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ASYMPTOTIC GENERALIZED EIGENVALUE DISTRIBUTION OF TOEPLITZ BLOCK
TOEPLITZ MATRICES

M. Oudin, J.P. Delmas

GET/INT
9 rue Charles Fourier

91011 Evry Cedex, France

ABSTRACT

In many detection and estimation problems associated with
processing of second order stationary2-D discrete random
processes, the observation data are the sum of two zero-mean
second order stationary processes: the process of interest and
the noise process. In particular, the main performance crite-
rion is the Signal to Noise Ratio (SNR). After linear filter-
ing, the optimal SNR corresponds to the maximal value of
a Rayleigh quotient which can be interpreted as the largest
generalized eigenvalue of the covariance matrices associated
with the signal and noise processes, which are Toeplitz block
Toeplitz structured. In this paper, an extension of Szegö’s
theorem to the generalized eigenvalues of Hermitian Toeplitz
block Toeplitz matrices is given, under the hypothesis of ab-
solutely summable elements, providing information about the
asymptotic distribution of those generalized eigenvalues and
in particular of the optimal SNR after linear filtering.

Index Terms— Toeplitz block Toeplitz matrix, Szegö’s
theorem, generalized eigenvalues.

1. INTRODUCTION

2-D discrete random processes appear in many signal process-
ing applications. A typical example is imagery, where obser-
vation data are modelized by such processes. Furthermore, in
certain imagery applications, the2-D discrete random proces-
ses are second order stationary (e.g., see [1, chap. 5]). Other
examples can be found in different application areas, such as
for instance in magnetic recording systems, where the mag-
netic medium can be modelled by a 2-D second order station-
ary process (e.g., see [2]), where the two dimensions corre-
spond to the linear and radial coordinates. In that case, the
covariance matrix of the random process is structured. More
specifically, when a2-D n1×n2 block of samples from a sec-
ond order stationary random process is grouped into a vec-
tor by stacking its columns, the vector’s covariance matrix
has a Toeplitz block Toeplitz (TBT) structure (e.g., see [3]).
In many detection and estimation problems associated with
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processing of such2-D random processes, for which the main
performance criterion is the Signal to Noise Ratio (SNR), the
data are the sum of two zero-mean second order stationary
processes: the process of interest and the noise process. For
instance, in [2], the data are the sum of a channel input and
a noise refered as a “flux noise”. In that case, after linear fil-
tering, the optimal SNR corresponds to the maximal value of
a Rayleigh quotient which can be interpreted as the largest
generalized eigenvalue of the covariance matrices associated
with the signal and noise processes [4].

In this paper, we study the problem of the influence of
the size of the samples vector along with the different dimen-
sions, on the generalized eigenvalues of TBT matrices. More
specifically, we assume that the number of samples along with
both dimensions tends to infinity and analyze the asymptotic
generalized eigenvalue distribution of such matrices.

The problem of the asymptotic eigenvalue distribution of
Toeplitz matrices has first been analyzed by Grenander and
Szeg̈o, whose famous result asserts that the eigenvalues of a
sequence of Hermitian Toeplitz matrices asymptotically be-
have like the samples of the Fourier transform of its entries
[5]. However, this analysis has been performed by use of
sophisticated mathematics under the general hypothesis that
the Toeplitz matrix is generated by measurable and bounded
spectrum. Then, Gray has proposed a simpler proof of this re-
sult for banded Toeplitz matrices [6] (which are called finite-
order Toeplitz matrices) and then for infinite-order Toeplitz
matrices, under the assumption of absolutely summable el-
ements, based on the asymptotic equivalence between two
matrices [7]. Following this approach and under the same
assumption, the Grenander and Szegö result has been later
extended to the eigenvalues of block Toeplitz with Toeplitz
block matrices where both the size and the number of blocks
tend to infinity [8], then to the eigenvalues and generalized
eigenvalues of block Toeplitz with non-Toeplitz blocks where
only the number of blocks tends to infinity in [9] and [4], re-
spectively. Let us note that extension of the celebrated Grenan-
der and Szeg̈o result has been also considered in the mathe-
matical literature under the general assumption that the in-
volved Toeplitz, block Toeplitz matrices are generated by in-



tegrable spectra (e.g., see [10]) for the asymptotic eigenvalue
distribution. However, to the best of our knowledge, the ex-
tension to generalized eigenvalues of TBT matrices has not
been studied until now. In the present work, we propose an
extension of Szeg̈o’s theorem to the generalized eigenvalues
of TBT matrices, under the hypothesis of absolutely sum-
mable elements, which relies on an extension of the notion
of asymptotic equivalence between matrix sequences estab-
lished by Gray in [6].

This paper is organized as follows. In Section 2, we give
an interpretation of the generalized eigenvalues of Hermitian
matrices from the point of view of SNR after linear filtering.
Then, in Section 3, the notation of TBT matrices and Circu-
lant Block Circulant (CBC) matrices are introduced and pre-
liminary results about asymptotic equivalence between block
matrix sequences are given. Finally, a generalized eigenvalue
distribution theorem of TBT matrices is proved in Section 4.

2. SNR AFTER LINEAR FILTERING OF
BIDIMENSIONAL PROCESSES

In this Section, we give an interpretation of the generalized
eigenvalues of two Hermitian matrices. Thus, letx be a data
vector where the2-D data are arranged in alphabetical order
of dimensionn1 × n2 composed by the sum ofs, the signal
of interest andn, the noise process. Both processes are mod-
elled by second-order stationary processes withn1n2×n1n2

Hermitian covariance matricesRs = E{ssH} and Rn =
E{nnH}, respectively. Since the processes are assumed to
be second-order stationary, the covariance matrices are TBT
structured. Moreover, due to the presence of background noise
in n, Rn is almost always positive definite. After linear filter-
ing with n1 × n2-dimensional filterw of the datax, the SNR
is given by the Rayleigh quotient

SNR =
wHRsw
wHRnw

whose stationary points are given by the generalized eigenval-
ues of(Rs,Rn) (e.g., see [4]), denotedλk(Rs,Rn) which
are real-valued and strictly positive. Moreover, sinceRn is
positive definite and Hermitian, these generalized eigenval-
ues are given by the eigenvalues1 of R−1

n Rs, λk(Rs,Rn) =
λk(R−1

n Rs). In particular, the maximum of this SNR is given
by the maximum generalized eigenvalue of(Rs,Rn). To
prove our main result (theorem 1), we need some notations
and background.

3. NOTATIONS AND PRELIMINARY RESULTS

We first recall the definition of the structured TBT and CBC
matrices and extend the asymptotic equivalence of matrix se-

1Note that these generalized eigenvalues are also given by the eigenvalues

of the Hermitian matrixR−1/2
n RsR

−1/2
n , but theorem 1 is more directly

proved by using the eigenvalues ofR−1
n Rs.

quences to block matrix sequences. Then, we give some pre-
liminary lemmas necessary to prove our main result in Section
4.

Definition 1 (TBT matrix):

Given an index(n1, n2), a TBT matrixAn1,n2 is defined as:

An1,n2 def=




A0 A−1 · · · A−(n1−1)

A1
.. .

. . .
...

...
.. .

. . . A−1

An1−1 · · · A1 A0




and each blockAm1 , m1 = −(n1 − 1), ..., n1 − 2, n1 − 1 is
a (n2 × n2) Toeplitz matrix,

Am1

def=




am1,0 am1,−1 · · · am1,−(n2−1)

am1,1
.. .

. . .
...

...
.. .

. . . am1,−1

am1,(n2−1) · · · am1,1 am1,0




The approach of this paper is to relate the generalized eigen-
values of TBT matrices to those of simpler structured associ-
ated CBC matrices that we now formalize.

Definition 2 (CBC matrix):

Given an index(n1, n2), a CBC matrixCn1,n2 is defined as
a TBT matrix previously defined, where Toeplitz blocks are
replaced by circulant blocks.

These CBC matrices have an eigenvalue decomposition
(EVD) that extends those of circulant matrices (e.g., see [3,
Th. 5.8.1]). More specifically, an1n2 × n1n2 CBC matrix
Cn1,n2 is diagonalizable by the unitary matrix

Un1,n2 = Un1 ⊗Un2 (1)

where(Unp)p=1,2 are the unitary discrete Fourier transform

(DFT) matrices of terms(Unp)k,l = 1√
np

e
−j2π

(k−1)(l−1)
np , of

sizenp × np, where the associated eigenvalues are the2-D
DFT of its first row

λk1,k2 =
n1−1∑
m1=0

n2−1∑
m2=0

cm1,m2e
−j2π

�
m1k1

n1
+

m2k2
n2

�
.

Now, we define 2-D asymptotic equivalence.

Definition 3 (2-D Asymptotic Equivalence):

Let {An1,n2} and{Bn1,n2} be sequences ofn1n2 × n1n2

matrices. These matrices are said to be 2-D asymptotically
equivalent and notedAn1,n2 ∼ Bn1,n2 if the following con-
ditions hold:



• ‖An1,n2‖ ≤ M < ∞

• ‖Bn1,n2‖ ≤ M < ∞

• limn1,n2→∞ |An1,n2 −Bn1,n2 | = 0

where‖.‖ is the spectral norm and|.| is a normalized Frobe-
nius norm defined by

|An1,n2 |2 =
1

n1n2

n1∑
m1=1

n2∑
m2=1

|am1,m2 |2 .

Then, we give the following lemma about the asymptotic eigen-
value distribution of 2-D asymptotically equivalent matrices.

Lemma 1

Let {An1,n2} and{Bn1,n2} be sequences of 2-D asymptot-
ically equivalent matrices of dimensionn1n2 × n1n2 with
eigenvaluesλk(An1,n2) andλk(Bn1,n2) for k = 0...(n1n2−
1), respectively, then for any positive integers

lim
n1,n2→∞

1
n1n2

n1n2−1∑

k=0

(λs
k(An1,n2)− λs

k(Bn1,n2)) = 0

and hence if either limit exists individually,

lim
n1,n2→∞

1
n1n2

n1n2−1∑

k=0

λs
k(An1,n2)= lim

n1,n2→∞
1

n1n2

n1n2−1∑

k=0

λs
k(Bn1,n2).

Proof: The proof is a mere extension of the proof of [7, Th.
2] to the 2-D case.

From now on, we consider Hermitian TBT matrices only,
for which a−i1,−i2 = a∗i1,i2

is equivalent to a real-valued

Fourier transforma(ω1, ω2) =
∑

i1,i2
ai1,i2e

−j
P2

p=1 ωpip .
To construct a sequence of CBC matrices that are 2-D as-

ymptotically equivalent to{An1,n2} and whose eigenvalues
are the samples ofa(ω1, ω2), we define the sequence

cn1,n2
m1,m2

(a)def=
1

n1n2

n1−1∑

k1=0

n2−1∑

k2=0

a(2π
k1

n1
, 2π

k2

n2
)e−j2π

P2
p=1

mpkp
np

(2)
and{Cn1,n2(a)}, the sequence of CBC2 matrices induced by
{ci1,i2(a)}. We note thatCn1,n2(a) may be written more
compactly as

Cn1,n2(a) = UH
n1,n2

∆n1,n2(a)Un1,n2 (3)

whereUn1,n2 is defined as in (1) and∆n1,n2(a) is then1n2×
n1n2 diagonal matrix of elementsa(2π k1

n1
, 2π k2

n2
), arranged

in alphabetical order. We are now ready to state the following
lemma, proved in [8, Lemma 1].

2The CBC matrix structure is easily shown by noticing that the sequence
defined by (2) is periodic.

Lemma 2

Let {ai1,i2} be a Hermitian, absolutely summable sequence
with Fourier transforma(ω1, ω2). Let {ci1,i2(a)} be defined
by (2). Then, the induced sequences of matrices{An1,n2}
and{Cn1,n2(a)} are 2-D asymptotically equivalent.

4. TOEPLITZ BLOCK TOEPLITZ MATRICES
GENERALIZED EIGENVALUE DISTRIBUTION

THEOREM

The aim of this Section is to extend Szegö’s theorem to the
case of the generalized eigenvalues of Hermitian TBT ma-
trices, under the assumption that the elements generating the
matrices are absolutely summable.

We proceed as in [4] and prove three lemmas used for the
proof of Theorem 1. More precisely, we first prove in Lemma
3 that the eigenvalues of Hermitian TBT matrices generated
from an absolutely summable sequence are bounded by the
minimum and maximum values of the 2-D Fourier transform
of the sequence. Then, this lemma is used for the proof of
the 2-D asymptotic equivalence between the inverse of a pos-
itive definite Hermitian TBT matrix and the inverse of its 2-D
asymptotically equivalent CBC matrix, given by Lemma 4.
Indeed, Lemma 3 shows that the spectral norm of the inverse
of a positive definite Hermitian TBT matrix is bounded [4].
Furthermore, Lemma 5 shows that the product of the inverse
of a positive definite Hermitian TBT matrix by a Hermitian
BTB matrix is 2-D asymptotically equivalent to the product
of the inverse of the Hermitian CBC matrix by a Hermitian
CBC, both derived from (2). Finally, using this 2-D asymp-
totic equivalence and Lemma 1, we straightforwardly obtain
Theorem 1.

Lemma 3

Let {ai1,i2} be a Hermitian, absolutely summable sequence
with Fourier transforma(ω1, ω2). Then, for all eigenvalues
λ(An1,n2) of the induced sequences of matrices{An1,n2},
we have

ma = min
ω1,ω2

a(ω1, ω2) ≤ λ(An1,n2) ≤ max
ω1,ω2

a(ω1, ω2) = Ma.

Proof: This lemma is proved in the first step of the proof of
[8, Lemma 1].

Lemma 4

Let Bn1,n2 be a positive definite Hermitian, TBT matrix gen-
erated from the absolutely summable sequence{bi1,i2} with
Fourier transformb(ω1, ω2) and the associated 2-D asymptot-
ically equivalent CBC matrixCn1,n2(b) as defined in Lemma
2. If minω1,ω2 b(ω1, ω2) = mb > 0, then

(Bn1,n2)−1 ∼ (Cn1,n2(b))−1.

Proof: Using Lemma 3, the proof is similar to that of Lemma
3 in [4].



Lemma 5

With the assumptions of Lemma 4, ifAn1,n2 is a Hermitian
TBT matrix generated by an absolutely summable sequence
{ai1,i2}, the associated CBC matricesCn1,n2(a) andCn1,n2(b)
given by (2) satisfy

(Bn1,n2)−1An1,n2 ∼ (Cn1,n2(b))−1Cn1,n2(a).

Proof: The proof is the same as for Lemma 4 in [4].
We now introduce the interval

Iω =[ min
ω1,ω2

b−1(ω1, ω2)a(ω1, ω2);max
ω1,ω2

b−1(ω1, ω2)a(ω1, ω2)]

and give a theorem about the asymptotic distribution of the
generalized eigenvalues of Hermitian TBT matrices.

Theorem 1

Let An1,n2 andBn1,n2 be two Hermitian TBT matrices, such
thatBn1,n2 is positive definite, and generated by absolutely
summable sequences{ai1,i2} and{bi1,i2}, respectively, with
minω1,ω2 b(ω1, ω2) = mb > 0. Then for all continuous func-
tionsF on Iω

limn1,n2→∞
1

n1n2

n1n2−1∑

k=0

F (λk(An1,n2 ,Bn1,n2))

=
1

(2π)2

∫ π

−π

∫ π

−π

F (b−1(ω1, ω2)a(ω1, ω2))dω1dω2.

Proof: Using Lemma 5,(Bn1,n2)−1An1,n2 is 2-D asymptoti-
cally equivalent to(Cn1,n2(b))−1Cn1,n2(a) and thanks to the
similarity of Cn1,n2(b) andCn1,n2(a) to the diagonal matri-
ces∆n1,n2(b) and∆n1,n2(a) with the same unitary matrix
Un1,n2 (3), we have using Lemma 1, for arbitrary integers,

lim
n1,n2→∞

1
n1n2

∑n1n2−1
k=0 [λs

k(An1,n2 ,Bn1,n2)

− λs
k(∆−1

n1,n2
(b)∆n1,n2(a))] = 0

with
lim

n1,n2→∞
1

n1n2

n1n2−1∑

k=0

λs
k(∆−1

n1,n2
(b)∆n1,n2(a))]

= lim
n1,n2→∞

1
n1n2

n1−1∑

k1=0

n2−1∑

k2=0

b−s(2π
k1

n1
,2π

k2

n2
)as(2π

k1

n1
,2π

k2

n2
)

=
1

(2π)2

∫ π

−π

∫ π

−π

b−s(ω1, ω2)as(ω1, ω2)dω1dω2,

where the continuity of the Fourier transformsb(ω1, ω2) and
a(ω1, ω2) guarantees the existence of the integral.

Finally, extending this result to any polynomial and after
invoking the Stone-Weierstrass approximation theorem, The-
orem 1 is proved.

As shown in [6, 7], and combined with the fact that for
all vectorsn1, n2, the eigenvalues of(Bn1,n2)−1An1,n2 lie
in Iω, Theorem 1 leads to the following corollary:

Corollary 1

For any positive integerl, the smallest and the largestl gen-
eralized eigenvalues of(An1,n2 ,Bn1,n2) are convergent in
n1, n2 and

lim
n1,n2→∞

λn1n2−l+1(An1,n2,Bn1,n2)=min
ω1,ω2

b−1(ω1,ω2)a(ω1,ω2)

and
lim

n1,n2→∞
λl(An1,n2 ,Bn1,n2) = max

ω1,ω2
b−1(ω1, ω2)a(ω1, ω2)

where the eigenvalues are ranked in decreasing order.
In particular, the asymptotic optimal SNR after linear fil-

tering is given by

lim
n1,n2→∞

SNR = max
ω1,ω2

b−1(ω1, ω2)a(ω1, ω2).

5. CONCLUSION

In this paper, we have given an extension of Szegö’s theo-
rem to the generalized eigenvalues of Hermitian TBT matri-
ces using a simple proof under the hypothesis of absolutely
summable elements, based on the notion of 2-D asymptotic
equivalence between 2-D block matrix sequences.
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