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Abstract — Predictive simulation of liquid fuel injection in automotive engines has become a major
challenge for science and applications. The key issue in order to properly predict various
combustion regimes and pollutant formation is to accurately describe the interaction between the
carrier gaseous phase and the polydisperse evaporating spray produced through atomization. For
this purpose, we rely on the EMSM (Eulerian Multi-Size Moment) Eulerian polydisperse model. It is
based on a high order moment method in size, with a maximization of entropy technique in order to
provide a smooth reconstruction of the distribution, derived from a Williams-Boltzmann mesoscopic
model under the monokinetic assumption [O. Emre (2014) PhD Thesis, École Centrale Paris;
O. Emre, R.O. Fox, M. Massot, S. Chaisemartin, S. Jay, F. Laurent (2014) Flow, Turbulence and
Combustion 93, 689-722; O. Emre, D. Kah, S. Jay, Q.-H. Tran, A. Velghe, S. de Chaisemartin,
F. Laurent, M. Massot (2015) Atomization Sprays 25, 189-254; D. Kah, F. Laurent, M. Massot,
S. Jay (2012) J. Comput. Phys. 231, 394-422; D. Kah, O. Emre, Q.-H. Tran, S. de Chaisemartin,
S. Jay, F. Laurent, M. Massot (2015) Int. J. Multiphase Flows 71, 38-65; A. Vié, F. Laurent,
M. Massot (2013) J. Comp. Phys. 237, 277-310]. The present contribution relies on a major
extension of this model [M. Essadki, S. de Chaisemartin, F. Laurent, A. Larat, M. Massot (2016)
Submitted to SIAM J. Appl. Math.], with the aim of building a unified approach and coupling with a
separated phases model describing the dynamics and atomization of the interface near the injector.
The novelty is to be found in terms of modeling, numerical schemes and implementation. A new high
order moment approach is introduced using fractional moments in surface, which can be related to
geometrical quantities of the gas-liquid interface. We also provide a novel algorithm for an accurate
resolution of the evaporation. Adaptive mesh refinement properly scaling on massively parallel
architectures yields a precise integration of transport in physical space limiting both numerical
dissipation as well as the memory trace of the solver. A series of test-cases is presented and
analyzed, thus assessing the proposed approach and its parallel computational efficiency while
evaluating its potential for complex applications.

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 61
� M. Essadki et al., published by IFP Energies nouvelles, 2016
DOI: 10.2516/ogst/2016012

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://ogst.ifpenergiesnouvelles.fr/
http://ogst.ifpenergiesnouvelles.fr/
http://ifpenergiesnouvelles.fr/
http://dx.doi.org/10.2516/ogst/2016012


Résumé— Raffinement de maillage adaptatif et méthode de moments géométriques d’ordre élevé
pour la simulation des sprays en évaporation — La simulation prédictive de l’injection diphasique
dans les chambres de combustion automobiles représente un enjeu majeur scientifique et applicatif.
La description détaillée de l’interaction entre le brouillard de gouttes polydispersé produit par
atomisation et l’écoulement gazeux est fondamentale pour prédire les régimes de combustion et la
formation de polluant. Pour décrire la phase liquide, le modèle Eulérien polydisperse EMSM
(Eulerian Multi-Size Moment) est choisi. Cette approche de type moments d’ordre élevé en taille
avec reconstruction continue par maximisation d’entropie est construite à partir d’un modèle
mésoscopique de Williams-Boltzmann sous l’hypothèse monocinétique [O. Emre (2014) PhD Thesis,
École Centrale Paris; O. Emre, R.O. Fox, M. Massot, S. Chaisemartin, S. Jay, F. Laurent (2014)
Flow, Turbulence and Combustion 93, 689-722; O. Emre, D. Kah, S. Jay, Q.-H. Tran, A. Velghe,
S. de Chaisemartin, F. Laurent, M. Massot (2015) Atomization Sprays 25, 189-254; D. Kah,
F. Laurent, M. Massot, S. Jay (2012) J. Comput. Phys. 231, 394-422; D. Kah, O. Emre, Q.-H. Tran,
S. de Chaisemartin, S. Jay, F. Laurent, M. Massot (2015) Int. J. Multiphase Flows 71, 38-65; A. Vié,
F. Laurent, M. Massot (2013) J. Comp. Phys. 237, 277-310]. La présente contribution propose une
extension majeure de ce modèle [M. Essadki, S. de Chaisemartin, F. Laurent, A. Larat, M. Massot
(2016) Submitted to SIAM J. Appl. Math.] dans l’optique de le coupler à un modèle de type phases
séparées avec résolution d’interface. La nouveauté se situe en termes de modélisation, de schémas
numériques et d’implémentation. La nouvelle approche de moments d’ordre élevé en taille repose sur
des moments fractionnaires de la surface que l’on peut relier à des quantités géométriques de
l’interface gaz-liquide. Un nouvel algorithme permet une intégration précise de l’évaporation.
L’utilisation d’un maillage adaptatif pour le transport dans l’espace physique passant à l’échelle sur
architectures parallèles offre un contrôle de la dissipation numérique tout en limitant la trace
mémoire de l’application. Une série de cas-tests permettant de vérifier la qualité de l’approche, son
efficacité parallèle et son potentiel pour des applications complexes est présentée et analysée.

INTRODUCTION

In the last decades, automotive industries have been widely
concerned by the efficiency of combustion devices and the
reduction of pollutant emissions. Considering the difficulties
of getting accurate measurements inside an engine, implying
high-cost experiments, numerical simulation is nowadays
considered as a good alternative in order to improve our
understanding of two-phase flows and two-phase combus-
tion and to design new combustion chambers. Actually, in
automotive engines, the fuel is stored as a liquid phase and
injected at high pressure in the combustion chamber. Close
after the outlet nozzle, the fuel is still in liquid form and sep-
arated from the gaseous phase by an interface; we have to
deal in this region with what is called a separated phases
two-phase flow. The atomization process is then going to
produce a complex dynamics of the interface and eventually
yields a polydisperse evaporating spray, which will control
the combustion regime as well as pollutant formation. It
has been shown that the polydisperse character of the spray
has a key influence and should be described in any attempt of
modeling such flows. The challenge is to provide a model as
well as a numerical strategy, which is able to capture the
large scale spectrum of such physics and provide predictive

numerical simulations. In fact, the challenge is as much a sci-
entific as an application one.

The first possibility is to consider a DNS (Direct
Numerical Simulation) approach and to envision solving
the full dynamics of both phases and of the interface from
inside the injector until the polydisperse spray has been
formed. The interface between the two fluids is considered
as a sharp discontinuity. In this context, its exact location
is needed to determine precisely an existing region for each
phase and then apply the monophasic Navier-Stokes
equations separately in each dedicated region. The dynamics
of the interface can be traced by some tracking methods
(Lagrangian methods [1], Marker And Cell (MAC)
methods [2]) or by interface capturing and reconstruction
(VOF (Volume Of Fluid), level-set and hybrid method - see
[3-6] and references therein). Even if such approaches are
powerful and have been used on parallel architecture, they
are mainly focused on mechanically incompressible flows
and can not resolve the full spectrum of scales present at
representative Reynolds and Weber numbers of realistic fuel
injection. More specifically, the resolution of droplet size
distribution is far from being reached in such approaches,
even though they are essential in order to analyze and model
atomization processes.
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Consequently, reduced-order models have to be consid-
ered since a full resolution is out of reach. So far two
reduced-order approaches have been used depending on
the distance from the injector mouth. In the dense core
region, one possibility is to use diffuse interface models.
The interface is considered as a mixing zone, such that the
two phases coexist at the same macroscopic position and
each phase occupies a portion of the volume. In this type
of model, a continuous color function is introduced: the vol-
ume fraction. This variable takes values close to 1 in a region
of a pure given phase and values close to 0 in the regions
where this phase nearly disappears. Crossing the interface,
the volume fraction varies continuously from 0 to 1 or the
other way around. At the interface, the artificial fluid mixing
may lead to some thermodynamic difficulties [7] when too
much numerical diffusion is involved. Therefore, high reso-
lution is recommended near the interface to limit this diffu-
sion. Several strategies and equilibrium level can be used in
order to derived such equations either following an averag-
ing process [8], using fluid mechanics and thermodynamics
of irreversible processes [9] or using the principle of least
action [10] (see also [11, 12] and references therein). The
modeling choices have a crucial impact in terms of numeri-
cal schemes [10, 13-15]. Furthermore, some mean geometri-
cal quantities such as the interface area density can be
transported to gain a more accurate description of the inter-
face [5, 16, 17] and decrease the lack of information on the
interface shape due to the initial averaging process. This
way, an accurate modeling of the dynamics of the interface
and a good prediction of the interaction between the two
phases can be reached at large scale [13], whereas the details
of the atomization process cannot be predicted so far with
such averaged models.

Another reduced-order model is related to the description
of the polydisperse spray far from the injection point, once
the atomization process has been conducted, and relies on
a statistical approach for the droplet population by using a
Number Density Function (NDF) which satisfies a Popula-
tion Balance Equation (PBE), also called William-Boltz-
mann (WB) equation [18]. The resulting coupled system
of equations involving a model for the gaseous carrier phase
has to be resolved using either a Lagrangian or an Eulerian
approach as far as the liquid phase is concerned. Solving this
equation can be achieved by using Lagrangian Direct Simu-
lation Monte-Carlo method (DSMC [19]). This method
shows a good efficiency in numerous cases. Nevertheless,
the method suffers from several drawbacks. Indeed, this
Lagrangian method requires a large number of particle sam-
ples to reach the convergence which can lead to high Central
Processing Unit (CPU) time and memory consumption,
especially in polydisperse unsteady cases. Furthermore, we
encounter some difficulties to couple this Lagrangian
method for the dynamics of the spray with the Eulerian

method usually used to solve the gas flow [20]. Finally,
complex load-balancing algorithms are needed to reach high
performance computing. Therefore, we prefer to use an
Eulerian model for the description of the spray, at least as
an alternative strategy. More precisely, such an Eulerian
model is based on a moment method which, instead of solv-
ing for the whole NDF in a large parameter space, solves for
a finite set of size-velocity moments of this NDF. Consider-
ing some assumptions on the velocity distribution (monoki-
netic, Maxwell-Boltzmann distribution, etc.), we are able to
close the equation in the velocity direction, and derive a
semi-kinetic system for the size distribution function [21].
Then, three possible approaches can be used to solve this
size distribution. The first one consists in discretizing the
size direction into sections and to use low order size
moments in each of these sections. This approach is com-
monly known as multi-fluid models [22, 23]. The second
approach involves higher order moments using either a
quadrature of the distribution or a smooth reconstruction
using kernels and quadrature or entropy maximization (see
[24-26] and references therein) on the whole size range. In
the third approach, we use a hybrid method [27-31] using
high order moment method on discretized size intervals.
This last approach has been used in recent contribution of
some of the authors in [4, 24, 25, 27, 31, 32] and seems to
be a very good compromise in terms of accuracy versus
computational cost for automotive engine simulations.

The main drawback of the two types of reduced-order
models is due to their very different nature and the difficulty
to couple both models in order to reach a predictive simula-
tion of the whole process. Recent contributions in [12, 33,
34] have proposed a way to couple these two reduced-order
models, but several issues are still wide open in order to
increase the level of prediction one can reach with such a
model coupling. We insist on the fact that the key issue is
the ability of predicting the polydisperse character of the
spray and the purpose of the present work is to use a recently
introduced new hybrid high order size moment model [35]
with the same level of accuracy as what has been done in
[4, 24, 25, 27, 31, 32], but with a much higher potential in
terms of coupling with a diffuse interface model. The key
ingredient in this new model is the use of fractional
moments, which describe the interfacial topology of the
droplet population in analogy with interface geometry used
for separated phases modeling [36]. Since geometrical
variables are now transported in the spray region, it can be
coupled with a separated phases flow model, which would
also incorporate information on the average interface geom-
etry. In this lies the first main novelty of the current paper.
Besides, a new realizable numerical scheme to solve for
the evaporation process in the case of fractional moments
is developed and presented. Eventually, even though this
article only presents simulations of disperse flows, we are
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still concerned with the coupling of our new model with a
separated phases simulation. Yet, such separated phases
flows need an accurate description of the dynamics of the
interface between the two phases, since small scales are
known to be of great influence on the whole multi-scale phe-
nomena. Moreover, we would limit the numerical diffusion
at the interface to reduce artificial mixing and inherent
numerical difficulties. This justifies our will to integrate
mesh adaptation in the numerical simulation of this model.
This has been made possible by the use of the Adaptive
Mesh Refinement (AMR) library p4est [37]. Nonetheless,
the use of AMR techniques in the spray simulation is also
very helpful to capture the spray segregation [38] by using
a finer mesh in the high concentrated regions and keeping
a coarser mesh in the low concentrated or vacuum regions.
This way we obtain an accurate result with a relatively
low CPU time and memory usage. A series of test-cases is
presented and analyzed, thus assessing the proposed
approach and its parallel computational efficiency while
evaluating its potential for complex applications.

This paper is organized as follows: in Section 1 we present
the framework for the Eulerian spray modeling, including the
moment method used to derive a reduced-order modeling
from the mesoscopic level and an introduction to our new
geometrical moment model. The new numerical schemes to
solve evaporation for the new model are presented in
Section 2. Section 3 contains a brief presentation of the
different AMR techniques and an overview of the main
functionalities of the p4est library used to manage the
adaptive mesh refinement. We also present our code, named
CanoP, which assists a “simple” use of the AMR library
p4est with finite volume schemes for different data models.
Furthermore, we present a first order numerical scheme for
the discretization of the whole procedure in space on non-
conforming meshes, thus suitable for AMR. An extension
of this spatial discretization to higher order, still ensuring a
realizability condition, is also given. Finally, Section 4 is
concerned with numerical results and related discussions.

1 EULERIAN SPRAY MODELING

We adopt a statistical approach to describe the droplet pop-
ulation. This description relies on the evolution of the NDF
f ðt;~x;~v; S; TÞ, which represents the probable number of dro-
plets located at position~x, traveling with velocity~v, having
size S and temperature T. In the following, we neglect the
thermal inertia of the droplets, therefore the NDF is reduced
to f ðt;~x;~v; SÞ. By considering a very dilute spray of small
droplets, we can also neglect collisions and secondary
break-up of droplets. Then, the dynamics of the droplets
and their interaction with the surrounding gas is given by
the William-Boltzmann (WB) equation, [18].

ot f þ o~x � ~vfð Þ þ o~v � ~Ff
� �þ oS RSfð Þ ¼ 0 ð1Þ

where RSðSÞ ¼ dS=dt is the evaporation rate and ~F is the
drag acceleration. The evaporation is modeled by a simple
d2 law [39], so that RS(S) = �K < 0 is constant. On the other
hand, the drag force term is given by the Stokes law. It is
valid for low Reynolds number (calculated with the droplet
size S). The force then reads:

~F ¼~ug �~v

sp Sð Þ ð2Þ

where~ug is the gas velocity (not disturbed by the presence of
the droplet) and sp(S) is a characteristic response time of the
droplet to the Stokes drag force:

sp Sð Þ ¼ qlS
18plg

ð3Þ

where ql is the liquid mass density and lg is the dynamic gas
viscosity.

In the following, we use dimensionless variables, there-
fore the WB Equation (1) can be rewritten as follows:

ot f þ o~x � ~vfð Þ þ o~v � ~ug �~v

St Sð Þ f

� �
� K oSf ¼ 0 ð4Þ

where StðSÞ ¼ spðSÞ=sg is the Stokes number, which charac-
terizes the response of the droplet to the gas dynamic and sg
is the time scale of the gaseous flow. Besides, K is the ratio
of sg to an evaporation time. Let us underline that we focus
here on simplified droplet models for the sake of simplicity
of the presentation. The present approach can be extended to
complex models as presented in [4].

1.1 Eulerian Moment Method

Given the high dimension nature of the parameter space of
the WB equation, its discretization for industrial applications
is not attainable. Since a high accuracy on the resolution of
the distribution of the droplets is not necessary for the appli-
cations we are concerned with, and only macroscopic quan-
tities are needed, an Eulerian moment method can be a
promising alternative to Lagrangian approaches for such
problems. In this approach, we consider the moments of
the NDF over the phase space (velocity and size):

Mi;j;k;l ¼
Z 1

0

Z
R3

Slvixv
j
yv

k
z f t;~x;~v; Sð ÞdSd3~v ð5Þ

In this section, we present the general derivation of these
methods, based on the work of Emre [4], Emre et al.
[24, 32], Kah [21], Kah et al. [25, 27]. To simplify the
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modeling, we considered that the velocity distribution pro-
file / is independent of the size variable, so that the NDF
can be written:

f t;~x;~v; Sð Þ ¼ n t;~x; Sð Þ/ ~v�~u t;~x; Sð Þð Þ;
Z

/ ~vð Þd3~v ¼ 1

ð6Þ

where ~uðt;~x; SÞ is the mean velocity conditioned by size.
In this paper, we even simplify our study to the case of
size-independent macroscopic velocity ~uðt;~xÞ. However, it
is worth noticing that such a complete size-velocity correla-
tion has already been considered and tackled in the CSVM
(Coupled Size-Velocity Moment) model [31].

In the EMSMmodel developed by Kah [21], we consider
a monokinetic velocity distribution, which can be also
analyzed as an hydrodynamic equilibrium distribution of
Maxwell-Boltzmann type at zero temperature. It implies that
the droplets at a given position and time have the same
velocity. Therefore, the distribution / is given by a Dirac
delta-distribution:

f t;~x;~v; Sð Þ ¼ n t;~x; Sð Þd ~v�~u t;~xð Þð Þ ð7Þ

Then we have a uniquely defined velocity per position
and can not take into account Particles Trajectories Crossing
(PTC) under this assumption. Therefore, this model is valid
only for low inertia droplets, the critical Stokes number
for the appearance of PTC having been defined in [40].
Otherwise, ballistic trajectories of higher inertia droplets will
generate crossings between particles, what would be
captured as delta-shocks by what we call the Monokinetic-
Equilibrium model. Extension to PTC through the anisotro-
pic Gaussian model can be considered and we refer to
[38, 41] for more details.

Considering this simplified velocity distribution, we
derive the following semi-kinetic system for Equation (4):

otnþ o~x � n~uð Þ ¼ K oSn

otn~uþ o~x � n~u�~uð Þ ¼ K oS n~uð Þ þ n~ug�~u
St Sð Þ

ð8Þ

Two possible approaches can be used to solve the size dis-
tribution. On the one hand, the size phase can be discretized
into small intervals, wherein the NDF n(S) is considered to
have a simple form. In the multi-fluid model [23, 42], the
number density is considered to be constant in each section
and the computation then requires the calculation of one
size-moment per section. On the other hand, one can use
high order moment methods either using quadrature meth-
ods or preserving the continuity of the size distribution, by
computing the evolution of high order size-moments and
reconstruct a continuous size distribution function n(S) from
this set of high order size-moments in order to close the

model. We use a hybrid method where a size discretization
can be considered, but using high order moments in the
potential sections and relying on a smooth reconstruction.
Two moments per section with affine reconstruction lead
to a two-size moment method developed in [28, 29], whereas
we rather choose to use four moments in each section and
maximization of entropy in order to reconstruct the distribu-
tion function [27, 30, 31]. In this last approach, we can use
one or very few sections (compared to the multi-fluid model,
which requires a rather fine discretization to properly predict
the evolution of the global moments). Both EMSM and
CSVM models make use of this last approach.

For a given density repartition in size n(S), the moment of
order k is defined by:

mk ¼
Z Smax

0
Skn Sð ÞdS ð9Þ

Using non-dimensional variables, Smax can be set to
Smax = 1.

Starting from the semi-kinetic system (8), we derive the
system on N size-moments:

otm0 þ o~x: m0~uð Þ ¼ w0
þ � w0

�

otm1 þ o~x: m1~uð Þ ¼ w1
þ � w1

� � Km0

otm2 þ o~x: m2~uð Þ ¼ w2
þ � w2

� � 2Km1

..

. ..
.

otmN þ o~x: mN~uð Þ ¼ wN
þ � wN

� � NKmN�1

ot m1~uð Þ þ o~x: m1~u�~uð Þ ¼ � Km0~uþ w1
þ � w1

�
� �

~u

þ m0
~ug �~u

h
ð10Þ

where wk
� ¼ SkminnðSminÞ (resp. wk

þ ¼ SkmaxnðSmaxÞ) is the
instantaneous disappearance flux (resp. appearance flux)
coming from other sections. Since we consider only one sec-
tion in the EMSM model wk

þ ¼ 0 and Smin = 0. Also, the
Stokes number has been supposed to depend linearly on
the droplet surface: StðSÞ ¼ hS.

The system of moments consists of N þ 1þ d equations,
where d is the space dimension. The N þ 1 first equations
represent the evolution of the size moments through free
transport and evaporation. The last vectorial equation is
the momentum equation, used to determine the velocity.
Under the Monokinetic-Equilibrium assumption, we only
need one velocity moment to compute the velocity. In this
case, we have considered:

m1~u t;~xð Þ ¼
Z 1

0

Z
Rd

S~vf t;~x;~v; Sð ÞdSd~v ð11Þ
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Yet, the system is not fully closed because the bound-
ary value nðS ¼ 0Þ is unknown, since we solve for the
moments. It can be interpreted as the instantaneous
droplets disappearance flux by evaporation. Even though
this term appears only in the first size moment equation, it
influences recursively the other equations through the last
terms �kmk�1.

In [30], the integration of the system in the case of pure
evaporation (no transport) is solved in two steps for a given
time step: a) compute the disappearance flux and subtract
this amount from the set of moments, b) shift the size distri-
bution of the remaining droplets using the link between
moments and abscissas and weights of the lower principal
representation. The link with a quadrature method of
moments approach [30] is explained in the paper. To close
the system, we need a smooth reconstruction of the NDF
nðSÞ and this is done by the maximization of the following
Shannon entropy:

H nð Þ ¼ �
Z 1

0
n sð Þln n sð Þð Þds ð12Þ

The existence and uniqueness of a density function n
which maximizes the Shannon entropy and satisfies:

m0 ¼
Z 1

0
n Sð ÞdS

..

. ..
.

mN ¼
Z 1

0
SNn Sð ÞdS

ð13Þ

was proved in [43], and the solution is shown to have the fol-
lowing form:

n Sð Þ ¼ exp � k0 þ k1S þ . . .þ kNS
N

� �� � ð14Þ

where coefficients kk , are determined from system (13).
In the same article, the authors propose an algorithm to
solve this constrained optimization problem, based on
Newton-Raphson method. A discussion of the limitation of
this algorithm when the moment vector is close to the
boundary of the moment space, or equivalently when the
distribution is close to a sum of delta Dirac functions, is
given in [30]. Vié et al. [31] proposed some solutions to cope
with this problem, by tabulating the lambdas depending on
the moments and by using an adaptive support for the inte-
gral calculation, which enables an accurate computation of
the integral moments when the NDF are singulars.

1.2 Geometrical Moment Model

Two-phase flows involve a variety of phenomena, which
depend on the flow topology and the way the two phases

interact across the interface. Then, the dynamic of the inter-
face is a crucial feature of an accurate modeling. Indeed, in
the fuel injection process, we encounter different classes of
two-phase flow topologies, going from separated two-phase
flow to a dilute disperse phase. In each distinct region, differ-
ent mechanisms occur depending on the topology of the
interface. In the separated phases region, the interface defor-
mation leads to the atomization process. The accuracy of the
resolution of the interface will then highly influence the size
distribution of the spray in the forthcoming regions. In the
disperse phase, the liquid has a spherical and more stable
shape. Thus, we do not need to capture precisely the inter-
face of each droplet better than just considering the distribu-
tion of an ensemble of spherical droplets. In this particular
region, the leading phenomena are evaporation and drag
and they depend mainly on the droplet size. This is why tak-
ing into account the polydisperse character of the spray is a
key feature of Eulerian models for the disperse phase.

In the following, we briefly present some important geo-
metrical variables used to model the interface in the case of
separated phases. Then, we express the same variables in the
context of a disperse phase. Finally, from the kinetic model
(4), we derive a new moment model using these geometrical
variables [35].

We consider the phase function:

vkðt;~xÞ ¼
1; if~x is in phase k

0; otherwise

�

to define the volume averaged variables that we use in dif-
fuse interface models. We also use the gradient of this func-
tion, which can be seen as a Dirac delta-function at the
interface, to define some interfacial averaged variables.

In [36], Drew proposed a description of the interface
based on the following variables:
– the volume fraction variables express the volume portion

occupied by a given phase:

akðt;~xÞ ¼ 1

jV j
Z
V
vkðt;~xÞdV ð~xÞ ð15Þ

where V 2 R is a macroscopic space around the position~x
and jV j is the total volume.
– the interfacial area density is defined as the mean quantity

of interface per unit volume:

R t;~xð Þ ¼ 1

Vj j
Z
V

~rvk t;~xð Þ
��� ������ ���dV ~xð Þ ð16Þ

– the average Gauss and mean curvatures are defined as an
interfacial averaging of the Gauss and mean curvatures.
The local GaussG (resp. meanH) curvature is the product
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(resp. mean) of the two interfacial principal curvatures
k1 and k2:

H ¼ 1
2 k1 þ k2ð Þ

G ¼ k1k2
ð17Þ

The two local curvatures are defined as follows: we con-
sider a point P at the interface and its normal vector~n. Then,
we take a plane that contains P and its normal and let it rotate
around ~n. In each position the intersection curve with the
interface defines a curvature at point P. As the plane com-
pletes a full p rotation, it can be shown it has reached exactly
two extremal curvature values: the two principal curvatures.

Then the average Gauss ~G and mean curvature ~H are:

R ~H ¼ RV H ~rvk t;~xð Þ
��� ������ ���dV ~xð Þ

R~G ¼ RV G ~rvk t;~xð Þ
��� ������ ���dV ~xð Þ ð18Þ

In the case of a disperse phase, we express the same vari-
ables for a droplet population described by the NDF nðt;~x; SÞ.

In fact, these four geometrical variables have been
expressed in [35] as fractional moments:

RdGd ¼ 4pm0

RdHd ¼ 2
ffiffiffi
p

p
m1=2

Rd ¼ m1

ad ¼ 1
6
ffiffi
p

p m3=2

ð19Þ

where the half-integer moments are defined by:

mk=2 ¼
Z 1

0
Sk=2n Sð ÞdS ð20Þ

These moments can indeed be expressed as integer
moments by simple variable substitution R ¼ ffiffiffi

S
p

. However,
we prefer to hold with the droplet surface S as the size vari-
able, since the evaporation rate K is constant for the d2-law.

Following the same derivation as the EMSM model, we
derive the following system for the new moments:

otm0 þ o~x � m0~uð Þ ¼ � w0
�

otm1=2 þ o~x � m1=2~u
� � ¼ � w1=2

� � K

2
m�1=2

otm1 þ o~x � m1~uð Þ ¼ � w1
� � Km0

otm1=2 þ o~x � m3=2~u
� � ¼ � w3=2

� � 3K

2
m1=2

ot m1~uð Þ þ o~x � m1~u�~uð Þ ¼ � w1
�~u� Km0~u

þ m0
~ug �~u

h

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð21Þ

where K is the constant evaporation rate for the d2 evapora-
tion law and wa

� ¼ SaminnðSminÞ is the instantaneous disap-
pearance flux. Since Smin ¼ 0, then wa

� ¼ 0 when a > 0.
Now, the negative order moment m�1=2 appears in the

system after integrating by part the evaporation term in the
WB equation:

m�1=2 ¼
Z 1

0
S�1=2n Sð ÞdS ð22Þ

This term and the associated instantaneous flux need to be
closed andwechoose to do thatwith an adequate reconstructed
NDF.We adopt a reconstruction by entropymaximization as it
has already been done in the previous section. The existence
and uniqueness of such a reconstruction are proved in [35].
The reconstructed NDF has the following form:

nEM Sð Þ ¼ exp � k0 þ k1S
1=2 þ k2S þ k3S

1=2
	 
	 


ð23Þ

To determine the k coefficients, we use the same inversion
algorithm as in [43].

2 NUMERICAL METHOD

In this section, we present the discretization method used to
solve numerically the moment system (21). Three different
phenomena are involved in this system: the spatial evolution
of the moments by the spatial transport, the size variation by
the evaporation and the velocity evolution by the drag force.
It is then interesting to separate these phenomena by using an
operator-splitting technique [44]. This method simplifies the
complexity of the system by solving alternatively and inde-
pendently the different dynamics. Moreover, the use of
Cartesian grid allows us to use a dimensional splitting.
Therefore, the one-dimensional numerical scheme can be
easily extended to multidimensional space.

2.1 Transport Scheme

In the dimensional splitting framework, we consider a free
transport in one direction (we chose the x-direction) of the
droplets without the evaporation nor the drag force. We
choose to present the scheme in a two dimensional space
to lighten the notations and we note~u ¼ ðu; vÞ.

otm0 þ ox m0uð Þ ¼ 0

otm1=2 þ ox m1=2u
� � ¼ 0

otm1 þ ox m1uð Þ ¼ 0

otm3=2 þ ox m3=2u
� � ¼ 0

ot m1uð Þ þ ox m1u2ð Þ ¼ 0

ot m1vð Þ þ ox m1uvð Þ ¼ 0

ð24Þ

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 61 Page 7 of 25



The above differential system is not strictly hyperbolic,
and the semi-kinetic system from which the moment system
is derived, is similar to the pressureless gas system:

otnþ oxnu ¼ 0

ot nuð Þ þ ox nu2ð Þ ¼ 0

ot nvð Þ þ ox nuvð Þ ¼ 0

8><
>: ð25Þ

Following the idea of Bouchut et al. [45], de
Chaisemartin et al. [42], Kah et al. [27] used this approach
to develop a finite volume kinetic scheme for the EMSM
model. We use the same scheme to solve numerically the
system (24). This scheme is established by considering the
equivalence between the pressureless system and the
following kinetic system:

ot f þ ox cxfð Þ ¼ 0

f t; x;~c; Sð Þ ¼ n t; x; Sð Þd cx � uð Þd cy � v
� ��

ð26Þ

where ~c ¼ ðcx; cyÞ is the microscopic velocity of the dro-
plets. The proof of the equivalence between the two last sys-
tems can be found in [45].

In this section, we consider a uniform discretization of the
space. In Section 3.2.1, we present the discretization of the
moment system on non conforming meshes. We note
xi = (i + 1/2)Dx the center of cell i, and
xi�1=2 ¼ xi ��x=2 (resp. xiþ1=2 ¼ xi þ�x=2) the left (resp.
right) extremity of cell i. Finally, we define the averaged
moment mn

k=2;i and the momentum~pni attributed to cell i by:

mn
k=2; i ¼

1

�x

Z xiþ1=2

xi�1=2

mk=2 tn; xð Þdx

¼ 1

�x

Z xiþ1=2

xi�1=2

Z 1

0

Z
R2

Sk=2f tn; x; cx; cy; S
� �

dcxdcydSdx

ð27Þ

~pni ¼ mn
1;i

uni

vni

 !

¼ 1

�x

Z xiþ1=2

xi�1=2

m1 tn; xð Þ
u tn; xð Þ
v tn; xð Þ

 !
dx

¼ 1

�x

Z xiþ1=2

xi�1=2

Z 1

0

Z
R2

S
cx

cy

 !
f tn; x; cx; cy; S
� �

dcxdcydS

ð28Þ

Using the exact solution of the kinetic equation (26) for
t 2 ½tn; tnþ1�:

f t; x;~c; Sð Þ ¼ f tn; x� t � tnð Þcx; Sð Þ ð29Þ

we establish the following scheme using the same steps as
in [27]:

Mnþ1
i ¼ Mn

i �
�t

�x
Fiþ1=2 � Fi�1=2

� �
pnþ1
i ¼ pni �

�t

�x
Giþ1=2 � Gi�1=2

� � ð30Þ

where the fluxes can be decomposed into
Fiþ1=2 ¼ Fþiþ1=2 þ F�

iþ1=2 and Giþ1=2 ¼ Gþ
iþ1=2 þ G�

iþ1=2

such that:

Fþ
iþ1=2

Gþ
iþ1=2

 !
¼ 1

�t

Z xiþ1=2

xi�1=2

m0 tn; xð Þ
m1=2 tn; xð Þ
m1 tn; xð Þ
m3=2 tn; xð Þ
m1u tn; xð Þ
m1v tn; xð Þ

0
BBBBBBBB@

1
CCCCCCCCA

� I x0;xiþ1=2��tu tn;x0ð Þ<x0f g xð Þdx ð31Þ

and

F�
iþ1=2

G�
iþ1=2

 !
¼ 1

�t

Z xiþ3=2

xiþ1=2

m0 tn; xð Þ
m1=2 tn; xð Þ
m1 tn; xð Þ
m3=2 tn; xð Þ
m1u tn; xð Þ
m1v tn; xð Þ

0
BBBBBBBB@

1
CCCCCCCCA

� I x0;xiþ1=2��tu tn;x0ð Þ>x0f g xð Þdx ð32Þ

For a first order scheme, we consider a constant piecewise
reconstruction for the moments and the velocities. Then the
fluxes are:

Fiþ1=2 ¼

mn
0;i

mn
1=2;i

mn
1;i

mn
3=2;i

0
BBBB@

1
CCCCAmaxðuni ; 0Þ þ

mn
0;iþ1

mn
1=2;iþ1

mn
1;iþ1

mn
3=2;iþ1

0
BBBB@

1
CCCCAminðuniþ1; 0Þ

ð33Þ

and

Giþ1=2 ¼
mn

1;iu
n
0;i

mn
1;iv

n
i

 !
max uni ; 0

� �

þ mn
1;iþ1u

n
0;iþ1

mn
1;iv

n
iþ1

� �
min uniþ1; 0
� � ð34Þ
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For higher order scheme, we refer the reader to the orig-
inal article [27].

2.2 Evaporation Solver

Now, we consider the evaporation of a polydisperse spray
without transport. The kinetic evolution of the spray is
obtained by considering a homogeneous number density
nðt; SÞ

otn� oS K nð Þ ¼ 0 ð35Þ

By integrating this equation, we get the following
Ordinary Differential Equations (ODE) for the moments
evolution:

dtm0 ¼ � n S ¼ 0ð Þ

dtm1=2 ¼ � K

2
m�1=2

dtm1 ¼ � Km0

dtm3=2 ¼ � 3K

2
m1=2

ð36Þ

We use Entropy Maximization (EM), see Massot et al.
[30], to reconstruct the most probable underlying number
density fonction nEM , in order to close the system and esti-
mate the instantaneous disappearance flux of the droplets.
The NDF nEM jS¼0ðm0;m1=2;m1;m3=2Þ is computed at each
time step. Simple ODE integrators like Euler or Runge-Kutta
method cannot be used to solve this system because they do
not ensure the preservation of the moments within the
moment space. By moment space, one has to understand
the set of moments which are the size-moments of a positive
distribution n. When this condition is not satisfied, the NDF
reconstruction algorithm does not converge. In order to
ensure the numerical preservation of the moment space, a
kinetic scheme was developed in [30]. In that article, the
evolution over ½0;�t� of the integer moment system
(EMSM) due to evaporation was done in two main steps:
– droplet with size smaller than K�t will completely evap-

orate. The disappearance flux is then evaluated and sub-
tracted from the moments;

– other droplets will see their size reduced by K�t. It is
shown that this operation can be done numerically by
simply translating the two abscissas of the lower principal
representation of the resulting moments.
For our new model, the equivalence between the evolu-

tion of the evaporation through the kinetic equation (35)
and the moments system (36) is still valid, but it requires a
much more involved algebra [35]. In this paper, we admit
it and rely on the following algorithm.

Algorithm
– Reconstruct nEM ðSÞ which corresponds to the moment

vector MðtnÞ ¼ ðm0;m1=2;m1;m3=2ÞT ðt ¼ tnÞ by entropy
maximization, then calculate the disappearance flux:

U� tnð Þ ¼
Z K�t

0
nEM t ¼ tn; Sð Þ

1

s1=2

s

s3=2

0
BBB@

1
CCCAds ð37Þ

– Calculate the negative order moments within the size-
interval ½K�t; 1�

m K�t;1½ �
�a=2 ¼

Z 1

K�t
s�a=2nEM sð Þds ð38Þ

for a ¼ 1; ;M , where M is the number of negative
moments used to correct the algorithm presented in [30]
with fractional moment. The origin of these negative
moments is discussed in [35]. The singularity of the neg-
ative moment integral when�t becomes very small limits
the use of high value ofM . In practice,�t > 10�4 and the
choice M ¼ 2 or M ¼ 4 renders accurate enough solu-
tions. The other moments of positive order are computed
using the disappearance flux:

m K�t;1½ �
k=2 ¼ mk=2 tnð Þ � U�;k=2 tnð Þ ð39Þ

where k ¼ 0; . . . ; 3.
– The abscissas Si 2 ½K�t; 1� and the weights wi corre-

sponding to the lower principal representation of the
moments m½K�t;1�

k=2 for k ¼ �M ; ::; 3 are computed using
the PDA [46], such that:

m K�t;1½ �
k=2 ¼

Xns
i¼1

wiS
k=2
i ð40Þ

where ns = 2 + M/2.
– Calculate the new set of evolved moments:

mk=2ðt þ�tÞ ¼
Xns
i¼1

wiðSi � K�tÞk=2; k ¼ �M ; . . . ; 3

ð41Þ

This algorithm is an original extension of the one used in
[30] since it has been adapted to fractional moments and
copes with the inherent difficulties, while preserving a
high accuracy. The different integral terms involved in
the algorithm are computed by using Gauss quadrature
approximation.
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2.3 Evaporation and Drag Force

In this paragraph, we present a coupled solver for the spray
evolution under evaporation and drag force. The correspond-
ing system of equations is:

dtm0 ¼ � n S ¼ 0ð Þ

dtm1=2 ¼ � K

2
m�1=2

dtm1 ¼ � Km0

dtm3=2 ¼ � 3K

2
m1=2

dt m1~uð Þ ¼ � Km0~uþ m0
~ug �~u

h

ð42Þ

Since the first four equations do not depend on the last
equation, the moments are computed using the algorithm
presented in the last section. We use the method developed
in [31] to solve the evolution of the velocity by the drag force
coupled with evaporation.

The momentum evolution is done in two steps: first, we
remove the droplets which will disappear through evapora-
tion during the next time step. Then the size distribution of
the remaining droplets is approximated by the lower princi-
pal representation. In this last step, we consider a correlated
size-velocity, such that, to each droplet of size Si, we attri-
bute the velocity~ci.

Thus, after substracting the disappearance flux from the
moments, the momentum vector writes as follows:

ðm1~uÞ KDt;1½ �ðtÞ ¼
Xns
i¼1

wiSiðtÞ~ciðtÞ ð43Þ

where t 2 ½tn; tnþ1�.
In the kinetic equation, the evolution of the size and the

velocity for each abscissa is independent of the other abscis-
sas.

d~ci
dt

¼ �~ug �~ci
hSi

~ci t ¼ tnð Þ ¼ ~u tnð Þ

8<
: ð44Þ

and

dSi
dt

¼ �K ð45Þ

The solution of the velocity evolution after one time step is:

Si tnþ1ð Þ ¼ Si tnð Þ � KDt

~ci tnþ1ð Þ ¼ ~ug þ ~ci tnð Þ �~ug
� � Si tnþ1ð Þ

Si tnð Þ
� ��1

K h ð46Þ

Then the momentum and the final cell velocity are com-
puted as follows:

ðm1~uÞnþ1 ¼ Pns
i¼1

wk Si tnþ1ð Þ~ci tnþ1ð Þð Þ

~u tnþ1ð Þ ¼ ðm1~uÞnþ1

mnþ1
1

ð47Þ

This method can be generalized for more complex eva-
poration laws by replacing �K in Equation (45) by general
evaporation rate RSðSÞ.

Even though it is possible to solve drag and evaporation
separately and thus fully split the treatment of the three
operators (transport, evaporation and drag), gathering the
treatment of the two source terms is a relevant choice in
terms of splitting error decrease, especially since this cou-
pling is after all not a complex task.

3 AMR TECHNIQUES

In numerical simulations, especially for DNS, fine meshes
can be needed in some locations in order to capture small
scale effects. In fact, the presence of multiscale phenomena
that interact with each other at variable positions over time,
imposes to use a very small cell size for the whole domain to
capture the smallest scale. In this case, the numerical simula-
tion may require high computational resources. On the other
hand, the use of adapted grid instead of uniform grid can
greatly save CPU time and memory. In some applications,
we can be interested to track the front of the flame, a plasma,
or the interface in multiphase flows. Therefore mesh refine-
ment is a useful tool to track these discontinuities/fronts and
use fine meshes in these regions while keeping a coarser
mesh elsewhere. For dilute sprays, the spatial concentration
of the droplets is not uniform in the combustion chamber,
and some locations are also not reached by the spray.
Furthermore, in turbulent jets, the droplets are ejected from
the core of high vortices and concentrate in low vorticity
regions, creating large vacuum regions inside the chamber.
Therefore, the mesh can remain coarse in these regions with-
out affecting the accuracy of the simulation. However, the
choice of an adequate refinement criterion is crucial to
perform a good refinement/coarsening job, while limiting
the numerical diffusion arising around shocks and high
gradients.

We can briefly classify AMR approaches into two main
categories:
– Block-based method Figure 1a: the domain is composed

of block-structures which are uniformly refined. This
method is easier to implement;

– Cell-basedmethod Figure 1b: in thismethod, a coarsemesh
cell called the parent cell, is refined to 4 (2D) or 8 (3D)
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children cells, and recursively each quadrant (2D) or octant
(3D) child can be refined in the same way. In this tree-
structure, only the leaves of the tree need to be stored.
In the present paper, we use a Cell-based method, manag-

ing the quadrants in a tree-structure. The main advantage of
Cell-based methods compared to Block-based methods, is
the high rate of compression allowed. Indeed the tree struc-
ture used to store the mesh in the Cell-based method, allows
us to refine accurately only at the location of high variations
(depending on the refinement criterion). But this heavy use
of the tree structure to store and modify meshes continu-
ously, complicates the software design and the implementa-
tion of numerical methods. Indeed, the need of flexible
access to the information in each mesh, balancing load
between computing processors, and optimum use of cache
memory during a parallel AMR simulation should be taken
into account carefully to design “powerful” AMR software.
Recently, many new software propose AMR framework as
Chombo [47], p4est [37], etc. In a recent project, Drui
et al. [13] developed a new interface between a two-phase

flow finite volume solver and the cell-based library:
p4est. The code shows a high performance computing,
efficient parallel simulation and strong scaling. These first
results were an encouragement to continue the development
of a more general interface between p4est and finite
volume schemes for several applications: separated phases,
spray and astrophysics. This code was named CanoP, and
the results presented in this paper, Section 4, are obtained
using this code.

3.1 P4est Library

p4est is a cell-based AMR library written in C code. It pro-
vides several functions to manage adaptive meshes in paral-
lel. In p4est, the spatial domain can first be divided into
one or several sub-domains, each of them being a conform-
ing hexahedral macro-mesh (the cells are sharing only one
edge (2D) or face (3D) with each other). In the tree structure,
these macro meshes are represented by the root of a tree.
Thus, the different macro-meshes that cover the whole
domain, constitute a forest of trees. The possibility of con-
sidering multi-trees, where each one covers a sub-domain,
enables to represent complex geometries and not only simple
square or cubic domain. In each tree, the corresponding sub-
domain is defined by a macro-mesh (the tree root) which rep-
resents the coarsen mesh and its corresponding refinement
level is l ¼ 0. The macro-mesh is then recursively refined
to multiple non conforming micro-meshes (where a cell
can share a face or an edge with more than one neighboring
cell) of high level l > 0, such that the mesh size of level l is
dl ¼ 2�l in p4est grid (the real size can be computed by a
simple transformation defined initially by the user). Each
micro mesh is associated to a unique reference in ½0; 2b�d ,
where d is the space dimension and b is the maximum level
of refinement. The generated tree is stored in a linear array,
using the Morton space filling [48] (also called z-order
curve, see Fig. 2) to map the leaves of the tree.

In the following, we present the main functionalities
offered by p4est [37]:
– create new refined forest and equipartition load between

MPI processes;
– iterate among each quadrant and call a call-back function

programmed by the user to mark the quadrants to be
refined (creation of new children) or coarsened (remove
the quadrants from the tree);

– ensure the 2:1 balance (the size ratio between two neigh-
bouring quadrant does not exceed two);

– partition the load between the processes after each modi-
fication in the trees;

– communicate the data of quadrants located at the bound-
aries of each “processor-decomposition” domain to the
neighboring processors, by using ghost quadrants.

Block-based AMR methoda)

Cell-based AMR method.b)

Figure 1

Illustration of AMR techniques.
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3.2 CanoP Code

CanoP is C/C++ code dedicated to finite volume numerical
AMR simulation for various applications (dispersed two-
phase model, separated two-phase model and astrophysics
applications). These applications involve multi-scale
phenomena. Therefore, CanoP uses the AMR p4est
library to manage the meshes and benefits from its high
performance.

CanoP can be presented at three stages:
– the user: implements easily a new application by defining

appropriate data model (for example: the density, the pres-
sure, etc.), finite volume scheme and refinement criterion.

CanoP provides a flexible and simple framework to
develop new applications;

– the CanoP core: adapts the user data model to its data
structure, manages the time loop, calls p4est function
to iterate over themeshes, then apply the numerical scheme
and update the data and finally call the p4est functions
for mesh adaptation and processor load balancing;

– the libraries: CanoP integrates different libraries to
benefit from their performance: p4est (AMR), HDF5
(Parallel output) and Lua (Input files).
Figure 3 illustrates the CanoP structure and the different

stages.
In the following, we present the finite volume scheme

used on the non-conforming meshes and the refinement cri-
terion developed in CanoP for the spray applications.

3.2.1 Kinetic Scheme in Non Conforming Meshes

Thenumerical schemepresented inSection2.1dedicated to the
transport part, needs to be adapted to non conforming meshes.
We consider a quadrant denoted by q in a 2D non conforming
mesh verifying the 2:1 size balance, which means that q can
have a common edge with at most two neighboring quadrants.
We denote by M ¼ ðm0;m1=2;m1;m3=2ÞT its moment vector
and by p ¼ m1ðu; vÞT its momentum vector.

The finite volume scheme in q writes as follows:

Mnþ1
q ¼ Mn

q � �t
�xq

Fqþ1=2 � Fq�1=2

� �
pnþ1
q ¼ pnq � �t

�xq
Gqþ1=2 � Gq�1=2

� � ð48Þ

To illustrate how we adapt the scheme in a 2:1 balanced
meshe, we consider the case where the quadrant q has
two neighbour quadrants on his right, gr1 and gr2 as is illus-
trated in Figure 4. Therefore, the fluxes across the common
edge are:

Fiþ1=2 ¼ FððM ; pÞnq; ðM ; pÞngr1 ; ðM ; pÞngr2Þ
Giþ1=2 ¼ GððM ; pÞnq; ðM ; pÞngr1 ; ðM ; pÞngr2Þ

ð49Þ

The exact expression of the fluxes, derived from the
integral expression of the moments and the kinetic solution
(29), is:

Fqþ1=2

Gqþ1=2

 !
¼

Fþ
qþ1=2

Gþ
qþ1=2

 !
þ F�

qþ1=2

G�
qþ1=2

 !
ð50Þ

such that

Fþ
qþ1=2

Gþ
qþ1=2

 !
¼ 1

�yq�t

Z
x;yð Þ2q

M tn; x; yð Þ
p tn; x; yð Þ

� �
IRþ

q �tð Þ x; yð Þdxdy

ð51Þ

a) z-ordering of the mesh cells.

b) Graph representation and indexing.

Figure 2

z-order traversal of the quadrants in a tree and load partition
into four processes. Dashed line: z-order curve. Quadrant label:
z-order index. Color: MPI processes [13].
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and
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�yq�t
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1
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x;yð Þ2gr2

M tn; x; yð Þ
p tn; x; yð Þ

� �
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gr
2
�tð Þðx; yÞdxdy

!
ð52Þ

where Rþ
i ð�tÞ ¼ x0; yð Þ 2 i; xiþ1=2 ��t u tn; x0; yð Þ < x0

� �
(resp. R�

i ð�tÞ ¼ ðx0; yÞ 2 i; xi�1=2 ��t uðtn; x0; yÞ > x0
� �

)
is the set of droplets of quadrant i that will reach its right
(resp. left) side during the time ½0;�t�.

Note that when we use a dimensional splitting operator,
we consider the variation of the concerned variables only
in the concerned direction (the x-direction). But in the case
of non conforming meshes and especially for high order
scheme, we need to consider the variation in the other per-
pendicular directions.

Since the scheme is first order, the solution is constant per
quadrant and it is easy to derive the expression of the fluxes:

Fqþ1=2

Gqþ1=2

 !
¼ �xgr1

�xq

F ðM ; pÞq; ðM ; pÞgr1
	 


G ðM ; pÞq; ðM ; pÞgr1
	 


0
B@

1
CA

þ �xgr2
�xq

F ðM ; pÞq; ðM ; pÞgr2
	 


G ðM ; pÞq; ðM ; pÞgr2
	 


0
@

1
A ð53Þ

The fluxes F ðM ; pÞi; ðM ; pÞj
	 


and G ðM ; pÞi; ðM ; pÞj
	 


are computed as in the case of a uniform meshe, using the
expressions (33), (34). �xi is the length of the quadrant i.

For a higher order scheme, we use a polynomial recon-
struction of the moments and an affine reconstruction for
the velocity in each quadrant depending on the state of this
quadrant and his neighbors. In order to keep the recon-
structed moments within the space of realizability, this
moment reconstruction is based on an affine reconstruction
of the canonical moments [27]. Finally the reconstruction
should ensure:
– the conservation of the conservative variables,
– a maximum principle for the canonical moments and the

velocities.
In the case of non conforming meshes, there are different

ways to reconstruct the solution based on the quadrant
neighbor states and their positions. In CanoP, the solution
is reconstructed a simple way. It is illustrated this in the con-
text of Figure 4: quadrant q has a double-size neighbor gl on
its left and two half-size neighbors gr1 and g

r
2 on its right. The

reconstructed variables (canonical moments and the veloc-
ity) are computed first using quadrants ðgl; q; gr1Þ, then again,
using this time ðgl; q; gr2Þ. The final reconstructed state is
simply the minmod limiter of the two computed slopes.
Since quadrants of different size are used and the limitation
of the slopes is rather restrictive, second order is not guaran-
teed. However the robustness and the realizability of the
method are ensured. Moreover the results show a good accu-
racy improvement compared to the first order scheme.

3.2.2 Refinement Criterion

The determination of efficient criterion remains a complex
subject, since the simulation depends on the physical phe-
nomena and on the numerical methods. Multiresolution

Figure 4

Example of non conforming mesh.

Figure 3

CanoP code structure.
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analysis [49-51] provides some robust tools to estimate and
control rigorously the error at each refinement level. In
CanoP, these methods are difficult to implement because
the tree structure does not respect some necessary properties
(like treaded tree, see [50]) for multiresolution methods.
Therefore, we use a heuristic criterion based on some consid-
eration of the main results cited in [50].

Harten [50] introduced a method to control the error,
based on an interpolating function to approximate the
variables at refined level l þ 1 from the coarsen level l,
then he computes the details which is the difference of the
predictive variables and the true variables. The details are
considered as the errors at the level l. Following Harten’s
idea, we implement a refinement criterion adapted to CanoP
for spray applications. The method consists of predicting the
moment m0 for the children quadrants of a given parent
quadrant q. The prediction is based on the slope computation
in each direction for each face depending on the neighbor
quadrants (not necessary of the same size as the quadrant
q. But for Harten’s predictor operator, he used neighbors
of the same level to predict the variable in the next
high level):

~m0 x; yð Þ ¼

m0;q þ Dml
0 x� xq
� �þ Dmu

0 y� yq

	 

; if x; yð Þ 2 child1

m0;q þ Dmr
0 x� xq
� �þ Dmu

0 y� yq

	 

; if x; yð Þ 2 child2

m0;q þ Dml
0 x� xq
� �þ Dmd

0 y� yq

	 

; if x; yð Þ 2 child3

m0;q þ Dmr
0 x� xq
� �þ Dmd

0 y� yq

	 

; if x; yð Þ 2 child4

0
BBBBBBBB@

ð54Þ

The subscripts l; r; d; u refer respectively to the left, right,
down and up edge. Dmj

0 is the slope variation at the direction
x if j ¼ l or j ¼ r and y otherwise. Finally, the children index
follows the z-curve order.

Let us emphasize that, this reconstruction do not respect
some physical and mathematical properties (the conserva-
tion, maximum principle and realizability). In fact, the
reconstruction is only used to estimate the error and is not
used in the numerical scheme.

The slopes are computed from the neighbors quadrant. To
illustrate this calculation for the slopes at direction x, let con-
sider the case in the Figure 4:

Dml
0 ¼

m0;q � m0;gl

ð�xq þ�xglÞ=2

Dmr
0 ¼

ðm0;gr1
þ m0;gr2

Þ=2� m0;q

ð�xq þ�xgr1Þ=2
ð55Þ

Then we compute the L1-norm difference between m0;q

and the predicted ~m0ðx; yÞ.

errðm0Þq ¼
Z
q
jm0;q � ~m0ðx; yÞjdxdy ð56Þ

where jqj is the total surface of the quadrant q.
This estimated error is used as refinement criterion, such

that the error is compared to a given threshold n and if
errðm0Þq > n then the quadrant is refined. If all siblings of
a given quadrant verify errðm0Þq < cn then the quadrant is
marked for coarsening. The parameter c � 1 is chosen by
the user.

4 RESULTS

Once a model has been obtained with a clear relationship
with geometrical quantities in separated phases averaged
models and once a realizable, and thus robust, and accurate
numerical scheme coupled to a mesh adaptation strategy has
been designed, several steps have to be conducted in order to
assess the proposed strategy. Beyond providing a verifica-
tion of the proposed new geometrical moment and related
algorithm compared to the EMSM model, we aim at proving
that: 1- the AMR solver reaches a very nice level of accuracy
once we have chosen a proper refinement criterion; 2- the
proposed strategy is valid for complex droplet models, that
is for source term with a much higher level of complexity
leading to much higher arithmetic intensity; 3- that we have
a high level of scalability and efficiency of the parallel
implementation of the numerical strategy relying on realiz-
able schemes and splitting.

To do so, we have chosen three test-cases:
– the first case consists in a localized spray in the presence

of Taylor-Green (TG) vortices, Figure 5. These cases
though simple, do illustrate a realistic configuration
occurring in automotive engine, where the droplets are
concentrated in some local regions and where large vac-
uum regions can be found. The first case is a non evapo-
rating spray. For this case, we assess the performance of
AMR calculation compared to a uniform grid calculation
and study scalability for a given level of accuracy;

– the second case is the same as the first one, but with a
major change. We consider an evaporating spray. The
objective of this simulation is twofold; first we show
the robustness and the accuracy of the evaporation algo-
rithm coupled with transport and drag. Second, the evap-
oration algorithm is representative of the high arithmetic
intensity within an embarrassingly parallel configuration
using operator splitting we will encounter with more com-
plex droplet models. We aim at illustrating the impact of
the AMR techniques coupled to operator splitting on the
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computational cost for intensive source terms such as the
inversion algorithm, used to reconstruct the approximated
spray density function;

– the third case is a non evaporating Homogeneous Isotro-
pic Turbulence (HIT) in 2D and 3D. A comparison of the
AMR Eulerian solution with a uniform Eulerian solution
and a Lagrangian reference solution based on the segrega-
tion is performed to show the efficiency of the AMR Eule-
rian solution to predict correctly the main physical
features with low computational resources in the frame-
work of a much richer configuration in terms of physics,
while in a really non-favorable case since the spray is pre-
sent in the whole domain.
For the three cases, we fix the CFL (Courant-Friedrichs-

Lewy) at CFL = 0.9 and the constant c used in the refinement
criterion at c ¼ 23.

4.1 Droplet Cloud in Taylor-Green Vortices

We simulate a non evaporating polydisperse spray in two
dimensional space configuration in the presence of Taylor-
Green vortices for the gas: a steady solution of the inviscid
incompressible Euler equations. The non-dimensional veloc-
ity field of the gas is given by the following expression:

ugðx; yÞ ¼ sinð2pxÞcosð2pyÞ
vgðx; yÞ ¼ �cosð2pxÞsinð2pyÞ ð57Þ

where ðx; yÞ 2 ½0; 1�2.
Initially, we consider a motionless cloud located in the

bottom-left vortex in Figure 5.

The initial spatial distribution of the spray is Gaussian
inside a small disk of a radius r ¼ 0:1 and equals to zero out-
side. The initial size distribution, uniform inside the disk, is
equal to 1 for S 2 ½0; Smid � and 0 otherwise. The moments
are thus given by:

mk=2ðt ¼ 0;~xÞ ¼ 2

k þ 2
Sðkþ2Þ=2
mid

	 

expð�jj~x�~xcjj22=r2Þ

ð58Þ

where k ¼ 0 . . . 3, Smid ¼ 0:5 and jj~x�~xcjj22 � r.
The initial exact size distribution as well as its EM

reconstructed density nEM ðSÞ are presented in Figure 6.
We consider a low inertia droplets such that the Stokes
number St ¼ 0:025 is less than the critical value
Stc ¼ 1=ð8pÞ. It has been shown in de Chaisemartin [40],
that for St < Stc the droplets stay in their origin vortex and
cannot travel from one to another, while, for St � Stc they
are ejected out their original vortices. Thus, we encounter
particle trajectory crossings, that are not taken into account
in the monokinetic assumption and lead to delta-shocks.
Notice that these singularities are completely handled
numerically, thanks to the ‘kinetic’ numerical scheme and
the robustness is ensured.

In Figure 7, we display the spatial evolution of the num-
ber density m0 using a second order scheme and AMR grid
at different times, as well as the mesh grid given for two
instants in Figure 8. The maximum refinement level is
lmax ¼ 9 and the minimum level is lmin ¼ 4. We use the
refinement criterion presented in Section 3.2.2 and choose
a small threshold n ¼ 1:e� 7.

Figure 5

Stationary gaseous velocity vector field of the Taylor-Green
vortices and spray initial number density.

Figure 6

The initial NDF in the dashed line and its reconstruction
through EM in the solid line.
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4.1.1 Refinement Criterion and Solution Quality

In this section, we study the influence of the refinement cri-
terion the accuracy of the solution and its impact on the com-
putational time. The objective is to show that we can keep an
accurate solution while reaching a high compression rate,
thus we save time and memory. It also allows to set up a fair
framework in order to conduct a parallel efficiency study in
the next subsection. After investigating the influence of the

refinement criterion depending on the order of the scheme
used, we focus on the intrinsic accuracy of the solution.

In Tables 1 and 2, we present respectively the following
results of the first order and the second order of Taylor-Green
simulation using 36 processors: the L1-error computed rela-
tively to the solution on a refined uniform grid 512� 512,
considered as reference solution, using respectively the first
order and second order. The compression rate and the CPU
time are also provided. The purpose is clearly to evaluate the

Figure 7

Taylor-Green simulation using “second order scheme” in adaptive refinement grid, the maximum level is lmax ¼ 9 and the minimum level is
lmin ¼ 4.
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impact of the compression rate on both accuracy and compu-
tational efficiency.

The two tables show a significant CPU time saving com-
pared to the reference solution, the CPU time of which is

29.15 s. Using the smallest threshold n ¼ 1:e� 7, we reduce
the computation time by a factor of five with a very good
level of precision. We can save more CPU time and memory
(see the compression rate) by increasing the threshold but we
lose the accuracy of the solution. For n � 1:e� 6, the rela-
tive L1-error is more than 10%. Since the computing time
of the second order volume finite solver is much larger than
the communication and mesh adaptation time, we save more
CPU time in this case, whereas the CPU time used in the
computation of the second order reference solution is much
larger: 231.63 s. By using a mesh adaptation with the thresh-
old n ¼ 1:e� 7, we reduce this CPU time by a factor of
eight, maintaining a very good precision. We can save more
CPU time and memory by choosing n ¼ 1:e� 6with a good
accuracy (relative L1-error	 5%). Let us underline that these
two tables do not compare the solution accuracy depending
on the scheme order because the relative L1-error is com-
puted for each order as the difference between the solution
on a uniformly refined grid and the solution for an adaptive
refined grid using the same order.

In a second study, we consider a common reference solu-
tion for the first and second order simulations. The reference
solution is computed using a second order scheme on a uni-
form grid 1024� 1024, which corresponds to the level
l ¼ 10. Figures 9 and 10 show that the relative L1-error does
not evolve much when we vary the minimum level except
when we reach a uniform grid. However, for a given maxi-
mal level of refinement, there is a strong impact of n on the
ability of the mesh adapted solution (lmin < lmax) to capture an
accurate solution. In fact for each maximal level of

a) b)= 0:5t = 1:t

Figure 8

The AMR grid in the case of Taylor-Green no evaporating spray, with lmax ¼ 9, lmin ¼ 4 and threshold n ¼ 5:e� 7.

TABLE 1

Relative L1-error, compression rate and CPU time depending on the
threshold n using the first order scheme

Threshold n Relative
L1-error (%)

Compression
rate (%)

CPU time

1:e� 7 0.7 87.3 5.81

5:e� 7 5.2 92.4 3.89

1:e� 6 10.1 94.4 3.24

5:e� 6 29.6 97.3 1.71

1:e� 5 35.4 97.8 1.15

TABLE 2

Relative L1-error, compression rate and CPU time depending on the
threshold n using the second order scheme

Threshold n Relative
L1-error (%)

Compression
rate (%)

CPU time

1:e� 7 0.6 88.8 28.38

5:e� 7 3.2 92.6 19.32

1:e� 6 5.3 94.7 14.6

5:e� 6 15.6 97.2 6.9

1:e� 5 19.7 97.7 3.73

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 61 Page 17 of 25



refinement, there is a threshold in terms of refinement crite-
rion above which compressing the solution deteriorates its
quality. Its is clear in Figures 9 and 10 that n ¼ 1:e� 7 is
below this threshold and n ¼ 1:e� 6 is above it. For
n ¼ 1:e� 7 the relative-error remains almost constant and
we can use mesh refinement while preserving an accurate
solution, whereas for n ¼ 1:e� 6, we can observe that mesh
refinement for lmax ¼ 9 results in a clear increase of the error.
Once we have found a well chosen threshold, for which the
accuracy of the uniform and AMR solutions are equivalent,

we can then study the computational efficiency and parallel
performance of the numerical strategy.

4.1.2 Parallel Performance

We assess the parallel performance by measuring the compu-
tational time of the various operations:
– solver time corresponds to the time needed in the finite

volume scheme and source evaluation in the splitting
strategy;

a) b)

Figure 10

L1-error for second order scheme in logarithm scale versus the minimum level of compression lmin plotted for different maximum refined
levels lmax.

a) b)

Figure 9

L1-error for the first order scheme in logarithm scale versus the minimum level of compression lmin plotted for different maximum refined
levels lmax.

Page 18 of 25 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 61



– adaptation time corresponds to the time of refinement,
coarsening, partition and 2:1 size balance;

– and finally the total time which is the sum of these two last
times without I/O.
We use the second order Taylor-Green simulation in an

adaptive refinement grid such that the maximum level
l = 9 corresponds to the finest meshes and the minimum level
l = 4 corresponds to the coarsest meshes. We choose the pre-
viously obtained threshold n ¼ 5:e� 7 to ensure the quality
of the compressed solution.

In Figure 11, we display the strong scaling. The simula-
tion is performed in Icepar156q CentraleSuplec cluster
(memory per node 24Go, total core number 156) using
MPI processors number up to 60. The solver time (trans-
port and drag) shows an efficiency more than 88%. The
adaptation time shows a weak efficiency due to the large
time spent in the communication between processors essen-
tially for the balance algorithm. Nevertheless, the global
time of computation shows a good parallel performance
and the efficiency reaches 81% for 60 processors. In fact,
the solver time represents 85% of the total CPU time. Let
us underline that the number of effective cells in this simu-
lation with a compression rate of about 90% is close to
30,000 so that an efficiency of 81% on 60 cores is very
satisfactory.

4.2 Taylor-Green Evaporating Spray

Using the exact same configuration with Stokes number
St ¼ 0:025, we switch to an evaporating spray with
K = 1/2. Since we use an inversion algorithm in order
to reconstruct the NDF from the moments by EM in each
cell at each time step for the evaluation of the disappear-
ance flux of droplet at zero size, we expect a significant
computational cost related to source terms, which is
representative of the complexity we will have to face by
switching to more complex droplet models in realistic
configurations.

Table 3 presents the computational time ratio spent in
solving each part of the solver, transport and source, for
two uniform grids (2569 256 and 5129 512) on 96 proces-
sors. As expected, solving for the source term requires
around 95% of the total time and it is interesting to investi-
gate how mesh adaptation is going to deal with such a con-
figuration in the framework of operator splitting, that is in a
numerical strategy where the source term in various cells are
resolved completely independently leading to an embarrass-
ingly parallel configuration.

In the previous study without evaporation, n ¼ 5:e� 7
was shown to be an adequate threshold for a high compres-
sion and good solution quality, therefore we maintain this
value in the present case. Figure 12 shows the spatial
number density at four different times of the evaporating

Taylor-Green simulation on AMR grid (lmax ¼ 9 and
lmin ¼ 4) and Figure 13 presents the corresponding meshes.
Compared to the simulation running on the uniform grid
512� 512, the relative L1-error of the AMR solution
computed at t ¼ 0:5 is 3:9%, the compression rate is
97:7% and we have reduced the computational time by a
factor of more than 45. In fact, the CPU time used in the
resolution of evaporation is highly larger than the CPU time
that we spend in the resolution of the transport and the
mesh adaptation. More precisely, in this simulation, the
CPU time spent in the evaporation resolution is 76.5 s,
the transport resolution 2.4 s and the mesh adaptation
5.2 s, which means that the evaporation alone takes more
than 90% of the total CPU time, Table 4 gives further
details of the time ratio spending at each operation using
different MPI process number. In Figure 14, we present
the strong scaling of the various step of the solving process
(mesh adaptation, transport solver, term source solver and
the total time). Up to 60 processes, we observe a very good
scalability, which is also to be seen in Table 4. Once again,
let us insist on the fact that for 60 processes and considering
the level of compression reached, we end up with about
100 cells per core, which is very few, and still have a very
nice level of efficiency. The transport part still has about

Figure 11

Strong scaling of the second order scheme in AMR grid, the
maximum refinement level is lmax ¼ 9 and the minimum refine-
ment level is lmin ¼ 4.

TABLE 3

Time ratio spent in transport solver and source solver (including evaporation
and drag) using 96 MPI processes on a uniform mesh

Transport solver (%) Term source solver (%)

512 9 512 2.2 97.5

256 9 256 5.6 93.5
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80% of efficiency and the source term scales vary properly
considering that load balancing could be also a problem
(p4est also provides the ability to integrate computational
complexity in the the load balance algorithm, which has
not yet been used in the present simulations). Increasing
the number of processes to 96, we have a remarkable
decrease of the scalability, which reaches 56%, and that
can be explained by the very small number of cells per
process, which is going to kill the efficiency in terms of
communications. However, the total efficiency is still
about 67%, which shows both the efficiency of CanoP
and p4est, as well as the proper choice of numerical
strategy.

4.3 Verification of the Proposed Numerical Strategy

In order to verify the evaporation algorithm, we calculate the
residual number density in the whole domain:

m0h i tð Þ ¼
Z
V
m0 t;~xð ÞdV ð59Þ

We compute this quantity by integrating the number den-
sity obtained from the simulation using the evaporation algo-
rithm presented in Section 2.2 and we compare it with the
one obtained by a kinetic solution. The kinetic solution is
based on the exact solution of the NDF. In Figure 15, the
blue dashed line represents the number density of the kinetic

t = 0.25 t = 0.50

t = 0.75 t = 1.0

Figure 12

Evaporating Taylor-Green simulation using second order scheme for transport in AMR grid with lmax ¼ 9, lmin ¼ 4 and n ¼ 5:e� 7.
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solution using as initial NDF nðSÞ ¼ 1½0;0:5�ðSÞ. The black
line represents the kinetic solution using an EM recon-
structed NDF from the initial moments. The red line repre-
sents the simulated solution using the evaporation
algorithm. The figure shows a very good precision of the
evaporation algorithm to predict the total remainder droplets
compared to the exact kinetic solution and provide us with a
verification of the proposed algorithm.

4.4 Homogeneous Isotropic Turbulence in 2D/3D

In order to assess the code ability in a more complex gaseous
flow field representative ofmode complex applications and in
a challenging case, where spray is to be found everywhere in
the domain,we consider a non evaporating spray in a two- and
three-dimensional configurations with a frozen HIT gas. The
HIT gasfieldwas generated independently by Sabat et al. [52]

with the ASPHODELE code of CORIA [53], which solves
the three-dimensional Navier-Stokes equations for the gas
phase under the low-Mach assumption. The characteristics
of this HIT is given in Table 5, where Ret is the turbulent
Reynolds number, ut is the velocity root-mean-square, e is
the mean dissipation rate, gk is the smallest structures scale,
lint is the integral scale of the turbulence, sk is theKolmogorov
time scale of the turbulence, and sint is the eddy turnover time.
We consider a no evaporating spray with Stokes number of
St ¼ 0:5. The initial spatial distribution is uniform.

a) b)= 0:5t = 1:t

Figure 13

The AMR grid in the case of Taylor-Green evaporating spray, with lmax ¼ 9, lmin ¼ 4 and threshold n ¼ 5:e� 7.

Figure 14

Strong scaling of the Taylor-Green evaporated case in AMR
grid, the maximum refinement level is lmax ¼ 9 and the
minimum refinement level is lmin ¼ 4.

TABLE 4

The time ratio spending in each operation: Transport solver and source term
solver (Evaporation+drag) for different MPI process number

MPI process
number

Mesh
adaptation (%)

Transport
solver (%)

Term source
solver (%)

1 0.1 2.5 97.3

24 0.7 2.2 97.3

60 0.9 2.2 95.7

84 4.8 2.7 91.6

96 6.16 2.8 90.5
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In order to limit the PTC and to have comparable results
between the monokinetic Eulerian simulation and the
Lagrangian simulation, we consider low inertia droplets
such that the Stokes number is taken St ¼ 0:5 based on sk .
Numerical dissipation in the simulation of Eulerian models
for spray dynamics is a key issue, since we have to use
very robust numerical schemes due to the presence of
singularities and asymptotic limits (zero density), but still
want an accurate resolution in the smooth regions. In partic-
ular, numerical dissipation has a negative effect in predicting
properly segregation of the spray in turbulent flows. In order
to limit this diffusion, we use the second order scheme and
AMR in order to reach an accurate resolution in the high
concentrated regions, while limiting the computational cost
and memory trace. Figure 16 shows the spatial distribution
of the number density at time t ¼ 5 (this dimensionless time
corresponds to t = 1.8 s in the real time, such that the
characteristic time in this case is sk = 0.36 s).

The droplets are ejected from vortices and concentrated in
zone of low vorticity.

In Figure 17, we compare the time evolution of the segre-
gation for a Lagrangian simulation [52] and two Eulerian
simulations:
– on uniform grid 1024 9 1024;
– using AMR with lmax ¼ 10 and lmin ¼ 6.

In the two Eulerian simulations, we make a small error on
the segregation compared to the Lagrangian simulation.
However, the three results stay closely comparable. Further-
more, the segregation evolution of the two Eulerian simula-
tions is closely the same. Therefore, we preserve the same
solution quality while using less cells in AMR simulation.

We have reduced the computational time by a factor of
two compared to the uniform grid computation and we
obtain a compression rate of 55%. Let us underline that
the chosen configuration is probably the worst configuration
for such a strategy. However, we wanted to investigate the
ability of the proposed strategy to cope with such a case,
knowing that in realistic configurations, the flow is going
to be turbulent, whereas the spray is going to occupy only
a fraction of the computational domain.

A 3D simulation of the spray in the presence of a frozen
HITwas performed to test the AMR capacity in compressing
the solution. The characteristic of the HIT is given in Table 6.
The spray simulation was performed in 180 MPI processes
using AMR grid, where lmax ¼ 8 and lmin ¼ 6 with the
threshold n ¼ 5:e� 7. The compression rate is 83:7%. The
result was compared with a simulation obtained in uniform
grid of 2563 cells. The relative error between the two solu-
tions is 18:%. The computational time is reduced by a factor
of 5:9 compared to the uniform grid computation. In order to
decrease the relative error, a second simulation was per-
formed using n ¼ 2:e� 7. The relative error obtained in this
case is 9:6%, the compression rate is 65:6% and the compu-
tational time is reduced by a factor of 2:6.

Figure 16

Number density m0 at t = 1.8 s with AMR (lmax ¼ 10 and
lmin ¼ 6) and with threshold n ¼ 5:e� 7.

Figure 15

Evolution of the number density over the domain compared to a
exact solution using a kinetic solution of the evaporation.

TABLE 5

Turbulence properties of the frozen HIT gaseous flow field

Ret ut e gk lint sk sint

7.12 0.1 0.01 0.022 0.1 0.36 1.0
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CONCLUSION

The main contribution of this paper is threefold:
– a new Eulerian moment model for the spray with a high

potential for coupling with a separated phases two-phase
flow model has been proposed;

– a robust and accurate numerical scheme has been derived for
this new model including evaporation, transport and drag;

– Adaptive Mesh Refinement (AMR) techniques have been
introduced in this context to save both CPU time
and memory.
In each stage of these developments, we have aimed at

bringing solutions to predict an accurate physical simulation
using low computational resources. Firstly, at the modeling
stage, the kinetic model, which consists of the kinetic
Williams-Boltzmann equation, is reduced to an Eulerian
moment model. Thus, the dimension of the phase space is
reduced. The novelty in this article is the new geometrical
moment model, which gives the dynamical evolution of
some physically identified interfacial variables using frac-
tional moments. This newmodel has been developed in order
to consider a coupling with a diffuse interface model for the
separated phases two-phase flow models. Secondly, we have
used operator splitting to separate the resolution of transport
in physical space from the one of the source terms, which

represents transport in phase space. For transport, we have
extended the numerical scheme developed by Kah et al.
[27]. For the source terms, a new evaporation solver has been
developed for fractional moments and d2 evaporation law.
However, this algorithm can be adapted for more complex
droplet models such as in [4]. This solver has been optimized
by using fractional and negative quadrature moments to
evaluate the size variation of the droplets due to evaporation.
Finally, we have used AMR techniques to reach a fine mesh
resolution in high variation regions while keeping low
resolution in other regions. The results achieved by the
CanoP code show that we can reach the same level of accu-
racy for AMR solution as uniform mesh solution with low
computational time and memory. Furthermore, the use of
AMR in a unified simulation of the fuel injection (from the
separated phases to the evaporating spray) should allow to
have an accurate simulation of this multi-scale problem with
reasonable computational need. Indeed, for diffuse interface
model, we need fine meshes to limit the interface diffusion.
Moreover, in the fuel injection, we encounter some vacuum
region and some high concentrated droplets region. There-
fore, a large spectrum of size is involved in this multi-scale
problem and the use of AMR grid should be very beneficial.

To reach the ultimate goal of designing adequate model,
numerical scheme and HPC application for a fully Eulerian
simulation of fuel injection, we still need a deep study to
understand this kind of flow, then, to improve the present
model for more realistic case. First, we aim at extending
the actual spray model to take into account the size-velocity
correlation. Furthermore, to tackle the PTC, which will
certainly occur in transition zone (because of inertial drops),
we would like to consider other closing assumption for the
velocity distribution. These types of model have already
been studied in [31, 41]. Secondly, the high order schemes
used in the present work, still require a careful treatment
and study in non conforming meshes. Finally, we need to
focus on understanding the mechanism of the interface
evolution in separated phases two-phase flow, which is the
key mechanism of generating polydisperse spray.
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Figure 17

Evolution of the segregation with time for the Lagrangian
(black line), Eulerian on uniform grid 1024� 1024 (blue line)
and Eulerian with AMR (red line).

TABLE 6

Turbulence properties of the frozen HIT gaseous flow field in 3D

Ret e gk sk TKE

25 1e� 3 3:2e� 2 1: 1:e� 2
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