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Abstract — In this paper, kinetic modeling techniques for complex chemical processes are reviewed.
After a brief historical overview of chemical kinetics, an overview is given of the theoretical
background of kinetic modeling of elementary steps and of multistep reactions. Classic lumping
techniques are introduced and analyzed. Two examples of lumped kinetic models (atmospheric gasoil
hydrotreating and residue hydroprocessing) developed at IFP Energies nouvelles (IFPEN) are
presented. The largest part of this review describes advanced kinetic modeling strategies, in which
the molecular detail is retained, i.e. the reactions are represented between molecules or even
subdivided into elementary steps. To be able to retain this molecular level throughout the kinetic
model and the reactor simulations, several hurdles have to be cleared first: (i) the feedstock needs to
be described in terms of molecules, (ii) large reaction networks need to be automatically generated,
and (iii) a large number of rate equations with their rate parameters need to be derived. For these
three obstacles, molecular reconstruction techniques, deterministic or stochastic network generation
programs, and single-event micro-kinetics and/or linear free energy relationships have been applied
at IFPEN, as illustrated by several examples of kinetic models for industrial refining processes.

Résumé — Une revue de méthodes de modélisation cinétique pour des procédés complexes —
Dans cet article, les techniques de modélisation cinétique des processus chimiques complexes sont
examinées. Apres un bref apercu historique de la cinétique chimique, un apercu des bases théoriques
de la modélisation cinétique d’étapes élémentaires et de réactions globales est présenté. Les
techniques classiques de regroupement (lumping) sont ensuite présentées et analysées. Deux
exemples de modéles cinétiques regroupés (pour 1’hydrotraitement de gazole atmosphérique et pour
I’hydrotraitement de résidus) développés a I[FP Energies nouvelles (IFPEN) sont présentés. La plus
grande partie de cette revue décrit des stratégies avancées de modélisation cinétique, dans lesquelles
le détail moléculaire est retenu : les réactions entre les molécules sont représentées ou méme
subdivisées en étapes élémentaires. Pour étre en mesure de conserver ce niveau moléculaire a la fois
dans le modéle cinétique et dans les simulations de réacteurs, plusieurs obstacles doivent d’abord
étre éliminés : (i) la charge doit étre décrite en termes de molécules, (i) les grands réseaux
réactionnels doivent étre générés automatiquement et (iii) un grand nombre d’équations de vitesse
avec leurs paramétres de vitesse doit &tre dérivé. Pour ces trois obstacles, des techniques de
reconstruction moléculaire, des programmes de génération de réseaux déterministes ou stochastiques,
et des modéles microcinétiques basés sur des événements constitutifs (single events) et/ou des
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relations linéaires d’énergie libre (Linear Free Energy Relationships) ont été utilisés a I[FPEN, comme
illustré par plusieurs exemples de modéles cinétiques pour des procédés de raffinage industriels.

LIST OF ABBREVIATIONS

AEBP Atmospheric Equivalent Boiling Point

AED Atomic Emission Detector

AGO Atmospheric Gas Oil

ARO Aromatics

ASP Asphaltenes

ASTM American Society for Testing Materials

BT BenzoThiophene(s)

CARB Carbazoles

CME Chemical Master Equation

DBT DiBenzoThiophene(s)

DFRN Deterministic Full Reaction Network

DFT Density Functional Theory

DH Dehydrogenation

DI Di-aromatics

DIPPR Design Institute for Physical PRoperties

DLRN Deterministic Limited Reaction Network

FCC Fluid Catalytic Cracking

FID Flame Ionization Detector

FT-ICR-MS Fourier Transform — Ion Cyclotron Resonance
— Mass Spectrometry

GC Gas Chromatography

HDS HydroDeSulfurization

HPLC High-Performance Liquid Chromatography

HS Hydride Shift

IUPAC International Union of Pure and Applied
Chemistry

kMC Kinetic Monte-Carlo

LC Liquid Chromatography

LCO Light Cycle Oil

LFER Linear Free-Energy Relationships

LHSV Liquid Hourly Space Velocity

LSODE Livermore Solver for Ordinary Differential
Equations

MARI Most Abundant Reaction Intermediate

MASI Most Abundant Surface Intermediate

MC Monte-Carlo

MONO Mono-aromatics

MS Mass Spectrometry

MTHS Molecular Type and Homologous Series
approach

NCD Nitrogen Chemiluminescence Detector

NES Nearly Empty Surface

NIST  National Institute of Standards and Technology

NMR  Nuclear Magnetic Resonance

ODE Ordinary Differential Equation

PCP Protonated CycloPropane

PCB Protonated CycloButane

PDE Partial Differential Equation

PDF Probability Distribution Function

PES Potential Energy Surface

Pr Protonation

QFER  Quadratic Free-Energy Relationship

QSAR  Quantitative Structure-Activity Relationships

QSRC  Quantitative Structure-Reactivity Correlations

QSS Quasi-Steady State

RDS Rate Determining Step

REM Reconstruction by Entropy Maximization

RES Resins

RRK Rice-Ramsperger—Kassel

SARA  Saturates/Aromatics/Resins/Asphaltenes

SAT Saturates

SCD Sulfur Chemiluminescence Detector

SEC Size Exclusion Chromatography

SEK Single Event Kinetics

SLRN  Stochastically Limited Reaction Network

SOL Structure Oriented Lumping

SR Stochastic Reconstruction

SSA Stochastic Simulation Algorithm

TRC Thermodynamics Research Center

TRI Tri-aromatics

TS Transition State

TST Transition State Theory

VR Vacuum Residue

LIST OF SYMBOLS

A; Pre-exponential factor for the rate constant of
reaction i

Co Unit concentration

C Stochastic rate constant for reaction i

G Concentration of species j

E Shannon’s information entropy criterion

E, Activation energy

E; Activation energy for reaction i
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Fy Mixing rule for analytical property k

h Planck’s constant (6.626068 x 10~3* m? kg s7h

I Intermediate k&

k Rate constant

k Intrinsic single-event rate coefficient of the
elementary step

k; Rate constant for reaction i

kg Boltzmann’s constant
(1.3806503 x 1072 m? kg s 2K )

K Number of analytical properties or constraints

K, Ionization constant

K. Equilibrium constant (concentration basis)

Koy Overall equilibrium constant

K; Equilibrium constant for reaction / elementary
step i

M; Molecular weight of component j

Magp Reduced molecular weight of components A and
B (collision theory)

N Number of single events

N Number of components

Ny Avogadro constant
(6.0221408577 x 10> mol™")

Naiyr  Number of alkyl substituents in f§ position
of a sulfur atom

Nir Number of aromatic rings

Ngr Number of saturated rings

Nrr Number of thiophene rings

P Pressure

P, Value of analytical property k&

r Reaction rate

7 Reaction rate of reaction i

R Universal gas constant (8.3144 J mol ' K1)

R; Rate of production of component j

s Number of elementary steps in a reaction
mechanism
Temperature

X; Mole fraction of component j

* Active site

GREEK SYMBOLS

% % } Proportionality constants (in LFER, QFER,

B B QSAR, QSRC equations)

AGp Gibbs free energy of reaction

AG” Activation Gibbs free energy (Transition State

Theory)
AHp Heat of reaction
AH” Activation enthalpy (Transition State Theory)

Page 3 of 49

An Difference in molecularity between the reverse
and the forward reaction

An” 1 — molecularity of the reaction that forms the
activated complex (TST)

ASx Entropy of reaction

AS” Activation entropy (Transition State Theory)

A Reorganization energy (Quadratic Free-Energy
Relationship)

v Stoichiometric coefficient for component j

Vi Stoichiometric coefficient for component j in
reaction i

on Hammett’s sensitivity constant

g; Stoichiometric number for reaction/elementary
step i

O4B Reaction cross-section (collision theory)

oy Hammett’s substitution constant

a Symmetry number for the reactant

o Symmetry number for the activated complex

0, Reactivity index of molecule i

0; Reactivity index j of molecule i

SUBSCRIPTS

c Concentration basis

eq At equilibrium conditions

glob For global symmetry and chirality

i For reaction i

int Intrinsic

J For component j

overall  For the overall reaction

ref Reference

+ For the forward reaction

- For the reverse reaction

SUPERSCRIPTS

r Reactant

#* Transition state or activated complex

INTRODUCTION

When dealing with chemical reactions, thermodynamics
allows us to know whether a reaction is possible, and to
calculate its chemical equilibrium constant. Hence, for a
given chemical reaction under given experimental
conditions and with a known initial composition of the
mixture, thermodynamics is able to predict its equilibrium
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composition, the final steady state. However, thermodynam-

ics does not say anything concerning the rate at which a

reaction proceeds towards equilibrium, nor the pathway that

is followed, i.e. the dynamics that lead to that final steady
state.

The study of the dynamics of reactions is the field of
chemical kinetics, namely the study of the factors that deter-
mine the reaction rates and that are responsible for the estab-
lishment of chemical equilibria in reversible reactions. The
goal of chemical kinetics is therefore twofold:

— determining the overall pathway, the reaction network,
the reaction mechanisms and the various intermediates,
and

— deriving quantitative rate equations (with their rate
parameters) which predict the rate of reaction as a func-
tion of the local conditions (temperature, pressure, phase
state, composition, ionic strength, pH, solvent, catalysts,
etc.).

The formulation of the reaction mechanism used for the
kinetic modeling is always subject to discussion and should
be based on all available physical measurements, including
surface science data, chemical knowledge, and kinetic
experiments (preferably far from equilibrium). Hence, chem-
ical kinetics needs to combine knowledge acquired through
various other disciplines, such as analytical chemistry (com-
position), organic chemistry (reaction types), physical chem-
istry (structure of matter), classical thermodynamics
(equilibrium), statistical thermodynamics and quantum
mechanics (rate theories), spectroscopy and computational
chemistry (reaction intermediates), and mathematics (param-
eter estimation and process simulation), among others.
By predicting the rates of the various reaction pathways,
chemical kinetics allows the prediction of production rates
and selectivities, and is therefore a necessary tool in the
modeling and design of chemical reactors. Hence, chemical
kinetics is one of the pillars of the chemical engineering
discipline.

Chemical kinetics is a discipline that quantitatively
describes the progress of reactions on a large range of differ-
ent scales: from interactions between atoms and electrons in
chemical bonds, to production rates in chemical reactors.
Kinetics on the level of individual molecules describes the
modifications that the reactants undergo to form the
products. This is often referred to as reaction dynamics or
molecular dynamics, and is nowadays an integral part in
the domain of chemical kinetics. In these studies (molecular
beam experiments, laser spectroscopy, ab initio theoretical
chemistry, transition state theory, etc.), the molecular struc-
tures that exist along the reaction pathway on the Potential
Energy Surface (PES) are analyzed, directly linking reactiv-
ity to quantum mechanics. Kinetics on large ensembles of
molecules describes the average behavior of the reactants,
linking reactivity and the extent of reaction to the operating
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conditions (temperature, composition, etc.) and thermody-
namics.

Chemical kinetics is a relatively young science. Although
descriptive kinetics already started just before 1800, with
publications from Karl Friedrich Wenzel in 1777 and from
Claude Louis Berthollet in 1803, the first known study of
quantitative chemical kinetics dates back to 1850, when
German physicist Ludwig Ferdinand Wilhelmy published a
study on the acid hydrolysis of sucrose into glucose and
fructose in a batch reactor, establishing for the first time an
empirical relation between the reaction rate and the concen-
tration of the reactants. In his rate equation, the reaction rate
was proportional to the concentrations of sugar and acid,
while his proportionality constant was an exponential func-
tion of the inverse of the absolute temperature. Moreover, he
proposed a differential equation to describe the decrease in
sugar concentration over time, thereby writing down a
differential equation that was probably the first differential
equation in chemistry and one that is still used today for
elementary bimolecular reactions in closed systems.

In their 1862 publication on the esterification between
acetic acid and ethanol, French chemists Pierre Eugéne
Marcellin Berthelot and Léon Péan de Saint-Gilles showed
that some reactions cannot proceed to total conversion and
they had to introduce into their empirical rate equation a
limiting factor, which was later shown to be the equilibrium
constant. By reexamining these results and interpreting their
own experimental data through the laws of classical
mechanics, two Norwegian scientists, mathematician Cato
Maximilian Guldberg and chemist Peter Waage, made a sig-
nificant breakthrough by formulating the mass action law,
one of the basic laws in chemical kinetics. In their 1864 pub-
lication, they introduced the equilibrium mass action law,
and formulated the form of the rate equations. They arrived
at this form through the laws of classical mechanics: they
postulated that molecular collisions have to precede the
actual reaction, and proposed that reaction equilibrium is a
balance of two opposing ‘affinity forces’, one due to the
reactants and one owing to the products. For the esterifica-
tion reaction, they stated that, at equilibrium, the two oppos-
ing ‘affinity forces’ (i.e. the reaction rates) had to be equal,
and that each ‘affinity force’, in analogy to the law of gravity,
could be expressed as the product of the ‘affinity coeffi-
cients’ (i.e. rate constants) and the ‘action masses’ (i.e. con-
centrations) of the two reacting species. In their later work,
they generalized these mass action laws to any number of
reactants, both for irreversible and reversible reactions of
any molecularity, by explicitly using the stoichiometric coef-
ficients of the reaction in the rate equation, leading to the
publication of the mass action law in its final form in 1879.

In the same period, at the University of Oxford, chemist
Augustus George Vernon Harcourt sought the help of
mathematician William Esson. In their papers from 1865
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and 1866, they demonstrated that the reactant concentrations
decrease logarithmically with time. Therefore, the rate of
reaction does not remain constant, but depends on the con-
centration of the reactant. They were also the first to treat
the kinetics of consecutive reactions. In their 1867 paper,
the time dependent evolution was interpreted in terms of
differential equations. In their meticulous and systematic
study of the concentration dependence of reaction rates,
the reaction rate was assumed to be proportional to the
original amounts of the reactants and a constant depending
on the considered system, which they baptized rate constant
k. In their studies on the temperature effect, they also postu-
lated that this rate constant has to become zero at absolute
zero, since the reactants no longer move and cannot interact
or collide. This, together with their comparison of a chemical
reaction to the fall of bodies, where potential energy is trans-
formed into kinetic energy, illustrates that Harcourt and
Esson started the introduction of thermodynamics into
chemical kinetics.

The next major event arrived in 1884, when Dutch scien-
tist Jacobus Hendricus van ‘t Hoff published the first
monograph on chemical kinetics under the title ‘Etudes de
dynamique chimique’. In his book, the author compiled,
generalized and further developed the work on chemical
kinetics. He described a graphical method for determining
the order of a reaction in kinetic studies, studied the influ-
ence of the solvent for reactions in solution, introduced the
modern concept of chemical affinity to replace the classical
mechanical representation, classified reactions in terms of
the number of interacting species (which is now referred to
as their molecularity), derived kinetic rate equations for
mono- and bi-molecular reactions, and considered
polymolecular processes as a sequence of mono- and/or bi-
molecular steps. He derived the van ‘t Hoff relation for the
dependence of the equilibrium constant on the absolute
temperature, and was also the first to correctly formulate
the effect of temperature on the rate constants, although he
did not succeed in finding a theoretical interpretation for
the various terms. His essential contribution lies in the link
he made between the equilibrium constant of a reaction,
and the rate constants for the direct and the reverse reaction,
thereby formally connecting thermodynamics and kinetics.

In Baltic Germany, Friedrich Wilhelm Ostwald worked
on catalysis, electrochemistry, chemical equilibria (Ost-
wald’s dilution law) and reaction rates. In 1887, Ostwald
derived the kinetics of autocatalytic reactions, introduced
the terms ‘half-life’ and ‘reaction order’, and worked on
ways to determine the reaction order. During the same
period, he also coined the word ‘mole’, linked it to ideal
gases, and defined it as the molecular weight of a substance
in mass grams. Ostwald also wrote the famous two-volume
textbook ‘Lehrbuch der Allgemeinen Chemie’, in which he
included his developments on catalysis and chemical
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kinetics. His most important contributions consisted of
formulating that each reaction exists and proceeds indepen-
dently, interacting only on the level of a material balance
(principle of independence of chemical reactions), that
catalysis was nothing but a kinetic phenomenon, where a
foreign compound accelerated the kinetics by lowering the
energy barrier, and hence, that a catalyst cannot change the
equilibrium of a reaction.

Based on the observation that reactions accelerate when
heat energy is added, and on the formulae derived by
van ‘t Hoff, Swedish scientist Svante August Arrhenius
postulated in 1889 that, in order for a reaction to proceed,
an energy barrier has to be overcome before two molecules
will react. As did van ‘t Hoff previously, he claimed that the
temperature was not the reason for reaction, but that it is
responsible for the changes in its rate. In the same work,
Arrhenius also had an important additional insight: he postu-
lated that this temperature dependence indicates the exis-
tence of an ‘activated molecule’, whose concentration is
proportional to the total concentration of reactant molecules,
but is exponentially temperature dependent. To satisfy the
latter conditions, he proposed an equilibrium between
normal and activated reactant molecules. By introducing
the concept of an ‘activated state’, Arrhenius can therefore
be considered the father of all reaction rate theories. He then
expressed the temperature dependence of the reaction rate
through the rate constants in his famous Arrhenius equation
(while crediting van ‘t Hoff for the origin of his equation),
simultaneously coining the term ‘activation energy’ and
introducing its symbol, E. Both the pre-exponential factor
(or frequency factor) and the activation energy are consid-
ered to be independent of temperature. Arrhenius also
provided a molecular level interpretation of the exponential
factor as the fraction of collisions with sufficient energy, but
his equation remains an empirical equation, however, as the
pre-exponential factor is not explained at all.

In 1905, German physicist Walther Hermann Nernst
established what is now called the Third law of thermody-
namics (which describes the behavior of matter as the
temperature approaches absolute zero, and postulates that
the entropy of a perfect crystal at absolute zero is exactly
equal to zero). He described the calculation of chemical
affinities, provided for the first time a means of determining
free energies and hence equilibrium states of chemical
reactions from heat measurements, and allowed the unam-
biguous calculation of entropies.

In Germany, at the end of the 19™ century, Max Ernst
August Bodenstein studied the bromination of hydrogen to
produce hydrogen bromide in conditions where the reaction
was not limited by equilibrium. Yet, he found that the rate of
the reaction was limited by its product. Without knowing,
Bodenstein had discovered a free-radical chain reaction
with two propagation steps. Bodenstein also showed that
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Arrhenius’ law is only applicable to elementary reactions
and that overall reactions often show deviations. Later on,
in 1913, Bodenstein studied the chlorination of hydrogen
and observed that absorption of a single photon could yield
up to 10° molecules of HCI, clearly indicating that this
reaction could not be a single step reaction. This behavior
in various halogenation reactions was explained in 1918
by Walther Hermann Nernst, who conceived the theory for
chain reaction mechanisms that was further developed by
Bodenstein. In his 1913 paper, Bodenstein also postulated
that chemical reactions follow a reaction mechanism consist-
ing of several steps, in which reaction intermediates are
present in inferior amounts, that the rate of change of their
concentrations can be considered negligible and that the
reaction intermediates are therefore in a quasi-steady state,
an approach which had been proposed six months earlier
in 1913 by David Leonard Chapman. Throughout his work
and publications, Bodenstein developed, implemented and
disseminated this quasi-steady state approach, of which he
was one of the biggest advocates.

In the same period, chemical kinetics was also extended
to systems other than homogeneous gas phase reactions.
In 1913, German biochemist Leonor Michaelis and
Canadian physician Maud Leonora Menten investigated
the kinetics of an enzymatic reaction, in which an invertase
catalyzed the hydrolysis of sucrose into glucose and fruc-
tose. They proposed a two-step reaction mechanism, in
which the first step was at quasi-equilibrium, and developed
the corresponding rate equation. Reactions on surfaces were
studied in a large number of papers, as many elements were
found to promote a large range of reactions. The understand-
ing of the elementary mechanisms occurring in heteroge-
neous catalysis took a great step forward in 1915 when
Irvin Langmuir, who worked at the General Electric
research laboratory in Schenectady, New York, developed
a simple but quantitative theory of adsorption of gases on
metallic surfaces that predicted the surface coverage as a
function of the gas phase conditions. In 1925, British che-
mist Hugh Stott Taylor, who worked at Princeton University,
distinguished physisorption and chemisorption, and
suggested that a catalytic reaction is not catalyzed over the
entire solid surface of the catalyst but only at certain loca-
tions, which he called active sites. As these chemically
active sites can be sparse on the catalyst surface, the reaction
can be inhibited by relatively few molecules. Subsequently,
in 1926, English chemist Cyril Norman Hinshelwood
proposed a general mechanism for reactions on surfaces,
and used the Langmuir adsorption isotherm to derive the
well-known Langmuir-Hinshelwood rate equations for cat-
alytic surface reactions, in which two molecules, both
adsorbed on the catalyst surface on adjacent sites, give rise
to a bimolecular surface reaction.
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Based on the kinetic theory of gases, German chemist
Max Trautz and British scientist William Lewis, in 1916
and 1918 respectively, independently derived and published
the collision theory, unaware of each other’s work due to
World War 1. The collision theory starts from the premise
that a reaction can only happen when two molecules collide.
In this representation, molecules are symbolized by two
colliding spheres that undergo reaction if their kinetic energy
exceeds the activation energy F, or else simply fly apart after
an elastic collision if they do not have enough kinetic energy.
Using the Boltzmann distribution for the velocities of the
molecules, the reaction rate contains the concentrations of
the reactants, the rate of collisions, and an exponential factor
containing the activation energy. In this way, the collision
theory provides a framework for calculating the pre-
exponential factor of a reaction. This theory gives relatively
accurate values for pre-exponential factors of reactions
between monatomic species (as expected from its basic
assumptions), but often fails by several orders of magnitude
for reactions between molecules with more complicated
structures.

In 1922, Frederick Alexander Lindemann proposed a
multi-step collision model to explain the variation of the
apparent reaction order of monomolecular decomposition
reactions. He assumed that these monomolecular decompo-
sition reactions consist of three elementary steps, in which
molecules were activated by bimolecular collision processes
and then either followed by monomolecular dissociation
steps or ‘deactivated’ by a bimolecular collision. Soon after
that, in 1926, Cyril Norman Hinshelwood developed a more
quantitative approach for the Lindemann mechanism by
modeling the internal degrees of freedom of the reactant as
several equivalent simple harmonic oscillators, and by using
statistical methods to determine the probability of the
molecule being activated. Further extensions were devel-
oped, in 1927 by Oscar Knefler Rice and Herman Carl
Ramsperger, and independently by Louis Stevenson Kassel
in 1928, by assuming that a molecule is a system of loosely
coupled oscillators, leading to the Rice-Ramsperger-Kassel
(RRK) theory for unimolecular gas reactions.

Around 1930, Michael Polanyi, director of the Haber
Laboratory at the Kaiser Wilhelm Institute of Berlin, worked
together with a young Mexican-American visiting scientist
named Henry Eyring on the application of the wave equation
for hydrogen to the quantum mechanical description of the
atom exchange reaction between ortho- and para-hydrogen
molecules. Their starting point was Fritz London’s approxi-
mate solution of the wave function for the atomic transition
complex Hj. Polanyi and Eyring separated the nuclear and
electronic motions, now referred to as the Born-Oppenhei-
mer approximation, and calculated the energy of the system
by considering that the reacting system’s electronic structure
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would rearrange to an equilibrium state in every nuclear con-
figuration. They refined their calculations by using spectro-
scopic results to refine their estimates of electronic
energies, creating an innovative ‘semi-empirical’ method.
In their fundamental paper from 1931, they described
bimolecular gas reactions between three atoms and were able
to exactly calculate, by means of quantum mechanics, the
energy of the molecular and atom states, and hence the
activation energies, relying both on quantum theory and on
experimental data. In this way, they constructed the first
Potential Energy Surface by plotting the energy as a function
of the distances between the three atoms.

After Henry Eyring returned to the United States to
become an instructor at Princeton University in 1931 and
Michael Polanyi moved from Berlin to the University of
Manchester in 1933, both continued their previously joint
work on the energetic description of all configuration states
of a chemical system and the practical exploration of PES.
In 1935, with only one month difference, both Henry Eyring
in Princeton, and Michael Polanyi with Meredith Gwynne
Evans in Manchester, independently published a paper on
a theory that allowed the description of elementary steps
and the calculation their pre-exponential factors, known as
the Absolute-Rate Theory, Activated-Complex Theory (the
term coined by Eyring), or Transition State Theory (the term
coined by Polanyi). This theory combines quantum mechan-
ics (to evaluate the PES) and statistical mechanics (to calcu-
late the reaction rate). By evaluating the ratio of the partition
functions of the transition state in the PES diagram and the
fundamental state of the reactants, they obtained an
Arrhenius-type equation that allows the calculation of the
values of both the pre-exponential and the exponential
factors; the Eyring equation. With this, the last fundamental
element of the theoretical framework was added to the
classical ‘Chemical Kinetics’ approach.

Since the development of PES and the transition state the-
ory in the early 1930s, many theoretical concepts have been
introduced, further developed, refined and extended. Hence,
only a short overview will be given. In 1931, Lars Onsager
worked on non-equilibrium kinetics and postulated the
Onsager regression hypothesis, stating that microscopic
fluctuations and macroscopic relaxation are linked, some
twenty years before it was finally proven to be true by the
so-called fluctuation-dissipation theorems. In 1931, Jens
Anton Christiansen studied reactions in open sequences,
proposed the catalytic cycle, and derived general formulae
for reactions on single catalytic sites. Around 1936, he also
developed a reaction rate theory by modeling a chemical
reaction as an intra-molecular diffusion process. This diffu-
sion description was fully systematized in 1940 by Dutch
physicist Hendrik Anthony Kramers and is complementary
to quantum mechanical transition state theory, which was
shown to be a particular case of Kramers’ pure classical
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method. In 1934, Soviet physicist Nikolay Nikolayevich
Semenov was the first to describe the so-called branched
chain reaction. He determined the various steps in the mech-
anisms of chain processes and developed a general and
quantitative chain chemical reaction theory that considered
both branched and unbranched chain processes. Semenov
applied his theory to various types of chain reactions and,
more especially, to combustion reactions to study flame
spreading, detonation, and the burning of explosives.
Several of these aspects were also independently derived
by Cyril Norman Hinshelwood, but Semenov extended this
work by proposing a theory of degenerate branching, which
led to a better understanding of the phenomena associated
with the induction periods of oxidation processes. In 1939,
Japanese scientist Juro Horiuti, who worked on electrode
kinetics and heterogeneous catalysis, introduced the concept
of stoichiometric numbers for a reaction mechanism, leading
to the derivation of generalized rate expressions. Together
with Michael Polanyi, he also proposed the Horiuti-Polanyi
mechanism for heterogeneously-catalyzed hydrogenation
reactions in 1934. In 1943, Olaf A. Hougen and Kenneth
M. Watson extended the Langmuir-Hinshelwood approach
by explicitly considering the reverse reaction. They also
used the same approach for reaction mechanisms in which
the adsorption or the desorption step was rate limiting. After
World War II, Rudolf Arthur Marcus extended the RRK
theory for unimolecular gas reactions in 1952 by accounting
for the individual vibrational modes of the system, in line
with transition-state theory, thereby enabling the calculation
of simple estimates for unimolecular reaction rates from a
limited number of characteristics of the PES. In 1954, Dutch
scientists Pieter Mars and Dirk Willem van Krevelen
described their well-known multistep reaction mechanism
for heterogeneously-catalyzed oxidation reactions, in which
lattice oxygen is used to oxidize the reactant while gas-phase
oxygen replenishes the lattice vacancies. In 1959, Soviet
chemist Boris Pavlovich Belousov published the existence
of non-linear oscillating reactions, now known as the
Belousov-Zhabotinsky reaction, and initiated the field of
modern nonlinear chemical dynamics, illustrating that chem-
ical reactions do not have to be dominated by equilibrium
thermodynamic behavior. In 1966, Michel Boudart proposed
the concept of turnover frequency. He also coined the terms
Most Abundant Surface Intermediate (MASI) and structure-
sensitive reaction. A last trend worth mentioning, but which
falls outside the direct scope of chemical kinetics, concerns
direct observations and analytical measurements: from the
1950s onwards, kinetic studies were also strongly influenced
by the development of various new analytical techniques,
and in the case of heterogeneous catalysis, by novel surface
study techniques, which culminated in the work of Gerhard
Ertl, who provided detailed observations showing how
chemical reactions take place on surfaces.
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1 THEORETICAL BACKGROUND

1.1 Elementary Reactions

An elementary reaction, also called an elementary step or
elementary process, is a direct transformation of one or more
reactants into one or more products, in which all bonds
between the reacting species are broken and formed simulta-
neously. Figure 1 schematically illustrates the potential
energy diagram for the gas phase synthesis of hydrogen
iodide. When the collision between a hydrogen molecule
and a iodine molecule provides enough energy to create
the transition state, this elementary reaction can proceed to
form hydrogen iodide.

Most elementary reactions are mono- or bi-molecular,
even though tri-molecular elementary reactions have been
reported on rare occasions. Higher order reactions cannot
be considered as elementary reactions. Indeed, the probabil-
ity that three or more reactant molecules are at the same time
in the same location with the right configuration, conforma-
tion and orientation, and with sufficient energy for reaction is
extremely low or non-existent.

Elementary reactions have the following properties:

— the reaction proceeds in a single step;

— the reaction passes over a single transition state;

— no reaction intermediates appear during the transforma-
tions of reactants into products;

— the reaction can proceed in both directions over the same
transition state (principle of microscopic reversibility);

— the reaction rate for the forward and the backward
elementary step is given by Guldberg and Waage’s mass
action law:

S G |

Jje{R} Jje{P}

— the overall order of reaction is given by its molecularity;

— the reaction order with respect to each reactant is equal to
the stoichiometric coefficient of the reactant;

— the rate coefficient is independent of composition and
follows the Arrhenius law:

ki = Ai . 67% (2)

— the ratio of the forward to the backward rate constants
equals the thermodynamic equilibrium constant:
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Figure 1

Tllustration of an elementary reaction.

The latter equation is called the 1** relation between ther-
modynamics and chemical kinetics. By substituting the
Arrhenius law and the van ‘t Hoff relation into this equation,
and developing the equations for the different thermody-
namic reference states, one also derives the 2" relation
between thermodynamics and chemical kinetics, which
relates the heat of reaction (4Hp) to the difference between
the forward and the backward activation energies (E, — E.).
Further substitution yields the 3™ relation between thermo-
dynamics and chemical kinetics, which relates the reaction
entropy (4Sg) to the ratio of the forward and the backward
pre-exponential factors (A4./4.).

Given the above-listed properties, the kinetic treatment of
elementary reactions is relatively simple, since no reaction
intermediates appear between reactants and products.

1.2 Multistep Reactions

When not all bonds are broken and formed at the same time,
intermediates appear in the reaction pathway going from the
reactants to the products. In such a case, the reaction is called
an overall or multistep reaction, but many other terminolo-
gies are used: global reaction, apparent reaction, operational
reaction, complex reaction, composite reaction, multiple step
reaction, stepwise reaction, etc. An example of a multistep
reaction is illustrated in the schematic energy diagram in
Figure 2. As can be seen, in this overall reaction, the
reactants A and B are transformed into products R and S
in four steps, passing over four transition states and leading
to three distinct intermediates. Put differently, this overall
reaction can be decomposed into a sequence of four individ-
ual sub-steps or elementary steps. The information on the
precise course of reaction in progress, i.e. the set of elemen-
tary steps, is called the reaction mechanism.
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Figure 2

Illustration of a complex reaction.

Most chemical reactions are global (i.e. non-elementary)
reactions. In many cases, the intermediates are short-lived
highly reactive species. Hence, these reactive species are
often present in trace concentrations in an analyzed phase,
or are species in a non-analyzed phase (e.g., an adsorbed
phase) such as the catalyst surface.

From the thermodynamic side, a number of thermody-
namic relations can be written that link the individual
elementary steps to the overall reaction. To this end, we will
first define the stoichiometric coefficients and the stoichio-
metric numbers. The stoichiometric coefficients v; apply to
a component in a reaction, and arise from the atomic balance
for the reaction. The stoichiometric numbers a; apply to an
elementary step in an overall reaction, and indicate how
many times this elementary step is required in the reaction
mechanism to arrive at the overall reaction. For an overall
reaction with N species whose reaction mechanism consists
of s elementary steps, the equilibrium constant of the overall
reaction is given by the product of the equilibrium constant
of each elementary step to the power of its stoichiometric
number:

N s

Keq,ovemll = H (Cj,eq)vj = H (Ki)cyi (4)

J i

If one only looks at the enthalpy term is this equation, one
can derive that the overall heat of reaction corresponds to the
heat of reaction of each elementary step, multiplied by its
stoichiometric number:

AHR,overall = Z ag;- AHR,[ (5)
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Figure 3

Illustration of the relations between the thermodynamic param-
eters of the individual elementary steps and the thermodynamic
parameters of a complex reaction.

An example of these thermodynamic relations is given in
Figure 3 for the catalytic synthesis of ammonia from
hydrogen and nitrogen.

On the side of chemical kinetics, the objective is to be
able to calculate the rate of the overall reaction. In chemical
engineering approaches, empirical expressions such as
power laws are often fitted to a set of experimental data
without accounting for the reaction mechanism and the var-
ious reaction intermediates. By proceeding in such a manner,
the physical and chemical background is completely
ignored, and such power law models often have a very
limited applicability. The rigorous approach consists of
applying the mass action law to each individual step, leading
to a set of s rate equations. For each species, a net production
rate can now be written as a function of the reaction rates:

Depending on the detail that is required and the informa-
tion that is available, three main solution methods exist to
calculate the rate of the overall reaction:

— the complete solution,
— the quasi-steady state approximation,
— the rate-determining step approximation.

The complete solution is obtained by solving the kinetics
for the most general case. In this approach, the evolution of
the N species is obtained by solving the set of N production
rates (containing the s mass action law rate equations of the
elementary steps) without any approximations or additional
hypotheses. For extremely simple cases, an analytical
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solution can be found, but most reaction mechanisms require
the solution of these equations numerically. The advantage is
that this approach is able to describe the transient kinetic
behavior of the reaction, including the dynamics of all
reaction intermediates. Numerical solutions are in most
cases obtained by using the ‘mean-field approach’. The
mean-field approximation assumes:

— that all species are randomly distributed,

— that the interaction of all other individuals on any given
individual may be replaced by a single averaged or effec-
tive interaction, i.e. the mean field that is due to the neigh-
boring particles.

The mean-field theory is based on the assumption that the
fluctuations around the average value of the variables
(pressure, temperature, concentrations, etc.) are sufficiently
small to be averaged out over large ensembles and hence
neglected. While the underlying approximation may easily
be fulfilled in gaseous or liquid systems, this is not necessar-
ily true for reactions on solid surfaces, where the interactions
between adsorbed species may cause the formation of
ordered phases. Additionally, energetic heterogeneities on
the surface, surface diffusion and attractive or repulsive
interactions between adsorbed species will lead to stronger
deviations from the mean-field assumptions. When the
mean-field approximation breaks down, the numerical
solution has to be calculated by means of Monte-Carlo
(MC) simulations, which offer in principle an exact descrip-
tion of the interplay between the elementary steps. A major
drawback in all of the above solution techniques (analytical
solution, mean-field approximation, or MC simulations),
however, is that all kinetic parameters of all elementary steps
need to be known in order to be able to calculate the
complete solution.

The second approach to finding the reaction rates is the
Quasi-Steady State (QSS) approximation. In order to
simplify the set of equations and reduce the number of rate
parameters in the system, this approach assumes that there
is no net rate of production for the M intermediates in the
reaction mechanism. Indeed, highly reactive intermediates
will react as soon as they are formed. Hence, after an initial
induction period, these intermediates reach a QSS concentra-
tion, generally in inferior concentrations. Although an actual
steady-state can only be truly reached in open reactors, the
QSS approximation is also applied for closed systems (batch
reactors) as relaxation times (the time taken to reach the
steady-state) are generally shorter than the reciprocal turn-
over frequency. For each intermediate, its net production rate
is therefore set to zero, resulting in a subset of M algebraic
equations in M unknown concentrations. Solving this subset
of equations makes it possible to obtain the concentrations of
the M intermediates as a function of the concentrations of the
remaining measured species and the rate parameters.
In many cases, analytical expressions can be obtained for
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the concentrations of the M intermediates, leading to a closed
analytical expression for the rate equation of the overall
reaction. The main advantages of the QSS approximation
are that fewer kinetic parameters are required to obtain the
reaction rate, and that an analytical expression is often
obtained. In contrast to the complete solution, time-
dependent phenomena within the full reaction mechanism
cannot be accounted for, such as branching chain reactions
that lead to explosions.

The third approach is the Rate Determining Step (RDS)
approximation, also called the quasi-equilibrium approxima-
tion. In this approach, one assumes that one of the elemen-
tary steps determines the overall reaction rate, while all
other elementary steps are sufficiently fast to be considered
as being in quasi-equilibrium. Hence, for a reaction mecha-
nism with s elementary steps, the assumption of quasi-
equilibrium for all but one elementary step leads to a subset
of s — 1 algebraic equations. This allows the expression of
the concentrations of the various intermediates as a function
of the concentrations of the measured species and the equi-
librium constants of the elementary steps. Equaling the over-
all reaction rate to that of the rate-determining step and
eliminating the concentrations of the intermediates systemat-
ically leads to an analytical expression for the rate equation
that depends on the concentrations of the measured species,
the rate constant of the rate-determining step, and the
equilibrium constants of the steps in quasi-equilibrium.
In addition to the latter advantage, the rate-determining step
approach leads to even fewer kinetic parameters which need
to be determined. As the assumptions are stronger, the result-
ing rate equation is a more limited description of the reaction
mechanism. In addition to the fact that the time-dependent
dynamics of the full mechanism cannot be described, as
for the QSS approximation, the rate equation from this
approach is no longer able to account for a shift in the
rate-determining step as a function of the reaction
conditions.

Besides these three main solution methods, other variants
in solution techniques or hypotheses can also be used. One
can use two (or more) rate-determining steps to allow the
rate equation to shift between rate-determining steps as a
function of reaction conditions, an approach which is inter-
mediate between the QSS and the RDS hypotheses. If one
wants to further reduce the complexity of the rate equation
and hence the number of rate parameters, one can use the
irreversible step approximation by imposing that one or
more steps in the reaction mechanism are irreversible, result-
ing in an even less general rate expression. For catalytic
reactions, one can choose to neglect a number of adsorbed
reaction intermediates by using either the Most Abundant
Reaction Intermediate (MARI) approximation, sometimes
called the MASI approximation, which considers that the
catalytic surface only consists of empty sites and MARI
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sites, or the Nearly Empty Surface (NES) approximation, by
considering that all intermediates are very weakly bound and
that the catalytic surface is almost empty. In all these cases, a
choice must be made between the generality of the rate
equation and the number of rate parameters that need to be
provided.

1.3 Reaction Rate Constants

As already recognized by Arrhenius, rate processes are
characterized by rare events, or, formulated differently,
state-changing events (reactions) take place on a long time
scale when compared to the dynamic time scales involved
in the (vibrational, rotational, torsional, translational) motion
of molecules. Reaction rate theories aim to understand how
an elementary step actually happens and to predict the rate
parameters of a reaction, i.e. the pre-exponential factor and
the activation energy, from these microscopic descriptions.
Although several rate theories have been developed to
calculate these kinetic parameters theoretically, two main
approaches have been developed and improved over the
years: the collision theory and the transition state theory.

In the collision theory, an elementary reaction happens
when suitable reactants collide with sufficient energy and
with the correct orientation and conformation. Based on
the kinetic theory of gases and the Maxwell-Boltzmann
distribution for the velocities of the molecules, the following
reaction rate is obtained for a bimolecular reaction:
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From this expression, the pre-exponential factor can be
isolated and directly calculated on theoretical grounds:
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The collision theory gives relatively accurate values for
pre-exponential factors of reactions between monatomic
species (as expected from its basic assumptions), but often
fails by several orders of magnitude for reactions between
molecules with more complicated structures. The reason
for this is that the reacting molecules have been considered
to be spherical and hence able to react in all directions.
For actual molecules, this is no longer true, as the orientation
of the collisions and the conformation of the molecules is not
always suitable for reaction.

The most influential rate theory is the transition-state
theory. It is based on the evaluation of the barriers on the
PES between the transition state, or activated complex,
and the reactants. This theory combines quantum mechanics
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(to evaluate the PES) and statistical mechanics (to calculate
the reaction rate). By evaluating the ratio of the partition
functions of the transition state in the PES diagram, and
the fundamental state of the reactants, the Eyring equation
is obtained for the rate constant:

kg-T ass _anf
h
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The transition-state theory tries to predict the rate constant
from the initial reactive flux of molecules going over the acti-
vation barrier, and will therefore always overestimate the rate
constant. Although Eyring recognized the overestimation
and introduced a ‘transmission coefficient’, it has not been
possible to calculate the transmission coefficient within the
transition-state theory itself. Hence, the transition-state the-
ory provides a clear upper bound for the rate constant. Even
with this limitation, additional difficulties appear, first of all
in obtaining a precise knowledge of PES, and secondly in
finding the correct configuration of the activated complex.
Indeed, the most accurate quantum chemical techniques
are computationally very demanding and can therefore only
be applied for fixed-geometry energy calculations. Cheaper
methods, such as DFT, are needed to map out the PES and
to calculate the vibrational frequencies of the transition state.
Unfortunately, the DFT functionals are currently not suffi-
ciently reliable to provide accurate rate constants. Hence,
the transition state theory, an educated guess for the nature
of the activated complex, and modern computational chem-
istry tools often allow the prediction of rate constants for
bimolecular reactions only within an order of magnitude,
or at best within a factor of three. Alternatively, Benson
(1976) gives a list of rules for estimating values for AS”
and AH” that are needed in the Eyring equation on the basis
of the characteristics of different types of reactions, for reac-
tions both in the gas phase and in solution. Benson also gives
tables of ‘group contributions’. For fast estimates of organic
reaction rates, Benson’s rules are often the method of choice.
The transition-state theory is therefore primarily used to
understand how a chemical reaction takes place, but has been
less successful in its original goal of directly calculating rate
constants on theoretical grounds.

Since rate parameters can still not be determined with
sufficient accuracy from reaction rate theories, the pre-
exponential factors, activation energies, adsorption con-
stants, etc., are in most applications determined based on
experimental data. This is generally done by parameter esti-
mation, also called parameter identification, techniques that
determine the rate parameters in the rate equations by
minimizing the deviations between the model predictions
and the experimental results.

The classic approach starts by carrying out a large set of
kinetic experiments. From the analysis of these data, one
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or several reaction mechanisms are then proposed, and their
corresponding rate equations are derived. After estimating
the parameters of each of the competing kinetic models,
the various models are ranked according to a goodness-
of-fit criterion, and the best kinetic model is finally selected.
In this approach, since the model selection is performed on
the current data set (operating conditions, feedstock compo-
sitions, etc.), the selected reaction mechanism is often over-
simplified and one should carefully investigate the reliability
and robustness of the resulting kinetic model, especially
when extrapolating outside the domain of the data set.

More recently, the parameters of the rate equations can be
determined on the basis of a microkinetic analysis. Such a
microkinetic analysis uses input from surface science, from
computational chemistry, and from in situ or in operando
kinetic studies to gain insight into the reaction intermediates
and the actual elementary steps, and to independently deter-
mine the value of some of the rate parameters from separate
experiments, thereby reducing the number of rate parameters
that need to be estimated from the kinetic experiments.
In this way, a more fundamental kinetic model can be
obtained that integrates the knowledge of the various
research fields.

2 DESCRIPTION OF THE PROBLEM

In the sections above, the general framework for chemical
kinetic modeling has been described. This theoretical
background allows the development of kinetic models not
only for simple systems, but also for very complex pro-
cesses. In the latter case, several difficulties arise very
rapidly.

Modeling complex processes usually involves several
thousand components and reaction intermediates. In the case
of petroleum refining processes, the number of molecules
and the number of reactions grows almost exponentially
with carbon number. Even the enumeration of the isomers
quickly becomes impossible without computer algorithms
(Tab. 1). To give some orders of magnitude, processes
treating naphtha fractions typically deal with up to a
thousand components that contain between 5 and 11 carbon
atoms, while for processes treating middle distillates, there
are already several hundred thousand components that
contain typically between 12 and 24 carbon atoms. For
vacuum gas oil fractions that typically contain molecules
with 25 to 40 carbon atoms, the number of possible isomers
exceeds 10'*, even when hetero-atoms such as sulfur,
nitrogen and oxygen are not accounted for. For Vacuum
Residues (VR) containing molecules with more than
40 carbon atoms and with high amounts of hetero-atoms,
the number of isomers is almost intractable.
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Between the components of this extremely large set of
molecules, an even larger number of reactions can occur.
The reaction network will need to describe the chemistry
as precisely as needed for the understanding of the various
phenomena, but also to improve the prediction of the process
performances and the product qualities. Again, full reaction
networks can only be computer-generated.

Associated with these large reaction networks are network
reduction techniques. Indeed, for complex feedstocks, the
reaction network becomes so large that it becomes very
difficult to handle during the simulation. Two main classes
of network reduction techniques can be distinguished:
a priori lumping techniques and a posteriori lumping tech-
niques. In the former, the full network is not created, but a
smaller version of it is proposed, grouping components into
‘lumps’ and reactions into ‘lumped reactions’. In a posteri-
ori lumping techniques, the full reaction network is first
generated, before it is reduced into a more tractable network
by a scientific approach.

For each reaction of the final reaction network, a rate
equation needs to be proposed or generated, to which a
number of rate parameters will be associated. For large reac-
tion networks, one not only needs to propose ways to auto-
matically generate the rate equations, but also to reduce the
number of rate parameters that need to be identified.

Last but not least, in order to be able to simulate the
evolution of the composition in the reactor, one needs to
provide an appropriate description of the feed, which can
either be a molecular level description of the feed when
detailed modeling techniques are used, or a lumped descrip-
tion of the feed.

No matter which modeling approach is selected to
simulate complex chemical systems, the four following steps
need to be clearly defined first:

1. Feedstock composition: What is the required detail?

2. Reaction network: What reactions need to be considered?

3. Rate equations and rate parameters: At what rate is each
component formed?

4. Continuity equations: How is the evolution governed
inside the reactor?

In this review, detailed reactor models (including vapor-
liquid equilibrium thermodynamics, heat and mass transfer
between phases or inside catalyst particles, external heat
exchangers, etc.) and their corresponding continuity
equations will not be discussed.

In what follows, systems with several hundred or several
thousand components, reaction intermediates, reactions and
elementary steps will be considered. In such cases, two main
strategies can be applied: a lumping strategy or a detailed
modeling strategy. In the first strategy, the chemical com-
plexity is reduced by grouping chemical compounds into
families or ‘lumps’ and grouping individual reactions into
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TABLE 1
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Number of possible isomers of Alkanes, Alkenes, Alkynes (Cayley, 1875; Read, 1976; Hendrickson and Parks, 1991; Bytautas and Klein, 1998;

Faulon et al., 2005)

Carbon number Number of possible isomers
Alkanes Alkenes Alkynes
1 1 - -
5 3 5 3
10 75 377 171
15 4347 36 564 15167
20 366 319 4224 993 1679 869
25 36 797 588 536 113 477 208 094 977
30 4 111 846 763 72 253 682 560 27 612 603 765
35 493 782 952 902 3 838 066 701 350
40 62 481 801 147 341 551 645 375 673 949
45 8227 162 372 221 203 81 319 947 893 937 569
50 1 117 743 651 746 950 000 12 227 375 730 982 990 115

lumped reactions between these families. In this case, a
mean-field approach together with a rate-determining step
approximation is generally used, as will be shown in the
examples below. The corresponding rate equations are then
written at a macroscopic level for a limited number of
pathways between the analytically observable lumps of com-
ponents, while the corresponding continuity equations are
solved by means of a classic determinist solver for a set of
ordinary or Partial Differential Equations (PDE). In the
detailed modeling strategy, the chemical detail is generally
retained at the molecular level, or even at the level of the
reaction intermediates. For these cases, we will describe
techniques to provide a detailed feedstock composition, to
generate and reduce full reaction networks, to derive the
corresponding rate equations, and to decrease the number
of rate parameters. Concerning the reaction rates, one can
either use a mean-field approach and apply the QSS
approximation, or calculate the complete solution by means
of MC methods, as will be illustrated below.

3 APPROACH BY LUMPING

3.1 General Information

The lumping approach consists of regrouping chemical
compounds by similar properties called ‘lumps’. The lumps
are then considered as homogeneous ensembles on which a
kinetic model normally used for the molecular compounds

can be applied. This approach is often used for processes
where the molecular characterization of the reactant
mixtures is difficult or impossible because the feedstock is
too complex, as is the case in the majority of petroleum refin-
ing processes (catalytic reforming, hydrotreating, hydropro-
cessing, catalytic cracking, thermal coking, etc.).

The development of a lumping approach usually proceeds
through the following steps:

1. description of the feedstock by choosing a set of lumps;

2. description of the relationships between the lumps by
building a kinetic network of lumped reactions;

3. determination of the rate equations and their associated
parameters by optimizing the model on experimental
data.

The choice of lumps is always a compromise between the
capabilities of the analytical techniques to characterize and
quantify them on one hand, and the needs of the final user
in terms of model prediction and precision on the other.
In most cases, the analytical techniques are the limiting step
and force the choice of the lumps. In the field of petroleum
refining, these analyses can be subdivided into chemical
separation techniques (Mass Spectrometry (MS), Liquid
Chromatography (LC), Solvent Extraction (SE), etc.) and
into physical separation techniques (distillation mainly).
Historically, lumped models were developed from the
1960’s onwards, at a time when petroleum analyses were
very simple but yielded little information, and when comput-
ing power was limited. By way of example, the first lumped
model for the Fluid Catalytic Cracking (FCC) process
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proposed by Weekman and Nace (1970) contained only 3
lumps corresponding to 3 distillation cuts: ‘Feed’, ‘Gasoline’
and ‘Gast+Coke’. Over time, thanks to the development of
more efficient separation techniques and the increase in
computing power, lumped models became more and more
complex with a continuous increase in the number of lumps.
For the catalytic cracking process, Jacob et al. (1976)
proposed an extended 10-lump model in 1976, while in
1994, Pitault ef al. (1994) further increased the complexity
by introducing an 18-lump kinetic network. More recently,
at the end of the 1990s, the lumping approaches were deeply
modified with the introduction of ‘reconstruction methods’,
which allow the definition of several hundred to several
thousand chemical lumps from a set of limited analyses
and expert knowledge. For example, Christensen et al.
(1999) proposed a kinetic model for catalytic cracking with
approximately 3000 lumps that is based on the Structure
Oriented Lumping (SOL) approach developed by Quann
and Jaffe (1992). These novel techniques will be detailed
in the second part of this article. Figure 4 illustrates the
evolution of the lumped kinetic models for catalytic crack-
ing, as proposed by Weekman and Nace (1970), Jacob
et al. (1976) and Pitault et al. (1994).

3.2 Advantages and Drawbacks of Lumped Kinetic
Models

Despite their increasing complexity, lumped kinetic models
are relatively easy to develop because the number of lumps
and the number of reactions remain limited. Moreover, due
to the multi-compound characteristics of the lumps, the
reaction pathways are generally global with no intermediate
species and the kinetic rate equations are often simple
(pseudo-order reactions, Langmuir approach in heteroge-
neous Kkinetics, etc.). Their kinetic parameters (pre-
exponential factors, activation energies, adsorption
constants, thermochemical constants, etc.) are often deter-
mined by minimizing the deviations between model and
experimental data coming from pilot units or industrial
plants. This simplicity allows the collection of high-speed
kinetic models that require limited computing power, a
feature that is very interesting for the optimization and
control of petroleum processes. This explains why this type
of model has been predominant in petroleum refining for
over 50 years.

However, despite this advantage, lumping methods also
have some drawbacks that need to be kept in mind. Firstly,
the lumps are often defined as ensembles of compounds with
similar physicochemical properties (determined by the ana-
lytical techniques) but not necessarily with similar reactivi-
ties. If the thermodynamic equilibria inside the lumps are
not maintained by fast intra-lump reactions, the properties
of the lumps will consequently be modified during the
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reaction due to the transformation of these internal com-
pounds as a function of their own reactivities. In this case,
the base hypothesis that considers that the properties of the
lumps are homogeneous and constant during reaction is
clearly wrong (Li and Rabitz, 1989; Wei and Kuo, 1969).

The second drawback of lumped models is that they are
not associated to a molecular kinetic theory but are directly
derived from experimental data coming from pilot units in
most cases. In petroleum refining, these experiments are
long and expensive. Consequently, even if the theoretical
formulation of lumped kinetic models is relatively quick
and cheap, their parameter estimation requires more time
and money. Indeed, in order for lumped models to be robust
and feed independent, a wide variety of experimental data in
terms of operating conditions and even more importantly,
feedstock composition is needed. Moreover, with the
increase in both the complexity of the kinetic models and
in the number of lumps, the analyses needed to describe
the mixture become more and more important, further
increasing the experimental cost for the development of
lumped models.

Finally, the last main drawback of lumped kinetic models
is related to their relative inability to determine the physico-
chemical properties of the effluent from its composition and
the properties of its lumps. In practice, these models often
use correlations in order to obtain an estimation of the
desired product properties, but this approach is empirical
and very limited. Moreover, because the properties of the
lumps can change during the reaction, this estimation
method remains somewhat arbitrary.

3.3 Examples of Lumped Kinetic Models Developed at
IFPEN

Between 1995 and 2005, /FPEN developed lumped kinetic
models for several hydroprocessing processes such as
Atmospheric Gas Oil (AGO) hydrotreating or fixed-bed
residue hydroprocessing.

One of the first lumped models developed at /FPEN for
the AGO hydrotreating was a 9-lump model (Fig. 5a)
accounting for only 1 sulfur lump for dibenzothiophenes
(+ H,S), 1 nitrogen lump for carbazoles (+ NH3) and 4
hydrocarbon lumps (+ H,) representing saturates, monoaro-
matics, diaromatics and triaromatics (Bonnardot, 1998;
Magné-Drisch, 1995). The analyses required to define these
lumps were very simple: elementary sulfur content for the
sulfur lump, elementary nitrogen content for the nitrogen
lump and MS for the other lumps. The reaction network
contained 6 overall reactions. The reactions for aromatic
hydrogenation were considered to be reversible, while the
reactions for hydrodesulfurization and hydrodenitrogenation
were defined as being irreversible. The rate equations were
derived from the following hypotheses: existence of two
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Illustration of the evolution of the lumped kinetic models for the catalytic cracking process: (a) Weekman and Nace (1970); (b) Jacob et al.
(1976); (c) Pitault et al. (1994).



Page 16 of 49 Oil & Gas Science and Technology — Rev. IFP Energies nouvelles (2016) 71, 45

9-lump model
Bonnardot, 1998

(o o e o] e S

MONO: Monoaromatics

y SAT: Saturates
| saT | cars |
DBT: Dibenzothiophenes
a) CARB: Carbazoles

+ H, / Hy,S / NH,

12-lump model
Lopez Garcia, 2000
| R =5 on1 DBT Shconees

TRI: Triaromatics

DI1: Diaromatics I
4-DBT DI2: Diaromatics II

MONO: Monoaromatics

| DI2 |=| MONO 46-DBT SAT: Saturates

DBT: Dibenzothiophenes
4-DBT: 4-alkyl-dibenzothiophenes
v 46-DBT:4,6-alkyldibenzothiophenes
SAT CARB
b) CARB: Carbazoles
+ H, / H,S / NH;
597-lump model
Lopez Garcia et al., 2010
Anthracenes Dihydroanthracenes Biphenyls Alkyldibenzothiophenes
leyldibenmthiophenes
Tetrahydroanthracenes X AN
@
> 00 / \ N
Naphthalenes Dmaphthenobenzenes Cyclohexylbenzenes 4,6-alkyldibenzothiophenes
o AN
Tetrallns Benzenes [ST ,)A.\s/.L(;%J
=0, 6 —]—
Pyridines ———— — =
N O) Perhydroanthracenes 1 Bicyclohexyls Pyrroles
N
Quinolines <:>_<:> 5
L] Cyclohexanes |Q|
@@ = [/\[ Indoles
T N
A':"f,"“es Perhydronaphthalenes —_—
L O . Paraffing  gumm— |
= AR Carbazoles
Anilines | ’ \ /E/j (—\\/
@ — ; s R
@} § 7 P ® %
Benzothiophenes Thiophenes Sulfides
| Reaction scheme of gas oils hydrotreating for each lump (28 chemical families by n carbon number up to Cy) |
c)
Figure 5

Evolution of the /JFPEN lumped kinetic models for atmospheric gasoil hydrotreating: (a) Bonnardot (1998); (b) Lopez Garcia (2000); (¢) Lopez
Garcia et al. (2010).
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types of active sites for hydrogenation and for hydrogenoly-
sis, Quasi Steady State Approximation for the intermediate
species, Langmuir-Hinshelwood approach, and equilibrium
for adsorption/desorption reactions. The experimental
domain was relatively large in terms of H, partial pressure
(from P, —22 bar to P, +28 bar), H,S partial pressure
(from 0.5 to 5 bar) and Liquid Hourly Space Velocity
(LHSV) (from 1 to 3 Sm*/m?/h), but only one temperature
(Tpuse) and only one type of feedstock (two full range Light
Cycle Oils, denoted LCO, and three LCO aromatic extracts)
was used. The kinetic model was implemented in a single
phase plug-flow reactor model, and contained 15 parameters,
which were determined from a database of 90 experimental
data points with 5 independent responses each. In 2000,
Loépez Garcia improved the prediction of the model in terms
of hydrodesulfurization (Lopez Garcia, 2000; Lopez Garcia
et al., 2003) by introducing 3 sulfur lumps which represent
the 3 most refractory sulfur classes of the AGO: DBT,
4-DBT and 46-DBT (Fig. 5b). The determination of the
3 sulfur lumps was determined by Gas Chromatography
(GC) coupled with a sulfur-specific SCD detector.
This extended reaction network contained 9 overall reac-
tions. To reduce the number of rate constants in the rate
equations, the author applied the RDS approach for the
various reactions on the two types of active sites: hydrogena-
tion sites and hydrogenolysis sites. The experimental
domain was extended in terms of operating temperature
(from Tp,5e —20 °C to Tpyge +10 °C) and Liquid Hourly
Space Velocity (from 0.5 to 4 Sm>/m>/h). Although three full
range LCO and five LCO aromatic extracts were used, the
feedstock variability was still limited, as only one type of
feed (FCC derived feeds) was used. Further improvements
concerned the introduction of thermodynamic constraints
for the reversible reaction, and the use of a two-phase
plug-flow reactor model based on a Grayson-Streed flash
calculation. By introducing the effect of the temperature,
the number of parameters was increased to 31, which were
determined from a database of 122 experimental data points
with 8 independent responses each. To further improve the
prediction capabilities of the kinetic model for the AGO
hydrotreating process, the direct lumping approach based
on the analytical capabilities was abandoned, and a new
kinetic model based on a feedstock reconstruction approach
(see Sect. 4.1.2) was developed. For this model, the number
of lumps were classified by chemical family and by carbon
number (Lopez Garcia et al., 2010), resulting in a total to
597 lumps. The kinetic network was also extended by
accounting for 14 reaction families related to hydrogena-
tion/dehydrogenation, hydrodesulfurization and hydrodeni-
trogenation pathways (Fig. 5c). The corresponding rate
equations were derived based on the presence of two types
of active sites (hydrogenation and hydrogenolysis) using
the RDS approach. The experimental domain encompassed

Page 17 of 49

a large domain of operating temperatures (from
Thase —20 °C to Tpyse 120 °C), of operating pressures (from
Ppuse =57 bar to P, 130 bar), and of Liquid Hourly Space
Velocities (from 0.3 to 4 Sm*/m’/h). The largest extension
concerned the feedstocks, as 24 different types of industrial
gas oils were included: straight run gas oils from a large
variety of crude oils, LCO, coker gas oils and their mixtures.
This feed diversity is particularly important to confer a high
degree of robustness on the model.

Concerning fixed-bed residue hydroprocessing, [FPEN
developed a series of lumped kinetic models based on two
main separation analyses, the first by volatility (distillation),
the second by polarity (Saturates/Aromatics/Resins/
Asphaltenes (SARA) LC) (Haulle, 2002; Le Lannic,
2006). Combining both analyses allowed the definition of
5 petroleum fractions: asphaltenes (ASP), resins (RES),
aromatics of the 520 °C+ cut (ARO+), aromatics of the
520 °C— cut (ARO-), and saturates (SAT). For each of
these fractions, an elemental analysis was performed in order
to determine its composition in terms of carbon, hydrogen,
sulfur, nitrogen, oxygen, nickel and vanadium. The first
kinetic scheme described the evolution of the quantity of
these different fractions, with an additional specific focus
for the sulfur, vanadium and nickel elements (Fig. 6a).
The total number of lumps for this approach was equal to
19. The reactor was modeled as a single-phase plug-flow
reactor with a Langmuir-Hinshelwood formalism to manage
the adsorption of the different species on the catalyst.
Subsequently, this model was generalized (Le Lannic,
2006; Verstraete et al., 2007) by defining 2 additional frac-
tions (RES+ and RES—) and by decoupling each fraction
by chemical element (C, H, O, N, S, Ni, V). This new
approach was more rigorous, but the number of lumps was
increased to 40 (Fig. 6b). This new kinetic model was
coupled with a catalyst morphology model to account for
the diffusion of asphaltenes and resins inside the catalyst
and for the modification of the catalyst properties (porosity,
surface area, etc.) caused by the deposition of nickel sulfides
and vanadium sulfides by hydrodemetallization (Toulhoat
et al., 2005). A third kinetic and reaction model modified
both the lumped kinetic network (Fig. 6¢), by introducing
additional asphaltenes families, and the reactor model, by
introducing diffusion/mass transfer limitations based on
the Stephan-Maxwell equations (Ferreira, 2009; Ferreira
et al., 2014, 2010).

4 DETAILED KINETIC MODELING STRATEGIES

Due to the complexity of the feedstock, but also because of
the limitations in computer hardware and software, classical
kinetic models of industrial processes, such as petroleum
refining or petrochemical processes, have traditionally been
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Figure 6
Evolution of the /FPEN lumped kinetic models for fixed-bed residue hydroprocessing: (a) Haulle (2002); (b) Le Lannic (2006); (c) Ferreira
(2009).

quality constraints, which are phrased in terms of molecular
or atomic composition of feedstocks and process products
(Neurock, 1992). Novel kinetic models must therefore be

based on a lumping approach, as illustrated above. However,
over the last decades, these industries have been subjected to
more stringent environmental legislation and tighter product
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able to predict the performance of processes at the molecular
level. This cannot be ensured by a lumping approach due to
its limitations in describing the molecular composition
throughout the entire reactor.

The limitations of lumped kinetic models therefore
motivated the development of more fundamental and more
detailed kinetic models. Two other approaches can be
distinguished to model the complex process kinetics: a
mechanistic approach and a molecular approach. The differ-
ence between these approaches resides in the level of detail
at which the reaction pathways are described.

Mechanistic models are the more fundamental approach
based on a detailed explicit description of the reaction
pathways, including its reactants, elementary steps (such
as homolytic bond scission, radical recombination, olefin
protonation, ion deprotonation, f-scission, isomerization,
hydride abstraction, etc.), and its reaction intermediates
(such as ions and radicals). In this approach, a limited
number of a priori assumptions are needed and the rate
parameters are more fundamental in nature.

Molecular models result from an intermediate approach
between the mechanistic and lumping approaches. Here, a
chemical reaction system is modeled at the molecular level
without including its reaction intermediates. The reactions
are viewed as molecule-to-molecule transitions and each
reaction is characterized by an overall rate constant. The
effects of reaction intermediates are included in the rate
equations by imposing assumptions during their derivation.

Both detailed kinetic approaches enable one to overcome
the drawbacks related to the lumping approach, since they
both retain a molecular description of the reaction system
throughout the entire reactor simulation, which allows the
creation of feedstock-independent models. However, such
models expect a molecular description of the feedstocks,
of the reaction pathways, and of the rate equations and rate
parameters. In what follows, methods to determine a
molecular-level description of the feedstock are first
discussed in detail and illustrated. Subsequently, the simula-
tion of detailed reaction networks is discussed by simultane-
ously treating the generation and reduction of the detailed
reaction networks, and the rate equations, rate parameters
and reactor simulation, before illustrating examples of
various applications.

4.1 Molecular Description of the Feedstocks

The first step in the simulation of a detailed molecule-based
kinetic model is to determine the molecular-level description
of the feedstock. This step is a crucial component of the
molecule-based kinetic modeling since the feedstock
description provides the major part of the ‘initial conditions’
of a molecular reaction model. The molecular description
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can be obtained either by using, when possible, advanced
analytical characterization techniques, or by numerically
creating a molecular representation of the feedstock through
composition modeling algorithms, here called molecular
reconstruction methods.

In this section, the existing methods of obtaining the
molecular description of the feedstock will be reviewed.

4.1.1 Analytical Characterization

Common analytical techniques used to obtain a molecular
characterization of the feedstocks are MS and GC. MS con-
sists of transforming molecules, in the gaseous state, into ion
fragmentation patterns by electron bombardment. These
fragments are then separated and detected by their mass-
to-charge ratio (m/e). The graphical representation of the
ion intensity as a function of m/e makes up the mass spectro-

gram which is unique for each molecule (Wauquier, 1994).

The MS technique is suitable for quantifying an individual

targeted compound or a small number of compounds

(20-30 molecules) in a mixture. However, the main applica-

tion of the MS technique, in particular in petroleum labora-

tories, is a quantitative analysis of the chemical families of
the form C,H,,,,X where C and H are carbon and hydrogen,
respectively,  is the number of carbon atoms, Z is the hydro-

gen deficiency and X refers to heteroatoms such as S, N, O

(ASTM D2425, 2007, ASTM D2786, 2007; Fafet et al.,

1999a,b; Fischer and Fischer, 1974).

GC separates volatile components of mixtures through a
chromatographic column with a gaseous mobile phase by
physical characteristics, such as diffusivity, adsorption,
absorption and volatility. As the GC technique is a separa-
tion technique but not an identification method, the chro-
matography column must be coupled to a specific detector.
The most common detectors are:

— Flame Ionization Detector (FID) (Adam et al., 2008;
ASTM D6730, 2007; Johansen et al., 1983; Vendeuvre
et al., 2005),

— Sulfur or Nitrogen Chemiluminescence Detector (SCD/
NCD) (Adam et al., 2009; Dzidic et al., 1988; Lopez
Garcia et al., 2002, 2003; Revellin et al., 2005; Tuan
et al., 1995),

— Atomic Emission Detector (AED) (Andersson and Sielex,
1996; Depauw and Froment, 1997),

— mass spectrometer (Bouyssiere ef al., 2004; Lopez Garcia
et al., 2002; Teng and Williams, 1994).

GC techniques have a high separation efficient, equiva-
lent to 2.5 10° theoretical plates, which allows them to iden-
tify up to 200 compounds in a mixture (Mondello et al.,
2002). Due to its high resolution, GC is widely used for
quantitative analysis of petroleum gases (Speight, 1991)
and gasoline fractions (Cs-C;) (Johansen et al., 1983; Teng
and Williams, 1994).
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The MS and GC techniques can identify and quantify
several hundred molecules in a mixture. However, the num-
ber of hydrocarbon isomers increases exponentially with the
number of carbon atoms. For example, the number of possi-
ble isomers for a molecule with 5 carbon atoms (Cs) is 8§,
with 10 carbon atoms (C,g) it is 474, and with 15 carbon
atoms (C;s) it is over 40 000 (Hudebine, 2003). This is
why, beyond C,, the analytical techniques are not able to
obtain a direct identification of all molecular species.

Other advanced analytical methods, such as comprehen-
sive two dimensional Gas Chromatography (GC x GC)
(Bertoncini et al., 2013; Dutriez et al., 2009, 2010, 2011,
Giddings, 1987; Mahe et al., 2011; Mondello et al., 2002),
High-Performance Liquid Chromatography (HPLC) (Miller
et al., 1983), and Fourier Transform — Ion Cyclotron
Resonance — Mass Spectrometry (FT-ICR-MS) (Qian
et al., 2001), have been developed to provide a molecular
description of complex feedstocks. Today, these advanced
techniques do not provide quantitative molecular informa-
tion about the distribution of compounds within a complex
mixture, especially for the high carbon number range, but
rather structural characteristics of the molecules. Moreover,
they are generally very time-consuming, and the obtained
data are often difficult to interpret.

4.1.2 Molecular Reconstruction Methods

In an effort to overcome the limitations of the analytical
characterization, current research focuses on the develop-
ment of composition modeling techniques, also called
molecular reconstruction methods. The composition
modeling consists of transforming available analytical infor-
mation, such as the overall properties and molecular struc-
tural information, into a molecular representation of the
feedstock.

Several molecular reconstruction methods have been
developed (Al Halwachi et al., 2012; Allen and Liguras,
1991; Alvarez-Majmutov et al., 2014, 2015, 2016; Boek
et al., 2009; Neurock et al., 1994; Peng, 1999; Pyl et al,
2011; Quann and Jaffe, 1992; Sheremata et al., 2004; Zhang,
1999). These methods can be classified into three groups
according to the approach used to represent the molecular
composition: approach by model molecule, deterministic
molecular reconstruction approach, and stochastic molecular
reconstruction approach.

Approach by Model Molecule

The first reconstruction methods consisted of generating a
model molecule to represent the petroleum cuts. The
objective of these methods is to generate a single molecule
that contains the average characteristics of mixture to be
represented.
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The first reconstruction method proposed in the literature
concerned coal constituents, and was developed by van
Krevelen (1952). It consisted of creating a 2D molecule
for a given fraction from its carbon content, hydrogen con-
tent, refractive index, density, and aromatic carbon content.
Williams developed a molecule reconstruction algorithm
for the aromatic fraction of an oil sample using molecular
weight, elemental analysis, and '"H NMR (Williams, 1958).
The algorithm was also applied to four asphalt fractions sam-
ples, to a virgin gas oil sample and to a catalytic cycle stock
sample. Brown and Ladner (1960) developed a similar
approach for coal-like material. One of the most well-known
methods was devised by Speight (1970) and creates a 2D
molecule for an asphaltene fraction from its elemental anal-
ysis, average molecular weight and proton nuclear magnetic
resonance ('"H NMR). From this analytical information and
some assumptions, Speight developed 7 mass balances for
different types of carbon atoms in order to determine the
average hydrocarbon structure of the petroleum cut. Almost
simultaneously, Hirsch and Altgelt (1970) proposed a
similar technique that also used the average density as an
analytical input. The authors also suggest to replace some
assumptions with 5 parameters that had to be estimated by
the modeler.

Over time, these methods have been improved by adding
additional analytical techniques, such as '*C NMR (Ali
et al., 1990, 2006; Altgelt and Boduszynski, 1994; Cantor,
1978; Dickinson, 1980; Knight, 1967; Petrakis and Allen,
1987; Sato, 1997; Sato et al., 1998; Suzuki et al., 1982;
Takegami et al., 1980), Size Exclusion Chromatography
(SEC) (Al-Zaid et al., 1998; Gauthier ef al., 2008), infrared
spectroscopy (Montgomery and Boyd, 1959; Qian ef al,
1984), functional groups analysis (Faulon, 1994) or
pyrolysis analysis (Artok et al., 1999; Faulon ef al., 1990;
Kowalewski et al., 1996), which allows for more molecu-
lar input for the mixture and reduces the number of
assumptions.

From the analytical information, the modeler can easily
build a representative model molecule of a mixture.
Additionally, most of these methods only need the overall
properties which can be obtained without too much experi-
mental effort. However, a model molecule is far from being
representative of all molecules in a mixture. Indeed, a model
molecule does not provide the effects of polydispersity of
complex mixture in terms of physical properties and
reactivities, which are essential for the process modeling.

Deterministic Molecular Reconstruction Approach

The deterministic molecular reconstruction approach con-
sists of modeling the mixture composition by means of a
set of molecules whose mixture properties are close to those
of the mixture to be represented. The synthetic mixture of
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molecules is generated by estimating the mole fractions of

the predefined database of compounds. The development

of such an approach is usually done in the following manner:

1. creation of a predefined database of compounds,

2. definition of the objective function (analytical
constraints),

3. modification of the mole fractions of the compounds.

The creation of a database of compounds is extremely
important for the accuracy of the molecular reconstruction
method, because this step chooses which compounds will
be considered. Evidently, the absence of the key compounds
in the database leads to an inaccurate molecular representa-
tion of the mixture. Depending on the type of mixture that is
considered, a different molecular library has to be selected.
The database is therefore created from qualitative analytical
information and expert knowledge. As mentioned in
Section 4.1.1, advanced analytical techniques can provide
molecular-level information. This information can be a qual-
itative identification of the molecules for light mixtures, such
as gasoline, or the identification of the molecular structures
for more complex feedstocks, such as middle distillates or
vacuum gas oils. Thus, the predefined database can be
defined as a set of molecules, as proposed by Allen and
Liguras (1991) or as a library of molecular structures, such
as the SOL (Structure Oriented Lumping) approach pro-
posed by Quann and Jaffe (1992) or the MTHS (Molecular
Type and Homologous Series) method proposed by Peng
(1999) and Zhang (1999).

Whatever the predefined database, the pure component
properties of its compounds are required. For light com-
pounds, pure component properties are often available in
thermophysical properties databases, such as the NIST
Chemistry WebBook (Linstrom and Mallard, 2015), TRC
(Frenkel et al., 2000) or the DIPPR (Daubert and Danner,
1989). If the pure component properties are not available,
they can be calculated either by inspection of the structure
of the molecule, to assess chemical formula and molecular
weight, by correlations, or by group contribution methods,
which are frequently used to estimate normal boiling points,
densities, and critical properties (Benson, 1976; Benson and
Cohen, 1993; Constantinou and Gani, 1994; de Oliveira
et al., 2013a; Hudebine and Verstraete, 2011; Joback and
Reid, 1987; Marrero-Morejon and Pardillo-Fontdevila,
1999).

To calculate the various properties of a mixture of mole-
cules from its composition, mixing rules need to be used that
are based on the mole fractions of the compounds and their
pure component properties. It is common practice to assume
that the mixing rules are linear with respect to either the pure
component property or its blending index (Hudebine and
Verstraete, 2011), even if some of the properties cannot be
blended linearly. For every piece of analytical information,
an analytical constraint can be written. This set of analytical
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constraints is also associated to a number of physical
constraints: a material balance to ensure that the sum of mole
fractions is equal to 1, and mole fraction constraints that
require each mole fraction to be positive and to fall within
the range from 0 to 1.

Once the database of compounds is defined and the
analytical and physical constraints have been set up, the
mole fraction of each compound needs to be determined.
This is generally done by minimizing the difference between
the available quantitative analytical data and the properties
calculated from the composition of the synthetic mixture.
Even using linear mixing rules, the estimation of the mole
fractions is often an ill-defined problem because the number
of unknowns (mole fractions) largely exceeds the number of
observables (analytical data). To reduce the number of
unknowns, several techniques have been proposed in the
literature. Allen and Liguras (1991) apply a constrained
Simplex method to minimize a weighted criterion using
the enthalpies of formation of the molecules as weights,
yet respecting analytical constraints. Jaffe et al. (2005) sug-
gest the minimization of a specific criterion using a Lagrange
multiplier method. Zhang and co-workers (Ahmad et al.,
2011; Aye and Zhang, 2005; Peng, 1999; Wu and Zhang,
2010; Zhang, 1999) developed an approach to estimate the
mole fractions of a mixture from their overall properties
by interpolating into a database of well-characterized
mixtures. Recently, Pyl and coworkers (Pyl et al., 2011)
use the parameterized probability functions to describe the
distribution of mole fractions in the compounds.

The deterministic molecular reconstruction approach is
the most efficient of the reconstruction methods. Its concep-
tion is based on a large set of analytical data and few assump-
tions are needed concerning the presence or absence of a
compound in a mixture. Moreover, this method is usually
quite fast in determining a molecular composition of a mix-
ture. However, this approach suffers from two shortcomings.
Firstly, the development of the predefined databases is a very
time-consuming and expensive task because of the advanced
analytical tools that are needed to obtain the molecular infor-
mation. Of course, once these databases are created, the
determination of the molecular composition of new mixtures
is fast, but the initial analytical work remains an extremely
limiting factor. Secondly, this approach cannot be applied
to the very complex mixtures for which no analytical
technique is currently powerful enough to identify the
chemical structure of the most abundant chemical species
contained in these mixtures. This is typically the case for
petroleum residues or biomass fractions.

Stochastic Molecular Reconstruction Approach

The stochastic molecular reconstruction approach models the
molecular composition of a mixture from a set of Probability
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Distribution Functions (PDF) for molecular structural attri-
butes (number of rings, chains length, number of chains,
etc.). The governing principle of this approach is that any
molecule can be considered as an assembly of molecular
attributes. Each attribute is represented by a PDF which pro-
vides the probability of finding this attribute in a molecule of
the mixture (Neurock ef al., 1994; Trauth et al., 1994).

The concept of using PDF to describe complex mixtures
has initially developed in the field of polymers for character-
izing the molecular size distribution of polymers (Flory,
1936; Libanati, 1992). The application of the PDF was
extended to the petroleum field by Klein’s group (Campbell
and Klein, 1997; Neurock et al., 1994; Trauth et al., 1994)
based on detailed analysis of heavy fractions done by
Boduszynski (Boduszynski, 1988, 1987). Boduszynski
showed that the structural properties of a petroleum fraction
follow statistical distributions when plotted against the
Atmospheric Equivalent Boiling Point (AEBP), the
molecular weight or the number of carbon atoms. Therefore,
Neurock et al. (1994) suggested the characterization of
petroleum fractions by means of a set of PDF for molecular
attributes. They developed a Stochastic Reconstruction (SR)
method to generate an equimolar set of molecules from a set
of PDF for molecular attributes which are characteristic of
the mixture to be represented. In practice, each PDF is
sampled via a MC procedure to identify the structural attri-
butes of a molecule, as illustrated in Figure 7. The sequence
of the PDF sampling steps is oriented by a building diagram,
which is defined by the modeler. The selected attributes are
randomly assembled to obtain the structure of the molecule.
MC sampling of the set of PDF can be repeated N times so as
to obtain a mixture of N molecules.

The initial SR method imposes as an input a set of PDF
parameters which are representative of the mixture to be
reconstructed. However, the PDF parameters are either
known from prior work, or obtained from detailed analytical
methods, which are very time- consuming. Therefore, Klein’s
group (Trauth ef al., 1994) proposed to include an optimiza-
tion loop to estimate the PDF parameters from the overall
properties as in Figure 8. To do this, each PDF is described
by a parameterized mathematical law (Gaussian distribution,
gamma distribution, exponential distribution, etc.). For a set
of PDF parameters, a mixture of molecules is generated, and
their overall properties are calculated. The calculated proper-
ties are then compared to the experimental data by means of
an objective function (Hudebine and Verstraete, 2004). The
objective function is then minimized by modifying the PDF
parameters. The optimization is performed using a global
optimization method, such as simulated annealing, genetic
algorithms, or particle swarm optimization.

The SR method is an ingenious technique to create a
molecular representation of the complex mixture from the
overall properties. To overcome the lack of molecular
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information, this approach supposes certain assumptions of
similarity or uses high internal constraints that cannot be
provided by the overall properties. However, the SR method
also has disadvantages. The selection of the molecular attri-
butes, the PDF and the building diagram are no trivial tasks
to be performed by the modeler. The same mixture repre-
sented by different sets of molecular attributes and/or PDF
may lead to different solutions. Secondly, this method is
computationally very demanding because the optimization
loop needs to generate a large number of molecules before
reaching an accurate molecular representation (Hudebine
and Verstraete, 2004; Van Geem et al., 2007; Wu and Zhang,
2010). Finally, SR is not always capable a fitting all mixture
properties simultaneously due to the numerous constraints
imposed by the PDF and building diagram (Hudebine and
Verstraete, 2004).

4.1.3 Examples of Molecular Reconstruction Methods
Developed at IFPEN

Given the limitations of lumped models, IFPEN has devel-
oped the molecular-based kinetic models that prompted the
development of molecular reconstruction methods.

Reconstruction by Entropy Maximization (REM)
(Hudebine and Verstraete, 2011, 2004; Hudebine, 2003)
was the first method developed at IFPEN. The REM method
is a deterministic molecular reconstruction approach that is
based on the principle of maximum Shannon entropy,
according to which an information entropy criterion must
be maximized in order to obtain the optimal result (Shannon,
1948). The mole fractions of the predefined set of molecules
are adjusted by maximizing the Shannon entropy criterion
(E), given by Equation (9), subject to the mass balance
(Eqg. 10) and the analytical constraints (Eq. 11). The maxi-
mization of the criterion is performed by combining the
Lagrange multiplier method and the conjugate gradient opti-
mization method. This method was successfully applied to
LCO gas oils (Hudebine, 2003), FCC gasolines (Hudebine
and Verstraete, 2011) and steam cracking naphthas (Van
Geem et al., 2007).

N
E=-Y xln(x) 9)
j=1
with
N
> x=1 (10)
j=1
and
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Tllustration of the SR method for creating an asphaltene molecule (Neurock et al., 1994).



Page 24 of 49

‘ Building diagram ‘

Set of PDFs for
molecular attributes

| Sample the set of PDF ‘

N times
l New set of PDF parameters

Build the N molecules by
assembling their attributes

)

Calculate the pure component
properties for the N molecules

!

| Calculate ‘

the mixture properties
Analytical data ‘—){

optimization methods

‘ Minimization via global ‘

Calculate
the objective function

Representative set of
molecular attribute PDF

Figure 8

Flow diagram of the SR method with the optimization loop.
(Trauth et al., 1994).

where E represents Shannon’s information entropy, N is the
number of molecules present in the predefined database of
molecules, x; represents the mole fraction of molecule j, x
is the vector of mole fractions x;, Py is the value of analytical
property k, F is the mixing rule for analytical property k, and
K is the number of analytical properties or constraints.

In order to extend the REM method to more complex
mixtures, /FPEN developed a two-step reconstruction (SR-
REM) method in which REM has been coupled to a SR
method (Hudebine and Verstraete, 2004; Hudebine, 2003).
The SR method is first applied to generate an equimolar
database of molecules that are typical for a given mixture.
The REM method is then used to improve the mixture
properties of the previously generated set of molecules by
modifying their molar fractions. The SR-REM method over-
comes the drawbacks of both reconstruction methods. The
SR method is a very constrained method that creates an
equimolar mixture, by generating molecules that are always
typical of the studied mixture due to the use of specific
molecular attributes and building rules based on analytical
information and expert knowledge, but at final convergence,
it only approaches the analytical data. In contrast, the REM
method is a fast technique to obtain a mixture whose prop-
erties closely match the analytical data, but it needs a partic-
ularly well-defined initial set of molecules (Hudebine and
Verstraete, 2004).

Two different SR-REM algorithms were developed at
IFPEN: a direct algorithm and an indirect SR-REM
algorithm (de Oliveira, 2013; de Oliveira et al., 2013a,c;
Hudebine and Verstracte, 2004). The direct SR-REM
algorithm (Fig. 9a) consists of applying the SR and REM
methods as two consecutives steps to reconstruct a mixture.
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Flow diagram of the direct SR-REM algorithm (a) and indirect
SR-REM algorithm (b) for reconstruction of petroleum VR.
(de Oliveira et al., 2013a).

Thus, an equimolar database of molecules is generated for
each studied mixture which is then submitted to REM
method to improve the mixture properties. However, as SR
step of this reconstruction method uses a MC approach to
generate its initial set of molecules, the direct SR-REM still
remains a computationally-demanding algorithm. The
indirect SR-REM algorithm (Fig. 9b) was therefore devel-
oped and may be applied when a large number of mixtures
of a given type need to be represented. The idea behind this
algorithm is to generate a large reference database of repre-
sentative molecules for a type of mixture once and for all.
Subsequently, only the REM step is employed, requiring
only a few seconds of CPU time. For each mixture, the
REM step starts from this reference database to obtain a
new set of molecules whose properties are very close to
those of the mixture to be represented. All synthetic mixtures
will now contain the same molecules as the reference
database, but with modified mole fractions.

The SR-REM method was developed for and validated on
LCO gas oils (Hudebine and Verstraete, 2004; de Oliveira
et al., 2012; Lopez Abelairas et al., 2016) and was later
extended to vacuum gas oils (Charon-Revellin ef al., 2011,
Verstraete et al., 2004) and VR (de Oliveira ef al., 2014,
2013a-c; Verstraete et al., 2010).
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As mentioned in Section 3.3, IFPEN developed a feed-
stock reconstruction method, called statistical reconstruc-
tion, in order to improve the AGO hydrotreating kinetic
model. Statistical reconstruction (Hudebine et al., 2011;
Lopez Garcia et al., 2010) is a deterministic molecular
reconstruction approach that provides a matrix of structural
lumps or pseudo-compounds to represent the composition
of middle distillates. The rows of the matrix contain 28 dif-
ferent chemical families, such as paraffins, naphthenes, aro-
matics, sulfur compounds, while the columns represent the
molecule size expressed by carbon atoms (from 1 to 30).
Each matrix element contains the mole fraction of the
pseudo-compounds which are estimated from four chemical
analyses: MS, sulfur speciation, nitrogen speciation and
simulated distillation. The first three analyses provide the
overall mole fraction of the 28 chemical families, which
are then distributed among the pseudo-compounds based
on the simulated distillation data by using two gamma distri-
butions. These statistical distributions represent the variation
of the size of molecules within each family by means of an
increase in alkyl chain length. The first distribution defines
the chain length for acyclic structures (paraffins, mercaptans,
amines) and the second distribution describes the length of
the side chain grafted on the core of the cyclic compounds.
For each chemical family, the distribution is adapted with
respect to its minimum and maximum number of carbon
atoms and to the initial and final boiling point of the
simulated distillation.

4.2 Simulation of Large Complex Reaction Networks

4.2.1 Network Generation and Network Reduction

Generation of reactions and reaction networks fall under the
larger concept of ‘computer-assisted chemistry’. This vast
field of ‘computer-assisted chemistry’ comprises a large
variety of applications such as kinetics packages, network
generation programs, tools for designing experiments,
property estimation methods, structure elucidation software,
structure visualization applications, computational chem-
istry, quantum chemistry, force field methods, computer-
assisted organic synthesis planners, and many more.
Concerning reaction networks, several automated
network generation algorithms are available in the literature,
both for computer-aided organic synthesis and for kinetic
and reactor modeling purposes. Automated network genera-
tion algorithms have been used in different applications:

— hydrocarbon pyrolysis (Clymans and Froment, 1984;
Hillewaert et al., 1988; Chinnick ef al., 1988; Froment,
1991; Billaud et al., 1991; Dente ef al., 1992; Di Maio
and Lignola, 1992; Broadbelt et al., 1994, 1995; Susnow
et al., 1997; DeWitt et al., 2000; Faulon and Sault, 2001;
Kruse et al., 2001, 2002, 2003; Matheu et al., 2001,
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2003a,b; Bounaceur et al., 2002; Grenda et al., 2003;
Klein et al., 2006; Van Geem et al., 2006, 2008; Levine
and Broadbelt, 2009; Vandewiele et al., 2012; Karaba
et al., 2013; De Bruycker et al., 2015; Van de Vijver
et al., 2015a,b),

hydrocarbon oxidation and combustion (Chevalier et al.,
1990, 1992; Valdes-Perez, 1992a; Ranzi et al., 1995;
Blurock, 1995; Come et al., 1996; Gaffuri et al., 1997,
Glaude et al., 1997, 1998; Iyer et al, 1998; Warth
et al., 2000; Battin-Leclerc et al., 2000; Green et al.,
2001; Heyberger et al., 2001; Matheu et al., 2001,
2003b; Németh et al., 2002; Ratkiewicz and Truong,
2003, 2006; Song et al., 2003; Katare et al., 2004; Buda
et al., 2006; Pfaendtner and Broadbelt, 2008a,b; Hognon
etal, 2012),

isomerization (Guillaume et al., 2003a-c; Surla et al.,
2004, 2011),

alkylation (Martinis and Froment, 2006),

olefin oligomerization and alkylation (Prickett and
Mavrovouniotis, 1997¢; Guillaume, 2006; Shahrouzi
et al., 2008; Toch et al., 2015),

propane aromatization (Katare et al., 2004; Bhan ef al.,
2005),

catalytic reforming (Joshi ef al., 1999; Klein et al., 2006;
Wei et al., 2008; Sotelo-Boyas and Froment, 2009;
Cochegrue et al., 2011),

catalytic cracking (Feng et al, 1993; Prickett and
Mavrovouniotis, 1997a; Joshi et al., 1998; Dewachtere
et al., 1999; Christensen et al., 1999; Moustafa and Fro-
ment, 2003; Froment, 2005; Quintana-Solorzano et al.,
2007a,b, 2010; Xue et al., 2014),

hydrocracking (Baltanas and Froment, 1985; Baltanas
et al., 1989; Vynckier and Froment, 1991; Quann and
Jaffe, 1992, 1996; Quann, 1998; Martens and Froment,
1999; Mizan and Klein, 1999; Martens et al., 2000,
2001; Thybaut and Marin, 2003; Laxmi Narasimhan
et al., 2003b, 2004; Chavarria-Hernandez et al., 2004;
Jaffe et al., 2005; Klein et al., 2006; Kumar and Froment,
2007a,b; Chavarria-Hernandez et al., 2008; Chavarria-
Hernandez and Ramirez, 2009; Vandegehuchte et al.,
2012, 2015),

hydrotreating (Hou and Klein, 1999; Klein et al.,
2006),

hydrogenation (Bera et al., 2011, 2012),

hydrogenolysis (Valdes-Perez, 1994; Valdes-Perez and
Zeigarnik, 1997),

methanol-to-olefins (Park and Froment, 2001a,b, 2004;
Alwahabi and Froment, 2004; Froment, 2005; Kumar
et al., 2013a,b),

methanol-to-gasoline (Jin and Froment, 2013),
Fischer-Tropsch synthesis (Klinke and Broadbelt, 1999;
Temkin et al., 2002; Lozano Blanco et al., 2006, 2008,
2011),
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— coke formation (Moustafa and Froment, 2003; Quintana-
Solorzano et al., 2005),

— biomass conversion (Rangarajan ef al., 2010),

— oxidative coupling of methane (Simon et al., 2007),

— silicon hydride clustering (Wong et al., 2004),

— hydrocarboxylation (Zeigarnik et al., 1997),

— carbonylation (Bruk ef al., 1998),

— organic synthesis (Fontain and Reitsam, 1991),

— biological processes (Valdes-Perez, 1992b; Klein et al.,
2002; Faeder er al, 2003, 2005; Li et al., 2004;
Hatzimanikatis et al., 2004, 2005; Blinov et al., 2005a,
b; Mayeno et al., 2005; Henry et al., 2007, 2010; Hill
et al., 2008; Finley et al., 2009),

— and many more.

This illustrates that automated network generation
techniques are well suited for any type of reaction, as long
as one can define the transformations that are typical of a
particular system. Most of these algorithms generate an
exhaustive list of the vast number of reactions, thus avoiding
error-prone manual reaction network developments. Good
overviews of some of these automated network generation
methods for different applications can be found in Ugi
et al. (1993), Prickett and Mavrovouniotis, (1997b), Tomlin
et al. (1997) and Klein et al. (2006).

Ugi et al. (1993) tried to classify network generation
algorithms and identified three types:

— empirical methods,

— semi-formal methods,

— formal methods.

According to their classification, empirical methods are
based on pre-established reaction libraries and expert
systems. Examples of such databases were already
underway in the 1960s (Vleduts, 1963) and continue to be
developed (Ihlenfeldt and Gasteiger, 1996). Semi-formal
techniques are based on heuristic algorithms that generate
reactions, either overall reactions or elementary steps, in a
network from a few basic reaction types, but do not have
selection procedures to remove improbable reactions from
the set of conceivable solutions. Formal techniques generate
the various elementary steps at the mechanistic level by tak-
ing into account the physical and chemical description of the
molecule, and select the most probable elementary steps to
be retained in the final network from all possible steps.

Once the reaction network is available, it can be used for
simulation purposes. For the complex feedstocks, the reac-
tion network may become very large and very difficult to
manage along the simulation, however. In such a case, a
direct simulation may not be possible without some reduc-
tion of the network. Reduction of a reaction network is not
so easy. Complex mathematical tools are required that
generally use the full knowledge of the reaction network,
including the reaction rates in order to classify the reactions
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according to different scales of reactivity: ‘fast’ reactions
and ‘slow’ reactions. During the development of the model,
some qualitative information or orders of magnitude may be
available, but quantitative information on the kinetics is
rarely known. Hence, a priori reduction of a reaction
network is usually based on empirical rules, such as limiting
the maximum molecule size, excluding molecule types,
ignoring reaction families, constraining the total number of
species and/or reactions, selecting reactions on their reaction
(free) enthalpy or on their presumed reaction rate, etc. A bad
choice of these ‘reduction rules’ can easily lead to biased
reaction networks, resulting in incorrect predictions and
behaviors during simulation.

Rigorous reduction techniques aim to retain as much as
possible the detail of the original reaction network. When
the kinetic equations between species are known and sets
of species are in thermochemical equilibrium, one can group
the species in equilibrium into lumps, and write a new
reduced kinetic network between lumps that is exactly
equivalent to the original network (Wei and Kuo, 1969; Li
and Rabitz, 1989; Vynckier and Froment, 1991; Cochegrue
et al., 2011). In this sense, this is strictly an exact lumping
technique as defined by Wei and Kuo (1969), since the
composition of each lump is known through the equilibrium
relations. Hence, when experimental data shows that the
species of a lump are in thermochemical equilibrium, they
proposed an a posteriori lumping scheme, also known as a
late lumping scheme, which groups species at thermody-
namic equilibrium inside a single lump. It is therefore a
rigorous network reduction technique that allows the
production of a simplified network, which can then be used
in reactor simulations (Vynckier and Froment, 1991).
Indeed, using such a rigorous network reduction method
avoids the problems related to the diversity of feedstocks,
unlike a priori relumping of species, also known as early
lumping, which is generally a ‘blind’ lumping approach
devised to cope with the lack of component-based analytical
data and where empirical kinetics do not account for the
composition of the lumps. Reduction techniques may also
use stochastic network generation (Faulon and Sault, 2001;
Mizan et al., 1998; Shahrouzi et al., 2008), or seeding and
deseeding techniques (Joshi, 1998; Joshi et al, 1999;
Watson et al., 1996).

Reaction network reduction techniques can be divided
into five categories:

— global reduction,

— response modeling,

chemical lumping,

statistical lumping,

— detailed reduction (Frenklach, 1987).

Global reduction techniques transform a complete
reaction scheme into a small number of overall reaction
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steps. These techniques comprise ad-hoc methods such as
empirical fitting, reduction by approximations, and lumping.
Global reduction techniques are problem-specific and cannot
be generalized. Response modeling techniques consist of
mapping model responses (species concentrations) and
model variables (initial boundary conditions, rate parame-
ters, transport properties) through functional relationships,
typically combinations of simple algebraic functions such
as polynomials, by using either experimental data or com-
puter experiments. As for global reduction techniques,
response modeling solutions are problem-specific since they
require data to construct the algebraic functions. The
chemical lumping method is guided by similarity in the
chemical structure or chemical reactivity of the reacting
species, i.e. the reactions in the entire network have essen-
tially the same rate parameters, as is the case in polymeriza-
tion reactions. The statistical lumping technique is used
when growth processes can be described by the
Smoluchowski equation. Finally, the detailed reduction tech-
nique consists of identifying and removing non-contributing
reactions. An effective reduction strategy is to compare the
individual reaction rates with the rate of a chosen reference
reaction, which can be a given rate-limiting step or the fast-
est reaction. Consequently, the detailed reaction reduction
approach is a general technique that is applicable to any
reacting system.

4.2.2 Rate Equations and Rate Parameters

The rate equations for mechanistic kinetic models are
straightforward. Indeed, due to its fundamental approach
that explicitly describes the elementary steps, the rate of each
reaction follows Guldberg and Waage’s law of mass action.
In molecular kinetic models, the reactions are viewed as
molecule-to-molecule transitions, without accounting for
the detailed reaction mechanism and its reaction intermedi-
ates. Hence, the rate equations may need to include the
indirect effects of the reaction intermediates by using
power-law type rate equations or Langmuir-Hinshelwood
type rate equations. This type of rate equation can be derived
using the above described QSS approximation, RDS
approach, or one of their variants.

The number of rate parameters in a large reaction network
will be huge. It is therefore almost impossible to obtain a
value for each rate parameter through experimental work
or through theoretical calculations. Hence, in almost all
detailed kinetic models, rate parameters are typically defined
for homologous series of reactions. The idea is that the reac-
tion rate is determined by the transformation that happens at
the ‘reacting center’ of the molecule, i.e. by the groups that
are directly involved, while the rest of the molecule is only a
spectator. This will be considered to be particularly true in
large molecules. It should be mentioned, however, that this
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remains an important simplification of the reality, since
actual molecules are continuously vibrating, bending and
rotating in such ways that the ‘non-reacting” moieties may
still influence the reactivity.

For homogeneous acid-catalyzed reactions, Brensted
(Breonsted and Pedersen, 1924; Bronsted, 1928) observed
that strongly exothermic reactions have a low activation
energy and derived from his experimental work that the
catalytic activity is directly related to the ionization constant
K,. The Bronsted equation can be written as:

k= o - (Ko)™ (12)

but is generally given in its linearized form:

In (k) = oy + o - In(K},) (13)

The Brensted equation can also be written differently.
Introducing into this equation the van ‘¢ Hoff relation for
the ionization equilibrium constant and the Eyring equation
for the rate constant leads to:

1 (*sT AG#_O( .. AGa
h RT ' TRT

(14)

After rearranging, one obtains:

AG#— —O(l'RT Ol

0 (kpT/h) | n(ksT/h) AGq

(15)

or,

AG? = By + B, - AG, (16)

This form of the Brensted equation shows that the Gibbs
free energy of activation for a reaction AG” is directly
related to its Gibbs free energy of reaction AG,, i.e. the
Gibbs free energy released by the reaction. The Brensted
equation is therefore historically the first example of a ‘linear
Gibbs energy relation’ (the [UPAC recommended term),
more commonly known as ‘Linear Free-Energy Relation-
ships’ (LFER).

One of the most famous LFER is the Hammett equation
used in organic chemistry. Hammett (1937) found that, for
a large set of reactions involving benzoic acid derivatives
with meta- and para-substituents, the ratios of the rate con-
stants were related to the ratios of the ionization equilibrium

constants:
k K PH
o~ (%)

The Hammett equation is again generally written in a
linearized form:

(17)
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or,
In (k) =In (ko) + py - o1 (19)

where k is the reaction rate constant of a substituted
reactant, k is the reaction rate constant of the unsubstituted
reactant, g, is the substitution constant, which represents the
difference of the Gibbs free energies of ionization and
accounts for field, inductive, and resonance effects, and py
is the sensitivity constant, which only depends on the
type of reaction, not on the type of substituent. The
original Hammett equation was later refined, leading to the
Taft equation, the Swain-Lupton equation, the
Grunwald-Winstein equation, the Yukawa-Tsuno equation,
etc.

The origin of such linear free-energy relationships was
first derived by Evans and Polanyi (1935, 1936, 1938),
who approximated the PES by straight lines. This approxi-
mation leads to a theoretical justification of a LFER, a linear
relation between the activation free energy AG” and the
Gibbs free energy of the reaction AGp:

AG” = B, + B, - AGr (20)

where f; and 5, depend on the slopes of the lines and the
initial distance between reactants and products. This relation
can be intuitively understood for endergonic elementary
reactions, since the free energy barrier for activation has to
increase when the free enthalpy of reaction increases.
Within a series of closely related atom-transfer reactions,
Evans and Polanyi (1938) also showed that the activation
energies depend linearly on the reaction enthalpies.
This ‘Linear Activation Energy—Reaction Energy Relation-
ship’ or linear energy relationship is generally referred to
as the Evans-Polanyi relationship and has the following
form:

E,=Eo+o- AHg (21)

Evans and Polanyi applied this relationship to organic
reactions, but the Evans-Polanyi relationships were later
shown to apply to many different types of atom transfer reac-
tions. Semenov (1954, 1958) studied a large number of atom
and radical reactions, extended the Evans-Polanyi relation-
ships to chain reactions, and suggested a value of
48 kJ.mol ! for E,, while o = 0.25 for exothermic reactions
and o = 0.75 for endothermic reactions. Temkin was the first
to apply the Evans-Polanyi relationships to heterogeneous
catalysis, together with Mochida and Yoneda (1967a-c).
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Marcus (1968) approximated the PES by two intersecting
parabolas whose minima correspond to the free energy levels
of the reactants and of the products respectively. The free
enthalpy barrier now corresponds to the point of intersection
of the two parabolas, and its values is given by:

) AGR\® (A4 AGg)?
AGT =211 =
“ 4( T3 ) 4
4 AGr  (AGR? . . AGr . (AGg)
=545 v — A o (@22)

nt

where 4 is called the ‘reorganization energy’ and depends on
the curvature of the parabolas and the distance between the
energy minima of reactants and products. The group A/4,
or AG?;, is called the ‘intrinsic barrier’, i.e. the free energy
barrier for a reaction whose free energy of reaction equals
zero. Marcus initially developed this equation to correlate
solution reaction rates for electron transfer, but this relation
has been proven useful for atom, proton, hydride, and
group transfers as well. The above Marcus equation is
sometimes referred to as a Quadratic Free-Energy Relation-
ship (QFER). When the reorganization energy A is much
larger than the Gibbs free energy of reaction, the curvature
becomes negligible and the Marcus equation reduces to a
LFER.

Numerous attempts have been made to extend such linear
free-energy relationships or Evans-Polanyi relationships.
In many cases, the developed relationships are arrived at
by means of a statistical approach that relates the rate con-
stant & or the activation energy E, to various physicochem-
ical properties of the reactants and/or products.
Furthermore, many of these empirical or semi-empirical
equations no longer correlate the activation free energy
AG” or activation energy E, to other free-energy terms or
energy terms. Hence, one should no longer refer to such
relations as linear free-energy relationships or linear energy
relationships, but rather use the terms Quantitative Structure-
Activity Relationships (QSAR), Quantitative Structure-
Reactivity Correlations (QSRC) or simply the term
Correlation Analysis. The basic premise behind these QSAR
equations is that, for a homologous series of reactions, the
rate constants can be correlated to some molecular property.
The simplest form of a QSAR is the simple linear
relationship:

In (k,) =0+ ﬁ . 9[ (23)

where £; is the rate constant of molecule 7 for a given reac-
tion, 6; is the reactivity index of molecule i, and o and f
are the correlation coefficients for a given reaction family.
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In many cases, a multilinear QSAR is developed for each
reaction family:

J
In(k;) = Bo + Z B; - 0;i (24)
=

where £; is the rate constant of molecule i for a given reac-
tion, 0; is the reactivity index j for molecule i, and the J+1
parameters f3; are the correlation coefficients for a given
reaction family. Many other forms of QSAR equations
(quadratic, etc.) can be found, and some theoretical basis
is given in Wold and Sjostrom (1978).

In the literature, many examples of QSAR equations can
be found, especially in pharmaceutical research, toxicology,
and biological sciences, either with or without a theoretical
basis. To illustrate the various levels of theoretical back-
ground, some examples of QSAR equations for applications
in the refining industry are given here. Neurock (1992)
derived a linear QSAR that correlated the rate constant for
the dealkylation of alkyl aromatics to the heat of reaction,
and a lincar QSAR that correlated the rate constant for
aromatics hydrogenation to the m-electron density. Korre
(1995) developed a multi-linear QSAR for the rate constant
for aromatics hydrogenation to the heat of reaction, the num-
ber of hydrogen atoms that were incorporated, the number of
aromatic rings, and the number of naphthenic rings. Froment
et al. (1994) developed a type of a group-contribution
method for the rate constants for the hydrodesulfurization
of all benzothiophene and dibenzothiophene isomers, by
accounting for the steric and electronic effects of the various
alkyl substituents and their positions around the sulfur atom.
Liguras and Allen (1989) correlated the overall rate constant
for catalytic cracking of paraffins to the total number of
carbon atoms, and the number of carbon atoms of each type
(primary, secondary, tertiary atoms). Lopez Garcia et al.
(2010) used, depending on the reaction family, a value for
the reaction rate that was either constant or a function of
the carbon number. For the hydrocracking of vacuum gas
oils, Stangeland (1974) proposed a non-linear correlation
of the rate constant with the boiling point temperature of
the fraction or the component.

In conclusion, LFER and QSAR are empirical correla-
tions observed between rate parameters and equilibrium con-
stants, rate coefficients and/or structural parameters, usually
among a series of reactions within a given mechanism
(Connors, 1990). They are an empirical but quantitative
way of ‘systematizing’ the similarity of reactions in a
well-defined domain of applicability. They imply that the
steric and entropy terms remain almost constant through a
homologous series of reactions. These relations are also
referred to as ‘extrathermodynamic relationships’, since
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nothing makes these correlations necessary from a
theoretical point of view (Chapman and Shorter, 1978).
Despite this, they are relatively common, due to the fact that
the structure of a molecule outside of the ‘reacting center’
has only a limited influence on the reaction rate, and are very
useful in chemistry and in chemical engineering
applications.

4.2.3 Reaction Network Simulation

Inserting a detailed kinetic model into a steady state one-
dimensional reactor model generally yields a set of coupled
Ordinary Differential Equations (ODE) (for ideal plug flow
reactors or batch reactors) or a set of coupled algebraic equa-
tions (for ideal continuous stirred tank reactors). When the
detailed kinetic model is inserted into transient and/or more
detailed reactor models, coupled PDE and/or Algebro-
Differential Equations (ADE) arise. Such a set of equations
can then be solved using classic numerical tools. This mean-
field approach is the classic way to perform reactor
simulations.

In some cases, it is not possible to arrive at a complete
description of the reaction network. In other cases, the
mean-field approximation breaks down, as can happen for
surface reactions with energetic heterogeneities on the
surface, surface diffusion, and/or attractive-repulsive inter-
actions between adsorbed species. In such cases, a change
in point of view is needed. One alternative way to simulate
large systems is to change the basic description of the
problems. Instead of following a macroscopic description
of the mixture (concentrations, pressures, etc.), the evolution
of a population of molecules and their transformations are
described. By analogy to fluid mechanics, this is similar to
the distinction between an Eulerian description (behavior
of properties function pressure, specific gravity, velocity,
etc.) and a Lagrangian description (individual motion and
properties of a molecule).

An important class of models involves the description of
random phenomena. The probabilistic character of chemical
reactions has historically been used for the description of
reacting ideal gases using the notion of colliding molecules
and energy levels to determine whether a reaction will occur
or not. In these applications, this description was not used for
simulation purposes, but for the description of the micro-
scopic events that lead to reaction. The theoretical back-
ground of the probabilistic description of reaction events is
based on the Chemical Master Equation (CME). This equa-
tion provides the time-evolution of a system of countable
states where switching between states is treated probabilisti-
cally. From a probabilistic point of view, the following set of
differential equations is obtained:
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This equation is difficult to solve and has no analytical
solution, except for some very simple academic cases. The
development of computers and appropriate algorithms
allowed the numerical simulation of those reaction events.
This approach was formalized by Gillespie (1976), resulting
in an algorithm (Stochastic Simulation Algorithm — SSA)
that is as simple as the theoretical description (CME) is
complex.

Gillespie (1976) introduce the notion of a propensity
function that represents the probability that a reaction
occurs. By rewriting the equations, he proved that the evolu-
tion between two random events can be decoupled by the
random generation of two numbers, the first giving the time
of the next reaction, and the second choosing the reaction
that will occur according to the propensity function. This
algorithm is classically called the SSA and is shown in
Figure 10.

Each realization of the algorithm gives a particular
simulation. The average of a large number of reactions con-
verges to the deterministic simulation of a mixture with the
same macroscopic properties (Fig. 11). The size of the initial
population has an important effect on the speed of the
convergence (Shahrouzi, 2010; de Oliveira et al,
2013a).

With an a priori determined reaction network, there are
no advantages of using the SSA to integrate the continuity
equations. For very large reaction networks, however, the
memory requirements for the SSA are generally lower than
classic numerical integration packages.

4.2.4 Examples of Complex Reaction Network Simulations
Developed at IFPEN

Classic Single-Event Kinetic Modeling

The single-event kinetic modeling methodology has been
developed at the Ghent University by Froment and co-
workers. The ‘single event’ concept links the reactivity of
a molecule to its geometry and to a limited number of intrin-
sic kinetic parameters, which depend only on the type of
molecule and the type of reaction. Using the concept of ‘sin-
gle events’ is an efficient way of modeling reactions without
introducing reductive assumptions about the composition of
the feed (Froment, 1999, 2005).
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Gillespie’s SSA (Gillespie, 1976).

The single-event approach has been applied to many acid-
catalyzed processes and to metal-catalyzed processes. This
modeling approach has been applied for acid-catalyzed
processes such as:

— isomerization (Guillaume et al., 2003a,b,c; Surla et al.,
2004, 2011),

— alkylation (Martinis and Froment, 2006),

— olefin oligomerization (Guillaume, 2006; Shahrouzi et al.,
2008; Toch et al., 2015),

— methanol-to-olefins (Park and Froment, 2001a,b, 2004;
Alwahabi and Froment, 2004; Froment, 2005; Kumar
et al., 2013a,b),

— catalytic reforming (Sotelo-Boyas and Froment, 2009;
Cochegrue et al., 2011),

— catalytic cracking (Feng et al., 1993; Dewachtere et al.,
1999; Beirnaert et al., 2001; Moustafa and Froment,
2003; Froment, 2005; Quintana-Soldérzano et al., 2005,
2007a,b, 2010; Xue et al., 2014),

— hydrocracking (Baltanas and Froment, 1985; Baltanas
et al., 1989; Vynckier and Froment, 1991; Svoboda
et al., 1995; Schweitzer et al., 1999; Martens and
Froment, 1999; Martens et al., 2000, 2001; Martens and
Marin, 2001; Thybaut et al., 2001, 2009; Thybaut and
Marin, 2003; Laxmi Narasimhan et al., 2003a,b, 2004,
2006, 2007; Chavarria-Hernandez et al., 2004, 2008;
Valéry et al., 2007; Kumar and Froment, 2007a,b;
Chavarria-Hernandez and Ramirez, 2009; Mitsios et al.,
2009; Choudhury et al, 2010; Vandegehuchte et al.,
2012, 2015).
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Results of stochastic and deterministic simulations for the reaction 4 < B with =055 ,=01s"", starting from X4(0) = 100, X3(0) = 0.
2

Single-event kinetic modeling has also been applied to
Fischer-Tropsch synthesis (Lozano Blanco et al., 2006,
2008, 2011).

The single-event methodology has already been exten-
sively described in the literature (Vynckier and Froment,
1991). At IFPEN, this methodology has been applied to:

— paraffin isomerization (Guillaume et al, 2003a; Surla

et al., 2004, 2011),

— olefin oligomerization (Guillaume, 2006; Shahrouzi et al.,

2008),

— catalytic reforming (Cochegrue et al., 2011),
— hydrocracking (Schweitzer et al., 1999; Valéry et al.,

2007; Mitsios et al., 2009; Guillaume et al., 2011).

In the single-event methodology, the level of detail is very
high, since the transformations on the acid sites concern the
elementary steps between carbenium ions. The reactions
considered depend on the process. For bifunctional catalysts
(isomerization, catalytic reforming, hydrocracking), the
metal phase reactions concern the hydrogenation and
dehydrogenation steps, while the acid phase reactions con-
cern the protonation of olefins and the deprotonation,
Hydride Shift (HS), Methyl Shift (MS), ethyl shift,
alkyl shift, intra-ring alkyl shift, Protonated CycloPropane
(PCP) isomerization, Protonated CycloButane (PCB)

isomerization, and f-scission of carbenium ions. For
catalytic cracking, the same acid phase reactions are supple-
mented with protolytic cracking reactions of paraffins
(Fierro et al., 2001, 2002) and hydride transfer between
olefins and carbenium ions.

The network generation is based on a semi-formal net-
work generation algorithm in which reaction rules describe
the reaction pathway occurring on the catalyst as a function
of the reactant and its configuration. These reaction rules are
iteratively used by an algorithm that handles a numerical
description of molecules and of reactions and generates in
this way the exhaustive network of reactions that includes
all reaction intermediates. The full description of the mole-
cule and reaction coding is described in Surla et al
(2011). Figure 12 shows the reaction network for the cat-
alytic reforming of n-hexane to illustrate the level of detail
included in this network generation algorithm.

Once the network is generated, a reaction rate is attributed
to each reaction. Stability considerations concerning the
carbenium ions involved in the reactions, and the further
decomposition of the elementary steps involving similar
activated complexes allow the writing of reaction rates that
are constrained by the concept of ‘single events’. For an
elementary step, the activation entropy term in the Eyring
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Reaction network for the catalytic reforming of n-hexane (without accounting for hydrogenolysis reactions).

equation is separated into its various contributions (Benson,
1976). For a homologous series of reactions in the network,
the translational, vibrational and electronic contributions are
considered to be the same, but the rotational contributions
strongly depend on the symmetry of the molecule (Willems
and Froment, 1988a,b). Hence, the entropy contributions
due to the symmetry of the molecule and to its chirality
are grouped into a factor and set apart from the other entropy
contributions, which are grouped into what is termed the
intrinsic activation entropy (Eq. 26).
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The first factor is a ratio of global symmetry numbers and
is termed the number of single events, while the remaining
part is termed the intrinsic rate coefficient:
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where £ is the rate coefficient of the elementary step, k is the
intrinsic rate coefficient of the elementary step, also termed
the single-event rate coefficient, n, is the number of single
events.

The intrinsic rate coefficient of the elementary step k only
depends on the nature of the involved ions, and of the type of
reaction. Thus, the reaction rates are parameterized by a
limited number of parameters (Surla et al., 2011). For exam-
ple, the PCP isomerizations are fully described by four
kinetic parameters although hundreds of thousands of PCP
isomerizations can occur in complex mixtures. Additional
thermodynamics constraints and assumptions allow the fur-
ther reduction of the number of kinetic parameters (Surla
et al., 2011; Cochegrue et al., 2011).

The generated reaction network can be simulated without
any further assumptions, as shown by Verstracte (1997).
Since the single-event approach generates all possible reac-
tion surface intermediates, the resulting reaction networks
are huge. Network reduction techniques can be advanta-
geously applied on single-event reaction networks in order
to reduce the number of kinetic equations of the network
and to solve the continuity equations. For some of the
processes (catalytic reforming, hydrocracking), the hydro-
genation/dehydrogenation equilibrium is easily established
on the metal phase. At the same time, experimental data
obtained on various feedstocks and at various contact times
demonstrated that the paraffins with the same number of
carbon atoms and the same number of branches are in ther-
modynamic equilibrium with each other (Verstraete, 1997;
Schweitzer et al., 1999). This leads to the conclusion that iso-
merization reactions without change in the branching degree
(HS, MS, ethyl shift) are very fast compared to isomerization
reactions with a change in the number of branches (PCP),
cracking reactions and cyclization/ring opening reactions.
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Cyclic compounds with the same number of carbon atoms
and the same number of branches are also in equilibrium with
each other (Verstraete, 1997), indicating that ring contraction
or expansion reactions are very fast compared to branching
isomerization reactions. With this experimental information,
it is possible to reduce the reaction network by means of an
a posteriori relumping technique without losing any infor-
mation (Cochegrue et al., 2011), as described by Vynckier
and Froment (1991). With this technique, molecules are
collected into ‘groups of isomers’ according to their carbon
number and their degree of branching. Inside a group of
isomers, the molecules are considered to be in equilibrium
because of the very fast interconversion reactions, which
allows the determination of the composition within each
group. The size of the reduced reaction network is much
smaller, since it contains between 10 and 1000 times fewer
species and fewer reactions, while the introduction of a set
of multiplicative ‘lumping coefficients’ allows maintaining
the same set of fundamental rate parameters for the relumped
reactions in the reduced network.

Using the properties of these lumping coefficients and the
recurrence relations between the lumping coefficients even
allowed writing these a posteriori relumped kinetic models
without the full generation of the network (Valéry, 2002;
Valéry et al., 2007; Mitsios et al., 2009; Guillaume et al.,
2011). This so-called lateral chain decomposition method
divides the various components (molecules, intermediates
and activated complexes) into lateral chains and activated
zones (Fig. 13). Detailed inspection of these various parts
allowed the derivation of a set of recursive formulae that
calculate the various structural and thermodynamic proper-
ties that are needed to determine the lumping coefficients.
It should be stressed that this lateral chain decomposition
technique is exactly equivalent to the original calculation
method based on the explicitly generated reaction network,
as long as Benson’s group contribution method is used to
obtain the necessary thermodynamic data in both approaches
(Benson and Cohen, 1993). With this lateral chain decompo-
sition method, much larger reaction networks with higher
carbon numbers can be generated (up to approximately 50
to 60 carbon atoms with the current version of the algorithm)
very easily and almost instantly. The main advantage of these
recursive formulae resides in the fact that application of the
single-event modeling methodology to very large reaction
networks and very high degrees of branching is highly
simplified, both in comparison to the explicit generation of
the entire reaction network and to other approaches in the
literature (Guillaume et al., 2011). This lateral chain decom-
position method is quite flexible and can easily be extended
to more general lateral chains, by introducing new insertion
patterns and adapting the recursion formulae accordingly.

After relumping, the reduced reaction network for
catalytic reforming contains almost 100 lumps and about
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500 reactions, while the hydrocracking network contains a
few thousand reactions between a few thousand lumps,
whose evolution needs to be simulated. In both cases, the
reactor simulations are performed by numerically integrating
the continuity equations, which are ODE, by means of the
LSODE package (Hindmarsch, 1980, 1983; Petzold, 1983).

In conclusion, refining processes based on acid or bifunc-
tional catalysts, such as isomerization, catalytic reforming,
catalytic cracking, and hydrocracking, involve a tremendous
number of species (reactants, intermediates and products)
and reactions, both of which may rapidly exceed several
thousand for industrial feedstocks. The single-event method
represents an extremely elegant approach for the modeling
of such processes, and also offers several advantages. First
of all, it is based on a fundamental understanding of the
chemistry and uses an exhaustive computer-generated reac-
tion network that lists all reactions and reaction intermedi-
ates by means of a set of simple rules. Secondly, by
applying the single-event concept and by introducing
detailed thermodynamic constraints between the rate param-
eters, the huge reaction networks can be simulated using
only a limited number of independent fundamental kinetic
parameters that are feed-independent. Since these rate coef-
ficients are independent of the number of carbon atoms in the
molecules, it is possible to identify them through studies on
model molecules and to predict the behavior of complex
feedstocks from experimental data that can be acquired more
easily. A third characteristic is that the single-event method-
ology also comes with a rigorous late-lumping network
reduction method that uses experimentally-verified and
reasonable assumptions on the chemical equilibria to
regroup the species at equilibrium into ‘groups of isomers’
or lumps. Under these assumptions, the substantially
reduced relumped reaction network is strictly equivalent to
the detailed network, while the use of lumping coefficients
allows maintaining the same fundamental kinetic parameters
to simulate the complete system without any loss of informa-
tion. Finally, a lateral chain decomposition method has been
developed for the single-event methodology that allows the
direct calculation of the lumping coefficients for the
relumped reaction network by means of recursive formulae.
This allows the application of the single-event methodology
to very large reaction networks and very high degrees of
branching without explicitly generating the entire reaction
network.

Network Reduction Techniques for Single-Event Kinetic
Modeling of Olefin Oligomerization

At IFPEN, the single-event methodology was also applied to
the oligomerization of light olefins. Two additional problems
arose, however. The first one concerns the generation of the
reaction network. Unlike the reaction networks for catalytic
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reforming, hydrocracking, or catalytic cracking, the reaction
network for olefin oligomerization will theoretically never
end, since light olefins can be added onto any olefin of any
size. Hence, no exhaustive reaction network can be generated
and, in practice, the reaction network is therefore limited by
specifying a maximum number of carbon atoms. The second
problem concerns the a posteriori relumping that was used
previously. The experimental data for olefin oligomerization
shows that thermodynamic equilibrium is not reached within
the molecules with the same carbon number and the same
degree of branching. It is therefore not possible to reduce
the detailed reaction network to a manageable number of
ODE to allow a reactor simulation to occur within a reason-
able time. However, the concept of ‘single events’ still allows
the description of the elementary steps with a small number
of intrinsic parameters (Shahrouzi et al., 2008).

To resolve these two problems (no exhaustive reaction
network and no tractable set of differential equations),
stochastic simulation methods were applied. Several
approaches were compared to investigate various network
limitation methods. First, the full reference reaction network
was generated by allowing species with up to 16 carbon
atoms using a deterministic network generation program,
which exhaustively enumerates all species and elementary
steps. The resulting reaction network contained 279,045
species and 1,729,586 elementary steps. Every additional
carbon number approximately leads to a three-fold increase
in the number of species and in the number of reactions. This
C,¢ reaction network was simulated twice, once using a
deterministic numerical integration using LSODE and once
by applying Gillespie’s SSA. As expected, both approaches
gave the same results.



Oil & Gas Science and Technology — Rev. IFP Energies nouvelles (2016) 71, 45

Page 35 of 49

Deterministic Full
Reaction Network
(DFRN)

Figure 14

Deterministic Limited
Reaction Network

Stochastically Limited
Reaction Network

(DLRN) (SLRN)

Representation of the DFRN (with 47 species), the DLRN (with only the first 20 species), and SLRN (with only the 20 species created by the

‘high probability’ pathways).

A first network reduction approach consisted of limiting
the deterministic network generation algorithm by a rule-
based approach, such as putting an upper limit on the num-
ber of species and/or reactions. In this example, the network
generation algorithm was stopped once the first 100,000
species (about 1/3 of the full reaction network) were gener-
ated. The resulting network is the Deterministic Limited
Reaction Network (DLRN).

A second network reduction approach consisted of con-
structing a stochastically-generated, but limited reaction net-
work. As in the previous methods, the reactor simulation is
performed by the SSA, but starting from an ‘empty’ reaction
network. The algorithm therefore has to generate all the
possible reactions for the components present in the feed.
Each of these reactions is now stored into the ‘initial’ reac-
tion network. The SSA will then select one of these reactions
and create the product species. If the product species are new
to the current simulation, their possible reactions are gener-
ated and stored in the reaction network, while the SSA
selects the next reaction. This procedure is repeated until
the maximum storage limit of the reaction network is
attained, in our case the first 100,000 species. From this
point onwards, the simulation is continued on the stored net-
work. For the next simulation, a new network is generated
and the new simulation is based on this new network. In con-
clusion, this approach integrates the network generation into
the SSA. Hence, the network is explored along the most
probable reaction routes. Moreover, when several simula-
tions are performed on the same feed, the average network

combines all random networks and is therefore larger than
each individual network. The strength of this network
reduction technique resides in the fact that the exploration
of the full reaction network is driven by probability consid-
erations (exploring the more probable routes) and by averag-
ing (combining several limited reaction networks).

Figure 14 schematically depicts the two network reduc-
tion techniques in comparison to the reference reaction
network. Shahrouzi (2010) investigated the impact of these
two network reduction methods on the simulation results.
All simulations were performed using the SSA, and the
Deterministic Full Reaction Network (DFRN) was used as
a reference. The stochastic simulation of the DFRN
represents the reference simulation, and a single simulation
starting from 100,000 feed molecules took approximately
56.6 hours of CPU time on a dual-core CPU running at
2.33 GHz (Shahrouzi, 2010). The first rule-based network
reduction technique provided a DLRN that contained the
first 100,000 species and their reactions. During its stochas-
tic simulation, the DLRN was loaded into memory, leading
to a memory requirement that was approximately 10 times
lower. A single stochastic simulation took approximately
4.5 hours of CPU time, which is 12.5 times faster than the
stochastic simulation of the DFRN reference network.
The second network reduction technique created a
Stochastically Limited Reaction Network (SLRN). During
the stochastic simulation, the SLRN grows into memory
until 100,000 species and their reactions are stored. Again,
the memory requirements are approximately 10 times lower



Page 36 of 49

olefins

0.50

0.454

0.40
S 0.351
2 0304
[
S 0.25
S 0201
$ 0151

0.10

0.05

0
3 4 5 6 7 8 9 0 M 12 13 14 15 16
a) carbon number
carbenium ions

0.20

0.18 1

0.16 1
T 0144
[}
S 0.121
[
2 0109
S 0081
2 0061

0.04 -

0.02

0
3 4 5 6 7 8 9 0 M 12 13 14 15 16

b) carbon number

B Complete deterministic reaction network (DFRN)
@ Deterministic limited reaction network (DLRN) with EQ without PCP
m Stochastically-limited reaction network (SLRN) without PCP

Figure 15

Mass percent product distributions of (a) olefins and (b) carbe-
nium ions for the oligomerization of C4 olefins up to C16 at
67% of conversion. Feed composition is 50% iso-butene,
25% 1-butene and 25% 2-butene. The initial molecular popula-
tion is 100,000. In the two limited reaction networks, the PCP
steps are not considered and the protonation/deprotonation
equilibrium is also considered in the DLRN.

than for the DFRN. The stochastic simulation itself also took
approximately 4.5 hours of CPU time. The results of the
three simulations are compared in Figure 15. For the first
reduction technique, the results of the DLRN are quite
different compared to those for the DFRN, not only for the
reaction intermediates (the carbenium ions), but also for
the final products (the olefins). The quality of the simulation
with the deterministic reduced reaction networks was shown
to highly depend on the reduction rules that are used during
the network generation (total number of species, total num-
ber of reactions, rank of the products, reaction (free) enthal-
pies, presumed reaction rate, etc.). Moreover, by selecting a
maximum number of species, the resulting network also
depends on the processing order of the network generation
algorithm. For the second reduction technique, the results
for the SLRN agree well with the simulations of the DFRN.
A very good agreement is observed for the final products,
even though some discrepancies arise for the high carbon-
number carbenium ion intermediates (Shahrouzi, 2010).
This illustrates that the SLRN allows the capturing of all
the features of the full deterministic reaction network with
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a ten-fold reduction in computer memory and in CPU time.
This is mainly due to the fact that the full reaction network is
explored based on reaction probability considerations along
the more probable reaction pathways.

The SLRN network reduction technique also has an
additional advantage: when several stochastic simulations
are performed, the use of a new SLRN during each simula-
tion also allows the coverage of a bigger network than if the
first SLRN was re-used in all simulations. Hence, an alterna-
tive network reduction technique can also be suggested here:
if the size of the cumulative reaction network remains
acceptable, it can be exported and re-used with deterministic
simulation tools. This approach would allow to stochasti-
cally generate reaction networks based on the reaction
probabilities.

In the examples above, the chosen implementation still
requires the provision of memory space to store the reaction
network. An alternative technique consists of performing
stochastic simulations without a pre-generated network by
using a Markovian approach. Consider a population of
molecules without a predefined reaction network. If one
can reconstruct for each molecule the different reactions that
can occur and their propensity function, the reactivity of the
ensemble of molecules can be stored via a global propensity
function. If this information can be updated after every
reaction event, the evolution of the population of molecules
no longer requires the storage of a huge pre-defined reaction
network. This approach is particularly interesting for
processes where the initial mixture is limited to a few differ-
ent molecules because the initial propensity functions are
easily computed. Shahrouzi (2010) applied this approach
to olefin oligomerization reactions. The main benefit of this
Markovian simulation technique resides in the exploration of
different parts of a theoretically quasi-infinite reaction
network without having to store it.

Full Stochastic Kinetic Modeling of Hydrotreating and
Hydroconversion Processes

For refining processes that treat complex mixtures, such as
heavy oil fractions, a full stochastic kinetic modeling
approach was developed. In the proposed two-step kinetic
modeling approach (Fig. 16), the first step, the ‘composition
modeling step’, overcomes the lack of molecular detail of
complex petroleum fractions by using a set of molecules that
are carefully selected based on available analyses. The avail-
able analytical information, which is generally relatively lim-
ited, is transformed into a set of molecules that has the same
properties as the petroleum fraction. This transformation is
carried out through the above-described SR — Entropy Max-
imization (SR-REM) algorithm, which stochastically assem-
bles various structural blocks before adjusting the molar
fractions of the resulting molecules. Once the composition
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Two-step stochastic kinetic modeling approach.

of the feedstock is adequately represented, the second step,
called the ‘reaction modeling step’, simulates the effect of
the reactions on this set of molecules by means of a kinetic
MC method. For this simulation, the above-described SSA
was selected, thereby retaining the molecular detail of the pro-
cess throughout the entire reaction simulation. This approach
is based on a Markovian process, which tracks the transfor-
mation of a discrete population of molecules, event by event.
Each event describes the transition from one state to another
as the result of a chemical reaction. To perform the reactor
simulations, the Markovian technique does not need the full
reaction network, but only a list of reaction rules that define
the possible reactions for each molecule. The probability of
each reaction is determined depending on the reactant mole-
cules and the reaction rate constant. By tracking the evolution
of the population of molecules, the reaction network is gener-
ated ‘on-the-fly’. Overall, this two-step methodology there-
fore models both the feedstock composition and the process
reactions at a molecular level.

This modeling methodology was first developed and val-
idated on somewhat simpler gas oil feeds (de Oliveira et al.,
2012; Lépez Abelairas et al., 2016). The hydroprocessing of
industrial LCO gas oils was simulated and compared to
experiments carried out in an isothermal fixed-bed up-flow
reactor containing 200 mL of a sulfided commercial
NiMo/Al,O5 catalyst (Lopez Garcia, 2000; Lopez Garcia
et al., 2003) and operating at 320 °C and 70 bar. The LCO
gas oils were characterized through elemental analysis (car-
bon, hydrogen, sulfur), MS, 13C RMN and simulated distil-
lation. The LCO gas oils were represented by 5000
molecules which were reconstructed from these analyses
by using the probability distribution functions of the struc-
tural attributes. To simulate the hydrogenation of the LCO
gas oils, a limited set of reaction types needs to be consid-
ered: hydrogenation of aromatic rings, dehydrogenation of
cyclohexane rings, and hydrodesulfurization of sulfur spe-
cies. The evolution of the set of 5000 molecules was
assessed by performing 50 stochastic simulations and aver-
aging the properties of the mixture.
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For the LCO gas oils, the content of the aromatic families
of the reconstructed feed mixture shows a good agreement
with the analytical values. The same is true for the other prop-
erties and illustrates the representativeness of the generated
set of 5000 molecules, thus proving that the LCO gas oil is
well reconstructed. The simulations of the LCO hydrotreating
process showed that the overall properties of the effluent were
well predicted for various feedstocks and operating condi-
tions (Fig. 17). The prediction of the hydrogenation of
aromatic compounds is quite accurate. The results illustrate
that the methodology is able to provide a good prediction of
the behavior of hydrotreating process behavior on complex
feeds with different molecular compositions. The methodol-
ogy is also able to predict molecular properties of the effluent
that are not accessible in traditional kinetic models.

To illustrate the full potential of the method, the above-
described methodology was also applied to the hydroconver-
sion of an Athabasca VR. Elemental analysis (C, H, S,
N, O), average molecular weight, specific gravity, simulated
distillation, SARA separation and '>*C NMR were used to
characterize the VR feed analytically (de Oliveira et al.,
2013a). The conversion of the VR was again simulated using
the SSA. For each molecule, an algorithm makes an inventory
of the possible reactions of the molecule, and calculates the
corresponding rate coefficients by means of appropriate QSRC
for the hydrogenation-dehydrogenation equilibrium constants,
the hydrogenation and hydrodesulfurization rate constants,
the ring dealkylation, and the ring opening rate constants:
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In the above equations, the reaction enthalpies were cal-

culated by means of Benson’s group contribution method,

while all activation energies were directly taken from litera-

ture: the hydrogenation and desulfurization activation ener-

gies were taken from Lopez Garcia (2000), and the

dealkylation activation energies from taken from Gauthier
et al. (2007) and Danial-Fortain (2010).

Eqpyaro = 509001 /mol  with T,y = 598.15K  (33)

E,ups = 50000 4 20000 - N3

+28350 - e} with T,pp = 598.15K (34)
Ey peatk = 217000J/mol with T,,r = 688.15K  (35)
Eqy ringo = 50000 /mol with 7,y = 688.15K  (36)

The VR was represented by a set of 5000 molecules in
order to ensure an optimal balance between the required
CPU time and the accuracy of the feedstock representation.
The mixture properties obtained after the SR step show a
good agreement with most of the analytical data. These
results illustrate that the reconstructed feedstock composed
of 5000 molecules represents quite accurately the Athabasca
VR, although VR fractions contain more complex molecules
than LCO gas oils. For the hydroconversion of VR fractions,
the evolution of the synthetic mixture of 5000 molecules was
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Comparison between experimental data and simulation results for (a) residue conversion, (b) sulfur removal, and (c) product yields during hydro-

conversion of Ural VR at 395 °C and 410 °C.

obtained by performing 100 stochastic simulations and
averaging the properties of the populations of molecules.
The overall conversion is well predicted and the overall
product yields and product property predictions follow the
correct trends with the operating conditions (de Oliveira
et al., 2014). The reactor simulations compared favorably
(Fig. 18) to experiments carried out in a batch reactor at
410 °C and 150 bar (Danial-Fortain et al., 2010). The effect
of temperature was validated by comparing the simulation
results to experimental data on a Ural VR at 395 °C and
410 °C.

In conclusion, this two-step kinetic modeling strategy has
been applied to the hydroprocessing of oil fractions:
hydrotreating of LCO and hydroconversion of VR. The
simulation results were compared to the experimental data,
illustrating that the combined ‘molecular reconstruction
— stochastic simulation’ approach nicely simulates the
process performances. The proposed approach has several

advantages. First of all, the complex feedstock is represented
by means of a synthetic mixture of molecules. This
representation allows the retention of a molecular
description of the reaction system throughout the entire
reactor simulation. Secondly, the Markovian approach of
the SSA allows the tracking of the evolution of the
population event by event, without a pre-defined reaction
network. To this end, only a limited number of reaction
types need to be defined, and the reaction network is
generated ‘on-the-fly’ as the reactions proceed. Finally, by
following the modifications to the synthetic mixture
throughout the reactor simulation, the evolution of all
product yields and product properties can be assessed by
evaluating the yields, composition and characteristics of
sub-groups of molecules. This means that this methodology
is also able to predict various molecular properties of the
effluent that are not accessible in traditional lumped kinetic
models.
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CONCLUSIONS

Chemical kinetics studies the rates of chemical reactions and
addresses how the reaction rates depend on concentrations,
temperature, pH, solvents, nature of the catalysts, to mention
a few reaction conditions.

In this review paper, an overview was given of kinetic
modeling techniques for complex processes. When systems
with several hundred or several thousand components,
reaction intermediates, reactions, and elementary steps are
being considered, two mean modeling strategies can applied:
a lumping strategy or a detailed modeling strategy. In the
first strategy, the chemical complexity is reduced by group-
ing chemical compounds into families or ‘lumps’ and group-
ing individual reactions into lumped reactions between these
families. In this case, a mean-field approach together with a
RDS approximation is generally used. Two examples of
lumped kinetic models (atmospheric gasoil hydrotreating
and residue hydroprocessing) developed at /FPEN have
been presented.

The largest part of this review described detailed kinetic
modeling approaches. In these detailed modeling strategies,
the chemical detail is generally retained at the molecular
level, or even at the level of the reaction intermediates
throughout the entire reactor simulation, which allows the
creation of the feedstock-independent models. This implies,
however, that a molecular description of the feedstock can be
provided to the model. When advanced analytical techniques
are not able to provide a detailed characterization of the feed-
stock, a molecular representation of the feedstock can be
created through molecular reconstruction algorithms, also
called composition modeling techniques. Another hurdle to
be taken concerns the generation of large size reaction
networks. Indeed, as the number of species and the number
of reactions increases almost exponentially with increasing
carbon number, the reaction network becomes so large that
it needs to be computer generated and managed along the
simulation. In this review, deterministic and stochastic net-
work generation and simulation approaches have been dis-

cussed, together with examples of kinetic models
developed at [FPEN for several refining process
applications.

All these examples given illustrate that one can acquire a
more fundamental understanding of very complex processes
by applying advanced techniques for composition, kinetic
and reactor modeling.
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