
HAL Id: hal-01395079
https://hal.science/hal-01395079v1

Preprint submitted on 10 Nov 2016 (v1), last revised 8 Jan 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Therapeutic target discovery using Boolean network
attractors: updates from kali

Arnaud Poret

To cite this version:
Arnaud Poret. Therapeutic target discovery using Boolean network attractors: updates from kali.
2016. �hal-01395079v1�

https://hal.science/hal-01395079v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Therapeutic target discovery using Boolean
network attractors: updates from kali

Arnaud Poret

10 November 2016

Abstract

In a previous article, an algorithm for discovering therapeutic targets
in Boolean networks modeling disease mechanisms was introduced. In
the present article, the updates made on this algorithm, named kali, are
described. These updates are: i) the possibility to work on asynchronous
Boolean networks, ii) a smarter search for therapeutic targets, and iii) the
possibility to use multivalued logic. kali assumes that the attractors of a
dynamical system correspond to the phenotypes of the modeled biologi-
cal system. Given a logical model of a pathophysiology, either Boolean or
multivalued, kali searches for which biological components should be ther-
apeutically disturbed in order to reduce the reachability of the attractors
associated with pathological phenotypes, thus reducing the likeliness of
pathological phenotypes. kali is illustrated on a simple example network
and shows that it can find therapeutic targets able to reduce the likeliness
of pathological phenotypes. However, like any computational tool, kali
can predict but can not replace human expertise: it is an aid for coping
with the complexity of biological systems.

Copyright 2016 Arnaud Poret

This article is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/

arnaud.poret@gmail.com
IRCCyN – École Centrale de Nantes

1

https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents
1 Introduction 3

1.1 Handling asynchronous updating 3
1.2 Managing basin sizes for therapeutic purposes 4
1.3 Extending to multivalued logic 4

2 Methods 4
2.1 Additional definitions . 4
2.2 Handling asynchronous updating 5
2.3 Managing basin sizes for therapeutic purposes 5
2.4 Extending to multivalued logic 6
2.5 Example network . 7
2.6 Implementation, code availability and license 8

3 Results 8
3.1 Attractor sets . 8
3.2 Therapeutic bullets . 9

4 Conclusion 11

5 Appendices 13
5.1 Appendix 1: recall of previous concepts 13

5.1.1 Biological networks . 13
5.1.2 Boolean networks . 13
5.1.3 Definitions . 14

5.2 Appendix 2: multivalued case . 15
5.2.1 Attractor sets . 15
5.2.2 Therapeutic bullets . 16

5.3 Appendix 3: core of kali . 18
5.3.1 Defined types . 18
5.3.2 Parameters . 18
5.3.3 Functions . 19

2

1 Introduction
In a previous article, an algorithm for in silico therapeutic target discovery was
presented in its first version [1]. In the present article, updates made on this
algorithm, named kali, are described. The complete background was introduced
in the previous article whose some important concepts are recalled in Appendix
5.1 page 13.

kali still belongs to the logic-based modeling formalism [2–4], mainly Boolean
networks [5, 6], and keeps its original goal: searching for therapeutic interven-
tions aimed at healing the supplied pathologically disturbed biological network.
Such a network is intended to model the mechanisms of the studied disease and is
on what kali operates. In this work, therapeutic interventions are combinations
of targets, these combinations being named bullets. Targets are components
of the considered network, such as enzymes or transcription factors, and can
be subjected to inhibitions or activations. This is what bullets specify: which
targets and which action to apply on them.

The pivotal assumption on which kali is based is that the attractors of a
dynamical system, such as a Boolean network, are associated with the pheno-
types of the modeled biological system, such as a signaling pathway. In other
words: attractors model phenotypes [7]. This assumption was successfully used
in several works [8–14] and makes sense since the steady states of a dynamical
system, the attractors, should correspond to the steady states of the modeled
biological system, the phenotypes.

In the mean time, various works using logical modeling with applications
in therapeutic innovation was published. For example, Melody Morris and col-
leagues used fuzzy logic through their constrained fuzzy logic formalism [15].
This formalism aims at giving more quantitative abilities to logical models.
They applied this approach on a molecular interaction network dedicated to
hepatocellular carcinoma microenvironment. They successfully predicted the
impact of several combinations of kinase inhibitors on key transcription factors.
An other example is the work of Hyunho Chu and colleagues [16]. They built
a molecular interaction network involved in colorectal tumorigenesis and stud-
ied its dynamics, particularly its attractors and their basins, with stochastic
Boolean modeling. They highlighted what they named the flickering, that is
the displacement of the system from one basin to an other one due to stochastic
noise. They suggest that flickering is involved in pushing the system from a
physiological state to a pathological one during colorectal tumorigenesis.

Concerning kali, three updates were done: i) adding the possibility to work
on asynchronous Boolean networks, ii) making the selection of therapeutic bul-
lets smarter, and iii) adding the possibility to use multivalued logic.

1.1 Handling asynchronous updating
To compute the behavior of a discrete dynamical system such as a Boolean
network, its variables have to be iteratively updated. These iterative updates,
also named time steps, can be made synchronously or not [17]. If all the variables
are simultaneously updated at each iteration then the network is synchronous,
otherwise it is asynchronous.

Compared to asynchronous updating, synchronous updating is easier to com-
pute. However, when a biological network is simulated synchronously, it is as-

3

sumed that all its components evolve simultaneously, which can be not accept-
able depending on what is modeled. The asynchronous updating is frequently
built so that only one randomly selected variable is updated at each iteration.
This allows to capture two important features: i) biological entities do not nec-
essarily evolve simultaneously, and ii) noise due to randomness can affect when a
biological interaction takes place [18–20]. This is particularly true at the molec-
ular scale, such as with signaling pathways, where macromolecular crowding
and Brownian motion can impact the firing of biochemical reactions [21].

Therefore, the choice between a synchronous or an asynchronous updating
may depend on the model, the computational resources and the acceptability of
the assumptions implied by synchrony. Knowing that the luxury is to have the
choice, kali can now use synchronous and asynchronous updating.

1.2 Managing basin sizes for therapeutic purposes
Until now, kali requires therapeutic bullets to remove all the attractors associ-
ated with pathological phenotypes, named pathological attractors. This crite-
rion for selecting therapeutic bullets is somewhat drastic. A smoother criterion
should enable to consider more targeting strategies, and then more possibilities
for counteracting diseases. However, it could also unravel less effective thera-
peutic bullets, but being too demanding potentially leads to no results and loss
of nonetheless interesting findings.

The therapeutic potential of bullets could be assessed by estimating their
ability at reducing the size of the pathological basins, namely the basins of the
pathological attractors. This is a more permissive criterion since therapeutic
bullets no longer have to necessarily remove the pathological attractors. Re-
ducing the size of a pathological basin renders the corresponding pathological
attractor less reachable, and then the associated pathological phenotype less
likely. This new criterion includes the previous one since removing an attractor
means reducing its basin to the empty set. Consequently, therapeutic bullets
obtainable with the previous criterion are still obtainable.

1.3 Extending to multivalued logic
One of the main limitations of Boolean models is that variables can take only two
values, which can be quite simplistic. Depending on what is modeled, such as
activity level of enzymes or abundance of gene products, considering more than
two levels can be more appropriate. Without leaving the logic-based modeling
formalism, one solution is to extend Boolean logic to multivalued logic [22]. With
multivalued logic, a finite number h of values in [0; 1] is used, allowing variables
to model more than two levels. For example, the level 0.5 can be introduced
in order to model partial activations of enzymes, or moderate concentrations of
gene products.

2 Methods

2.1 Additional definitions
In addition to the concepts defined in the previous article [1], and briefly recalled
in Appendix 5.1 page 13, here are some supplementary definitions:

4

• physiological state space: the state space Sphysio of the physiological
variant

• pathological state space: the state space Spatho of the pathological
variant

• testing state space: the state space Stest of the pathological variant
under the influence of a bullet

• physiological basin: the basin Bphysio,i of a physiological attractor
aphysio,i

• pathological basin: the basin Bpatho,i of a pathological attractor apatho,i

• n-bullet: a bullet made of n targets

2.2 Handling asynchronous updating
To implement asynchronous updating, the corresponding algorithms of BoolNet
were adapted. BoolNet is an R1 package for generation, reconstruction and
analysis of Boolean networks [23]. Asynchronous updating is implemented so
that only one randomly selected variable is updated at each iteration. This
random selection is made according to a uniform distribution and implies that
the network is no longer deterministic. To do so, given a Boolean network,
BoolNet uses the three following functions:

• AsynchronousAttractorSearch: this function computes the attractor
set of the supplied Boolean network by using the two following functions

• ForwardSet: this function computes the forward reachable set of a state
and considers it as a candidate attractor

• ValidateAttractor: this function checks if a forward reachable set is a
terminal strongly connected component (terminal SCC), that is an attrac-
tor

The forward reachable set Fwdx ⊂ S of a state x ∈ S is the set made of the
states reachable from x, including x itself. A terminal SCC is a set tSCC ⊂ S
made of the forward reachable sets of its states: ∀x ∈ tSCC, Fwdx ⊂ tSCC.
As a consequence, when a terminal SCC is reached, the system can not escape
it: this is an attractor in the sense of asynchronous Boolean networks [24].
Asynchronous Boolean networks with random updating are not deterministic:
their attractors are no longer deterministic sequences of states, namely cycles,
but terminal SCCs. To find an attractor, a long random walk is performed in
order to reach an attractor with high probability. This candidate attractor is
then validated, or not, by checking if it is a terminal SCC.

2.3 Managing basin sizes for therapeutic purposes
To implement the new criterion for selecting therapeutic bullets, kali considers a
bullet as therapeutic if it increases card

⋃
Bphysio,i in Stest without creating de

1https://www.r-project.org/

5

https://www.r-project.org/

novo attractors. Knowing that the attractors are either physiological or patho-
logical, increasing card

⋃
Bphysio,i is equivalent to decreasing card

⋃
Bpatho,i.

The goal is to increase the physiological part of the pathological state space, or
equivalently to decrease its pathological part. Consequently, a pathologically
disturbed biological network receiving such a therapeutic bullet tends to, but
not necessarily reaches, an overall physiological behavior. However, as with the
previous criterion, it does not ensure that all the physiological attractors are
preserved. A fortiori, it does not ensure that their basin remains unchanged.
This means that a therapeutic bullet can also alter the reachability of the physi-
ological attractors. Nevertheless, as with the previous criterion, this is a matter
of choice between a therapeutic bullet or not.

The therapeutic potential of a bullet is expressed by its gain. It is displayed
as follow: x% → y% where card

⋃
Bphysio,i = x% of card Spatho and y% of

card Stest. Therefore, in order to increase the physiological part of the patho-
logical state space, a therapeutic bullet has to make y ≥ x. Note that y = x
is allowed. In this particular case, it is conceivable that several pathological
basins changed in size without changing the size of their union. In other words,
the composition of the pathological part changed while its size did not. This
can be therapeutic if, for example, the basin of a weakly pathological attractor
increased at the expense of the basin of a heavily pathological attractor.

The increase of the physiological part can be subjected to a threshold δ:
y ≥ x becomes y − x ≥ δ. As x and y, δ is expressed in % of card Spatho/test.
This threshold is introduced to allow the stringency of kali to be tuned. By the
way, using this threshold also decreases the probability to obtain misassessed
therapeutic bullets due to roundoff errors, or sampling errors when the state
space is too big to be wholly computed.

A therapeutic bullet as defined by the previous criterion, namely which re-
moves all the pathological attractors, makes de facto card

⋃
Bphysio,i = 100%

of card Stest. As already mentioned, the previous criterion is included in this
new one: therapeutic bullets obtainable with the former are also obtainable
with the latter.

2.4 Extending to multivalued logic
Multivalued logic requires suitable operators to be introduced. One solution is
to use a mathematical formulation of the Boolean operators which also works
with multivalued logic, just as the Zadeh operators. These operators are a
generalization of the Boolean ones proposed for fuzzy logic by its pioneer Lotfi
Zadeh [25]. Their mathematical formulation is:

x ∧ y = min(x, y)

x ∨ y = max(x, y)

¬x = 1− x

With a h-valued logic, card S = hn, which raises more computational diffi-
culties than with Boolean logic. The same applies to the testable bullets since
there are hr possible modality arrangements and then (n! · hr)/(r! · (n − r)!)
possible bullets, where r is the number of targets per bullet and n the number
of nodes in the network. To illustrate how kali works with multivalued logic

6

without overloading it, a 3-valued logic is used where {0, 0.5, 1} is the domain
of value: xi ∈ {0, 0.5, 1}. 0 and 1 have the same meaning as in Boolean logic
while 0.5 is an intermediate truth degree which can be seen as an intermedi-
ate level of activity or abundance depending on what is modeled. By the way,
S = {0, 0.5, 1}n and modai ∈ {0, 0.5, 1}.

2.5 Example network
To illustrate what results from the updates made on kali, a fictive network is
used. This fictive network is specifically designed for illustration and is not
intended to model a real biological phenomenon. This example network is de-
picted in Figure 1 page 7. Among the three updates made on kali, only the
asynchronous updating and the management of basin sizes are illustrated. Mul-
tivalued logic is illustrated in Appendix 5.2 page 15.

Figure 1: This network, running in a fictive cell, controls the execution of a task
according to two inputs: i) the do instruction, which tells the task to be performed,
and ii) energy supply. The task consumes energy and it must not be performed if
no energy is available, even if the do instruction is sent. The task is initiated by an
effector which is maintained inactive by a sequester. The do instruction activates a
releaser which suppresses the sequestering activity of the sequester, thus releasing the
effector. However, to initiate the task, in addition to be released the effector has also
to be activated by an activator. When released and activated, the effector initiates
the task. To ensure that the task is performed only if energy is available, a locker
maintains the activator in an inactive state when there is no energy, even if the do
instruction is there. Concerning the factory, it ensures that energy is supplied.

Below are the Boolean equations encoding the example network:

7

do = do

factory = factory

energy = (energy ∧ ¬task) ∨ factory
locker = ¬energy

releaser = do

sequester = ¬releaser
activator = do ∧ ¬locker
effector = activator ∧ ¬sequester

task = effector

The do instruction and the factory are the two inputs: they are equal to
themselves. The equation of energy tells that energy is present if the factory is
active, even if the task is running: the factory has a sufficient capacity. However,
if the factory is not active, energy disappears as soon as the task is initiated.
Concerning the activator and the effector, their equations tell that their respec-
tive inhibitor takes precedence: whatever is the state of the other nodes, if the
inhibitor is active then the target is not.

The physiological variant fphysio is the network as described above. The
pathological variant fpatho is the network plus a constitutive inactivation of
the locker: the execution of the task no longer considers if sufficient energy is
available. Consequently, flocker becomes locker = 0 in fpatho.

2.6 Implementation, code availability and license
kali, together with the example network, is implemented in Go1, tested with
Go version go1.7.3 linux/amd64 under Arch Linux2. It is licensed under the
GNU General Public License3 and freely available on GitHub4 at https://
github.com/arnaudporet/kali. The core of kali in pseudocode can be found
in Appendix 5.3 page 18.

3 Results

3.1 Attractor sets
The example network is computed asynchronously over the whole state space
using Boolean logic. The resulting attractors can be studied according to four
variables: the do instruction, the factory, the locker and the task. Note that
in the initial conditions, energy can be present without a running factory. In
this case, if the do instruction is sent then the energy is consumed by the task
but not remade by the factory. With the physiological variant, the locker is
expected to stop the task. However, with the pathological variant, an abnormal
behavior is expected since the locker is constitutively inactivated. Below are the
computed attractors:

1https://golang.org
2https://www.archlinux.org
3https://www.gnu.org/licenses/gpl.html
4https://github.com

8

https://github.com/arnaudporet/kali
https://github.com/arnaudporet/kali
https://golang.org
https://www.archlinux.org
https://www.gnu.org/licenses/gpl.html
https://github.com

• Aphysio:

attractor basin (% of card Sphysio) do factory energy locker task

aphysio1 17.8% 0 0 0 1 0
aphysio2 7.2% 0 0 1 0 0
aphysio3 25% 0 1 1 0 0
aphysio4 25% 1 0 0 1 0
aphysio5 25% 1 1 1 0 1

• Apatho:

attractor basin (% of card Spatho) do factory energy locker task

apatho1 18.4% 0 0 0 0 0
aphysio2 6.6% 0 0 1 0 0
aphysio3 25% 0 1 1 0 0
apatho2 25% 1 0 0 0 1
aphysio5 25% 1 1 1 0 1

With the physiological variant, the behavior is as expected: the task runs
only if the do instruction is sent and only if the factory is able to remade the
consumed energy. With the pathological variant, two pathological phenotypes
represented by apatho1 and apatho2 appear. apatho1 is pathological because the
locker is inactive while there is no available energy. However, it is weakly patho-
logical since the do instruction is not sent: an operational locker is not manda-
tory since there is no task to stop. In contrast, apatho2 is heavily pathological
since an operational locker is required to stop the task in absence of energy sup-
ply. In the fictive cell bearing this example network, apatho2 could drain all the
energy content and then bring the cell to thermodynamical death. Moreover,
apatho2 should not be neglected since its basin occupies 25% of the pathological
state space.

3.2 Therapeutic bullets
Bullets are assessed for their therapeutic potential on the pathological variant
fpatho according to the new criterion. The goal is to decrease the size of the
pathological basins Bpatho,i. All the bullets made of one to two targets are
computed with a threshold of 5%. This choice of the threshold value is quite
arbitrary. It tells that if the physiological part

⋃
Bphysio,i of the pathological

state space Spatho occupies x% of it, then to be therapeutic a bullet has to
bring this value above (x + 5)%. Therefore, the increases below this threshold
are considered not significant by kali. Even the choice to use a threshold could
be arbitrary, as discussed in the Methods section page 6.

Knowing that card
⋃
Bphysio,i = 56.6% of card Spatho, with a threshold

of 5% the 1, 2-bullets have to make card
⋃
Bphysio,i ≥ (56.6 + 5)% = 61.6%

of card Stest to be considered therapeutic. Below are the returned therapeutic
bullets:

9

• 1-therapeutic bullets:

bullet gain Bphysio1 Bphysio2 Bphysio3 Bphysio4 Bphysio5 Bpatho1 Bpatho2

do[0] 56.6% → 64.4% 0% 14.4% 50% 0% 0% 35.5% 0%
factory[1] 56.6% → 100% 0% 0% 50% 0% 50% 0% 0%

• 2-therapeutic bullets:

bullet gain Bphysio1 Bphysio2 Bphysio3 Bphysio4 Bphysio5 Bpatho1 Bpatho2

do[0] factory[1] 56.6% → 100% 0% 0% 100% 0% 0% 0% 0%
do[1] factory[1] 56.6% → 100% 0% 0% 0% 0% 100% 0% 0%
do[0] energy[1] 56.6% → 100% 0% 50% 50% 0% 0% 0% 0%
do[0] locker[0] 56.6% → 64.1% 0% 14.1% 50% 0% 0% 35.9% 0%
do[0] releaser[0] 56.6% → 62.9% 0% 12.9% 50% 0% 0% 37.1% 0%
do[0] sequester[1] 56.6% → 62.5% 0% 12.5% 50% 0% 0% 37.5% 0%
do[0] activator[0] 56.6% → 64.8% 0% 14.8% 50% 0% 0% 35.2% 0%
do[0] effector[0] 56.6% → 67.8% 0% 17.8% 50% 0% 0% 32.2% 0%
do[0] task[0] 56.6% → 73.2% 0% 23.2% 50% 0% 0% 26.8% 0%

factory[1] energy[1] 56.6% → 100% 0% 0% 50% 0% 50% 0% 0%
factory[1] locker[0] 56.6% → 100% 0% 0% 50% 0% 50% 0% 0%

where x[y] means that the variable x has to be set to the value y. For example, the bullet do[0] factory[1] tells that the do instruction
has to be abolished while the factory has to be maintained active.

10

All the returned therapeutic bullets not removing all the pathological at-
tractors exhibit the ability to suppress the basin of apatho2 while increasing the
one of apatho1. Certainly, removing all the pathological attractors should be
better, but knowing the apatho2 is more pathological than apatho1, such ther-
apeutic bullets can nevertheless be interesting. With the previous criterion,
namely removing all the pathological attractors, these therapeutic bullets are
not obtainable, thus highlighting fewer therapeutic strategies.

Some of the found therapeutic bullets enable physiological attractors re-
quired by the pathological variant to react properly to the do instruction. For
example, the bullet factory[1] enables aphysio3 and aphysio5 which correspond
respectively to “no do, no task” and “do the task, energy supply”. However, the
remaining of the therapeutic bullets, such as do[0] releaser[0] or do[1] factory[1],
either disable or force the do instruction, thus either suppressing or forcing the
task. A network which can not do the task or, at the opposite, which perma-
nently does it, may not be therapeutically interesting even if energy is supplied.

None of the found therapeutic bullets suggest to reverse the constitutive
inactivation of the locker by making it constitutively active. This highlight that
applying the opposite action of the pathological disturbance is not necessarily
a solution, which can appear counterintuitive. This might be due to the fact
that biological entities subjected to pathological disturbances belong to complex
networks, resulting in behaviors which can not be predicted by mind [26, 27].
This is where computational tools, and their growing computing capabilities,
can help owing to their integrative power [28–32].

Also, none of the found therapeutic bullets allow the recovery of all the
physiological attractors: there are no golden bullets. In a general manner, the
components of a biological network should be able to take several states, such as
enzymes which should be active when suitable. Consequently, healing a patho-
logically disturbed biological network by maintaining some of its components in
a particular state should not allow the recovery of a complete and healthy be-
havior. This is a limitation of the method implemented in kali. This limitation
is common in biomedicine while not necessarily being an issue. For example,
statins are well known lipid-lowering drugs widely used in cardiovascular dis-
eases with proven benefits [33, 34]. They inhibit an enzyme, the HMG-CoA
reductase, and they do it constantly, just as the targets are modulated in the
therapeutic bullets returned by kali. The HMG-CoA reductase is component of
a complex metabolic network and maintaining it in an inhibited state should
not allow this network to run properly, maybe causing some adverse effects.
Nevertheless, such as with all drugs, this is a matter of benefit-risk ratio. All of
this is to say that there are no perfect method for counteracting diseases and
that computational tools, such as kali, can help scientists but can certainly not
replace their expertise. Human expertise is mandatory to assess the concrete
meaning and usability of the results, and ultimately to take decisions.

4 Conclusion
kali can now work on asynchronous Boolean networks, in addition to syn-
chronous ones. This is probably the most important update which had to be
done. Indeed, the asynchronous updating is frequently used by biomodelers
since it is supposed to be more realistic, as discussed in the Introduction section

11

page 3. Therefore, a computational tool aimed at working on models built by
the scientific community, such as kali, has to handle this updating scheme. It
should be noted that there are more than one asynchronous updating scheme.
The one implemented in kali is the most popular and is named the general asyn-
chronous updating: one randomly selected variable is updated at each iteration.
However, other asynchronous updating methods exist. For example, with the
random order updating, all the variables are updated at each iteration but in a
randomly built order. Implementing various asynchronous updating schemes in
kali may be a required future improvement.

kali now uses a new criterion for selecting therapeutic bullets which brings
a wider range of targeting strategies intended to push pathological behaviors
toward physiological ones. This new criterion is based on a more permissive
assumption stating that reducing the reachability of pathological attractors is
therapeutic. For an in silico tool, such as kali, being a little bit more permissive
may be important since theoretical findings have to outlive the bottleneck sepa-
rating prediction to reality. With a too strict assessment of therapeutic bullets,
the risk of highlighting too few candidate targets, or to miss some interesting
ones, could be hight. Moreover, predicted does not necessarily mean true: an
in silico prediction of apparently poor interest can reveal itself of great interest,
and vice versa.

This new criterion also brings a finer assessment of therapeutic bullets since
all the percentages between card

⋃
Bphysio,i in Spatho and 100% in Stest are

considered. With the previous criterion, the only therapeutic potential was
card

⋃
Bphysio,i = 100% in Stest, thus reducing the assessment to therapeutic

or not. However, things are not necessarily so dichotomous but rather nuanced,
so the assessment of therapeutic bullets should be nuanced too.

kali can now compute with multivalued logic. Allowing variables to take
an arbitrary finite number of values should enable to more accurately model
biological processes and produce more fine-tuned therapeutic bullets. However,
this accuracy and fine-tuning are at the cost of an increased computational
requirement. Indeed, the cardinality of the state space depends on the size
of the model and the used logic. Therefore, the size of the model and the
used logic should be balanced: the smaller the model is, the more variables
should be finely valued. For example, for an accurate therapeutic investigation,
the model should only contain the essential and specific pieces of the studied
pathophysiology, modeled by a finely valued logic. On the other hand, for
a broad therapeutic investigation, a more exhaustive model can be used but
modeled by a coarse-grained logic. Finally, it should be noted that the ultimate
multivalued logic is the infinitely valued one, which is fuzzy logic [35]. With
fuzzy logic, the whole [0; 1] is used to valuate variables, which might bring the
best accuracy for the qualitative modeling formalism [36–38].

Two additional improvements are envisioned for kali. The first one is to
allow de novo attractors to appear in Atest. For example, it is conceivable
that a bullet greatly decreases the pathological basins while creating a new
attractor not belonging to Aphysio nor to Apatho. Such a de novo attractor
might be defined as not physiological, and then pathological. However, if it is
weakly pathological and induced by a bullet which greatly decreases the basin
of other, and heavier, pathological attractors, such a case should be allowed to
be investigated.

The second improvement is to allow partial matching when checking if an

12

attractor is associated with a physiological phenotype by comparing it to the
physiological attractors. Currently, an attractor which does not match a physi-
ological attractor is considered pathologic. However, it is conceivable that some
variables not exhibiting a physiological behavior in an attractor do not patholog-
ically impact the associated phenotype. To allow such a case to be considered,
some variables within attractors should be allowed to not be matched when
assessing the associated phenotype. This suggests the concept of decisive vari-
ables. Decisive variables would be variables whose the behavior in the attractors
is sufficient to biologically interpret the associated phenotype. Therefore, kali
could allow non-decisive variables to not be matched. Ultimately, this could
allow the modeler to specify himself what a physiological attractor is without
computing a physiological variant.

5 Appendices

5.1 Appendix 1: recall of previous concepts
5.1.1 Biological networks

A network is a digraph G = (V,E) where V = {v1, . . . , vn} is the set containing
the nodes and E = {(vi,1, vj,1), . . . , (vi,m, vj,m)} ⊂ V 2 the set containing the
edges. In practice, nodes represent entities and edges represent binary relations
R ⊂ V 2 involving them: vi R vj [39]. It indicates that the node vi exerts an
influence on the node vj . For example, in gene regulatory networks [40], vi can
be a transcription factor while vj a gene product. The edges are frequently
signed so that they indicate if vi exerts a positive or a negative influence on vj ,
such as inhibitions or activations.

5.1.2 Boolean networks

A Boolean network is a network where nodes are Boolean variables xi and edges
(xi, xj) the is input of relation: xi is input of xj . Each xi has bi ∈ [[0, n]] inputs.
Depending on the updating scheme, at each iteration k ∈ [[k0, kend]], one or more
xi are updated using their associated Boolean function fi and their inputs, as
in the following pseudocode representing a synchronous updating:
for k ← k0, . . . , kend

x1 ← f1(x1,1, . . . , x1,b1)
...
xn ← fn(xn,1, . . . , xn,bn)

end for
which can be written in a more concise form:
for k ← k0, . . . , kend

x← f(x)
end for
where f = (f1, . . . , fn) is the Boolean transition function and x = (x1, . . . , xn)
the state vector. The value of x belongs to the state space S = {0, 1}n which is
the set containing the possible states.

The set A = {a1, . . . , ap} containing the attractors is the attractor set. An
attractor ai is a collection of states (x1, . . . ,xq) such that once the system

13

reaches a state xj ∈ ai, it can subsequently visit the states of ai and no other
ones: the system can not escape. The set Bi ⊂ S containing the x ∈ S from
which ai can be reached is its basin of attraction, or simply basin.

5.1.3 Definitions

• physiological phenotype: A phenotype which does not impair the life
quantity /quality of the organism which exhibits it.

• pathological phenotype: A phenotype which impairs the life quantity
/quality of the organism which exhibits it.

• variant (of a biological network): Given a biological network, a variant
is one of its versions, namely the network plus eventually some modifica-
tions.

• physiological variant: A variant which produces only physiological phe-
notypes. This is the biological network as it should be, namely the one of
healthy organisms.

• pathological variant: A variant which produces at least one pathological
phenotype, or which fails to produce at least one physiological phenotype.
This is a dysfunctional version of the biological network, namely a version
found in ill organisms.

• physiological attractor set: The attractor set Aphysio of the physiolog-
ical variant.

• pathological attractor set: The attractor set Apatho of the pathological
variant.

• physiological Boolean transition function: The Boolean transition
function fphysio of the physiological variant.

• pathological Boolean transition function: The Boolean transition
function fpatho of the pathological variant.

• physiological attractor: An attractor ai such that ai ∈ Aphysio. Note
that it does not exclude the possibility that ai ∈ Apatho in addition to
ai ∈ Aphysio.

• pathological attractor: An attractor ai such that ai /∈ Aphysio.

• modality: The perturbation modai ∈ {0, 1} applied on a node vj of the
network, either activating (modai = 1) or inactivating (modai = 0). At
each iteration, modai overwrites fj(x) making xj = modai.

• target: A node targi of the network on which a modai is applied.

• bullet: A couple (ctarg, cmoda) where ctarg = (targ1, . . . , targr) is a com-
bination without repetition of targets and cmoda = (moda1, . . . ,modar)
an arrangement with repetition of modalities. modai is intended to be
applied on targi.

14

5.2 Appendix 2: multivalued case
Below is the multivalued version of the example network:

do = do

factory = factory

energy = max(min(energy, 1− task), factory)

locker = 1− energy
releaser = do

sequester = 1− releaser
activator = min(do, 1− locker)
effector = min(activator, 1− sequester)

task = effector

where the Boolean operators are replaced by the Zadeh ones. To take advantage
of multivalued logic, flocker becomes locker = min(1 − energy, 0.5) in fpatho.
This equation tells that the locker is actionable when required, namely when
there is no energy, but that it is unable at being fully operational due to some
pathological defects: the maximal value of flocker in fpatho is 0.5. As mentioned
in the article, 0.5 can be interpreted as an incomplete activation, or an incom-
plete inhibition depending on what is modeled. Consequently, the activator is
at most partly inhibited by the locker when no energy is available, allowing the
task to be nevertheless performed. However, the task itself will be moderately
performed.

5.2.1 Attractor sets

Below are the computed attractors:

• Aphysio:

attractor basin (% of card Sphysio) do factory energy locker task

aphysio1 6.1% 0 0 0 1 0
aphysio2 4.5% 0 0 0.5 0.5 0
aphysio3 2.5% 0 0 1 0 0
aphysio4 9.7% 0 0.5 0.5 0.5 0
aphysio5 1.8% 0 0.5 1 0 0
aphysio6 10.8% 0 1 1 0 0
aphysio7 6.5% 0.5 0 0 1 0
aphysio8 4.8% 0.5 0 0.5 0.5 0.5
aphysio9 10.3% 0.5 0.5 0.5 0.5 0.5
aphysio10 10.6% 0.5 1 1 0 0.5
aphysio11 7.3% 1 0 0 1 0
aphysio12 3.2% 1 0 0.5 0.5 0.5
aphysio13 10.3% 1 0.5 0.5 0.5 0.5
aphysio14 11.6% 1 1 1 0 1

• Apatho:

15

attractor basin (% of card Spatho) do factory energy locker task

apatho1 6.2% 0 0 0 0.5 0
aphysio2 4.7% 0 0 0.5 0.5 0
aphysio3 2.2% 0 0 1 0 0
aphysio4 9.7% 0 0.5 0.5 0.5 0
aphysio5 1.8% 0 0.5 1 0 0
aphysio6 10.8% 0 1 1 0 0
apatho2 5.5% 0.5 0 0 0.5 0.5
aphysio8 5.8% 0.5 0 0.5 0.5 0.5
aphysio9 10.3% 0.5 0.5 0.5 0.5 0.5
aphysio10 10.6% 0.5 1 1 0 0.5
apatho3 7.3% 1 0 0 0.5 0.5
aphysio12 3.2% 1 0 0.5 0.5 0.5
aphysio13 10.3% 1 0.5 0.5 0.5 0.5
aphysio14 11.6% 1 1 1 0 1

aphysio1, aphysio3, aphysio6, aphysio11 and aphysio14 are the physiological attrac-
tors found in the Boolean case, with a different numbering due to additional
attractors coming from multivalued logic. Indeed, given that {0, 1} ⊂ {0, 0.5, 1}
and that the Zadeh operators also work with Boolean logic, the Boolean results
are still obtainable. The same does not apply to the pathological attractors
because flocker in fpatho differs between the Boolean and multivalued case.

For example, aphysio13 indicates that the do instruction is sent while energy
is partly supplied. Consequently, the locker is partly activated resulting in a
partial inhibition of the activator. The task is thus moderately performed de-
spite full do instruction. Concerning the pathological attractors, as an example,
apatho3 indicates that the do instruction is sent in total absence of energy sup-
ply. Consequently, the locker should be fully activated to prevent the task to
be performed. However, due to some pathological defects, it is at most partly
activated. Therefore, the task is performed in total absence of energy. However,
since the locker is partly operational, the task is not performed at its maximum
rate.

Among the pathological attractors, apatho1 can be considered weakly patho-
logical. In apatho1, the locker should be fully activated since there is no energy.
However, there is no do instruction and therefore no task to stop. On the other
hand, apatho2 and apatho3 are more pathological since the task is performed while
no energy is available.

5.2.2 Therapeutic bullets

Below are the returned therapeutic bullets:

16

• 1-therapeutic bullets:

bullet gain Bphysio1 Bphysio2 Bphysio3 Bphysio4 Bphysio5 Bphysio6 Bphysio7 Bphysio8 Bphysio9

Bphysio10 Bphysio11 Bphysio12 Bphysio13 Bphysio14 Bpatho1 Bpatho2 Bpatho3

factory[0.5] 81% → 100% 0% 0% 0% 29.3% 6.1% 0% 0% 0% 32.2%
0% 0% 0% 32.4% 0% 0% 0% 0%

factory[1] 81% → 100% 0% 0% 0% 0% 0% 35.4% 0% 0% 0%
32.2% 0% 0% 0% 32.4% 0% 0% 0%

• 2-therapeutic bullets:

bullet gain Bphysio1 Bphysio2 Bphysio3 Bphysio4 Bphysio5 Bphysio6 Bphysio7 Bphysio8 Bphysio9

Bphysio10 Bphysio11 Bphysio12 Bphysio13 Bphysio14 Bpatho1 Bpatho2 Bpatho3

do[0] factory[0.5] 81% → 100% 0% 0% 0% 84% 16% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0%

do[0] factory[1] 81% → 100% 0% 0% 0% 0% 0% 100% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0%

do[0.5] factory[0.5] 81% → 100% 0% 0% 0% 0% 0% 0% 0% 0% 100%
0% 0% 0% 0% 0% 0% 0% 0%

do[0.5] factory[1] 81% → 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
100% 0% 0% 0% 0% 0% 0% 0%

do[1] factory[0.5] 81% → 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 100% 0% 0% 0% 0%

do[1] factory[1] 81% → 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 100% 0% 0% 0%

do[0] energy[1] 81% → 100% 0% 0% 34.9% 0% 32.1% 33% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0%

do[0] task[0] 81% → 89% 0% 11.6% 12.3% 21.3% 10.8% 33% 0% 0% 0%
0% 0% 0% 0% 0% 11% 0% 0%

do[0.5] task[0.5] 81% → 89.4% 0% 0% 0% 0% 0% 0% 0% 24.3% 32.1%
33% 0% 0% 0% 0% 0% 10.6% 0%

factory[0] energy[0.5] 81% → 100% 0% 35.4% 0% 0% 0% 0% 0% 32.2% 0%
0% 0% 32.4% 0% 0% 0% 0% 0%

factory[0.5] energy[0.5] 81% → 100% 0% 0% 0% 35.4% 0% 0% 0% 0% 32.2%
0% 0% 0% 32.4% 0% 0% 0% 0%

factory[1] energy[1] 81% → 100% 0% 0% 0% 0% 0% 35.4% 0% 0% 0%
32.2% 0% 0% 0% 32.4% 0% 0% 0%

factory[1] locker[0] 81% → 100% 0% 0% 0% 0% 0% 35.4% 0% 0% 0%
32.2% 0% 0% 0% 32.4% 0% 0% 0%

17

For example, the therapeutic bullet factory[1] locker[0] may be interesting.
It suppresses all the pathological attractors while maintaining three physiolog-
ical attractors allowing the network to properly respond to the three possible
levels of the do instruction. Moreover, the basins of these three physiologi-
cal attractors, namely aphysio6, aphysio10 and aphysio14, equally span the state
space, making them equally reachable. On the other hand, the therapeutic
bullet do[0.5] factory[0.5] seems to be less interesting. While this bullet also
suppresses all the pathological attractors, it enables only one physiological at-
tractor. In this physiological attractor, namely aphysio9, all the variables are at
their intermediate level. Consequently, the network can not fulfill its switching
function.

5.3 Appendix 3: core of kali
Below is the core of kali in pseudocode derived from its Go1 sources, freely
available on GitHub2 at https://github.com/arnaudporet/kali under the
GNU General Public License3.

5.3.1 Defined types

structure Attractor// an attractor
field Name// its name, either aphysio or apatho
field Basin// the size of its basin
field States// its states

end structure

structure Bullet// a bullet
field Targ// its target combination, namely ctarg
field Moda// its modality arrangement, namely cmoda

field Gain// its gain
field Cover// the size of each basin under its influence

end structure

5.3.2 Parameters

nodes// the node names, ex: (PI3K,Akt,mTOR, . . .)
Ω// the domain of the used logic, ex: {0, 0.5, 1} for three-valued logic
sync// use synchronous updating (1) or not (0)
whole// compute the whole state space (1) or not (0)
maxS// the maximal size of the sample of the state space when whole = 0
maxk// the number of iterations for a random walk (asynchronous only)
ntarg// the number of targets per bullet
maxtarg// the maximum number of target combinations to test
maxmoda// the maximum number of modality arrangements to test
δ// the threshold for a bullet to be considered therapeutic

1https://golang.org
2https://github.com
3https://www.gnu.org/licenses/gpl.html

18

https://github.com/arnaudporet/kali
https://golang.org
https://github.com
https://www.gnu.org/licenses/gpl.html

5.3.3 Functions

function DoTheJob(fphysio,fpatho, ntarg,maxtarg,maxmoda,maxS ,maxk, δ,
sync,nodes,Ω, whole)
// do the job, this is the main function
n← Size(nodes)// dimension of the state space S
select whole

case 0// use a sample of S
S ← GenArrangs(Ω, n,maxS)

case 1// use all S
S ← GenSpace(Ω, n)

end select
Aphysio ← ComputeAttractorSet(fphysio, S,∅,maxk, 0, sync, ∅)
Apatho ← ComputeAttractorSet(fpatho, S,∅,maxk, 1, sync,Aphysio)
Aversus ← GetV ersus(Apatho)
Ctarg ← GenCombis({1, . . . , n}, ntarg,maxtarg)// target combinations
Cmoda ← GenArrangs(Ω, ntarg,maxmoda)// modality arrangements
if Aversus 6= ∅

Btherap ← ComputeTherapeuticBullets(fpatho, S, Ctarg, Cmoda,maxk,
δ, sync,Aphysio, Apatho, Aversus)// therapeutic bullets

end if
return S,Aphysio, Apatho, Aversus, Ctarg, Cmoda, Btherap

end function

Size(container) returns the number of items in container.

GenSpace(Ω, n) returns the state space of the vectors made of n values from Ω.

GenArrangs(Ω, n,maxarrang) returns maxarrang arrangements with repetition
made of n elements from Ω. If maxarrang exceeds its maximal possible value
then it is automatically decreased to its maximal possible value.

GenCombis(Ω, n,maxcombi) returns maxcombi combinations without repetition
made of n elements from Ω. If maxcombi exceeds its maximal possible value
then it is automatically decreased to its maximal possible value.

Aphysio is computed without bullet (b ← ∅), without reference set (Aref ← ∅)
and with physiological setting (setting ← 0).

Apatho is computed without bullet (b← ∅), with reference set (Aref ← Aphysio)
and with pathological setting (setting ← 1).

Aversus is not a true attractor set but the set containing the pathological at-
tractors: Aversus ⊂ Apatho. Apatho can contains physiological attractors if the
pathological variant exhibits some of them. However, Aversus only contains the
pathological attractors.

Therapeutic bullets are computed only if there are pathological basins to shrink,
namely only if Aversus 6= ∅.

19

function fphysio(x)
// the transition function of the physiological variant
y[1]← fphysio[1](x)// update x1 with fphysio,1
...
y[n]← fphysio[n](x)// update xn with fphysio,n
return y

end function

function fpatho(x)
// the transition function of the pathological variant
y[1]← fpatho[1](x)// update x1 with fpatho,1
...
y[n]← fpatho[n](x)// update xn with fpatho,n
return y

end function

function ComputeAttractor(f ,x0, b,maxk, sync)
// compute the attractor a reachable from x0

select sync
case 1// search a cycle

a.States← ReachCycle(f ,x0, b)
case 0// search a terminal SCC

for
a.States← GoForward(f ,Walk(f ,x0, b,maxk), b)// candidate
if IsTerminal(a,f , b)// candidate is a terminal SCC

break// then it is an asynchronous attractor
end if

end for
end select
return a

end function

function ComputeAttractorSet(f , S, b,maxk, setting, sync,Aref)
// compute an attractor set A, namely Aphysio, Apatho or Atest

A← {}
select setting// select the appropriate default attractor name

case 0
name← aphysio

case 1
name← apatho

end select
for i← 1, . . . , Size(S)// browse S

a← ComputeAttractor(f , S[i], b,maxk, sync)
if ∃iA : A[iA] = a// a is already found

A[iA].Basin← A[iA].Basin+ 1// then increase its basin
else// new attractor

a.Basin← 1// then begin its basin
A← A ∪ {a}// and add it to the set

20

end if
end for
for i← 1, . . . , Size(A)// browse A

A[i].Basin← 100 ·A[i].Basin/Size(S)// translate to % of card S
end for
return SetNames(A,name,Aref)

end function

function ComputeTherapeuticBullets(fpatho, S, Ctarg, Cmoda,maxk, δ, sync,
Aphysio, Apatho, Aversus)
// compute a set Btherap of therapeutic bullets
Btherap ← {}
b.Gain[1]← Sum(GetCover(Aphysio, Apatho))
for i1 ← 1, . . . , Size(Ctarg)// browse target combinations to test

for i2 ← 1, . . . , Size(CModa)// browse modality arrangements to test
b.Targ ← Ctarg[i1]// the target combination to test
b.Moda← CModa[i2]// the modality arrangement to test
Atest ← ComputeAttractorSet(fpatho, S, b,maxk, 1, sync,Aphysio)
b.Gain[2]← Sum(GetCover(Aphysio, Atest))
if IsTherapeutic(b, Atest, Aversus, δ)// b is therapeutic

b.Cover ← GetCover(Aphysio ∪Aversus, Atest)
Btherap ← Btherap ∪ {b}// then add it to the set

end if
end for

end for
return Btherap

end function

Sum(container) returns the sum of the items of container.

b.Gain is a couple (gain1, gain2) where:

• gain1 is card
⋃
Bphysio,i in Spatho

• gain2 is card
⋃
Bphysio,i in Stest

expressed in % of card Spatho and % of card Stest respectively.

b.Cover stores the size of the physiological and pathological basins in the testing
state space.

function GetCover(A1, A2)
// get the size of the B1,i in S2, in % of card S2

cover ← ()
for i← 1, . . . , Size(A1)// browse the attractors of A1

if ∃i2 : A2[i2] = A1[i]// A1[i] also belongs to A2

cover ← Append(cover, A2[i2].Basin)// then get card B1,i in S2

else// A1[i] not in A2

cover ← Append(cover, 0)// then B1,i is empty in S2

end if
end for

21

return cover
end function

Append(container, item) returns container with item added to it.

function GetV ersus(Apatho)
// get the pathological attractors
Aversus ← {}
for i← 1, . . . , Size(Apatho)// browse the attractors of Apatho

if IsSubString(Apatho[i].Name, patho)// not a physiological attractor
Aversus ← Aversus ∪ {Apatho[i]}// then add it to the set

end if
end for
return Aversus

end function

IsSubString(s1, s2) checks if s2 is a substring of s1.

function GoForward(f ,x0, b)
// compute the forward reachable set fwd of x0 (asynchronous only)
fwd← {x0}// fwd contains x0 itself
stack← (x0)// the stack of the visited states
for

x← stack[Size(stack)]// get the last stack element
stack← stack[1, . . . , Size(stack)− 1]// remove the last stack element
y ← f(x)// prepare all the updated xi
for i← 1, . . . , Size(y)// browse the updated xi

z ← x// copy x to preserve its original value
z[i]← y[i]// update only one xi
z ← Shoot(z, b)// apply the bullet
if z /∈ fwd// new state

fwd← fwd ∪ {z}// then add it to the set
stack← Append(stack, z)// and store it into the stack

end if
end for
if Size(stack) = 0// no new states to visit

break// so the complete fwd is obtained
end if

end for
return fwd

end function

function IsTerminal(a,f , b)
// check if a candidate attractor is a terminal SCC (asynchronous only)
for i← 1, . . . , Size(a.States)// browse the states of a

if GoForward(f , a.States[i], b) 6= a.States// fwdi /∈ a
return false// then not a terminal SCC

end if
end for
return true// assumed to be a terminal SCC until proven otherwise

22

end function

function IsTherapeutic(b, Atest, Aversus, δ)
// check if a bullet is therapeutic
if b.Gain[2]− b.Gain[1] ≥ δ// maybe therapeutic

for i← 1, . . . , Size(Atest)// browse the attractors of Atest

if IsSubString(Atest[i].Name, patho) ∧Atest[i] /∈ Aversus

return false// because of a de novo attractor
end if

end for
return true// assumed to be therapeutic until proven otherwise

else
return false// below the threshold

end if
end function

function ReachCycle(f ,x0, b)
// compute the cycle reachable from x0 (synchronous only)
cycle← (x0)// begin the trajectory
x← x0

for
x← Shoot(f(x), b)// update and apply the bullet
if ∃i : cycle[i] = x// cycle found in the trajectory

cycle← cycle[i, . . . , Size(cycle)]// extract the cycle
break// mission completed

else// cycle not yet reached
cycle← Append(cycle,x)// then pursue the trajectory

end if
end for
return cycle

end function

function SetNames(A,name,Aref)
// name the attractors of A according to Aref (defaults to name)
y ← A// copy A to return a copy
k ← 1// initiate the default name numbering
for i← 1, . . . , Size(A)// browse the attractors of A

if ∃iref : Aref [iref] = A[i]// A[i] found in Aref

y[i].Name← Aref [iref].Name// then get its name in Aref

else// A[i] not in Aref

y[i].Name← CatStrings(name, ToString(k))// then default
k ← k + 1// and increment the default name numbering

end if
end for
return y

end function

CatStrings(s1, s2) returns the concatenation of s1 and s2.

ToString(item) returns the string corresponding to item.

23

This function names the attractors of A according to a reference set Aref . If an
attractor of A also belongs to Aref then its name in Aref is used, otherwise the
default name, numbered with k, is used.

function Shoot(x, b)
// apply a bullet on a state
y ← x// copy x to return a copy
for i← 1, . . . , Size(b.Targ)// browse ctarg

y[b.Targ[i]]← b.Moda[i]// apply modai on targi
end for
return y

end function

function Walk(f ,x0, b,maxk)
// perform a random walk from x0 (asynchronous only)
x← x0// start the trajectory
for k ← 1, . . . ,maxk// until maxk

y ← f(x)// prepare all the updated xi
i← RandInt(1, Size(x))// randomly choose one xi
x[i]← y[i]// then update only the chosen xi
x← Shoot(x, b)// and apply the bullet

end for
return x

end function

RandInt(a, b) returns a randomly selected integer between a and b according
to a uniform distribution.

References
[1] Arnaud Poret and Jean-Pierre Boissel. An in silico target identification us-

ing boolean network attractors: avoiding pathological phenotypes. Comptes
rendus biologies, 337(12):661–678, 2014.

[2] Nicolas Le Novere. Quantitative and logic modelling of molecular and gene
networks. Nature Reviews Genetics, 16(3):146–158, 2015.

[3] Michelle L Wynn, Nikita Consul, Sofia D Merajver, and Santiago Schnell.
Logic-based models in systems biology: a predictive and parameter-free
network analysis method. Integrative biology, 4(11):1323–1337, 2012.

[4] Melody K Morris, Julio Saez-Rodriguez, Peter K Sorger, and Douglas A
Lauffenburger. Logic-based models for the analysis of cell signaling net-
works. Biochemistry, 49(15):3216–3224, 2010.

[5] Reka Albert and Juilee Thakar. Boolean modeling: a logic-based dynamic
approach for understanding signaling and regulatory networks and for mak-
ing useful predictions. Wiley Interdisciplinary Reviews: Systems Biology
and Medicine, 6(5):353–369, 2014.

24

[6] Rui-Sheng Wang, Assieh Saadatpour, and Reka Albert. Boolean modeling
in systems biology: an overview of methodology and applications. Physical
biology, 9(5):055001, 2012.

[7] Johannes Jaeger and Nick Monk. Bioattractors: dynamical systems the-
ory and the evolution of regulatory processes. The Journal of physiology,
592(11):2267–2281, 2014.

[8] Sung-Hwan Cho, Sang-Min Park, Ho-Sung Lee, Hwang-Yeol Lee, and
Kwang-Hyun Cho. Attractor landscape analysis of colorectal tumorigenesis
and its reversion. BMC Systems Biology, 10(1):96, 2016.

[9] Xiao Gan and Reka Albert. Analysis of a dynamic model of guard cell
signaling reveals the stability of signal propagation. BMC Systems Biology,
10(1):78, 2016.

[10] Jose Davila-Velderrain, Juan C Martinez-Garcia, and Elena R Alvarez-
Buylla. Modeling the epigenetic attractors landscape: toward a post-
genomic mechanistic understanding of development. Frontiers in genetics,
6:160, 2015.

[11] Isaac Crespo, Thanneer M Perumal, Wiktor Jurkowski, and Antonio
Del Sol. Detecting cellular reprogramming determinants by differential sta-
bility analysis of gene regulatory networks. BMC systems biology, 7(1):1,
2013.

[12] Herman F Fumia and Marcelo L Martins. Boolean network model for cancer
pathways: predicting carcinogenesis and targeted therapy outcomes. PloS
one, 8(7):e69008, 2013.

[13] Wei-Yi Cheng, Tai-Hsien Ou Yang, and Dimitris Anastassiou. Biomolecu-
lar events in cancer revealed by attractor metagenes. PLoS Comput Biol,
9(2):e1002920, 2013.

[14] Pau Creixell, Erwin M Schoof, Janine T Erler, and Rune Linding. Navigat-
ing cancer network attractors for tumor-specific therapy. Nature biotech-
nology, 30(9):842–848, 2012.

[15] MK Morris, DC Clarke, LC Osimiri, and DA Lauffenburger. Systematic
analysis of quantitative logic model ensembles predicts drug combination
effects on cell signaling networks. CPT: Pharmacometrics & Systems Phar-
macology, 2016.

[16] Hyunho Chu, Daewon Lee, and Kwang-Hyun Cho. Precritical state transi-
tion dynamics in the attractor landscape of a molecular interaction network
underlying colorectal tumorigenesis. PloS one, 10(10):e0140172, 2015.

[17] Abhishek Garg, Alessandro Di Cara, Ioannis Xenarios, Luis Mendoza, and
Giovanni De Micheli. Synchronous versus asynchronous modeling of gene
regulatory networks. Bioinformatics, 24(17):1917–1925, 2008.

[18] Tamas Szekely and Kevin Burrage. Stochastic simulation in systems bi-
ology. Computational and structural biotechnology journal, 12(20):14–25,
2014.

25

[19] Marcello Buiatti and Giuseppe Longo. Randomness and multilevel inter-
actions in biology. Theory in Biosciences, 132(3):139–158, 2013.

[20] Mukhtar Ullah and Olaf Wolkenhauer. Stochastic approaches in systems
biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine,
2(4):385–397, 2010.

[21] German Rivas and Allen P Minton. Macromolecular crowding in vitro, in
vivo, and in between. Trends in Biochemical Sciences, 2016.

[22] Nicholas Rescher. Many-valued logic. Springer, 1968.

[23] Christoph Mussel, Martin Hopfensitz, and Hans A Kestler. Boolnet–an r
package for generation, reconstruction and analysis of boolean networks.
Bioinformatics, 26(10):1378–1380, 2010.

[24] Assieh Saadatpour, Istvan Albert, and Reka Albert. Attractor analysis of
asynchronous boolean models of signal transduction networks. Journal of
theoretical biology, 266(4):641–656, 2010.

[25] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[26] Evangelia Koutsogiannouli, Athanasios G Papavassiliou, and Nikolaos A
Papanikolaou. Complexity in cancer biology: is systems biology the answer?
Cancer medicine, 2(2):164–177, 2013.

[27] Christof Koch. Modular biological complexity. Science, 337(6094):531–532,
2012.

[28] S Yu Jessica and Neda Bagheri. Multi-class and multi-scale models of
complex biological phenomena. Current opinion in biotechnology, 39:167–
173, 2016.

[29] Joseph Walpole, Jason A Papin, and Shayn M Peirce. Multiscale computa-
tional models of complex biological systems. Annual review of biomedical
engineering, 15:137, 2013.

[30] Jasmin Fisher and Nir Piterman. The executable pathway to biological
networks. Briefings in functional genomics, 9(1):79–92, 2010.

[31] EO Voit, Z Qi, and GW Miller. Steps of modeling complex biological
systems. Pharmacopsychiatry, 41(S 01):S78–S84, 2008.

[32] Hans Peter Fischer. Mathematical modeling of complex biological systems:
from parts lists to understanding systems behavior. Alcohol Research &
Health, 31(1):49, 2008.

[33] Christos G Mihos, Andres M Pineda, and Orlando Santana. Cardiovas-
cular effects of statins, beyond lipid-lowering properties. Pharmacological
research, 88:12–19, 2014.

[34] C Mary Schooling, Shiu Lun Au Yeung, and Gabriel M Leung. Why do
statins reduce cardiovascular disease more than other lipid modulating ther-
apies? European journal of clinical investigation, 44(11):1135–1140, 2014.

26

[35] Lotfi Asker Zadeh. Fuzzy logic. 1988.

[36] Arnaud Poret, Claudio Monteiro Sousa, and Jean-Pierre Boissel. Enhancing
boolean networks with fuzzy operators and edge tuning. arXiv preprint
arXiv:1407.1135, 2014.

[37] Melody K Morris, Julio Saez-Rodriguez, David C Clarke, Peter K Sorger,
and Douglas A Lauffenburger. Training signaling pathway maps to bio-
chemical data with constrained fuzzy logic: quantitative analysis of liver
cell responses to inflammatory stimuli. PLoS Comput Biol, 7(3):e1001099,
2011.

[38] Bree B Aldridge, Julio Saez-Rodriguez, Jeremy L Muhlich, Peter K
Sorger, and Douglas A Lauffenburger. Fuzzy logic analysis of kinase path-
way crosstalk in tnf/egf/insulin-induced signaling. PLoS Comput Biol,
5(4):e1000340, 2009.

[39] Xiaowei Zhu, Mark Gerstein, and Michael Snyder. Getting connected:
analysis and principles of biological networks. Genes & Development,
21(9):1010–1024, 2007.

[40] Frank Emmert-Streib, Matthias Dehmer, and Benjamin Haibe-Kains. Gene
regulatory networks and their applications: understanding biological and
medical problems in terms of networks. Frontiers in cell and developmental
biology, 2:38, 2014.

27

	Introduction
	Handling asynchronous updating
	Managing basin sizes for therapeutic purposes
	Extending to multivalued logic

	Methods
	Additional definitions
	Handling asynchronous updating
	Managing basin sizes for therapeutic purposes
	Extending to multivalued logic
	Example network
	Implementation, code availability and license

	Results
	Attractor sets
	Therapeutic bullets

	Conclusion
	Appendices
	Appendix 1: recall of previous concepts
	Biological networks
	Boolean networks
	Definitions

	Appendix 2: multivalued case
	Attractor sets
	Therapeutic bullets

	Appendix 3: core of kali
	Defined types
	Parameters
	Functions

