
HAL Id: hal-01395083
https://hal.science/hal-01395083

Submitted on 10 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RQL: A Query Language for Rule Discovery in
Databases

Brice Chardin, Emmanuel Coquery, Marie Pailloux, Jean-Marc Petit

To cite this version:
Brice Chardin, Emmanuel Coquery, Marie Pailloux, Jean-Marc Petit. RQL: A Query Lan-
guage for Rule Discovery in Databases. Theoretical Computer Science, 2017, 658, pp.357-374.
�10.1016/j.tcs.2016.11.004�. �hal-01395083�

https://hal.science/hal-01395083
https://hal.archives-ouvertes.fr

RQL: A Query Language for Rule Discovery in
Databases

Brice Chardin1, Emmanuel Coquery2, Marie Pailloux3, Jean-Marc Petit4

Abstract

Promoting declarative approaches in data mining is a long standing theme, the
main idea being to simplify as much as possible the way data analysts interact
with their data. This paper goes into this direction by proposing a well-founded
logical query language, SafeRL, allowing the expression of a wide variety of
rules to be discovered against a database. By rules, we mean statements of the
form ”if . . . then . . . ”, as defined in logics for ”implications” between boolean
variables. As a consequence, SafeRL extends and generalizes functional depen-
dencies to new and unexpected rules. We provide a query rewriting technique
and a constructive proof of the main query equivalence theorem, leading to an
efficient query processing technique. From SafeRL, we have devised RQL, a
user-friendly SQL-like query language. We have shown how a tight integration
can be performed on top of any relational database management system. Every
RQL query turns out to be seen as a query processing problem, instead of a
particular rule mining problem. This approach has been implemented and ex-
perimented on sensor network data. A web prototype has been released and is
freely available (http://rql.insa-lyon.fr). Data analysts can upload a sam-
ple of their data, write their own RQL queries and get answers to know whether
or not a rule holds (if not, a counter example from the database is displayed)
and much more.

keywords Query Languages, Formal Concept Analysis, Implications, Func-
tional dependencies, Query Optimization, Relational Calculus

1. Introduction

The relational database management systems (DBMS) market is already
huge and continues to grow since it is expected to nearly double by 2016 [41].
As a trivial consequence for the data mining community, it makes sense – more

1LIAS, ISAE-ENSMA, France
2Department of Computer Science, University Lyon 1, CNRS, France
3Department of Computer Science, University Clermont-Ferrand 2, CNRS, France
4Université de Lyon, CNRS, INSA-Lyon, LIRIS, France

Preprint submitted to Elsevier November 10, 2016

EMP Empno Lastname Work
dept

Job Educ
level

Sex Sal Bonus Comm Mgrno

10 SPEN C01 FINANCE 18 F 52750 500 4220 20
20 THOMP - MANAGER 18 M 41250 800 3300 -
30 KWAN - FINANCE 20 F 38250 500 3060 10
50 GEYER - MANAGER 16 M 40175 800 3214 20
60 STERN D21 SALE 14 M 32250 500 2580 30
70 PULASKI D21 SALE 16 F 36170 700 2893 100
90 HENDER D21 SALE 17 F 29750 500 2380 10
100 SPEN C01 FINANCE 18 M 26150 800 2092 20

Figure 1: Running example

than ever – to query the data in-place when using state of the art database
technologies.

While a lot of techniques have been proposed over the last 20 years for
pattern mining, only a few of them are tightly coupled with a DBMS. Most of
the time, some pre-processing has to be performed before the use of pattern
mining techniques and the data have to be formatted and exchanged between
different systems, turning round-trip engineering into a nightmare.

In this paper, we provide a logical view for a certain class of pattern mining
problems. More precisely, we propose a well-founded logical query language,
SafeRL, based on tuple relational calculus (TRC), allowing the expression of
a wide variety of rules to be discovered against the data. By rules, we mean
statements of the form ”if . . . then . . . ”, as defined in logics for ”implications”
between boolean variables.

From a database perspective, SafeRL extends and generalizes functional
dependencies (FDs) to new and unexpected rules easily expressed with a practi-
cal SQL-like language, called RQL, derived from SafeRL. To start with, let us
consider the running example given in Figure 1 with a relation Emp to depict
employees. Educlevel represents the number of years of formal education, Sal
the yearly salary, Bonus the yearly bonus and Comm the yearly commission.
This example will be used throughout the paper.

Intuitively, a RQL query is defined by the FINDRULES clause and generates
rules of the form X → Y with X and Y disjoint attribute sets taken from
the OVER clause. The SCOPE clause defines tuple-variables over some relations
obtained by classical SQL queries and the CONDITION clause defines the predicate
to be evaluated on each attribute, denoted by the named variable $A, occurring
in X ∪ Y .

Example 1. To make things concrete, we give some examples of RQL queries.
Q1: FINDRULES

OVER Empno , Lastname , Workdept , Job , Sex , Bonus

SCOPE t1 , t2 Emp

CONDITION ON $A IS t1.$A = t2.$A

2

Q′1: FINDRULES
OVER Empno , Lastname , Workdept , Job , Sex , Bonus

SCOPE t1 , t2 (

SELECT * FROM Emp WHERE Educlevel > 16

)

CONDITION ON $A IS t1.$A = t2.$A

Q′′1 : FINDRULES
OVER Educlevel , Sal , Bonus , Comm

SCOPE t1 , t2 Emp

CONDITION ON $A IS

2*ABS(t1.$A -t2.$A)/(t1.$A+t2.$A) < 0.1

Q1 discovers FDs from Emp over the subset of attributes specified in the OVER

clause. Recall that a FD X → Y holds in a relation r if for all tuples t1, t2 ∈ r,
and for all A ∈ X such that t1[A] = t2[A] then for all A ∈ Y , t1[A] = t2[A]. As
shown in Q1, RQL allows to express the discovery of FDs with a natural syntax.
For example, Empno→ Lastname and Workdept→ Job hold in Emp.

We can easily restrict FDs to some subset of tuples as shown with Q′1 which
discovers rules comparable to conditional functional dependencies [14] by con-
sidering only employees with a level of qualification above 16. For instance,
Sex → Bonus holds, meaning that above a certain level of qualification (16),
the gender determines the bonus. This rule was not elicited by Q1 because there
exist several counter-examples, such as employees 30 and 70.

Q′′1 is an approximation of FDs for numeric values, similar to Metric Func-
tional Dependencies [35], where strict equality is discarded to take into account
variations under 10%. For instance, salaries 41250 and 38250 are considered
close (7.5% difference), but not salaries 41250 and 36170 (13.1% difference).
Sal → Comm then holds, meaning that employees earning similar salaries re-
ceive similar commissions.

With respect to the expressiveness of the language, RQL allows to ”catch”
implications in their purest logic form. On the one hand, it turns out that
two famous examples, namely association rules with 100% confidence and func-
tional dependencies, can be expressed with RQL, since both are logical impli-
cations. Nevertheless, RQL can do much more, as shown in previous examples
and throughout the paper (see section 1.1.). On the other hand, RQL cannot
be used to express every possible rule mining problem. For instance, it has
not been conceived to be equivalent to association rules, which are not strictly
logical implications. Frequency requirements (e.g. support and confidence) im-
mediately remove key properties such as reflexivity (Y ⊂ X,X → Y does not
hold if X is not frequent).

RQL has been devised as a user-friendly SQL-like query language, which can
be integrated on top of any DBMS supporting SQL. RQL query processing is
seen as a classical query processing problem in databases. We provide a query
rewriting technique and a constructive proof of the main query equivalence
theorem, leading to an efficient query processing technique.

3

This approach has been implemented and experimentally evaluated on sensor
network data. A web prototype has been released and is freely available (http:
//rql.insa-lyon.fr). Data analysts can upload a sample of their data, write
their own RQL queries and get answers to know whether or not a rule holds (if
not, a counter example from the database is displayed) and much more.

This contribution is an attempt to bridge the gap between pattern mining
and databases to facilitate the use of data mining techniques by SQL-aware an-
alysts. The ultimate goal of this work is to integrate pattern mining techniques
into core DBMS technologies.

1.1. More RQL examples

Conveniently, we have reused so far RQL examples related to FDs. Never-
theless, RQL does much more and is not restricted to FDs at all.

Example 2. null values in Dept.

Q2: FINDRULES
OVER Empno , Lastname , Workdept , Job , Sex , Bonus ,

Mgrno

SCOPE t1 Emp

CONDITION ON $A IS t1.$A IS NULL

Q2 discovers rules between null values of the relation Emp. In most databases,
null values are common and knowing relationships between attributes with re-
spect to null values could be useful. For instance, Mgrno → Workdep holds
in Emp, meaning that when Mgrno is null, then Workdept is also null for the
same tuple (only employee No. 20 in example 1).

Example 3. Assume we are interested in a kind of sequential dependencies
[27], i.e. dependencies showing similar behavior of attribute values. Q3 discovers
numerical attributes that vary together (i.e., X → Y means that if X increases
then Y also increases).

Q3: FINDRULES
OVER Educlevel , Sal , Bonus , Comm

SCOPE t1 , t2 Emp

CONDITION ON $A IS t1.$A >= t2.$A

Using Q3, Sal → Comm and Comm → Sal hold in Emp, which means that
a higher salary is equivalent to a higher commission.

Example 4. Tuple-variables can also be defined on different relations. For in-
stance, the following query searches for inequalities between tuple-variables from
two views, referred to as managers and managees in the query.

FINDRULES OVER Educlevel , Sal , Bonus , Comm

SCOPE

managers (SELECT * FROM Emp WHERE Empno IN (

4

SELECT Mgrno FROM Emp

)),

managees (SELECT * FROM Emp WHERE Empno NOT IN (

SELECT Mgrno FROM Emp WHERE Mgrno IS NOT NULL

))

CONDITION ON $A IS managers.$A > managees.$A

The rule ∅ → Educlevel then holds, meaning that managers always have a higher
education levels than non-managers.

The interested reader may find more intricate examples in [18].

1.2. RQL query processing in a nutshell

This section unfolds one of the provided examples to convey the core ideas
underlying RQL query processing, for which a general architecture is given in
figure 3, section 5. To do so, we consider the following query Q (simplified from
query Q′1 given in Example 1):

Q: FINDRULES

OVER Empno , Job , Sex , Bonus

SCOPE t1 , t2 (

SELECT * FROM Emp WHERE Educlevel > 16

)

CONDITION ON $A IS t1.$A = t2.$A

After the usual lexical and syntactic analysis, RQL query processing is com-
posed of two main steps:

1. Computing, against the database, a representation of the set of rules rep-
resented by the query. Such a representation is a set of attribute sets
called a base of the associated closure system.

2. Computing a cover of the set of rules from this base.

The first step builds a base with respect to the condition specified in the
CONDITION clause of the query. The basic idea is to perform the necessary joins
and cross products between the relations of the SCOPE clause, and to apply a
filter to elicit attribute sets satisfying the criteria.

Interestingly, a single SQL query is enough to compute such a base. With Or-
acle DBMS, conditions are specified using conditional statements (CASE WHEN)
and then concatenated (|| operator) to provide a string representation of at-
tribute sets. Note that such operations are simple enough to be present in every
DBMS.

For the previous query Q, the RQL query processor generates the following
SQL query, whose output is given in Table 1. This result is no more than a
binary relation (called a context), well known in the Formal Concept Analysis
(FCA) community.

5

base

-
Sex Bonus

Job
Job Sex Bonus

Empno Job Sex Bonus

Table 1: Base of Q in Emp

SELECT DISTINCT (

CASE WHEN t1.Empno = t2.Empno THEN ’Empno ’ END ||

CASE WHEN t1.Job = t2.Job THEN ’Job ’ END ||

CASE WHEN t1.Sex = t2.Sex THEN ’Sex ’ END ||

CASE WHEN t1.Bonus = t2.Bonus THEN ’Bonus ’ END

) as base

FROM (SELECT * FROM Emp WHERE Educlevel > 16) t1 ,

(SELECT * FROM Emp WHERE Educlevel > 16) t2

From such a base, the RQL query processor may achieve the second step –
computing a cover of the set of rules satisfied in the database with respect to
Q – for which we mainly reused well-known techniques from database and FCA
(see sections 1.3 and 2.4). This cover consists of three functional dependencies:
• Empno → Job Sex Bonus
• Sex → Bonus
• Bonus → Sex
As a matter of fact, the base also serves as a starting point to compute the

closure of an attribute set and to decide whether or not a given rule is satisfied.
These computations are outlined in Section 2.4.

1.3. Related work

Declarative and generic approaches for pattern mining have been studied by
many researchers under different angles (databases, constraint programming or
theoretical foundations), see for example [33, 40, 7, 24, 15, 31, 44, 47, 46, 48]. A
crucial question underlying all these approaches is about the languages to first
specify the data of interest and second, to express patterns of interest. A survey
of data mining query languages has been done in [12] and the cross-fertilization
between data mining and constraint programming has been investigated recently
in [31, 44].

Nevertheless, we argue that pattern mining languages should benefit from
direct extensions of SQL languages, since data are most of the time stored in
DBMSs. Practical approaches, as close as possible to DBMSs, have been pro-
posed for example in [43, 22, 49, 13] to interact more directly with DBMSs query
engines. Nevertheless, as far as we know, we are not aware of systems similar
to RQL since it targets a very specific class of rules, i.e. those rules verifying
Armstrong axioms and thus classical implication in logics. In other words, as-
sociation rules systems such as MINE RULE [43] or data mining extensions of
SQL systems (e.g. Oracle, IBM) cannot be fairly compared to RQL. Moreover,

6

RQL cannot be compared to association rules systems due to the frequency
requirement.

The SafeRL language, inspired from the logical language proposed in [15],
goes into this direction by providing a formal semantic based on the tuple re-
lational calculus (TRC), underpinning SQL. FDs, association rules with 100%
confidence and the ad-hoc language proposed in [6] are special cases of our
SafeRL language but none of them has a logical query language foundation.
In this paper, we provide a logical view on the ad-hoc language proposed in [6]
for gene expression data. The language of [6] was defined using a BNF grammar
with no clear logical foundation and hence no practical SQL-like query language.
From a technical point of view, the paper can be seen as a generalization of the
approach proposed in [39, 20, 38] to discover functional dependencies (FD). In-
deed, the machinery introduced in this paper generalizes the computation of
agree sets (a base of the closure system associated with FD) to every RQL
query. Moreover, the paper is a major extension of [5, 17]: [5] provides a log-
ical view on the ad-hoc language proposed in [6], with some restrictions (e.g.
only one relation schema). Theoretical results on decidability problems are also
given. We do not reproduce all the results in this paper. [17] introduces the
practical query language RQL for the first time. Moreover, RQL has been used
as a core building block to build a complete suite for genomics-data analysis
in the RulNet prototype [52]. In RulNet, RQL is used with a slightly different
syntax but with the same query engine to process the queries. Many options are
provided to conveniently display a set of rules as gene regulatory network and to
assess the quality of rules with different interestingness measures. Interestingly,
other applications such as [3] exist for data analysis in biomedical studies with
implications, for which RQL could also be useful.

Many dependencies different from functional dependencies have been studied
such as implications in formal concept analysis (FCA) [38, 42, 9], conditional
FDs [14], sequential dependencies [27], metric FDs [35], denial constraints [19] or
constraint-generating dependencies [10]. They can partially be represented with
RQL (cf. examples in Section 1) with some restrictions though. Nevertheless,
RQL widens the scope of dependencies and lets the data analysts decide their
patterns of interest with respect to their background knowledge, without any
presupposition on the dependencies to be discovered.

1.4. Paper organization

Section 2 introduces some notations and recalls important notions on rela-
tional calculus and closure systems. Section 3 presents the syntax and semantics
of the SafeRL language, while section 4 presents some results used for com-
puting the answer to SafeRL queries. Section 5 presents experimental results,
section 6 presents the web prototype for RQL and section 7 concludes.

2. Preliminaries

This section introduces main definitions and notations used throughout the
paper for the relational model, safe TRC, rules and closure systems.

7

2.1. Relational model

We use the named perspective of the relational model in which tuples are
functions [1].

Fix a finite universe U of attributes (denoted by A, B, . . .), a countably infinite
domain D of constants (denoted by c, c′, . . .) and a finite set R of relation symbols
(denoted by R, S, . . .). U,D,R are pairwise disjoint. Each relation symbol R has a
schema, a subset of U, denoted by the symbol itself, i.e. R ⊆ U. Conveniently, we
will sometimes omit to refer to the relation symbol when dealing with a subset
of attributes, i.e. a schema. A tuple t over R is a total function t : R → D.
A relation r over R is a finite set of tuples over R. A database schema R is a
set of relation symbols, e.g. R = {R1, . . . , Rn}. A database instance (or simply
a database) is a function d from R to the set of possible relations such that
d(Ri) = ri, with ri a relation over Ri for i = 1..n.

2.2. Variables and assignments

SafeRL has different formal variables for attributes, tuples and schemata:
a set A of attribute-variables (A,B, . . .), a set T of tuple-variables (s, t, . . .) and
a set S of schema-variables (X,Y, . . .). A,T,S,U,D,R are pairwise disjoints.

An attribute-assignment ρ (resp. a schema-assignment Σ) is a function
that maps an attribute-variable A (resp. a schema-variable X) to an attribute
ρ(A) ∈ U (resp. a subset of attributes Σ(X) ⊆ U). A tuple-assignment σ is
also a function from a tuple-variable t to a tuple t defined over some schema.
Conveniently, a tuple-variable t can be explicitly defined over some schema X,
noted by t : X and we will use the notation sch(t) = X.

For an attribute-assignment ρ (as well as for tuple-assignments and schema-
assignments) we denote by ρA7→A the assignment defined by:

ρA 7→A(B) =

{
A if B = A

ρ(B) if B 6= A

2.3. Safe TRC

Since TRC is a core component of SafeRL, we recall here the syntax and
semantics of the TRC in its simplest form (see [1] for more details). TRC
formulas noted ψ,ψ1, ψ2, . . . are defined inductively as usual, where A, B ∈ U,
X ⊆ U, c ∈ D, R ∈ R, t, t1, t2 ∈ T:

R(t) | t1.A = t2.B | t.A = c | ¬ψ | ψ1 ∧ ψ2 | ∃t : X (ψ)

Given a database d over R and a tuple assignment σ, the satisfaction of a
TRC formula ψ is inductively defined as follows:

• 〈d, σ〉 |= R(t) if σ(t) ∈ d(R), R ∈ R

• 〈d, σ〉 |= t1.A = t2.B if σ(t1)(A) = σ(t2)(B)

• 〈d, σ〉 |= t.A = c if σ(t)(A) = c

8

• 〈d, σ〉 |= ¬ψ if 〈d, σ〉 6|= ψ

• 〈d, σ〉 |= ψ1 ∧ ψ2 if 〈d, σ〉 |= ψ1 and 〈d, σ〉 |= ψ2

• 〈d, σ〉 |= ∃t : X (ψ) if there exists a tuple t over X such that 〈d, σt7→t〉 |= ψ

A TRC query is an expression of the form

q = {t | ψ}

where ψ is a TRC formula with exactly one free variable t. The set of answers
ans(q, d) of q w.r.t. a database d is

ans(q, d) = {σ(t) | 〈d, σ〉 |= ψ}

In the sequel, we consider safe TRC, the fragment of TRC known to always
provide finite answers [1].

Moreover, we shall admit several tuple variables in TRC formulas: Let
ψ(t1, . . . , tn) be a safe TRC formulas with t1, . . . , tn free variables, i.e. q =
{(t1, . . . , tn) | ψ(t1, . . . , tn)}. Then the answer is just a set of tuple assignment σ
defined for each ti, i = 1..n, i.e. ans(q, d) = {σ{t1,...,tn} | 〈d, σ〉 |= ψ(t1, . . . , tn)}.

2.4. Rules and closure systems

Rules or implications, closure systems and closure operators have been widely
studied in many branches of applied mathematics and computer sciences, with
applications in databases for functional dependencies [8] and in formal concept
analysis for implications [26]. The interested reader should refer to [16, 11] for
a comprehensive survey. We summarize the main results that are useful for the
rest of the paper.

Let U ⊆ U and X,Y ⊆ U. A rule is a syntactic expression of the form
X → Y . C ⊆ 2U is a closure system if U ∈ C and X,Y ∈ C ⇒ X ∩ Y ∈ C [26].

Let F be a set of rules on U . A rule X → A is implied by F , denoted by
F ` X → A, if there is a derivation (or a proof) from F using Armstrong’s
axiom system (reflexivity, augmentation, transitivity) ending to X → A. The
closure of a set X ⊆ U is defined by X+

F = {A ∈ U | F ` X → A}. A closure
system can be defined for F , noted CL(F) = {X ⊆ U |X = X+

F }.
Let IRR(F) be the set of meet-irreducible elements of CL(F), i.e. X ∈

IRR(F) iff for all Y, Z ∈ CL(F), (X = Y ∩ Z)⇒ (X = Y or X = Z).
The notion of base of a closure system is now defined as follows:

Definition 1. Let CL(F) be a closure system. A base B of CL(F) is such that
IRR(F) ⊆ B ⊆ CL(F)

A base is called a context in FCA terminology [26].
It is worth noting that whenever a base has been computed from a given

relation r, we can address the following problems:

1. Given a set of attributes, compute its closure with respect to the rules
satisfied in r.

9

2. Given a rule, say whether or not this rule is satisfied. If not, give a
counter-example from r.

3. Compute a cover of non satisfied rules in r.

4. Compute a cover (or basis) of satisfied rules in r.

Let us consider the well-known functional dependencies. Given a relation r
over R, a base of the closure system associated to satisfied FDs in r is known as
the set of agree sets. Given the agree sets ag(r), each problem listed above has
been studied extensively in database and formal concept analysis communities
[38]:

1. Compute the closure of a set of attributes: let X ⊆ R. X+ =
⋂
{Y ∈

ag(r)|X ⊆ Y }.

2. Verify a rule: let X → Y be a rule, r |= X → Y iff Y ⊆ X+.

3. Compute a cover of approximate FDs, known as the Gottlob and Libkin
cover [29]: X → A is given whenever X ∈ max(A, r) = max⊆{X ∈
ag(r)|A 6∈ X}.

4. Compute the canonical cover5 for satisfied FDs [39, 20, 38]: X → A is
given whenever X is a minimal transversal of the hypergraph {R \X|X ∈
max(A, r)}.

From a complexity point of view, steps 1 to 3 described above are polynomial
while the fourth one is incremental quasi-polynomial in the size of the input and
the output due to the enumeration of minimal transversal [25].

The rest of this paper proposes a generalization of this approach. Indeed,
each SafeRL query defines a closure system and therefore, in order to reuse
previous results, the problem turns out to be on the computation against the
database of a base with respect to a given SafeRL query. In this paper, we will
focus on this problem only. Other problems listed above such as the generation
of a canonical cover will not be detailed.

3. A Query Language for Rule Mining

In the introduction, we have illustrated RQL – an SQL-like friendly language
– through examples. This section formally defines the syntax and semantics
of SafeRL from which RQL is derived. We have introduced safe TRC for
expressing SQL-like queries. Before defining SafeRL, it remains to precisely
define the notion of mining formulas, denoted in RQL (cf. previous examples)
as:

CONDITION ON $A IS δ($A, t1, ... , tn)

5Also called canonical direct basis [11]

10

3.1. Mining Formulas

Mining formulas, denoted by δ, δ1, δ2, . . . , are defined over tuple-variables T,
attribute-variables A and constants D only. Their syntax and their semantics
are defined as follows.

Definition 2. Let t, t1, t2 ∈ T, A,B ∈ A and c ∈ D. A mining formula is of the
form: t1.A = t2.B | t.A = c | ¬δ | δ1 ∧ δ2 where δ, δ1, δ2 are mining formulas.

The satisfaction of a mining formula δ w.r.t. a tuple-assignment σ and an
attribute-assignment ρ, denoted by 〈σ, ρ〉 |= δ, is inductively defined as follows:

• 〈σ, ρ〉 |= t1.A = t2.B iff σ(t1)(ρ(A)) = σ(t2)(ρ(B))

• 〈σ, ρ〉 |= t.A = c iff σ(t)(ρ(A)) = c

• 〈σ, ρ〉 |= ¬δ iff 〈σ, ρ〉 6|= δ

• 〈σ, ρ〉 |= δ1 ∧ δ2 iff 〈σ, ρ〉 |= δ1 and 〈σ, ρ〉 |= δ2

Such formulas are very simple and relatively restrictive to keep the pre-
sentation simple. In practice, we shall use other binary operators such as
≤, <,≥, >, . . . Details are omitted.

3.2. SafeRL queries

The SafeRL query language can now be defined.

Definition 3. A SafeRL query over a database schema R is an expression of
the form:

Q = {X → Y | ∀t1 . . . ∀tn
[
ψ(t1, . . . , tn) →(

∀A ∈ X(δ(A, t1, ..., tn))→ ∀A ∈ Y (δ(A, t1, ..., tn))
)]
}

where:

• X and Y are schema-variables,

• ψ is a TRC-formula over R with n free tuple-variables t1, . . . , tn,

• δ is a mining formula with t1, . . . , tn free tuple-variables and A a single
free attribute-variable.

When clear from context, a SafeRL query Q may also be simply denoted
by Q = 〈ψ(t1, ..., tn), δ(A, t1, ..., tn)〉, or even Q = 〈ψ, δ〉.

Example 5. Continuing example 1, query Q1 is formalized in SafeRL as fol-
lows:

Q1 = {X → Y | ∀t1, t2
[(
EMP(t1) ∧ EMP(t2)

)
→(

∀A ∈ X(t1.A = t2.A)→ ∀A ∈ Y (t1.A = t2.A)
)]
}

More succinctly, Q1 is also noted 〈EMP(t1) ∧ EMP(t2), (t1.A = t2.A))〉.

11

The attributes appearing in the result of ψ are equal to
⋃n
i=1 sch(ti) whereas

the schema of Q, denoted by sch(Q), is defined by: sch(Q) =
⋂n
i=1 sch(ti).

Indeed, only common attributes of tuple-variables are meaningful to discover
rules.

To specify the result of the evaluation of a SafeRL query against a database,
we define the notion of satisfaction.

Definition 4. A SafeRL query 〈ψ, δ〉 is satisfied in a database d and w.r.t. a
schema-assignment Σ, denoted by 〈d,Σ〉 |= 〈ψ, δ〉, if the following holds:

For all tuple-assignment σ such that (1)
〈d, σ〉 |= ψ:

if for all A ∈ Σ(X), 〈σ, ρA 7→A〉 |= δ (2)

then for all A ∈ Σ(Y), 〈σ, ρA7→A〉 |= δ (3)

Intuitively, this definition generalizes the definition of FD satisfaction in a
relation: instead of only 2 tuples in a relation, we may have n tuples from
the database d satisfying ψ (cf (1)); and instead of the condition ”for all A ∈
X, t1[A] = t2[A]”, we have ”for all A ∈ Σ(X), δ(A, t1, . . . , tn)” (cf. (2) and (3)).

Definition 5. The answer of a SafeRL query Q = 〈ψ, δ〉 in a database d over
R, denoted by ans(Q, d), is defined as:

ans(Q, d) = {Σ(X)→ Σ(Y) | 〈d,Σ〉 |= 〈ψ, δ〉,Σ(X) ∪ Σ(Y) ⊆ sch(Q)}

3.3. RQL: A practical language for SafeRL
RQL is a practical SQL-like declarative language to express SafeRL queries.

Let us consider a SafeRL query Q = 〈ψ(t1, . . . , tn), δ(A, t1, . . . , tn)〉 and its
associated RQL query:

FINDRULES

OVER A1, ... , An
SCOPE t1(SQL1), ... , tn(SQLn)
WHERE condition(t1, ... , tn)
CONDITION ON $A IS δ($A, t1, ... , tn)

The FINDRULES clause identifies RQL queries. The OVER clause specifies
the set of attributes to be used for rule discovery. Those attributes have to
be included in sch(Q). The SCOPE clause specifies every tuple to be used to
discover the rules and corresponds to the tuple-variables of ψ. Each tuple-
variable is associated with an SQL query (which can be factorized if they refer
to the same SQL query). The WHERE clause is borrowed from the SQL WHERE

clause to specify relationships between tuple variables. The CONDITION ON $A
IS specifies the mining formula δ.

Note that RQL allows much more flexibility than SafeRL since more ad-
vanced conditions available in SQL – such as regular expressions, user-defined
functions or built-in functions of the underlying DBMS – can be used for free,
as in query Q′′1 of Example 1.

12

4. Theoretical results

In [5], a slightly different language for rule mining has been proposed. One of
the main results was to point out that every query was ”Armstrong-compliant”,
meaning basically that Armstrong axioms are sound and that each query defines
a closure system. The same result holds for SafeRL queries as we shall see.
This result means that for query processing, we can adopt a strategy that gen-
eralizes the process of FD inference through agree sets [39, 37].

Given a database d and a SafeRL query Q, the basic idea is to compute a
base of the closure system associated with Q from d. Let us start by introducing
the closure system associated with Q, then the notion of base.

4.1. Closure system and bases for SafeRL queries

Given a query Q against a database d, the definitions of a base and a closure
system given in Section 2.4 are extended to ans(Q, d).

Definition 6. We say that Z ⊆ U satisfies ans(Q, d) if for all X → Y ∈
ans(Q, d), X 6⊆ Z or Y ⊆ Z. The closure system of Q in d, denoted by CLQ(d),
is defined by: CLQ(d) = {Z ⊆ sch(Q) | Z satisfies ans(Q, d)}.

Lemma 1. Let Q be a SafeRL query and d a database.
Then, CLQ(d) is a closure system on sch(Q).

Proof 1. We have to show that sch(Q) ∈ CLQ(d) and for all X, Y ∈ CLQ(d),
X ∩ Y ∈ CLQ(d).

• sch(Q) satisfies ans(Q, d) since for every X → Y ∈ ans(Q, d), we have
Y ⊆ sch(Q).

• Let X, Y ∈ CLQ(d). We have to show that X ∩ Y ∈ CLQ(d), i.e. X ∩ Y

satisfies ans(Q, d). By hypothesis, we have X ∈ CLQ(d) and Y ∈ CLQ(d),
implying for every V → W ∈ ans(Q, d), (V 6⊆ X or W ⊆ X) and (V 6⊆ Y or
W ⊆ Y). We deduce that V 6⊆ X ∩ Y or W ⊆ X ∩ Y and the result follows.

Corollary 1. Let Q be a SafeRL query and d a database.
Then, Q and d define a unique closure system.

It turns out that for every RQL query, there exists a closure system and
thus, the main problem is to effectively compute a representation of the closure
system, i.e. a base (cf. definition 1).

In our setting, the definition of the base is:

Definition 7. Let Q = 〈ψ, δ〉 be a SafeRL query over R and d a database
over R. We assume that the attribute variable in δ is A. The base of Q in d,
denoted by BQ(d), is defined by:

BQ(d) =
⋃
σ s.t.
〈d,σ〉|=ψ

{
{A ∈ sch(Q) | 〈σ, ρA 7→A〉 |= δ}

}

13

That is, BQ(d) is the set of all Z ⊆ sch(Q) for which there exists σ such
that 〈d, σ〉 |= ψ and 〈σ, ρA 7→A〉 |= δ for all A ∈ Z. Note that since A is the only
attribute variable in δ, using ρA 7→A fully determines the attribute assignment in
the evaluation of δ.

Proposition 1. BQ(d) is a base of the closure system CLQ(d).

Proof 2. We have to show that BQ(d) ⊆ CLQ(d) and IRR(CLQ(d)) ⊆ BQ(d).
Let Z ∈ BQ(d) i.e. there exists a set of tuples t1 over sch(t1), . . . , tn over

sch(tn) with 〈d, σt1 7→t1,...,tn 7→tn〉 |= ψ(t1, . . . , tn) such that:
• ∀A ∈ Z, 〈σt1 7→t1,...,tn 7→tn , ρA7→A〉 |= δ(A, t1, . . . , tn), and
• ∀A ∈ sch(Q)\Z, 〈σt1 7→t1,...,tn 7→tn , ρA7→A〉 6|= δ(A, t1, . . . , tn).

We have to show that Z ∈ CLQ(d). Suppose Z 6∈ CLQ(d). In that case, there
exists X ⊆ Z and Y 6⊆ Z such that X → Y ∈ ans(Q, d). It implies that: ∀A ∈ Y,
〈σt1 7→t1,...,tn 7→tn , ρA7→A〉 |= δ(A, t1, . . . , tn) since X ⊆ Z, there is a contradiction
since Y 6⊆ Z.

Let Z ∈ IRR(CLQ(d)), we have to show that Z ∈ BQ(d). We know that Z ∈
CLQ(d). Then, we have for all A ∈ sch(Q)\Z, Z → A 6∈ ans(Q, d). This means
there exists some σA such that 〈σA, ρA7→A〉 6|= δ(A, t1, . . . , tn) and for all B ∈ Z,
〈σA, ρA 7→B〉 |= δ(A, t1, . . . , tn). In other words, for all A ∈ sch(Q)\Z, there exists
X ∈ BQ(d) such that Z ⊆ X and A 6∈ X. Since Z =

⋂
A∈sch(Q)\Z{X ∈ BQ(d)|Z ⊆

X and A 6∈ X} and Z ∈ IRR(CLQ(d)), we have the result, i.e. Z ∈ BQ(d).

4.2. Computing the base of a SafeRL query using query rewriting

The naive approach consists in executing n SQL queries against the database,
caching all intermediary results, keeping only the right combination of tuples
with respect to the WHERE clause and then computing the base of the closure
system. We can do much better: the basic idea is to transform the query in
order to push as much as possible the processing into the SQL query engine.

For every RQL query Q = 〈ψ, δ〉 involving n tuple-variables, there exists
another query Q′ = 〈ψ′, δ′〉 with a unique tuple-variable . The practical con-
sequence of this remark is that the computation of the base can be done in a
single SQL query, i.e. the computation of the base of 〈ψ′, δ′〉 can be delegated
to the SQL query engine which was not the case in the former formulation.

By means of a rewriting function rw, we have to transformQ = 〈ψ(t1, . . . , tn),
δ(A, t1, . . . , tn)〉 into Q′ = 〈ψ′(t), δ′(A, t)〉.

The idea of rw is that the unique tuple-variable t appearing in Q′ takes its
values in the schema built from the disjoint union of sch(ti), i = 1..n and is
essentially the concatenation of the initial ti’s.

Let R be the new schema built as follows: R =
⋃
i∈1..n{〈A, i〉 | A ∈ sch(ti)}.

Let t be a fresh tuple variable with sch(t) = R and A1, . . . , An be n fresh
attribute variables.

Example 6. Let us consider the relation Emp over attributes Empno, Last-
name, Workdept shortened in the following examples to employees No. 10, 90
and 100. Let Q1 = 〈Emp(t1) ∧ Emp(t2), (t1.A = t2.A)〉.

14

Emp Empno Lastname Workdept
t1 10 SPEN C01
t2 90 HENDER D21
t3 100 SPEN C01

Given Q1, its rewriting is defined over the following new schema Emp∗:
{〈Empno, 1〉, 〈Lastname, 1〉, 〈Workdept, 1〉, 〈Empno, 2〉, 〈Lastname, 2〉, 〈Workdept,
2〉}. The rewriting will use a fresh variable t : Emp∗ and two fresh attribute
variables A1 and A2.

Now, the rewriting function rw has to be defined for TRC formulas, mining
formulas and has to overload tuple variable assignments and attribute variable
assignments.

For mining formulas, the rewriting is defined inductively. Let δ a mining
formulae.

• rw(ti.A = c) = (t.Ai = c)

• rw(ti.A = tj .A) = (t.Ai = t.Aj)

• rw(¬δ) = ¬rw(δ)

• rw(δ1 ∧ δ2) = rw(δ1) ∧ rw(δ2)

Clearly, attribute variable names matter in this rewriting: Ai carries both
the name of the initial variable A and the index i of the initial tuple variable.

Example 7. In Q1, let us consider the mining formula δ = (t1.A = t2.A).
Then rw(δ) = (t.A1 = t.A2).

We now have to overload rw to transform attribute-assignment ρ and tuple-
assignment σ in order to take into account the new fresh variables.

• For each Ai introduced above, we define rw(ρ)(Ai) = 〈ρ(A), i〉, i.e. the
name of the variable Ai allows to identify both the attribute variable A
and the ith part of the tuple on the new schema R.

• Let t : R the tuple variable introduced above. We define rw(σ)(t) = t such
that t(〈A, i〉) = σ(ti)(A) for each 〈A, i〉 ∈ R. Moreover, the tuple assigned
to each ti by σ is kept in rw(σ): for i ∈ {1, . . . , n}, rw(σ)(ti) = σ(ti).

Example 8. Continuing the previous example with the following attribute-assignment
ρ0(A) = Lastname. We have:

• rw(ρ0)(A1) = 〈ρ0(A), 1〉 = 〈Lastname, 1〉

• rw(ρ0)(A2) = 〈ρ0(A), 2〉 = 〈Lastname, 2〉

Then, with the following tuple-assignment σ0(t1) = t1, σ0(t2) = t2, we have:

• rw(σ0)(t) = t such that ∀A ∈ {Empno, Lastname, Workdept}, t(〈A, 1〉) =
σ0(t1)(A) = t1(A) and t(〈A, 2〉) = σ0(t2)(A) = t2(A).

15

In other words, the tuple t defined over Emp∗ is equal to the concatenation
of t1 and t2 in the original relation, namely 〈10, SPEN, C01, 90, HENDER, D21〉 (cf.
Figure 2 where t is represented by t′1).

Given a mining formula δ, we have the following lemma that gives an equiv-
alence with the previous rewriting rw(δ).

Lemma 2. 〈σ, ρ〉 |= δ iff 〈rw(σ), rw(ρ)〉 |= rw(δ)

Proof 3. By induction on δ:

• If δ = ¬δ′: rw(δ) = ¬rw(δ′). By induction, 〈σ, ρ〉 6|= δ′ iff 〈rw(σ), rw(ρ)〉 6|=
rw(δ′). Therefore 〈σ, ρ〉 |= δ iff 〈rw(σ), rw(ρ)〉 |= rw(δ).

• If δ = δ1 ∧ δ2: rw(δ) = rw(δ1) ∧ rw(δ2). By induction, 〈σ, ρ〉 |= δ1
iff 〈rw(σ), rw(ρ)〉 |= rw(δ1) and 〈σ, ρ〉 |= δ2 iff 〈rw(σ), rw(ρ)〉 |= rw(δ2).
Therefore 〈σ, ρ〉 |= δ1 ∧ δ2 iff 〈rw(σ), rw(ρ)〉 |= rw(δ1) ∧ rw(δ2).

• If δ = (ti.A = tj .A): rw(δ) = (t.Ai = t.Aj). Let σ′ = rw(σ) and ρ′ =
rw(ρ). By definition of rw: σ(ti)(ρ(A)) = σ′(t)(〈ρ(A), i〉) = σ′(t)(ρ′(Ai))
and σ(tj)(ρ(A)) = σ′(t)(ρ′(Aj)).

Let us assume that 〈σ, ρ〉 |= δ. Then σ(ti)(ρ(A)) = σ(tj)(ρ(A)). Therefore
σ′(t)(ρ′(Ai)) = σ′(t)(ρ′(Aj)) and 〈σ′, ρ′〉 |= t.Ai = t.Aj.

Conversely if 〈σ′, ρ′〉 |= rw(δ), then σ′(t)(ρ′(Ai)) = σ′(t)(ρ′(Aj)). There-
fore σ(ti)(ρ(A)) = σ(tj)(ρ(A)) and 〈σ, ρ〉 |= ti.A = tj .A.

• The case where δ = (ti.A = c) is similar to the previous one.

Finally, it remains to rewrite the TRC formula ψ(t1, . . . , tn) with rw(ψ)(t)
by forcing t to have each ti as one of its components:

rw(ψ) = ∃ t1 : sch(t1)(. . . (∃ tn : sch(tn)

(ψ ∧
∧

A∈sch(Q)

n∧
i=1

t.〈A, i〉 = ti.A)) . . .)

Example 9. Continuing the previous example, we have ψ(t1, t2) = Emp(t1) ∧
Emp(t2) and sch(Q1) = {Empno, Lastname, Workdept}.
Then rw(ψ) = ∃ t1 : sch(t1)(∃ t2 : sch(t2)(ζ)) such that ζ is the conjunction of
the following conditions:

• Emp(t1)

• Emp(t2)

• t.〈Empno, 1〉 = t1.Empno

• t.〈Empno, 2〉 = t2.Empno

• t.〈Lastname, 1〉 = t1.Lastname

16

Emp∗ 〈Empno, 1〉 〈Lastname, 1〉 〈Workdept, 1〉 〈Empno, 2〉 〈Lastname, 2〉 〈Workdept, 2〉
t′1 10 SPEN C01 90 HENDER D21
t′2 10 SPEN C01 100 SPEN C01
t′3 90 HENDER D21 100 SPEN C01

Figure 2: Query rewriting for Emp

• t.〈Lastname, 2〉 = t2.Lastname

• t.〈Workdept, 1〉 = t1.Workdept

• t.〈Workdept, 2〉 = t2.Workdept

Given a safe TRC formula ψ(t1, . . . , tn), we have the following result that
gives an equivalence with the previous rewriting rw(ψ)(t).

Lemma 3. 〈d, σ〉 |= ψ iff 〈d, rw(σ)〉 |= rw(ψ)

Proof 4. Let us assume that 〈d, σ〉 |= ψ.
Since t is not a tuple-variable of ψ, 〈d, rw(σ)〉 |= ψ. By definition of rw(σ),

〈d, rw(σ)〉 |=
∧

A∈sch(Q)

∧n
i=1 t.〈A, i〉 = ti.A. Therefore 〈d, rw(σ)〉 |= ∃t1(. . . (∃tn(ψ∧∧

A∈sch(Q)

∧n
i=1 t.〈A, i〉 = ti.A)) . . .), i.e. 〈d, rw(σ)〉 |= rw(ψ).

Let us now assume that 〈d, rw(σ)〉 |= rw(ψ) and consider the following for-
mula: ψ(t1, . . . , tn) ∧

∧
A∈sch(Q)

∧n
i=1 t.〈A, i〉 = ti.A. Then there exists t1, . . . , tn

and σ′ such that σ′ = rw(σ)t1 7→t1,...,tn 7→tn and 〈d, σ′〉 |= ψ∧
∧

A∈sch(Q)

∧n
i=1 t.〈A, i〉 =

ti.A. For 〈d, σ′〉 |=
∧

A∈sch(Q)

∧n
i=1 t.〈A, i〉 = ti.A to hold, we necessarily have

ti = σ(ti) for 1 ≤ i ≤ n. Since 〈d, σ′〉 |= ψ, we deduce 〈d, σ〉 |= ψ.

Example 10. Continuing the previous example, let us consider ψ(t1, t2), its
rewriting rw(ψ)(t), the associated query {t | rw(ψ)(t)} and its evaluation against
Emp. Figure 2 gives the result of this rewritten query. Note that, to avoid con-
sidering each pair of employees twice, we have restricted this query to t1.Empno <
t2.Empno i.e. Q1 = 〈Emp(t1)∧ Emp(t2)∧ t1.Empno < t2.Empno, (t1.A = t2.A)〉.

Interestingly, for every SafeRL query Q = 〈ψ(t1, . . . , tn), δ((t1, . . . , tn, A)〉,
rw(ψ) gives an intermediate representation allowing to compute the mining for-
mula δ(t1, . . . , tn, A) on each tuple of the answer set.

Example 11. Let us consider the second tuple, denoted by t′2, given in example
10. The attribute Lastname (resp. Workdept) satisfies rw(δ) since t′2(〈Lastname, 1〉)
= t′2(〈Lastname, 2〉) (resp. t′2(〈Workdept, 1〉) = t′2(〈Workdept, 2〉)). The at-
tribute Empno does not since t′2(〈Empno, 1〉) 6= t′2(〈Empno, 2〉). From t′2,
the maximal set of attributes verifying rw(δ) is {Lastname,Workdept}, which
is a closed set associated to the initial query Q1. The closed set associated
with t′1 (resp t′3) is empty since ∀ A ∈ sch(Q1), t′1(〈A, 1〉) 6= t′1(〈A, 2〉) (resp.
t′3(〈A, 1〉) 6= t′3(〈A, 2〉)).

We can now give an important result of the paper, i.e. how a base of the
closure system associated to every SafeRL query can be computed.

17

Proposition 2.

BQ(d) =
⋃

rw(σ) s.t.
〈d,rw(σ)〉|=rw(ψ)

{
{A ∈ sch(Q) | ∃ρ : ρ(A) = A∧〈rw(σ), rw(ρ)〉 |= rw(δ)}

}

Proof 5. By definition:

BQ(d) =
⋃

σ s.t. 〈d,σ〉|=ψ

{
{A ∈ sch(Q) | 〈σ, ρA 7→A〉 |= δ}

}
Since A is the only attribute-variable in δ:

BQ(d) =
⋃

σ s.t. 〈d,σ〉|=ψ

{
{A ∈ sch(Q) | ∃ ρ : ρ(A) = A ∧ 〈σ, ρ〉 |= δ}

}
By lemma 2:

BQ(d) =
⋃

σ s.t. 〈d,σ〉|=ψ

{
{A ∈ sch(Q) | ∃ ρ : ρ(A) = A ∧ 〈rw(σ), rw(ρ)〉 |= rw(δ)}

}
By lemma 3:

BQ(d) =
⋃

σ s.t.
〈d,rw(σ)〉|=rw(ψ)

{
{A ∈ sch(Q) | ∃ ρ : ρ(A) = A∧ 〈rw(σ), rw(ρ)〉 |= rw(δ)}

}

We conclude by remarking that rw is bijective for σ.

The main theorem can now be given.

Theorem 1. Let Q be a SafeRL query and d a database.
Then

1. ans(Q, d) defines a unique closure system on sch(Q), denoted by CL(ans(Q, d)).

2. There exists an SQL query Q′ over d such that IRR(ans(Q, d)) ⊆ ans(Q′, d) ⊆
CL(ans(Q, d)).

Proof 6. The first item follows from Lemma 1. The second one follows from
Proposition 1 and 2 for safe TRC formula. Since SQL is at least as expressive
as safe TRC, the result holds.

Therefore BQ(d) is computable by running only one SQL query, correspond-
ing exactly to the safe TRC query {t | rw(ψ)} with only one difference: the
SELECT part has to evaluate the satisfaction of rw(δ). From a practical point
of view, it means that the base can be computed with only one SQL statement
for all SafeRL queries, pushing query processing as much as possible into the
DBMS.

18

RQL parser

SQL generator

Rule generator

Rule verifier

Optimizer

Query
processor

DB

RQL engine

DBMSSQL
query

Base

RQL
query

meta-data

Rules

Rule
Counter-
example

Figure 3: RQL query processing overview

5. Implementation and experiments

Given a RQL query Q, the query processing engine consists of a Java/JavaCC
application to:

1. Compute the base of the closure system of Q using the generated SQL
query provided by Theorem 1.

2. From the base, compute the canonical cover for exact rules and a Gottlob
and Libkin cover for approximate rules [29]. Details are out of the scope
of this paper, we mainly reused the code of T. Uno [45] for the most
expensive part of the rule generation process, i.e. the enumeration of
minimal transversal of hypergraphs.

Figure 3 gives an overview of RQL query processing.

5.1. Sensor Data

We experimented our RQL processing engine using the PlaceLab dataset
provided by the MIT House n Consortium and Microsoft Research [34].

The PlaceLab is a 93 m2 apartment instrumented with several hundred sen-
sors. During the experiment, interior conditions (temperature, humidity, light,
pressure, current, gas and water flow) were captured by 106 sensors, along with
92 reed switches installed on doors, drawers and windows to detect open-closed
events. 277 wireless motion sensors were placed on nearly all objects that might
be manipulated. Two participants used the PlaceLab as a temporary home for
10 weeks.

The available data is a subset of about a month from the original 2.5 months
experiment, from August 22, 2006 to September 18. Raw data is extracted from
binary files, where each reading contains a sensor id, a timestamp and a value
(the measurement). Sensors meta-data include, for each sensor id, type, location
and a short textual description, along with other meta-data of little interest for
our experiments, such as installation date, etc. This data is stored in an Oracle
database whose schema is depicted in figure 4.

19

samples
id DECIMAL(20,0)
timestamp TIMESTAMP
type DECIMAL(3,0)
value DECIMAL(10,0)

descriptions
id DECIMAL(20,0)
type VARCHAR(12)
location VARCHAR(18)
description VARCHAR(78)

Figure 4: PlaceLab database schema

time bathroom
light

kitchen
humidity 0

... bedroom
temperature 5

2006-08-22 00:00:00 0.4971428 4344 ... 21.43
2006-08-22 00:01:00 0.6685879 4344 ... 21.43
2006-08-22 00:02:00 0.4985673 4344 ... 21.465

...
2006-09-18 23:58:00 1567.7822 5324 ... 22.53
2006-09-18 23:59:00 1563.5891 5276 ... 22.50

Figure 5: Sensors data after SQL preprocessing

For data mining queries, we focused on variations of the physical properties
of the environment, such as temperature, light, etc., which amount to more
than 100 million tuples. A view, easily expressed with SQL, has been created to
synchronize and resample every sensor with a common sampling interval (one
minute). This view, illustrated in figure 5, has 165 attributes and 32543 tuples.
Apart from the time, each attribute is associated either with one of the 106
physical properties sensors or one of the 58 selected switches.

5.2. Experimental Results

The server used for these experiments is a virtual machine running on
VMware 4.1 with 2× Intel Xeon X5650 and 7.2K disks in RAID 5. This virtual
machine, running Debian 6.0, disposes of 16 GB of RAM and 4 CPU cores. The
DBMS is Oracle Database 11g Release 2.

In these experiments, we consider three families of RQL queries.

Null values (Q3). This first set of queries mine rules between sensors for null
values. Such queries can be used to help identify groups of sensors which are
unavailable simultaneously, due, for example, to a shared acquisition system.

Q3: FINDRULES
OVER <list of attributes >

SCOPE t1 sensors

CONDITION ON $A IS t1.$A IS NULL

For example, if we consider all temperature sensors as the list of attributes,
we can group sensors dining room temperature 1 (A), dining room tempera-
ture 2 (B), dining room temperature 3 (C), dining room temperature 4 (D),
hall temperature 0 (E) and hall temperature 3 (F) according to rules (A→ F ,
F → C, BC → E, BE → D, CD → E, CE → A). Note that, following
Armstrong’s axioms, rules such as BC → ADEF can be inferred. Using SQL
queries, we can then confirm that these sensors are indeed almost always un-
available simultaneously. Similarly, we can group four sensors from the living

20

0

100

200

300

400

500

600

700

800

20 40 60 80 100

C
u

m
u

la
ti

ve
ex

ec
u

ti
o
n

ti
m

e
(i

n
s)

Number of attributes

Rule generation
SQL query

(a) Rule generation

0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100

C
u

m
u

la
ti

ve
ex

ec
u

ti
o
n

ti
m

e
(i

n
s)

Number of attributes

(b) Zoom on SQL queries durations

Figure 6: Execution time for null rules

room, two sensors from the hall with three sensors from the kitchen, etc. This
information could especially be useful if we had lost metadata on sensors loca-
tions and descriptions.

Figure 6 gives the cumulative execution time for various number of attributes
in the OVER clause of Q1. As expected, rule generation is by far the most
expensive part when the query runs over a large set of attributes. The SQL
query however lasts less than a second and increases linearly: computation of
the base by the DBMS is efficient.

For the subsequent experiments, we focus on the execution time of the base
computation. As seen in section 2.4, the data analyst does not always need to
generate a canonical cover of the rules, and can address other problems directly
from the base.

Functional dependencies (Q4). This second set of queries finds FDs within a
time window. This time window is specified using SQL conditions on the times-
tamp.

Q4: FINDRULES
OVER <list of attributes >

SCOPE t1 , t2 (

SELECT * FROM sensors

WHERE time BETWEEN ’2006 -08 -22 00:00:00 ’

AND <end date >

)

WHERE t1.rowid < t2.rowid

CONDITION ON $A IS t1.$A = t2.$A

To generate the base, the corresponding SQL query performs a Cartesian
product (more precisely, a theta self-join on t1.rowid < t2.rowid, which gives half
as many tuples). Consequently, the SQL part is significantly more costly com-
pared with the previous family of RQL queries. Figure 7 shows the scalability of
the base generation with respect to the number of attributes (#tuples = 1439)
and the number of tuples (#attributes = 37). As expected, the execution time

21

0

2

4

6

8

10

12

10 20 30 40 50 60

E
x
ec

u
ti

on
ti

m
e

(i
n

s)

Number of attributes

(a) Scalability w.r.t. #attributes

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16

E
x
ec

u
ti

o
n

ti
m

e
(i

n
s)

Number of tuples (×1000)

(b) Scalability w.r.t. #tuples

Figure 7: Execution time for functional dependencies

increases quadratically with the number of tuples due to the theta self-join.

Local maximums (Q5). RQL queries can express a wide range of conditions
for rules. For example, the following query finds rules for local maximums of
measurements (i.e. X → A is interpreted as: if all sensors in X have a local
maximum at time T, then sensor A has a local maximum at time T).

Q5 :FINDRULES
OVER <list of attributes >

SCOPE t1 , t2, t3 sensors

WHERE t2.time = t1.time + interval ’1’ minute

AND t3.time = t2.time + interval ’1’ minute

CONDITION ON $A IS t1.$A < t2.$A AND t2.$A > t3.$A

Even though this query has three tuple-variables, all three are bound by
a 1:1 relationship. Consequently, the DBMS computes equi-joins instead of
Cartesian products, which improves its efficiency. Figure 8 shows that, similar
to Q3, the execution time grows linearly with both the number of attributes
(#tuples = 32433) and the number of tuples (#attributes = 37) – a time
window is added to the SCOPE clause to adjust the number of tuples, cf. Q4.

5.3. Comparison with functional dependencies miners

Due to its general application case, RQL can be compared with existing tools
for several data mining tasks. In this section, we focus on functional dependen-
cies to evaluate how well RQL behaves with respect to dedicated solutions.

We compared RQL with two functional dependency discovery algorithms:
TANE [32] and FDEP [23], identified to be among the fastest existing algorithms
in a recent survey [51]. The implementations used as a basis for this comparison
are taken from the Metanome project [50], along with five datasets: ncvoter,
fdreduced30, plista, flight and uniprot. Other datasets used in this experiment
are provided by the UCI machine learning repository [36]. Table 2 gives an
overview of these datasets and the corresponding execution times for RQL,

22

0

0.2

0.4

0.6

0.8

1

1.2

20 40 60 80 100

E
x
ec

u
ti

on
ti

m
e

(i
n

s)

Number of attributes

(a) Scalability w.r.t. #attributes

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35

E
x
ec

u
ti

o
n

ti
m

e
(i

n
s)

Number of tuples (×1000)

(b) Scalability w.r.t. #tuples

Figure 8: Execution time for local maximums rules

FDEP and TANE, which includes: data retrieval from the Oracle database, FD
discovery and writing the cover of minimal FDs to an output file.

The execution strategy of RQL is similar to FDEP, where a negative cover
of maximal non-FDs is computed first. During this step, both algorithms have
to compare records pair-wise, which is integrated in FDEP and delegated to
the DBMS by RQL. Their behaviors are therefore comparable, with a good
scalability on the number of columns but limited on the number of rows.

TANE implements another discovery strategy based on a bottom-up traver-
sal of a lattice representing all possible subsets of attributes, along with a com-
pact representation of the data (called partitions) used to test functional de-
pendencies. In this experiment, TANE is the most efficient strategy on datasets
with many rows, but exceeds the memory limit when its lattice becomes too
large [51].

Despite not being dedicated to FDs discovery, RQL provides, in some cases
(e.g. when the number of generated FDs is large), the most efficient strategy.

6. A web prototype for RQL

A web prototype has been developed and is freely accessible at http://rql.
insa-lyon.fr for research and educational purposes. Figure 9 gives a preview
of this web interface, which provides an unified access to the user’s data and
pattern mining techniques using two declarative languages: SQL and RQL.

To discover the RQL language, a pre-filled database is made available in a
Sample mode, with a few selected example written in both SQL and RQL. Data
analysts can also upload their own data (up to 200 KB) in a Sandbox mode and
write their own SQL and RQL queries to discover meaningful rules.

For example a data analyst wants to explore functional dependencies using
Q1. The analyst could generate a canonical cover for FDs, but instead she only
wants to investigate if an employee can be identified by its name and department
(Lastname, Workdept → Empno). RQL answers whether or not this rule holds,

23

Columns Rows Size FDs
Dataset (#) (#) (KB) (#) RQL FDEP TANE
iris 5 150 4 4 <0.1 0.1 0.3
balance-scale 5 625 6 1 0.1 0.2 0.4
chess 7 28,056 519 1 214.6 71.6 1.0
abalone 9 4,177 187 137 5.9 3.7 2.3
nursery 9 12,960 1,036 1 60.9 25.1 6.4
breast-cancer 11 699 19 46 0.4 0.5 0.9
bridges 13 108 6 142 0.2 0.1 0.6
echocardiogram 13 132 6 536 0.1 0.2 0.5
adult 15 48,842 3,881 66 1661.7 784.3 127.1
letter 17 20,000 696 61 327.7 158.0 ML
ncvoter 19 1,000 151 758 1.1 1.0 1.7
hepatitis 20 155 7 8,250 0.6 0.5 5.2
horse 28 368 28 156,723 2.9 6.1 ML
fdreduced30 30 250,000 69,580 89,571 TL ML 132.9
plista 63 1,001 575 178,152 11.2 16.4 ML
flight 109 1,000 569 982,631 9.3 139.3 ML
uniprot 223 1,000 2439 unknown TL ML ML

TL: time limit of 4 hours exceeded ML: memory limit of 10 GB exceeded

Table 2: Execution times in seconds for functional dependency discovery

Figure 9: Main web interface

24

Rule verification:
The rule Lastname Workdept Empno is false

Counter-example:

EMPNO LASTNAME WORKDEPT JOB EDUCLEVEL SEX SAL BONUS COMM MGRNO

100 SPEN C01 FINANCE 18 M 26150 800 2092 20

10 SPEN C01 FINANCE 18 F 52750 500 4220 20

Generated query:

1. SELECTSELECT t1 t1.*,.*, t2 t2.*.*
2. FROMFROM Emp t1 Emp t1,, Emp t2 Emp t2
3. WHEREWHERE ((t1t1..Lastname Lastname == t2 t2..Lastname Lastname ANDAND t1 t1..Workdept Workdept == t2 t2..WorkdeptWorkdept))
4. ANDAND CASECASE WHENWHEN ((t1t1..Empno Empno == t2 t2..EmpnoEmpno)) THENTHEN 11 ELSEELSE 00 ENDEND == 00
5. ANDAND rownum rownum <=<= 11

Figure 10: Counter-examples with RQL

and if not, a counter example from the database is displayed. Figure 10 gives
an overview of what RQL provides as a counterexample for this rule.

Importantly, the web interface provides the SQL code generated by the sys-
tem as often as possible, for instance to identify the counterexample, so that
the analyst can use this query as a starting point for data exploration [18].

7. Conclusion

In this paper, we have introduced SafeRL, a logical query language based
on the tuple relational calculus and devoted to rule discovery in databases. The
rule mining problem is seen as a query processing problem, for which we have
proposed a query rewriting technique allowing the delegation of as much pro-
cessing as possible to the underlying DBMS engine. RQL, the concrete language
of SafeRL, is an SQL-like rule mining language which allows SQL developers
to extract precise information without specific knowledge in data mining. A
system has been developed and tested against a real-life database provided by
the MIT House n Consortium and Microsoft Research. These experiments show
both the feasibility and the efficiency of the proposed language.

RQL is an important contribution toward declarative pattern mining whose
ambition is to simplify the way data analysts interact with their data. Through
a convenient query language, close to SQL, they can focus on scientific discovery
instead of spending considerable time switching data between different systems.

As future work, we could generate other covers for rules with RQL, typi-
cally optimal covers, namely the Duquenne and Guigues basis [30] or ordered
direct implicational basis [4] (see [2] for a recent survey). The scalability of
RQL to Big Data remains a quite challenging issue. Even if there is still room
for improvements, we believe that alternative approaches should be conducted
to guide the search towards interesting rules without enumerating all possible
satisfied rules, for example by taking advantage of the knowledge brought by
counter-examples. From an application point of view, the potential of RQL
could also be studied to express temporal dependencies [53] and more generally
for data cleaning [28, 21].

25

Acknowledegment. This work has been partially funded by the French national
research agency (DAG project, ANR-09-EMER, 2009-2013) and CNRS Mastodons
projects (PETASKY 2012-2015 and QualiSky 2016).

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] Kira V. Adaricheva and James B. Nation. On implicational bases of closure
systems with unique critical sets. Discrete Applied Mathematics, 162:51–69,
2014.

[3] Kira V. Adaricheva, James B. Nation, Gordon Okimoto, Vyacheslav
Adarichev, Adina Amanbekkyzy, Shuchismita Sarkar, Alibek Sailanbayev,
Nazar Seidalin, and Kenneth Alibek. Measuring the implications of the d-
basis in analysis of data in biomedical studies. In Formal Concept Analysis
- 13th International Conference, ICFCA 2015, Nerja, Spain, June 23-26,
2015, Proceedings, pages 39–57, 2015.

[4] Kira V. Adaricheva, James B. Nation, and Robert Rand. Ordered direct
implicational basis of a finite closure system. Discrete Applied Mathematics,
161(6):707–723, 2013.

[5] Marie Agier, Christine Froidevaux, Jean-Marc Petit, Yoan Renaud, and
Jef Wijsen. On Armstrong-compliant Logical Query Languages. In George
H. L. Fletcher and Slawek Staworko, editors, 4th International Workshop
on Logic in Databases (LID 2011) in conjunction with EDBT/ICDT con-
ference, pages 33–40. ACM, March 2011.

[6] Marie Agier, Jean-Marc Petit, and Einoshin Suzuki. Unifying framework
for rule semantics: Application to gene expression data. Fundam. Inform.,
78(4):543–559, 2007.

[7] Hiroki Arimura and Takeaki Uno. Polynomial-delay and polynomial-space
algorithms for mining closed sequences, graphs, and pictures in accessible
set systems. In SDM, pages 1088–1099, 2009.

[8] William Ward Armstrong. Dependency structures of data base relation-
ships. In Proceedings of the IFIP Congress, pages 580–583, 1974.

[9] Mikhail A. Babin and Sergei O. Kuznetsov. Computing premises of a
minimal cover of functional dependencies is intractable. Discrete Applied
Mathematics, 161(6):742–749, 2013.

[10] Marianne Baudinet, Jan Chomicki, and Pierre Wolper. Constraint-
generating dependencies. J. Comput. Syst. Sci., 59(1):94–115, 1999.

26

[11] Karell Bertet and Bernard Monjardet. The multiple facets of the canonical
direct unit implicational basis. Theor. Comput. Sci., 411(22-24):2155–2166,
2010.

[12] Hendrik Blockeel, Toon Calders, Elisa Fromont, Bart Goethals, Adriana
Prado, , and Céline Robardet. A practical comparative study of data mining
query languages. In Sašo Džeroski, Bart Goethals, and Panče” Panov,
editors, Inductive Databases and Constraint-Based Data Mining, pages 59–
77. Springer New York, 2010.

[13] Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana
Prado, and Céline Robardet. An inductive database system based on virtual
mining views. Data Min. Knowl. Discov., 24(1):247–287, 2012.

[14] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios
Kementsietsidis. Conditional functional dependencies for data cleaning.
In Proceedings of the 23rd International Conference on Data Engineering,
ICDE ’07, pages 746–755, 2007.

[15] Toon Calders and Jef Wijsen. On monotone data mining languages. In
Proceedings of the 8th International Workshop on Database Programming
Languages, DBPL ’01, pages 119–132, 2001.

[16] Nathalie Caspard and Bernard Monjardet. The lattices of closure systems,
closure operators, and implicational systems on a finite set: A survey. Dis-
crete Applied Mathematics, 127(2):241–269, 2003.

[17] Brice Chardin, Emmanuel Coquery, Benjamin Gouriou, Marie Pailloux,
and Jean-Marc Petit. Query Rewriting for Rule Mining in Databases.
In Bruno Crémilleux, Luc De Raedt, Paolo Frasconi, and Tias Guns, ed-
itors, Languages for Data Mining and Machine Learning (LML) Work-
shop@ECML/PKDD 2013, pages 1–16, September 2013.

[18] Brice Chardin, Emmanuel Coquery, Marie Pailloux, and Jean-Marc Pe-
tit. RQL: An SQL-like Query Language for Discovering Meaningful Rules
(demo). In IEEE ICDM 2014, Shengzen, China, December 2014.

[19] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Discovering denial constraints.
Proc. VLDB Endow., 6(13):1498–1509, August 2013.

[20] János Demetrovics and Vu Duc Thi. Some remarks on generating Arm-
strong and inferring functional dependencies relation. Acta Cybernetica,
12(2):167–180, 1995.

[21] Wenfei Fan and Floris Geerts. Uniform dependency language for improving
data quality. IEEE Data Eng. Bull., 34(3):34–42, 2011.

[22] Lujun Fang and Kristen LeFevre. Splash: ad-hoc querying of data and
statistical models. In Proceedings of the 13th International Conference on
Extending Database Technology, EDBT ’10, pages 275–286, 2010.

27

[23] Peter A. Flach and Iztok Savnik. Database dependency discovery: A ma-
chine learning approach. AI Commun., 12(3):139–160, 1999.

[24] Frédéric Flouvat, Fabien De Marchi, and Jean-Marc Petit. The izi project:
Easy prototyping of interesting pattern mining algorithms. In New Fron-
tiers in Applied Data Mining, volume 5669 of LNCS, pages 1–15. Springer,
2010.

[25] Michael L. Fredman and Leonid Khachiyan. On the complexity of dualiza-
tion of monotone disjunctive normal forms. J. Algorithms, 21(3):618–628,
1996.

[26] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer,
1999.

[27] Lukasz Golab, Howard J. Karloff, Flip Korn, Avishek Saha, and Divesh
Srivastava. Sequential dependencies. PVLDB, 2(1):574–585, 2009.

[28] Lukasz Golab, Howard J. Karloff, Flip Korn, and Divesh Srivastava. Data
auditor: Exploring data quality and semantics using pattern tableaux.
PVLDB, 3(2):1641–1644, 2010.

[29] Georg Gottlob and Leonid Libkin. Investigations on Armstrong relations,
dependency inference, and excluded functional dependencies. Acta Cyber-
netica, 9(4):385–402, 1990.

[30] Jean-Louis Guigues and Vincent Duquenne. Familles minimales
d’implications informatives résultant d’un tableau de données binaires.
Math. Sci. Humaines, 24(95):5–18, 1986.

[31] Tias Guns, Siegfried Nijssen, and Luc De Raedt. Itemset mining: A
constraint programming perspective. Artif. Intell., 175(12-13):1951–1983,
2011.

[32] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE:
an efficient algorithm for discovering functional and approximate dependen-
cies. Comput. J., 42(2):100–111, 1999.

[33] Tomasz Imielinski and Heikki Mannila. A database perspective on knowl-
edge discovery. Communications of the ACM, 39(11):58–64, 1996.

[34] Stephen S. Intille, Kent Larson, Emmanuel Munguia Tapia, Jennifer S.
Beaudin, Pallavi Kaushik, Jason Nawyn, and Randy Rockinson. Using a
live-in laboratory for ubiquitous computing research. In PERVASIVE ’06,
pages 349–365, 2006.

[35] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasub-
ramanian. Metric functional dependencies. In ICDE, pages 1275–1278,
2009.

28

[36] Moshe Lichman. UCI machine learning repository, 2016.

[37] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of
functional dependencies and Armstrong relations. In EDBT 2000, pages
350–364, 2000.

[38] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Functional and ap-
proximate dependency mining: database and FCA points of view. J. Exp.
Theor. Artif. Intell., 14(2-3):93–114, 2002.

[39] Heikki Mannila and Kari-Jouko Räihä. Algorithms for inferring functional
dependencies from relations. Data and Knowldege Engineering, 12(1):83–
99, 1994.

[40] Heikki Mannila and Hannu Toivonen. Levelwise search and borders of
theories in knowledge discovery. DMKD, 1(3):241–258, 1997.

[41] MarketResearch.com. Worldwide relational database management systems
2012-2016 forecast, Aug 2012.

[42] Raoul Medina and Lhouari Nourine. A unified hierarchy for functional
dependencies, conditional functional dependencies and association rules.
In ICFCA, volume 5548 of LNCS, pages 98–113. Springer, 2009.

[43] Rosa Meo, Giuseppe Psaila, and Stefano Ceri. An extension to SQL for
mining association rules. Data Mining and Knowledge Discovery, 2(2):195–
224, 1998.

[44] Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux, Mehdi
Khiari, and Samir Loudni. A constraint-based language for declarative
pattern discovery. In Declarative Pattern Mining Workshop, ICDM 2011,
pages 1112–1119, 2011.

[45] Keisuke Murakami and Takeaki Uno. Efficient algorithms for dualizing
large-scale hypergraphs. CoRR, 1102.3813, 2011.

[46] Benjamin Négrevergne, Alexandre Termier, Marie-Christine Rousset, and
Jean-François Méhaut. Para miner: a generic pattern mining algorithm for
multi-core architectures. Data Min. Knowl. Discov., 28(3):593–633, 2014.

[47] Lhouari Nourine and Jean-Marc Petit. Extending Set-Based Dualization:
Application to Pattern Mining. In IOS Press, editor, ECAI 2012, August
2012.

[48] Lhouari Nourine and Jean-Marc Petit. Extended dualization: Application
to maximal pattern mining, Theor. Comput. Sci., 618, pages 107–121, 2016

[49] Carlos Ordonez and Sasi K. Pitchaimalai. One-pass data mining algorithms
in a DBMS with UDFs. In SIGMOD Conference, pages 1217–1220, 2011.

29

[50] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and
Felix Naumann. Data profiling with metanome. PVLDB, 8(12):1860–1871,
2015.

[51] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-
Peer Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann.
Functional dependency discovery: An experimental evaluation of seven al-
gorithms. PVLDB, 8(10):1082–1093, 2015.

[52] Jonathan Vincent, Pierre Martre, Benjamin Gouriou, Catherine Ravel,
Zhanwu Dai, Jean-Marc Petit, and Marie Pailloux. RulNet: A Web-
Oriented Platform for Regulatory Network Inference, Application to Wheat
–Omics Data. PlosOne, 10(5):20, May 2015.

[53] Jef Wijsen. Temporal dependencies. In Encyclopedia of Database Systems,
pages 2960–2966. 2009.

30

