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ASYMPTOTIC GENERALIZED EIGENVALUE DISTRIBUTION OF TOEPLITZ BLOCK
TOEPLITZ MATRICES

M. Oudin, J.P. Delmas

GET/INT
9 rue Charles Fourier
91011 Evry Cedex, France

ABSTRACT processing of suc&D random processes, for which the main

. L . performan riterion is the Signal to Noise Rati NR), th
In many detection and estimation problem:sassomatedw@1e ormance criterion is the Signal to Noise Ratio (SNR), the

. . X ata are the sum of two zero-mean second order stationary
processing of second order station@Ap discrete random - th fi d th . F
rocesses, the observation data are the sum of two Zero_me%rr%)cesses_. the process of interest and the noise process. ror
P ' : ) . matance, in [2], the data are the sum of a channel input and
second order stationary processes: the process of interest an

: . . . a hoise refered as a “flux noise”. In that case, after linear fil-
the noise process. In particular, the main performance Cme{érin the optimal SNR corresponds to the maximal value of
rion is the Signal to Noise Ratio (SNR). After linear filter- g P P

ing, the optimal SNR corresponds to the maximal value O]a Rayleigh quotient which can be interpreted as the largest

. . ) . neraliz igenval f the covariance matri iat
a Rayleigh quotient which can be interpreted as the Iarge&? c ed eigenvalue of the covariance ces associated

: . . . ; W(ljth the signal and noise processes [4].
generalized eigenvalue of the covariance matrices associate

with the signal and noise processes, which are Toeplitz block In this paper, we study the problem of the influence of

Toeplitz structured. In this paper, an extension of 8&g the size of the samples vector along with the different dimen-
theorem to the generalized eigenvalues of Hermitian Toeplitgions, on the generalized eigenvalues of TBT matrices. More
block Toeplitz matrices is given, under the hypothesis of abspecifically, we assume that the number of samples along with
solutely summable elements, providing information about théoth dimensions tends to infinity and analyze the asymptotic
asymptotic distribution of those generalized eigenvalues angeneralized eigenvalue distribution of such matrices.

in particular of the optimal SNR after linear filtering. The problem of the asymptotic eigenvalue distribution of

Index Terms— Toeplitz block Toeplitz matrix, Széigs ~ Toeplitz matrices has first been analyzed by Grenander and
theorem, generalized eigenvalues. Szeg@, whose famous result asserts that the eigenvalues of a
sequence of Hermitian Toeplitz matrices asymptotically be-
have like the samples of the Fourier transform of its entries
[5]. However, this analysis has been performed by use of

phisticated mathematics under the general hypothesis that

2-D discrete random processes appear in many signal proce Toeol L db bl d bounded
ing applications. A typical example is imagery, where obseriN€ Toeplitz matrix is generated by measurable and bounde

vation data are modelized by such processes. Furthermore, JRECIrUM- Then, Gray has proposed a simpler proof of this re-
certain imagery applications, tBeD discrete random proces- sult for banc_Jed Toep litz matrices [6] (Wh'(.:h. are called f|n|t_e-
ses are second order stationary (e.g., see [1, chap. 5]). Oth%rlde_r Toeplitz matrices) and _then for infinite-order Toeplitz
examples can be found in different application areas, such é‘gatrlces,bundgr the :ssumptlon .Of abslolultely SLtJ)mmabIe el-
for instance in magnetic recording systems, where the ma -me_”ts’ ased on t.e asymptotlc equivalence between two
netic medium can be modelled by a 2-D second order station- atrlces' [7]. Following this approgch and under the same
ary process (e.g., see [2]), where the two dimensions corr@sSsumption, the G_renander and Sregsult h_as b_een 'atef
spond to the linear and radial coordinates. In that case, t tended to the eigenvalues Of.bIOCk Toeplitz with Toeplitz
covariance matrix of the random process is structured. Mor ocK mgtr_lcgs where both the size and the number of bl.OCkS
specifically, when 2-D n; x ny block of samples from a sec- tqnd to infinity [8], then tol the _e|genvalues _and generalized
ond order stationary random process is grouped into a Veg_lgenvalues of block Toeplitz with non-Toeplitz blocks where

tor by stacking its columns, the vector’s covariance matrix®"Y the number of blocks tends to infinity in [3] and [4], re-
has a Toeplitz block Toeplitz (TBT) structure (e.g., see [3])_spect|vely. Let us note that extension of the celebrated Grenan-

In many detection and estimation problems associated Witﬂer _and _Sze@ result has been also conS|dere(_j in the mathe-
matical literature under the general assumption that the in-

Thanks to the French MOD (DGA) for funding. volved Toeplitz, block Toeplitz matrices are generated by in-

1. INTRODUCTION




tegrable spectra (e.g., see [10]) for the asymptotic eigenvaluguences to block matrix sequences. Then, we give some pre-
distribution. However, to the best of our knowledge, the exdiminary lemmas necessary to prove our main result in Section
tension to generalized eigenvalues of TBT matrices has nat
been studied until now. In the present work, we propose an
extension of Szdijs theorem to the generalized eigenvaluesDefmltIon 1 (TBT matrix):
of TBT matrices, under the hypothesis of absolutely sum-
mable elements, which relies on an extension of the notiofsiven an indexXny,ns), a TBT matrixA™'-"2 is defined as:
of asymptotic equivalence between matrix sequences estab-
lished by Gray in [6]. Ay Ay o Ay
This paper is organized as follows. In Section 2, we give : ' :

. ) : . ” nyny def Ay
an interpretation of the generalized eigenvalues of Hermitian ~ A™""™ = _ _ .
matrices from the point of view of SNR after linear filtering. : E g A,
Then, in Section 3, the notation of TBT matrices and Circu- Ap,1 0 Ay Ay
lant Block Circulant (CBC) matrices are introduced and pre- )
liminary results about asymptotic equivalence between blocRNd €ach block.,,,, my = —(ny = 1),...;n1 =2, — 1is

matrix sequences are given. Finally, a generalized eigenval@ ™2 X n2) Toeplitz matrix,

distribution theorem of TBT matrices is proved in Section 4.

Gmq,0 Amq,—1 e aml,—(ng—l)
2. SNR AFTER LINEAR FILTERING OF A,, def Amy,1
BIDIMENSIONAL PROCESSES ! : a .
my,—
aml,(ngfl) e Amq,1 Gm1,0

In this Section, we give an interpretation of the generalized

eigenvalues of two Hermitian matrices. Thus,Jdbe a data  The approach of this paper is to relate the generalized eigen-
vector where the-D data are arranged in alphabetical orderyajyes of TBT matrices to those of simpler structured associ-
of dimensionn, x ny, composed by the sum ef the signal  ated CBC matrices that we now formalize.

of interest anch, the noise process. Both processes are mod-

elled by second-order stationary processes wijtly, x ning - .

Hermitian covariance matriceR, = E{ss’’} andR,, Definition 2 (CBC matrix):

E{nn'’}, respectively. Since the processes are assumed tSiven an indexn,ny), a CBC matrixC™*-" is defined as

be second-order stationary, the covariance matrices are TBJ TBT matrix previously defined, where Toeplitz blocks are
structured. Moreover, due to the presence of background noiggplaced by circulant blocks.

in n, R,, is almost always positive definite. After linear filter- These CBC matrices have an eigenvalue decomposition

ing with n, x no-dimensional filtetw of the datax, the SNR  (EVD) that extends those of circulant matrices (e.g., see [3,

is given by the Rayleigh quotient Th. 5.8.1]). More specifically, @12 x nyn, CBC matrix
wHR, w Cnm1:2 s diagonalizable by the unitary matrix

SNR =
wéR,w Upyn, = Un, @ Uy, 1)
whose stationary points are given by the generalized eigenval-

ues of(R,,R,) (e.g., see [4]), denotedl,(R,, R.,,) which where(U,,, ),—1,2 are the unitary discrete Fourier transform
) : (k=1)(1—1)

are _rgal-valggd and strictly. positive. Moreover., simg IS (DFT) matrices of termgU,, )1, = MIT TR of
positive d_eflnlte and Hermman, these generalized e|genvaglzenp x n,, where the associated eigenvalues are2uie
ues are given by the eigenvaldes R 'R, \x(R;,R,,) = DFET of its first row

A: (R, 1Ry). In particular, the maximum of this SNR is given

by the maximum generalized eigenvalue (&, R,,). To _ \ ni—lna—l _]%(mlk“rm?k,z)

prove our main result (theorem 1), we need some notations Ei,ke = Z Z Cmy,m2€ .

and background. ma=0m2=0

Now, we define 2-D asymptotic equivalence.
3. NOTATIONS AND PRELIMINARY RESULTS

We first recall the definition of the structured TBT and CBC Definition 3 (2-D Asymptotic Equivalence):
matrices and extend the asymptotic equivalence of matrix seet { A2} and {B™"2} be sequences of,n, x nins

INote that these generalized eigenvalues are also given by the eigenvald@atrices. These matrices are said to be 2-D asymptotically
- — I ni,m ni,ne i H _
of the Hermitian matrix®;, />R R,; /2, but theorem 1 is more directly €quivalent and noted"::"2 ~ B"*:"2 if the following con

proved by using the eigenvaluesRBf; 'R.;. ditions hold:




o A" < M < oo
o B2 < M < o0
o limy,, ny—oo |JA™I2 — BM12| =)

where||.|| is the spectral norm and is a normalized Frobe-
nius norm defined by

|An17”2 |2

nng Z Z ‘am17m2|

mi1= 1m2 1

Lemma 2

Let {a;,,:, } be a Hermitian, absolutely summable sequence
with Fourier transformu(ws,w2). Let{c;, ;,(a)} be defined

by (2). Then, the induced sequences of matricAg"2}
and{C"+"2(qa)} are 2-D asymptotically equivalent.

4. TOEPLITZ BLOCK TOEPLITZ MATRICES
GENERALIZED EIGENVALUE DISTRIBUTION
THEOREM

The aim of this Section is to extend S#egtheorem to the

Then, we give the following lemma about the asymptotic eigenase of the generalized eigenvalues of Hermitian TBT ma-

value distribution of 2-D asymptotically equivalent matrices.

Lemma 1l

Let {A™"2} and{B"*"2} be sequences of 2-D asymptot-
ically equivalent matrices of dimensiomny x nino with
eigenvalues\; (A""2) and A, (B™"2) for k = 0...(n1ng —

1), respectively, then for any positive integer

nl’ﬂgfl

PRCHENEDEPHERES)

k=0

=0

1
lim
ni,M2—00 N11N9

and hence if either limit exists individually,

n1n2 1

ZAS Bn1 ng

Proof: The proof is a mere extension of the proof of [7, Th.
2] to the 2-D case. [ |

From now on, we consider Hermitian TBT matrices only,
for whicha_;, —;, = aj ,, is equivalent to a real-valued
Fourier transformu(wy, wa) = 37, ;. @iy i€’ S wrip

To construct a sequence of CBC matrices that are 2-D a:
ymptotically equivalent t A™-"2} and whose eigenvalues
are the samples af{w;,w>), we define the sequence

ning— 1

Z)\S (A™"2) = lim

n1,N2—00 n1n2

lim
n1,N2—00 7] ’I’L2

ny— 1n2 1

ZZ 27r—2

k1=0 k2=0

mpkp

def
np

ning

ny,n2
mi ,?’"2

) LD

)
and{C™"2(a)}, the sequence of CBGnatrices induced by
{¢i,i»(a)}. We note thatC™"2(a) may be written more
compactly as
UH

ni,n2

Cnl,ng( ) Anl,n2 (a)Unl,nz (3)

whereU,,, ., is defined asin (1) anAm nz( ) isthening x
ning diagonal matrix of elemenus(27r 27r ) arranged

in alphabetical order. We are now ready to state the following

lemma, proved in [8, Lemma 1].

2The CBC matrix structure is easily shown by noticing that the sequenc

defined by (2) is periodic.

trices, under the assumption that the elements generating the
matrices are absolutely summable.

We proceed as in [4] and prove three lemmas used for the
proof of Theorem 1. More precisely, we first prove in Lemma
3 that the eigenvalues of Hermitian TBT matrices generated
from an absolutely summable sequence are bounded by the
minimum and maximum values of the 2-D Fourier transform
of the sequence. Then, this lemma is used for the proof of
the 2-D asymptotic equivalence between the inverse of a pos-
itive definite Hermitian TBT matrix and the inverse of its 2-D
asymptotically equivalent CBC matrix, given by Lemma 4.
Indeed, Lemma 3 shows that the spectral norm of the inverse
of a positive definite Hermitian TBT matrix is bounded [4].
Furthermore, Lemma 5 shows that the product of the inverse
of a positive definite Hermitian TBT matrix by a Hermitian
BTB matrix is 2-D asymptotically equivalent to the product
of the inverse of the Hermitian CBC matrix by a Hermitian
CBC, both derived from (2). Finally, using this 2-D asymp-
totic equivalence and Lemma 1, we straightforwardly obtain
Theorem 1.

Lemma 3

é_et {ai, i, } be a Hermitian, absolutely summable sequence
with Fourier transformu(wy,ws). Then, for all eigenvalues

A(A™m2) of the induced sequences of matrices™ "2},

we have

Mo = min a(wr,w) < MA™™) < max awr,w2) = M,.

w1,w2 wi,w2
Proof: This lemma is proved in the first step of the proof of
[8, Lemma 1]. [ |

Lemma 4

Let B™-"2 be a positive definite Hermitian, TBT matrix gen-
erated from the absolutely summable sequeficg;, } with
Fourier transfornb(w, , w2 ) and the associated 2-D asymptot-
ically equivalent CBC matrixC™*"2(b) as defined in Lemma
2. If miny, o, b(wy,ws) = mp > 0, then

(Bm) L~ (O (),

Proof: Using Lemma 3, the proof is similar to that of Lemma
3in[4]. [



Lemma5 Corollary 1

With the assumptions of Lemma 4, X"+"2 js a Hermitian  For any positive integel, the smallest and the largdsgen-
TBT matrix generated by an absolutely summable sequenaalized eigenvalues dfA™:"2 B":"2) are convergent in
{as, i, }, the associated CBC matric€§*:"2 (a) andC™"2(b) nq,ny and

given by (2) satisfy im A,y 141 (A0 B™072) =min b~ wi,ws ) a(w,ws)
Brun2)—lAnnne o (Qnene () Tlonnn2 (). n2Tee w2
(B2) (C () (@) .
Proof: The proof is the same as forLemma4in[4]. = lim , A (AT B2 = max b wi, we)a(wr,ws)
ni,ng— 1,wW2

We now introduce the interval . _ .
where the eigenvalues are ranked in decreasing order.

I, = min b~ (wi, wa)a(wr, wz);iﬂé}dxb_l(whwz)a(wh wo)] In particular, the asymptotic optimal SNR after linear fil-
v v tering is given by

and give a theorem about the asymptotic distribution of the . _ 1

generalized eigenvalues of Hermitian TBT matrices. m,}%fioo SNR = w1 b7 wi, wa)a(wr, w).

Theorem 1 5. CONCLUSION

Let A"z andB™1-"2 be two Hermitian TBT matrices, such _ _ _

that B2 is positive definite, and generated by absolutely!n this paper, we have given an extension of S¥egheo-

summable sequencés;, ;,} and{b;, ;,}, respectively, with ~rem to the generalized eigenvalues of Hermitian TBT matri-

ming, ., b(w1,ws) = my > 0. Then for all continuous func- C€S using a simple proof under the hypothesis of absolutely
tionsF on I, summable elements, based on the notion of 2-D asymptotic

equivalence between 2-D block matrix sequences.

1 nins—1
limy,, oo Z F(\p (A2 Brinz))
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