

olpr oy,
Fpro(27,)= o] P

x {P o — Por t 0y s8(2m — 21) (5)

where ag = KKK VK € {M,L},and pj, , is an approximation
of the mass density of the phase p on the face ¢. Boundary
fluxes are set to zero to account for the homogeneous natural
boundary condition.

1.5 Linearization and Algebraic Resolution

At this stage, we need to solve, at each time step, the system
of nonlinear algebraic equations resulting from the
discretization method of Section 1.4. First, for 1 <n < N
we apply the Newton linearization algorlthm generating,
for 2" fixed, a sequence (2" Ji>1 With 27 ¥ solution to
the following system of linear algebraic equations: For all
pe{w,o}andall M € 4",

oR!
o,

@) (=2
Me.un" 7

+ Ry (237 =0 (6)
with, Vp € {w, 0}, YMe .#", we have

M
nM(%ﬁzz) = ¢|r” |

T2

in
oES

1
(SPM S;M)
|M |qp M
Second, for 1 <n < N, and a given Newton iteration

k > 1, to approximate the solution of System (6), we use
an iterative algebraic solver generating, for 2" fixed,
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a sequence (% 7;f’i)i21 solving Equation (6) up to the
residuals, given for all p € {w, 0} and all M € .#" by

.k i |M| grnk—1 n—1
Rp;M = o <SP7M ({/z ) - Sp,M

nk.i n
+ Y F . — Mgy, (7)

aeé”;‘;
with linearized phase fluxes
nki . arnk—1
FP.,M‘H'* pM.o (IJ/

an,M,a'
a%n !

>

(247 (=) @®)
M'e.n"

2 A POSTERIORI ERROR ESTIMATION

The spirit of the a posteriori error estimates is to monitor the
computational error. In [10, 11] we derive fully computable
a posteriori error estimates of the dual norm of the residual
augmented by a nonconformity evaluation term for the ther-
mal multiphase compositional general model. Moreover, in
[8] the authors bound an energy-type norm of immiscible
incompressible two-phase flow.

In the previously mentioned articles, similar types of esti-
mators (more simple for our model) are obtained, whether
we choose to bound the energy-type norm or the dual norm
of residual. Therefore, we will use the notation ./~ for the
error norm between the known numerical approximation
and the unknown exact solution, without giving more
precision. The local-in-time error norm is denoted then by
N at time step n, Newton iteration k > 1, and linear
solver iteration i > 1.

As mention in the introduction, our main goal is to
propose a simple evaluation of the estimators proposed in
[10] in order to be usable for engineering practices. Accord-
ingly, we will directly apply these a posteriori error
estimates on our model in order to obtain an a posteriori
error estimate distinguishing the space, time, linearization,
and algebraic errors. To this end, first we have to recall the
required reconstructions necessary to get the upper bound,
see [10] for more details.

2.1 Flux and Pressure Reconstructions

We recall here the necessary reconstructions for the theory of
the a posteriori error estimates [10]. For these reconstruc-
tions we need the Raviart-Thomas—Nédélec (RTN)
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finite-dimensional subspaces of H(div; Q). Since the meshes
A", used in the numerical experiments of Section 5 below,
consist of rectangular parallelepipeds then we define the
RTN subspaces by

RIN(.Z") =
{vn € H(div;Q);vp|,,€ Qo1 (M)xQyp(M) ifd =2,
Qo1 (M)x Q101 (M) x Q1 0(M)
ifd =3, VMe 4"}

see Brezzi and Fortin [13] for details. We recollect all the for-
mulas since they are necessary for the evaluation process of
Section 3.

2.1.1 Phase Pressure Postprocessings

For all p € {w,0} we define F};IZ’ € RTN(.#") such that,
forall M € 4" and all 6 € &},

(Uit mse1) = Foara (2717 (9)

with F, 1, defined by (5) and I'}3" - ng = 0 on Q. Then,
for each p € {w,0}, we introduce the piecewise quadratic
phase pressure PZ:;” such that, for all M € 4",

7.k, _ n.k,i 7.k i

(=692 = (T Ve = (Ko, (P24)) 1 10)
d L _ prki oy time function P4 is th
and —#7— = P The space-time function P 1sk len
continuous and piecewise affine in time, given by P;jh" at
the discrete times #*. We need also phase pressure recon-
structions, B, ;. p € {w,0}, such that B, € X for all
p € {w,0}. These reconstructions are typically piecewise
polynomial continuous in space and piecewise affine
continuous in time.

2.1.2 Component Flux Reconstructions

The discretization flux reconstruction @Z{ﬁ}ih € RTN(.4/")

is such that, for all M € .#" and all ¢ € &7,

(@441, me )y = Fouro(2747)  (113)
with F, /. defined by (5), while @, - ng =0 on Q.

We also define a linearization error flux reconstruction
('Dﬁflih € RTN(.#") such that, for all Me .4" and for

1,

allo € &),

Jeji i i
(Qﬁh,;,h "Ry, 1)(: = FZ,A/[I,G - FPvag(‘%‘,’,li/ l)

(11b)
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with FZ'LI’(7 defined by (8). Similarly, an algebraic error flux
reconstruction OZf]g{,]ly,, » € RIN(./") is defined such that, for
all M € 4" and for all ¢ € &7,

n.k,i o n.k,i
(Oalg’p’h “ny, 1>0M =Ry (I1c)
with Rzllfj defined by (7). To complete both (11b) and (11c¢),
we set respectively @ﬁ;ﬁ;h ~ng = 0and (DZ{;!’)J, ~ng =0on
0Q. The total flux reconstruction 01’;-, , 1s then given by

nk,i
0, (11d)

ki nk,i n.k,i
= O4sn T Otnps T Paigp

2.2 Local-in-Time a Posteriori Error Estimate

Following [10], under the assumption of the existence and
the uniqueness of a weak solution of the considered problem
and the reconstructions of phase pressures and fluxes evoked
in Section 2.1.2, the local-in-time error measure can be
bounded as follows

n,k,i ki ki i nyk,iN2
ALYyl iy gy) o (12)

pefwio}

with

1
2
nk,i . nk,i 2
’/Ix;]]? = {/ Z (nX,M,p(t)) dt}
In Mear

The local version of the estimators is defined as, for
p € {w, o} the spatial estimators

i n.k,i n.k,i i
n;lp]li[p = 771711\/;,[1 + UI;,Mlp + n;C.IM,p (13)
with
- (Spar (277 ™1) =Stat) -
’7%‘5};71, = Cpphy q;,,, - J/Tn M. @;Zl
M
Ji i i i
Wiy = |k =Bl a4)
nki ki - ki
”;,Mlp = He)gis,,la,h - vPvP(PZ,hrl) ’M (15)
the temporal estimators
nk,i — T Pn.k,i n_ Pn,k,i I
ntm.M,p(t) T vp(vp( p,h‘r)t VP( p,hr)(t>) M tely,
(16)
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the linearization and algebraic estimators

(17)

n.k,i o n.k,i
Minpmp = ‘ ’@

n.k,i o n,k,i
linp,h n = ’ ‘0

i = el

In order to implement the different estimators in a
reservoir simulation code, we propose here to simplify
them. Our simplification is based on the following
observations:

— our estimators are expressed in terms of norms of various
discrete quantities. Therefore we only need to compute
these norms and not necessarily the quantities themselves;

— all these norms are integrals. Therefore they can be
computed/approximated on each adequate quadrature
formulas by mesh element;

— we thus only need to know the values of the various
quantities at the quadrature points;

— the implementation of RTN spaces and the physical flux
reconstructions can be consequently avoided.

Let us now describe our simplification process in all
details.

3 EVALUATION OF THE ESTIMATORS USING A
PRACTICAL SIMPLIFIED FORMULA

The a posteriori estimates of Section 2.2 use the reconstruc-
tionk ~of the different fluxes G)Z;l;;’h, G)ﬁf];h and
Oy P € {w,0} in the space RTN(I%")k(Sect. 2.1.2).
Furthermore, the pressure reconstructions P,7, p € {w, 0}
also involve RTN(.#") spaces (Sect. 2.1.1) in a way that

for all Me 4",
—(KVP;;’;;") l,y € RIN(.Z"), p € {w,o}

Hence, a priori, implementing these estimators requires
operations with RTN spaces as seen in the previous chapter.
To the best of our knowledge, so far RTN spaces are not
implemented in petroleum industrial codes. Therefore we

search for a simplification of these estimators that avoids
the use of RTN spaces.

3.1 A General Simplification Formula

Let a mesh cell M be given and let A, € RTN(M). Then A,
can be expressed by

Ah = Z Cg[\(7

€5y

(18)

where ¢, are the degrees of freedom on the face g, i.e., the
face fluxes (Aj-my,1),, and A, are the lowest-order
Raviart—-Thomas—Nédélec basis functions, given by (for
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parallelepiped meshes such as the ones used in the test cases
of Sect. 5 below)

1

Ap=—r
M|

E;» (x—x5)

where xo = (X,/,V,2,) is the barycenter of the face o
opposite to the face g, and

s 0 0
E;, = 0 e(yw, 0 (19)
0 0 e,
with,
_ _ 1ifw#w
ey =1y w,we{xyz} Ly =
’ 0 otherwise

Consider now the following quadrature formula exact for
polynomials of total degree three, on a cubic domain
K=(-1,1)"

1 1 1
/ / /g(x,w)dxdydz
1 Ja1 Ja

2 2
~ K| Z ZW[Wleg(O‘ia B 1)
=l j=1 [=1
Here W =Wy = %, o = ﬁ] = ’})] = :/—%, and

w=PF=7,= % We can also rewrite this formula with

vector symbols by

/Kg(x)dx ~ |K| Z Wkg(l'[k) (20)

k=1

with Wi =4,k €{1,2,..,8}, and I* = (I}, T}, TI%) as
given in Table 1.

To apply the formula (20) to the integration of a function
over a cell M := (x1,x2) X (y1,¥,) X (z1,22) of our paral-

lelepiped mesh, we consider the transformation
S = (FEfF.fF) such that,
e Nge, 2N (21a)
X 2 X 2
fk _N=h 1'["+y2 + (21b)
y 2 y 2
k_ 2" Zlg 22t
= I 21
S 2 z 2 (21c)
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TABLE 1

Integration points
k 1 2 3 4 5 6 7 8
I L € € 4 =1 =1 =1 =1
x V3 V3 V3 V3 V3 V3 V3 V3
k k 1 1 -1 -1 -1 1 1 -1
S 2 A e A v A A e A e
I 1 =1 =1 e 1 € =1 =1
z V3 V3 V3 V3 V3 V3 V3 V3

Using the quadrature formula (20) and the transforma-
tions in (21), we can evaluate the [L?(M )]’ norm of the func-
tion A, € RTN(M) given by (18) as follows

M 1
||Ah|‘i2(M) :%Z Z CJMEU‘J/ . (fk *xo-/)

8
k=1 [oceby
(22)

As a conclusion, to compute an [LZ]3 norm of recon-
structed flux functions in the space RTN(.#"), we just need
to obtain the degrees of freedom ¢, represented by the face
normal fluxes. These can be obtained directly without any
flux reconstruction. In what follows we use these simplifica-
tions to evaluate the estimators for the immiscible two-phase
model.

3.2 Evaluation of the Estimators

We begin with the spatial estimators. Recall the reconstruc-
tions of the conservative fluxes G)Zv’f‘,;’ and G)gj],;” given by
Equation (11d). For G);:l,‘l‘l,p € {w, 0}, one has

nk,i _ n.k,i n.k,i n.k,i
(Qp,h ) i = (Qdism,h + Ot Oalg,pﬁ) s

Owing to the reconstruction of @gfj; ,» in Equation (11a),

G)ﬁrf‘ ’;;’h in (11b), and ®Z{§_”;,h in (11c), we satisfy the conser-
vation property

Sy (X5 — s3] A
<qn I%M( M ) .M _v. ®n,k,1 1
M

ch ™ ph

=0,YM € .M"

up to a neglected maladjustment from the practical construc-
tion of ®Zl’g”;‘h (Corollary 3.4). Then, the residual estimators
n"R’_’]j\j_’p, and nﬁ’ﬁ;}’o given by Equation (14) will be neglected.
Note that, however, if we construct the algebraic flux @Z};’p "
following Equation (11c) then the residual estimators ng’y; .,

,
and ng’ys , are zero.
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Consider now the second contribution of the phase spatial
estimator, given by Equation (13). Following Equation (3),
the velocity v, (P’ Zf) is given by,

7,k i
VP(P;,hrl) =-K

(VErk = p(Pikg)  (23)

Then by the post-processing of the oil pressure Pgl,i’

given by Equation (10) and by the definition (11a) of the
reconstructed flux @Ziﬁ_‘é , We have

(0% (P75) o = (=
= (i

K(VPL = o (P E) ) s

then

~ ki
(vpl"p‘h )

Consequently using formula (22) with (9) and formula
(11a), one has

nk,i 2 1 &
(WFMp) = 8| |Z

r’n ki ‘ ‘G)n,k,i o
FMp — dis, p,h 2(M)

(fF = ng)l (24)

The non conformity estimators are also evaluated in the
same way. These estimators involve the difference of two
terms: (—KVP) “h|,, and ~KVE l,‘l;) [y, In order to
apply formula (22), these two terms must be expressed in
the RTN(.#") space. This is the case of the first term
(~KVPy *)|,¢ (by construction, see Eq. 10), but not the

case of the second (— IKV‘B"’”)\ - Therefore, we lift this

ht

term (—IKVP ﬁ; )|, into the RTN(,/%") space by preserv-
ing the corresponding normal fluxes over the faces: Let
{oM}.c (12,5} be the piecewise linear nodal basis functions
of @, on the three-dimensional element M. Then for all

. ki
M € /" the continuous pressure ‘B;; iy can be expressed as

,k k,
: ;,hrl Z P ; hrl (x)

Viety

To alleviate the industrial implementation, we then
approximate the value of the pressure in the nodes by

1
N, Me ",

Pn,k.i(V) —

nki . pnki
p.ht Py =Py (25)

where N M, stands for the cardinality of the set .#"; it is
equal to 8 for interior vertices in the three-dimensional case.

Page 7 of 11

But the values of P” ki » are preferable since they are more pre-

cise. The normal ﬂuxes of (~KV$7, 1|5 over the faces of
M can then be expressed explicitly by for all ¢ € (5

(—KVPL - ng, 1

Z Pnkl qu)l -no, )

Vet

(26)

Then wusing formula (22) with relation (10) we
evaluate the nonconformity estimators ngllé’M p» given by

Equation (14), as

. v B8
(nnNélMp) ~ 8|]CI Z lz

Ve,
(27)
where
&, Aoy ki ki
JPM"O/;/ 1) = o oy + o {PZ'MZ B PZ-LZ}’
KG’
and o .= —K
ch

This leads finally to a simple evaluation of the local
spatial estimators n's’pk,‘i,w, n;'pkﬂjlo for all M € .4". Note that
a more precise formula could be obtained by replacing the
piecewise linear nodal basis functions of @, by the piecewise
quadratic basis functions of Q,.

Summarizing the above developments, we have:

Corollary 3.1 (simple formula to evaluate the local
spatial estimators). We can approximate the spatial
estimators (13) as

ngpkﬁilp ~ nglfc\/[lp +nnNélMp (28)
where ngﬁj » and nNC M are given by (24), (27), respec-
tively.

Finally to evaluate the global spatial estimator we approx-
imate the time integral by a one-dimensional integration for-
mula.

Now for the temporal estimators, recall that for all
M € /", the reconstructions of the phase pressures
P;I,;ﬂM,p € {w,o0}, are such that KVP;:I;’ZM are in the
RTN(.#") space. Thus, the evaluation of the local temporal
estimators can be again done using formula (22).

Corollary. 3.2 (simple formula to evaluate the temporal
estimators). By applying formula (22) to Equation (16)
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and using the reconstructions formulations (11a)—(11c), we
can approximate the temporal estimators as

(i)~ 2o | 2

k= g€l

pMo'(zlnkl)

2
= Fpum, G(QNZ/J 1)]E(m/ ’ (fk - x(’/)] (29)

where f* and E, » are given by (21) and (19),

For the linearization estimators, we remark that the fluxes
which compose the estimators are the reconstructed fluxes
in the RTN(.#") space: @ﬁ;ﬁ;h,p € {w,o0}, given by
Equation (11b). Thus evaluating of these local estimators

is straightforward using formula (22):

Corollary 3.3 (simple formula to evaluate the lineariza-
tion estimators). By applying formula Equation (22) in
Equation (17) and using the reconstructions formulations
(11b), we can approximate the local linearization estimators as

8

n.k,i ~ z : ki
(”llnp) Ferr
g€y

k=1

2
- P,Mﬂ(%‘x;fkj)}Emo’ : (fk - xa’)] (30)

where f* and E; 5 are given by (21) and (19), respectively.
Finally, for the algebraic estimators, the evaluation of the
local [L?]* norms is also straightforward using formula (22),
as the contributions ('D:lg;h,p € {w,o0} given by (llc),
involved in these norms, are in the RTN(.#") space.
Following [10, Remark 3.3], we arrive at the following

approximation formula:

Corollary 3.4 (computing practically the algebraic error).
Following [10, Remark 3.3], to compute approximately the
algebraic error, we perform j additional iterations of the
algebraic solver from the stage (7) where j is a user-defined
fixed number. Then, the local algebraic error estimators can
be evaluated using formula (22) as follow:

N2 1 S oy
nk,i ~ 2 : 1| gkt
(”alg.p) 8|M| [Z vl’ |:FP1M1O'

n.k,i
F M ,G}

‘Ea,(;/ . (fk xa’)] (313)

where f* and E; 5 are given by (21) and (19), respectively.
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As a conclusion, the evaluation of the different estimators
can be carried out while avoiding the physical reconstruc-
tions of fluxes in the RTN(.#") space. The key is the use
of a quadrature formula for computing the L*> norms, know-
ing the normal fluxes over all faces of any cell M € .#".
Using this technique greatly simplifies the implementation
of the estimators (in particular into industrial legacy codes)
and yields an important computational saving compared to
the previous technique where we need to build the RTN flux
reconstructions.

4 A POSTERIORI ERROR ESTIMATE TO ENHANCE THE
SIMULATOR PERFORMANCE

The presented a posteriori error estimate framework has
been implemented in a parallel reservoir prototype simulator
[14], a thermal multi-purpose simulator with the capability
to simulate various EOR processes like water injection,
steam injection, etc. It is part of the next generation /FP
Energies Nouvelle research simulators, based on Arcane
framework [15]. To improve the runtime performance of
our simulator, we elaborated two strategies: the first consists
in improving our linear solver by reducing the number of
iterations using adaptative linear stopping criteria based on
the a posteriori error estimate framework; the second strat-
egy consists in reducing the global number of degrees of
freedom by reducing the number of grid blocks of the mesh
combining the Arcane adaptive mesh refinement feature to
an advanced local space a posteriori error estimator.

4.1 An Adaptative Linear Solver Stopping Criteria

We have implemented an adaptative linear solver stopping
criteria which allows by a call back mechanism to evaluate
regularly the a posteriori linear error estimate described in
the previous section. This mechanism allows to stop iterative
linear solvers once the relative linear stopping criteria has
been reached, or when the linear error estimation is lower
than the non linear error estimation by a given factor.
We can, in that way, reduce the number of linear solver steps
during the steps of the Newton iterative non linear solver.

4.2 An a Posteriori Space Error Estimate Criteria to
Manage the Adaptative Mesh Refinement Tools

In our simulator, we developed an adaptative mesh refine-
ment mechanism that allows to refine or coarsen cells based
on a space error criteria. This mechanism is aimed at adapt-
ing the grid block size to optimize the total number of
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degrees of freedom for a given global discrete error criteria.
The idea is to have coarse grid blocks where the local error
criteria is low, and fine grid block where the local error
criteria is high. As the performance of the simulator is
directly linked to the total number of grid blocks, minimiz-
ing this number has a direct impact on the global simulator
runtime performance. We implemented a space error criteria
based on the a posteriori error estimate tools described in the
previous section. The idea is to reduce the standard deviation
of a computed error field, used to choose the cells to refine
and the cells to coarsen. The adaptative mesh refinement
mechanism is then applied to minimize the required number
of degrees of freedom for a given error criteria. During the
coarsening and refinement phases, we use some upscaling
and interpolating mechanisms to ensure the mass balance.
Geological data (rock model properties like porosity,
permeability, etc.) are stored at the finest geological level
as data on a cloud of space points. These data are used,
during mesh adaptation by standard upscaling algorithms
to compute the values of the rock model properties on new
created cells [16].

5 NUMERICAL EXPERIMENTATION

We validate our approach on the tenth SPE comparative solu-
tion project model [17]. It is an incompressible water-oil,
black-oil, two-phase flow problem. It is built on a Cartesian
regular geometry with no top structure or faults and simulates
a 3D waterflood in a geostatistical model. In this five-spot
production model one water injection well is located at the
center of the reservoir and four production wells at the four
corners of the reservoir grid. Producers are controlled by a
bottom hole pressure target. We present some results
obtained on the fine grids comparing the runtime perfor-
mance between the standard options of the simulator and
the adaptative linear solver stopping criteria presented in
Section 4.1. Others runs experiment the adaptative mesh
refinement feature with the space criteria presented in
Section 4.2 and results are compared against fine and coarse
grid simulations. The coarse grid is obtained from the fine
reference grid after two levels of coarsening applied on all
cells. To validate the simulation results, we compared
production curves for different wells to ensure that the results
are still valid from a reservoir engineering point of view.

5.1 Platform Description

We have run our test cases using 16 cores of a dual socket
linux workstation with 2 Sandy Bridge 10-cores Intel®
Xeon® E5-2680 CPU with a tact rate of 2.8 GHz,
25600 KB cache size.
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Figure 1

Cumulative oil production of wells during the simulation.

5.2 Stopping Criteria Results

To have a better control of the linear solver, we applied
here a stopping criteria similar to that of the adaptive algo-
rithm proposed in [10] with the main difference being that
we avoid the physical flux reconstructions and the evalua-
tion of the estimators is based on the simplification
proposed in Section 3. We consider here a simulation of
200 days. In Figure 1, we compare the oil production rate
from both the resolution with the standard options and
then with the stopping criteria. In the left part of Figure 1
we depict cumulative oil production for the first two pro-
duction wells. Cumulative oil production for the third
and fourth production wells are then presented in the right
part of Figure 1. We observe that the stopping criteria
does not have any effect on the accuracy of the well
productions.

Regarding the numerical behavior of the previous two
runs we have had the following results:

e with standard options the number of resolutions related
to the time steps is 67, the total number of non linear
steps is 272, the total number of linear solver steps is
82 053, and the global CPU time of this simulation is
4 653 seconds;

e with the stopping criteria the number of resolutions
related to the time steps is 67, the total number of non lin-
ear steps is 272, the total number of linear solver steps is
56 732, and the global CPU time of this simulation is
2 754 seconds.

As it is obvious, significant saving is obtained in terms of
the cumulated number of linear solver iterations. We further
illustrate in Figure 2 a comparison in terms of the consumed
CPU time as well as the cumulated CPU time at several
time steps of the simulation. The results show an over-all
gain in CPU time, with a speed-up factor reaching the
value 2.
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Figure 3

Cumulative oil production of wells during the simulation.

5.3 AMR Results

We evaluate the performance of our simulator using the
AMR feature combined with the a posteriori space error
criteria. We compare in Figure 3 the oil production rate of
the producer wells resulting from the resolution on the fine
mesh, the coarse mesh with and without the AMR option.
The fine grid results are supposed to be the reference.
We observe that for all wells except welll the AMR simula-
tion behaves identically to the fine grid and much better than
the simulation on the coarse grid.

In Figure 4 we compare the CPU time and the number of
active cells regarding the simulation time. We observe a gain
of performance for each time step for the same accuracy than
the resolution on the fine mesh, due to a reduce number of
required degrees of freedoms intermediate between the num-
ber of cells of the fine and the coarse mesh. We can notice
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Figure 4

CPU time (left) and active cell number (right) of the simulation.

some peaks of CPU time. This is due to the fact that the time
step management is not optimal with the AMR feature, there
are more failed time steps than in the reference run. We need
more investigation to better understand this difference of
behaviour in our simulator time step management.

CONCLUSION

With our new a posteriori error estimation framework, we
have improved the performance of our compositional reser-
voir simulator dedicated to EOR processes. We have first
optimized our non linear solver by implementing an adapta-
tive linear stopping criteria to avoid to over-solve the linear
systems in the first non linear steps. We have implemented
secondly a space criteria to better manage the use of the
AMR feature by optimizing the number of grid blocks
required for a given accuracy of the well production results.
Our approach has been validated on the SPE10 benchmark, a
3D study case representative of real-live reservoir study
cases. Indeed, we have obtained significant gain in CPU
times without affecting the accuracy of the oil production
forecast. However, we still need to study the effect of the
AMR feature on our dynamic time step management that
we may improve in future works, implementing new criteria
based on time error estimation.
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